徐州市中考数学试卷及答案(原卷版)

合集下载

2023年江苏省徐州市中考数学真题(精品解析)【可编辑可打印】

2023年江苏省徐州市中考数学真题(精品解析)【可编辑可打印】

A. a
B. b
C. c
D. d
【答案】C 【解析】
【分析】根据数轴可直接进行求解. 【详解】解:由数轴可知点 C 离原点最近, 所以在 a 、 b 、 c 、 d 中最小的是 c ; 故选 C .
【点睛】本题主要考查数轴上实数的表示、有理数的大小比较及绝对值,熟练掌握数轴上有理数的 表示、有理数的大小比较及绝对值是解题的关键.
其中,海拔为中位数的是( ) A. 第五节山 B. 第六节山 C. 第八节山 【答案】C
【解析】
D. 第九节山
【分析】根据折线统计图把数据按从小到大排列,然后根据中位数可进行求解. 【详解】解:由折线统计图可按从小到大排列为 90.7、99.2、104.1、119.2、131.8、133.5、136.6、
【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.
8
8. 如图,在VABC 中, 为
ÐB
=
90。, ÐA
=
30。, BC
=
2, D
为AB
的中点.若点E
在边AC
上,且AD
AB
=DE BC
,则 AE 的长
()
A. 1
B. 2
C. 1 或
D. 1 或 2
【答案】D 【解析】
4
4. 下列运算正确的是( )
A. “2 “3 = “6
B. “4 “2 = “2
C.
( )3 2
5
“ =“
D. 2“2 + 3“2 = 5“4
【答案】B 【解析】
【分析】根据同底数幂的乘除法、幂的乘方及合并同类项可进行求解. 【详解】解: A、“2 “3 = “5 ,原计算错误,故不符合题意; B 、“4 “2 = “2 ,原计算正确, 故符合题意;

2020年江苏省徐州市中考数学试卷原卷附解析

2020年江苏省徐州市中考数学试卷原卷附解析

2020年江苏省徐州市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下面两个三角形一定相似的是( )A .两个等腰三角形B .两个直角三角形C .两个钝角三角形D .两个等边三角形2.下列图形中,是中心对称图形而不是轴对称图形的是( )A .平行四边形B .正三角形C .正方形D .线段AB 3.(x+a )(x-3)的积的一次项系数为零,则a 的值是( )A .1B .2C .3D .4 4.赵强同学借了一本书,共 280 页,要在两周借期内读完. 当他读了一半时,发现平均每天要多读 21 页才能在借期内读完. 他读前一半时,平均每天读多少页?如果设读前一 半时,平均每天读x 页,则下列方程中,正确的是( )A .1401401421x x +=-B .2802801421x x +=+C .1401401421x x +=+D .1010121x x +=+ 5.如果一个角等于它的余角的2倍,那么这个角是它补角的( ) A .2倍 B .12 C .5倍 D .156.为了做一个试管架,在长为cm(6cm)a a >的木板上钻3个小孔(如图),每个小孔的直径为2cm ,则x 等于( )A .34a -cmB .34a +cmC .64a -cmD .64a +cm7.把12-与 6作和、差、积、商、幂的运算,结果中为正数的有( )A . 4个B .3个C .2个D .1个 8.如图,在△ABC 与△DEF 中,给出以下六个条件中(1)AB =DE ;(2)BC =EF ;(3)AC =DF ;(4)∠A =∠D ;(5)∠B =∠E ;(6)∠C =∠F ,以其中三个作为已知条件,不.能.判断△ABC 与△DEF 全等的是( ) A .(1)(5)(2) B .(1)(2)(3)C .(4)(6)(1)D .(2)(3)(4) 二、填空题9.sin28°= ;cos36°42′= ;tan46°24′= .10.已知双曲线xk y =经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b .11.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为______________.12.对某班同学的身高进行统计(单位:厘米),频数分布表中165.5~170.5这一组学生人数是10,频率为0.25,则该班共有_________名同学.13.已知 A ,B 的坐标分别为(-2,0),(4,0),点P 在直线2y x =+上,如果△ABP 为等腰三角形,这样的 P 点共有 个.14.已知一次函数的图象如图所示,则一次函数的解析式为 .15.对于平面内任意一个凸四边形ABCD ,现从以下四个关系式①AB=CD ;②AD=BC ;③AB ∥CD ;④∠A=∠C 中任取两个作为条件,能够得出这个四边形ABCD 是平行四边形的概率是 .16.如图是一个长方形公园,如果要从A 景点走到B 景点,至少要走 米.17.如图,AD 是ABC △的一条中线,45ADC ∠=.沿AD 所在直线把ADC △翻折,使点C 落在点C '的位置.则BC BC'= .18.如果一个三角形的三条高都在三角形的内部,那么这个三角形是 三角形(按角分类).19.下列事件中,哪些是必然事件?哪些是不确定事件?哪些是不可能事件?(1)掷一枚硬币,有国徽的一面朝上: .(2)随意翻一下日历,翻到的号数是奇数: .(3)杭州每年春季都会下雨:.20.已知线段AB长为10厘米,C是线段AB上任意一点(不与A,B重合), M是AC的中点,N是BC的中点,则MN=________厘米.21.计算:(1)48°59′55″+67°28″= ;(2)90°-78°19′40″= .三、解答题22.某产品每件成本10元,试销阶段每件产品的日销售价x(元)与产品的日销售量y (件)之间的关系如下表:x(元)15202530…y(件)25201510…⑴在草稿纸上描点,观察点的分布,建立y与x的恰当函数模型.⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?23.如图, AB是⊙O的直径,弦CD⊥AB于点M, AM = 2,BM = 10,求CD的长度.24.将进货单价为 90 元的某种商品按100 元一个售出时,能卖出 500 个,已知这种商品每涨价1 元,其销售量就要减少 10个,为了获得最大利润应怎样定价?25.已知四边形ABCD,对角线AC、BD交于点O.现给出四个条件:①AC⊥BD;②AC平分对角线BD;③AD∥BC;④∠OAD=∠ODA.请你以其中的三个条件作为命题的题设,以“四边形ABCD为菱形”作为命题的结论.(1)写出一个真命题,并证明;(2)写出一个假命题,并举出一个反例说明.26.解下列不等式组,并把臃在轴上表示出来.(1) 122(1)1x xx x -≤⎧⎨++>⎩ (2)132(2)2165()75x x x x +⎧->-⎪⎪⎨⎪--≥-⎪⎩27.如图,△ABC 的顶点A 平移到了点D ,请你作出△ABC 经平移变换后所得的像.28.若2x ax b ++能分解成(3)(4)x x +-,求a ,b 的值.29.小张把压岁钱按定期一年存入银行,当时一年定期存款的年利率为1.98%,利息税的税率为20%,到期支取时,扣除利息税后,小明实得本利和为l015.84元,问小明存入银行的压岁钱有多少元?30.在不透明的口袋中装有大小、质地完全相同的分别标有数字1,2,3的三个小球,随机摸出一个小球(不放回),将小球上的数字作为一个两位数个位上的数字,然后再摸出一个小球将小球上的数字作为这个两位数十位上的数字(利用表格或树状图解答)(1)能组成哪些两位数?(2)小华同学的学号是12,有一次试验中他摸到自己学号的概率是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.C4.C5.B6.C7.C8.D二、填空题9.0. 4695,0. 8018,1. 050110.<11.()41,12.40 13.414.y=-2x+215.1216.17.2218. 锐角19.(1)不确定事件;(2)不确定事件;(3)必然事件20.521.(1)116°23″ (2)11°40′20″三、解答题22.解:⑴经观察发现各点分布在一条直线上,∴设b kx y += (k ≠0), 用待定系数法求得40+-=x y .⑵设日销售利润为z ,则y xy z 10-==400502-+-x x ,当x=25时,z 最大为225.每件产品的销售价定为25元时,日销售利润最大为225元.23.54.24.设利润为 y 元,商品涨价x 元.(10090)(50010)y x x =+--,由己知得由配方法得210(20)9000y x =--+ 由二次函数的性质得当 x= 20 时,9000y =最大值∴为获得最大利润应定价120 元.25.(1)若①②③成立,则四边形ABCD 为菱形,证明略;(2)假命题:若①②④成立,则四边形ABCD 为菱形,反例略(答案不惟一). 26.(1)1x ≥-,在数轴上表示略 (2)712x -≤<,在数轴上表示略 27.略28.a=-1,b=-1229.1000元30.(1)∴能组成的两位数有21,31,12,32,13,23能组成的两位数有21,31,12,32,13,23.(2)(12)16P =学号. 开始12 3 2 3 3 2 1 1。

江苏省徐州市中考数学真题试题(含解析)

江苏省徐州市中考数学真题试题(含解析)

江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣22.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a63.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,104.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.12005.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,386.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y28.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是.10.(3分)使有意义的x的取值范围是.11.(3分)方程x2﹣4=0的解是.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有个.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.20.(10分)(1)解方程:+1=(2)解不等式组:21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣2【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a6【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【解答】解:A、a2+a2=2a2,故选项A不合题意;B.(a+b)2=a2+2ab+b2,故选项B不合题意;C.(a3)3=a9,故选项C符合题意;D.a3•a2=a5,故选项D不合题意.故选:C.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及完全平方公式,熟练掌握法则是解答本题的关键.3.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点评】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.4.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.1200【分析】由抛掷一枚硬币正面向上的可能性为0.5求解可得.【解答】解:抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选:C.【点评】本题主要考查随机事件,关键是理解必然事件为一定会发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.5.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,38【分析】根据众数和中位数的概念求解可得.【解答】解:将数据重新排列为37,37,38,39,40,40,40,所以这组数据的众数为40,中位数为39,故选:B.【点评】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解可得.【解答】解:不是轴对称图形,故选:D.【点评】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2【分析】根据题意和反比例函数的性质可以解答本题.【解答】解:∵函数y=,∴该函数图象在第一、三象限、在每个象限内y随x的增大而减小,∵A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,∴y1<y2,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.8.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108【分析】先化简2.5×106=0.25×107,再从选项中分析即可;【解答】解:2.5×106=0.25×107,(10×107)÷(0.25×107)=40,从数轴看比较接近;故选:D.【点评】本题考查数轴,科学记数法;能够将数进行适当的表示,结合数轴解题是关键.二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)使有意义的x的取值范围是x≥﹣1 .【分析】根据二次根式中的被开方数必须是非负数,可得x+1≥0,据此求出x的取值范围即可.【解答】解:∵有意义,∴x+1≥0,∴x的取值范围是:x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.(3分)方程x2﹣4=0的解是±2 .【分析】首先把4移项,再利用直接开平方法解方程即可.【解答】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为 4 .【分析】由a=b+2,可得a﹣b=2,代入所求代数式即可.【解答】解:∵a=b+2,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4.故答案为:4【点评】本题主要考查了完全平方公式,熟记公式是解答本题的关键.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为16 .【分析】根据中位线的性质求出BO长度,再依据矩形的性质AC=BD=2BO进行求解问题.【解答】解:∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.【点评】本题主要考查了矩形的性质以及三角形中位线的定理,解题的关键是找到线段间的倍分关系.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=140°.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出多边形的边数,再根据多边形的内角和公式计算即可.【解答】解:多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠OAD=.故答案为:140°【点评】本题主要考查了正多边形的外角以及内角,熟记公式是解答本题的关键.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为 6 cm.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262 m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【分析】作AE⊥BC于E,根据正切的定义求出AE,根据等腰直角三角形的性质求出BE,结合图形计算即可.【解答】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为y=(x﹣4)2.【分析】设原来的抛物线解析式为:y=ax2.利用待定系数法确定函数关系式;然后利用平移规律得到平移后的解析式,将点P的坐标代入即可.【解答】解:设原来的抛物线解析式为:y=ax2(a≠0).把P(2,2)代入,得2=4a,解得a=.故原来的抛物线解析式是:y=x2.设平移后的抛物线解析式为:y=(x﹣b)2.把P(2,2)代入,得2=(2﹣b)2.解得b=0(舍去)或b=4.所以平移后抛物线的解析式是:y=(x﹣4)2.故答案是:y=(x﹣4)2.【点评】考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征.利用待定系数法确定原来函数关系式是解题的关键.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有 3 个.【分析】三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;【解答】解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;【点评】本题考查一次函数的图象上点的特征,等腰三角形的性质;掌握利用两圆一线找等腰三角形的方法是解题的关键.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.【分析】(1)先计算零指数幂、算术平方根、负整数指数幂和绝对值,再计算加减可得;(2)先化简各分式,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=1﹣3+9﹣5=2;(2)原式=÷=(x﹣4)•=2x.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式的乘除运算顺序和运算法则.20.(10分)(1)解方程:+1=(2)解不等式组:【分析】(1)两边同时乘以x﹣3,整理后可得x =;(2)不等式组的每个不等式解集为;【解答】解:(1)+1=,两边同时乘以x﹣3,得x﹣2+x﹣3=﹣2,∴x =;经检验x =是原方程的根;(2)由可得,∴不等式的解为﹣2<x≤2;【点评】本题考查分式方程,不等式组的解;掌握分式方程和不等式组的解法是关键.21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.【分析】(1)计算所取两数的乘积即可得;(2)找到符合条件的结果数,再根据概率公式计算可得;(3)利用概率公式计算可得.【解答】解:(1)补全表格如下:(2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为;积为偶数的概率为=,故答案为:,.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.【分析】(1)从条形统计图中可得3﹣4月份电费240元,从扇形统计图中可知3﹣4月份电费占全年的10%,可求全年的电费,进而求出9﹣10月份电费所占的百分比,然后就能求出9﹣10月份对应扇形的圆心角的度数;(2)全年的总电费减去其它月份的电费可求出7﹣8月份的电费金额,确定直条画多高,再进行补全统计图.【解答】解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=,∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×=42°答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元,补全的统计图如图:【点评】考查条形统计图、扇形统计图的特点及反应数据的变化特征,两个统计图联系在一起,可以发现数据之间关系,求出在某个统计图中缺少的数据.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【分析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD =CG,即可得到∠B=∠G,BC=CG,进而得出△EBC≌△FGC.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.【分析】(1)连接OC,由D为的中点,得到=,根据圆周角定理即可得到结论;(2)根据平行线的判定定理得到AE∥OD,根据平行线的性质得到OD⊥DE,于是得到结论.【解答】(1)证明:连接OC,∵D为的中点,∴=,∴∠BCD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.【点评】本题考查了直线与圆的位置关系,圆心角、弧、弦的关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?【分析】设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,根据长方体盒子的侧面积为200cm2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.【分析】根据已知条件作图可知40cm时,所有图案个数4个;猜想得到结论;【解答】解:如图:根据作图可知40cm时,所有图案个数4个;50cm时,所有图案个数5个;60cm时,所有图案个数6个;故答案为4,5,6;【点评】本题考查应用与设计作图,规律探究;能够根据条件作图图形,探索规律是解题的关键.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?【分析】(1)设甲、乙两人的速度,并依题意写出函数关系式,再根据图②中函数图象交点列方程组求解;(2)设甲、乙之间距离为d,由勾股定理可得d2=(1200﹣240x)2+(80x)2 =64000(x﹣)2+144000,根据二次函数最值即可得出结论.【解答】解:(1)设甲、乙两人的速度分别为am/min,bm/min,则:y1=y2=bx由图②知:x=3.75或7.5时,y1=y2,∴,解得:答:甲的速度为240m/min,乙的速度为80m/min.(2)设甲、乙之间距离为d,则d2=(1200﹣240x)2+(80x)2=64000(x﹣)2+144000,∴当x=时,d2的最小值为144000,即d的最小值为120;答:当x=时,甲、乙两人之间的距离最短.【点评】本题考查了函数图象的读图识图能力,正确理解图象交点的含义,从图象中发现和获取有用信息,提高分析问题、解决问题的能力.28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.【分析】(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.利用全等三角形的性质解决问题即可.(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,利用勾股定理求出a,b之间的关系,求出OC,OD即可解决问题.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,可得AB=6﹣a﹣b,推出OA+OB+AB =6,可得a+b+=6,利用基本不等式即可解决问题.【解答】解:(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=18﹣6a﹣6b,∴9﹣3a﹣3b=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO====6.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S△AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.【点评】本题属于反比例函数综合题,考查了反比例函数的应用,全等三角形的判定和性质,勾股定理,平行线分线段成比例定理,基本不等式等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。

最新江苏省徐州市中考数学真题试卷附解析

最新江苏省徐州市中考数学真题试卷附解析

江苏省徐州市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图所示,电路图上有A 、B 、C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A 、B ,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于( ) A .32 B .21 C .31 D .412.如图,用一个平面去截长方体,则截面形状为( )3.如图,PA 切⊙O 于A ,PO 交⊙O 于B ,若PA=6,PB=4,则⊙O 的半径是( ) A .52B .56C .2D .54.如图,ABCD 是平行四边形,则图中与DEF △相似的三角形共有( )A .1个B .2个C .3个D .4个5.S 型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x ,则下列方程中正确的是( ) A .1500 (1+x )2=980 B .980(1+x )2=1500 C .1500 (1-x )2=980 D .980(1-x )2=1500 6.下列一次函数中,y 随x 的增大而减小的有( ) ①21y x =-+;②6y x =-;③13xy +=-;④(12)y x = . A .1个 B .2个 C .3个D . 4个7.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A .向右平移了3个单位B .向左平移了3个单位C .向上平移了3个单位D .向下平移了3个单位 8.下列函数中,是二次函数的有( )(1)25y x =-;(2)23y x =--;(3)(1)(3)y x x =-+;(4)23y x x =-;(5)22(1)y x x =--;(6)2y x π= A .5 个B .4 个C .3 个D .2 个9.为了考察甲、乙两种小麦,分别从中抽取5株苗,测得苗高(单位:cm )如下: 甲:2 4 6 8 10 乙:l 3 5 7 9用2S 甲和2S 乙分别表示这两个样本的方差,那么 ( )A .2S 甲>2S 乙B .2S 甲 <2S 乙C .2S 甲=2S 乙D .2S 甲与2S 乙的关系不能确定10.一个几何体的主视图,左视图和俯视图都是正方形,那么这个几何体可以是( ) A .圆锥B .立方体C .圆柱D .直六棱柱11.同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数. 下 列事件中,属于不可能事件的是( ) A 点数之和为 12 B .点数之和小于 3 C .点数之和大于4且小于 8 D .点数之和为 1312.如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是( )A .12a b =⎧⎨=⎩B .02a b =⎧⎨=⎩C .21a b =⎧⎨=⎩D .11a b =⎧⎨=⎩13.下列方程中,是一元一次方程的为( ) A .x+y=1B .2210x x -+=C .21x= D .x=014.用计算器求78+35的按键顺序正确的是( ) ①按数字键 ②按 ③按数字键④按键 A .①②③④B .①④②③C .①③②④D .①③④②15.如图,M N P R ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且1MN NP PR ===.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3a b +=,则原点是( )A .M 或RB .N 或PC .M 或ND .P 或R二、填空题16. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .17.在Rt △ABC 中,∠C=90°,已知a 边及∠A ,则b= . 18.已知一组比例线段的长度分别是x ,2,5,8,则x= .19.在⊙O 中,弦 AB ∥CD ,AB=24,CD=10,弦 AB 的弦心距为 5,则 AB 和 CD 之间的距离是 .20.请选择一组你喜欢的c b a 、、的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:①开口向下,②当2<x 时,y 随x 的增大而增大;当2>x 时,y 随x 的增大而减小.这样的二次函数的解析式可以是 . y=-x 2+4x-4(答案不唯一)21.在相同条件下,对30辆同一型号的汽车进行耗油1 L 所行驶路程的试验,根据测得的数据画出频数分布直方图如图所示.本次试验中,耗油1 L 所行驶路程在13.8~14.3 km 范围内的汽车共有 辆.30辆汽车耗油1 L 所行驶路程的频数分布直方图22.如图,是几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是 .三、解答题23.圆锥的侧面积为6π,侧面展开图的圆心角为270°,求圆锥的底面积. 4.5π24.如图,水管内原有积水的水面宽 CD=4 cm ,水深 GH= 1 cm ,因几天连续下雨水面上升 1 cm (即 EG= 1 cm). 求此时水面 AB 的宽是多少?25.画—个正方体的表面展开图.26.在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,有①△ADC ≌△CEB ;②DE=AD +BE ,请说明理由.(2)当直线MN 绕点C 旋转到图2的位置时, DE=AD -BE ,请说明理由;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,不必说明理由.27.如图,(1)在方格纸上作下列相似变换:把△ABC 的每条边扩大到原来的2倍; (2)放大后的图形的周长是原图形周长的多少倍? (3)放大后的图形的面积是原图形面积的多少倍?CBA E D图1N MABC DEMN图2ACBEDN M 图328.在数轴上表示下列各数:0,-2.5,213,-2,+5,311,并按从大到小的顺序排列.29.受强冷空气的影响,某地某日上午11时的气温为4℃,下午4时的气温已降为-2.5℃,平均每小时气温下降多少摄氏度?30.在数轴上-7 与 37 之间插入三个数,使这五个数的每相邻两个点之间的距离相等. 求插入的三个数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.A4.B5.C6.D7.D8.B9.C10.B11.D12.A13.D14.A15.A二、填空题 16.(2+17.Aatan 18. 20 或165或54 19.7 或 1720.21. 1222.5个三、解答题 23. 4.5π24.连结 CO 、AO ,∴.OG ⊥AB ,∴.CG=GD=2.在 Rt △OCG 中,222CO GG OG =+,∴CO=2. 5cm ,同理222E AO A OE =+∴cm ,∴此时水面 AB 的宽是25.答案不唯一,如26.(1)略;(2)略;(3)DE=BE-AD.27.(1)略,(2)2,(3)428.略29.1.3℃30.4,15,26。

最新江苏省徐州市中考数学测试试题附解析

最新江苏省徐州市中考数学测试试题附解析

江苏省徐州市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.正方形网格中,AOB ∠如图放置,则sin AOB ∠=( )A.5 B.5C .12D .2 2. 抛物线y=x 2+6x+8与y 轴交点坐标( ) A .(0,8)B .(0,-8)C .(0,6)D .(-2,0)(-4,0) 3.函数223y x x k =++的图象与x 轴有交点,则k 的取值应为( )A .98k >B .98k ≥C .98k <D .98k ≤ 4.下列关于菱形的对角线的说法中错误..的是( ) A .互相平分 B .互相垂直 C .相等 D .每一条对角线平分一组对角5. 一元二次方程22(1)1x x -=-的根是( )A .32-B .1C .32-或 1D . 无解6.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A .112k -<<-B .102k <<C .01k <<D .112k << 7.下列不等式组无解的是( ) A .1020x x -<⎧⎨+<⎩ B .1020x x -<⎧⎨+>⎩ C .1020x x ->⎧⎨+<⎩ D .1020x x ->⎧⎨+>⎩ 8.今年某市有800名八年级学生参加了省数学竞赛,为了了解这800名学生的成绩,从中抽取了100名学生的考试成绩进行分析,以下说法中,正确的是( )A .800名学生是总体B .每个学生是个体C .100名学生的数学成绩是一个样本D .800名学生是样本容量9.如图,在 Rt △ABC 中,∠ACB = 90°,DE 过点C 且平行于AB. 若∠BCE = 35°,则∠A 等于( )A . 35°B .45°C . 55°D . 65°10.如图,若∠l=∠2,则在结论:①∠3=∠4;②AB ∥DC ;③AD ∥BC 中,正确的个数是( )A .0个B .1个C .2个D .3个11.从1~9这9个自然数中任取一个,是2的倍数或3的倍数的概率为( )A .79B .29C . 23D . 5912.下列计算正确的是( )A .23(31)3a a a a --=--B .222()a b a b -=-C .2(23)(23)94a a a ---=-D .235()a a = 13.已如图是L 型钢条截面,它的面积是( ) A .ct lt + B .2()c t t lt ct lt t -+=+-C . 2()()2c t t l t t ct lt t -+-=+-D .2()()22l c t c t l t l c +++-+-=+14.下列判断正确的是 ( )①在数轴上,原点两旁的两个点所表示的数都是互为相反数; ②任何正数必定大于它的倒数;③5ab ,12x +,4a 都是整式;④x 2-xy+y 2是二次多项式 A .①② B .②③ C .③④ D .①④15. 如图,用火柴棒按如图的方式搭三角形,搭一个三角形需 3根火柴棒,如图甲;搭两个三角形需 5根火柴棒,如图乙;搭三个三角形需 7根火柴棒,如图丙. 那么按此规律搭下去,搭10 个三角形需要多少根火柴棒( )A .21B .30C .111D .119二、填空题16.小华与父母一同从重庆乘火车到广安邓小平故居参观. 火车车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是 . 17.若α为等腰直角三角形的锐角,则cos α= .18.命题“若a 2=b 2,则a =b ”是 命题.(填“真”或“假”)19.若矩形的对角线等于较长边a 的一半与较短边b 的和,则a :b 等于 .20.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为____________.21.某市某学校初中八年级有4个绿化小组,在植树节这天种下杨树的棵数如下:l0,10,x ,8.若这组数据的众数和平均数相等,那么它们的中位数是 棵.解答题22.当98m =-时,244m m -+的值为 .三、解答题23.如图,已知反比例函数8y x=-和一次函数2y x =-+的图象交于A 、B 两点,求: (1)A 、B 两点的坐标;(2)若O 为坐标原点,求△AOB 的面积.24.如图所示是某班学生一次数学考试成绩的统计图,其中纵轴表示学生数,横轴表示分数,观察图形并填空.(1)全班共有学生人;(2)若该班学生此次数学考试成绩组中值不低于70分的组为合格,则合格率为;(3)如果组中值为90的一组成绩为优良,那么该班学生此次数学考试成绩的优良率为;(4)该班此次考试的平均成绩大概是.25.如图所示,是两个正五边形,如果想密铺,还需要怎么样的多边形?26.方程0+++xmxm m.-)31()1(1||=-(1)m取何值时,方程是一元二次方程,并求出此方程的解;(2)m取何值时,方程是一元一次方程.27.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数.方案4 所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.28.如图①所示,长方形通过剪切可以拼成直角三角形,方法如下:仿照上图,用图示的方法,解答下列问题:(1)如图②所示,已知直角三角形,设计一种方案,将它分成若干块,再拼成一个与之等面积的长方形;(2)如图③所示,对任意一个三角形,设计一种方案,把它分成若干块,再拼成一个与它等面积的长方形.29.出租车司机小李某天下午的营运全是在东西走向的人民大街上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:5,4,12,10,1,5,2,15-+++-+-+(1)人民大街总长不小于__________千米;(2)将最后一名乘客送往目的地时,小李距离下午出车时的出发点多远?(3)若出租车耗油量为每千米a 升,这天下午小李共耗油多少升?30.如图,某市有一块长为(3a b +)m ,宽为(2a b +)m 的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少m 2?并求出当3a =,2b =时的绿化面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.D4.C5.C6.D7.C8.C9.C10.B11.CC13.B14.C15.A二、填空题16.1317. 22 18. 假19.4:320.0.521.1022.10000三、解答题23.(1)由28y x y x =-+⎧⎪⎨=-⎪⎩得2280x x --=,解得:x 1 = 4,x 2 =-2 x 1 = 4时,y 1 =-2;x 2 =-2 时,y 2 =4,∴A 、B 坐标分别是(4,一2)和(—2,4).(2)设直线 AB 与 x 轴交于C ,则点 C 的坐标为(2,0).112422622AOB AOC OBC S S S ∆∆∆=+=⨯⨯+⨯⨯=. 24.(1)40;(2)85%;(3)40%;(4)70分正十边形26.⑴1=m ,解为231±=x ;⑵1-=m ,解为41-=x 或0=m ,解为21-=x . 27.解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.710+++⨯+⨯+=; 方案2最后得分:1(7.07.83838.4)88++⨯+⨯=;方案3最后得分:8; 方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”, 所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.28.(1)(2)29.(1)人民大街总长不小于43千米;(2)向东38千米;(3)54a 升30.(253a ab +)m 2;当3a =,2b =时,25363a ab +=m 2。

中考徐州市数学试题及答案

中考徐州市数学试题及答案

中考徐州市数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. √2C. 0.33333…D. √9答案:B2. 如果一个数的相反数是-3,那么这个数是:A. 3B. -3C. 6D. -6答案:A3. 以下哪个表达式等于x^2 - 4x + 4?A. (x - 2)^2B. (x + 2)^2C. (x - 4)^2D. (x + 4)^2答案:A4. 一个三角形的两边长分别为3和5,第三边长x的范围是:A. 2 < x < 8B. 1 < x < 7C. 2 < x < 6D. 3 < x < 8答案:D5. 函数y = 2x + 3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 一个圆的半径为2,那么它的面积是:A. 4πB. 8πC. 12πD. 16π答案:B7. 如果一个多边形的内角和是900度,那么这个多边形的边数是:A. 5B. 6C. 7D. 8答案:C8. 一个等腰三角形的底角为45度,那么它的顶角是:B. 60度C. 90度D. 135度答案:C9. 下列哪个函数是一次函数?A. y = x^2B. y = 2x + 1C. y = 1/xD. y = x^3答案:B10. 一个数的立方根是2,那么这个数是:A. 6B. 8C. 2^3D. 3^3答案:C二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可以是______。

答案:±512. 一个角的补角是120度,那么这个角的度数是______。

答案:60度13. 一个长方体的长、宽、高分别为2、3、4,那么它的体积是______。

14. 一个二次函数的顶点坐标是(1, -4),且开口向上,那么它的解析式可以是______。

答案:y = a(x - 1)^2 - 4(a > 0)15. 一个扇形的圆心角是60度,半径是4,那么它的面积是______。

2020年江苏省徐州市中考数学试卷(含详细解析)

2020年江苏省徐州市中考数学试卷(含详细解析)
26.如图在平面直角坐标系中,一次函数 的图像经过点 、 交反比例函数 的图像于点 ,点 在反比例函数的图像上,横坐标为 , 轴交直线 于点 , 是 轴上任意一点,连接 、 .
(1)求一次函数和反比例函数的表达式;
(2)求 面积的最大值.
27.我们知道:如图①,点 把线段 分成两部分,如果 .那么称点 为线段 的黄金分割点.它们的比值为 .
A.中位数是 B.众数是 C.平均数是 D.极差是
6.下列计算正确的是()
A. B. C. D.
7.如图, 是 的弦,点 在过点 的切线上, , 交 于点 .若 ,则 的度数等于()
A. B. C. D.
8.如图,在平面直角坐标系中,函数 与 的图像交于点 ,则代数式 的值为()
A. B. C. D.
(1)在图①中,若 ,则 的长为_____ ;
(2)如图②,用边长为 的正方形纸片进行如下操作:对折正方形 得折痕 ,连接 ,将 折叠到 上,点 对应点 ,得折痕 .试说明 是 的黄金分割点;
(3)如图③,小明进一步探究:在边长为 的正方形 的边 上任取点 ,连接 ,作 ,交 于点 ,延长 、 交于点 .他发现当 与 满足某种关系时 、 恰好分别是 、 的黄金分割点.请猜想小明的发现,并说明理由.
根据以上信息解答下列问题:
(1)该调查的样本容量为______, ______;
(2)在扇形统计图中,“ ”对应扇形的圆心角等于______ ;
(3)将每天阅读时间不低于 的市民称为“阅读爱好者”.若该市约有 万人,请估计该市能称为“阅读爱好者”的市民有多少万人.
23.如图, , , . , 与 交于点 .
(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)

2023年江苏省徐州市中考数学试卷原卷附解析

2023年江苏省徐州市中考数学试卷原卷附解析

2023年江苏省徐州市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.用长为5cm,6cm,7cm的三条线段围成三角形的事件是()A.随机事件B.必然事件C.不可能事件D.以上都不是2.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2008的值为()A.2006 B.2007 C.2008 D.20093.某种商品的进价为 800 元,出售时标价为1200 元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打()A.6 折B.7 折C.8 折D.9 折4.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生产零件的平均数为a,中位数为b,众数为c,则有()A.b>a>c B.c>a>b C.a>b>c D.b>c>a5.如图,CD是等腰直角三角形斜边AB上的中线,DE⊥BC于E,则图中等腰直角三角形的个数是()A.3个B.4个C.5个D.6个6.用加减法解方程组2333211x yx y+=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A.4639611x yx y+=⎧⎨-=⎩B.6396222x yx y+=⎧⎨-=⎩C.4669633x yx y+=⎧⎨-=⎩D.6936411x yx y+=⎧⎨-=⎩7.如图所示,已知AD⊥BC,BD=CD,则①△ABD≌△ACD,②△ABD和△ACD不全等,③AB=AC,④∠BAD=∠CAD,以上判断正确的是()A.①B.②C.①③④D.①②③8.已知直线AB 上有一点0,射线OC 和射线OD 在射线OB 同侧,∠BOC=50°,∠COD=100°,则∠BOC 与∠AOD 的平分线的夹角的度数是( )A .130°B .135°C .140°D .145°9.已知3x =,2y =,0x y ⋅<,则x y +的值为( )A .5或-5B .1或-1C .5或1D .-5或-1 10.绝对值等于本身的数是( )A .正数B .0C .负数或0D . 正数或 0 二、填空题11.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止的⊙B 内切,那么⊙A 由图示位置需向右平移个单位长.12.如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是 .13.一斜坡的坡比为 1:2,斜面长为 l5m ,则斜面上最高点离地面的高度为 m .14.等腰直角三角形一条直角边的长为1cm ,那么它斜边上的高长是________cm .15.已知三角形的两边分别是 1 和2,第三边的数值是方程22530x x -+=的根,则这个三角形的周长为 .解答题16.代数式84x -的值不小于代数式35x +的值,则x 的取值范围是 . 17.如图,已知D 为等边三角形内一点,DB=DA ,BF=AB ,∠1=∠2,则∠BFD= .18.已知二元一次方程x=35y+4,用含x 的代数式表示y________. 5203x - 19.判断正误,在括号内打“√”或“×”.(1)三角形的一条角平分线把三角形分成面积相等的两部分. ( )(2)若一个三角形的两条高在这个三角形外部,则这个三角形是钝角三角形. ( )(3)直角三角形的三条高的交点恰为直角顶点. ( )(4)三角形的中线可能在三角形的外部. ( )20.为了解人们喜欢某种动物的情况,随机调查了100人,数据统计的部分信息如图所示,其中喜欢狗的人数为_________.解答题-,则向北走3m记作m.21.若向南走2m记作2m三、解答题22..将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数中恰好是13的概率.23.画出下列几何体的三种视图.24.如图,已知 AB 是⊙O的直径,CD⊥AB,垂足为 D,CE 切⊙O于点 F,交 AB 的延长线于点 E. 求证:EF EC EO ED⋅=⋅25.已知一抛物线与x 轴的交点是)0,2( A 、B (1,0),且经过点C (2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.26.如图,矩形ABCD 中,M 是CD 的中点.求证:(1)△ADM ≌△BCM ;(2)∠MAB=∠MBA27.已知:如图,矩形ABCD 的对角线BD ,AC 相交于点0,EF ⊥BD 于0,交AD 于点E ,交BC 于点F ,且EF=BF .求证:OF=CF .28.试一试:(1)你能把一个梯形纸片裁剪拼成一个三角形、一个平行四边形、一个矩形吗(分别在图①、②、③中画出)?(2)请你用不同的方法把一个上底等于2,下底等于4的等腰梯形纸片裁成面积相等的三块(在图④中画出).29.如图,用同样大小的四个等边三角形,可以拼成一个轴对称图形,你能再拼出一种轴对称图形吗?30.(1)某公司有4个通话员,其中把每两人之间的通话看做一条线段,那么共有多少条线段?(2)若该公司有5个通话员,其中把每两人之间的通话看做一条线段,那么共有多少条线段?(3)某地区有n个通话员,其中把每两人之间的通话看做一条线段,那么共有多少条线段(用订表示)?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.A5.C6.C7.C8.C9.B10.D二、填空题11.4或612.15π413.3514.15.14216.1213x<17.30°18.19.(1)× (2)√ (3)√ (4)×20.3021.3三、解答题22.解:(1)P(抽到奇数)=34.(2)树状图:开始1 1 23 123 1 2 3 1 1 3 1 1 2所以组成的两位数是13的概率为21126P==.23.24.连结 OF.由CD⊥AB,CE 切⊙O于点F 可得∠CDE=∠OFE=Rt∠,又∵∠E=∠E ,∴△DEC ∽△OFE ,EC ED EO EF=,即EF EC EO ED ⋅=⋅ 25.(1)4222-+=x x y (2))29,21(--. 26.略.27.证△AE0≌△CFO ,OF=12BF ,∠FCO=30° 28.略29.略30.(1)6 (2)10 (3) (1)2n n -。

江苏省徐州巿2022年中考数学试题真题含答案Word版

江苏省徐州巿2022年中考数学试题真题含答案Word版

江苏省徐州巿2022年中考数学试题真题含答案Word版2022年中考试题徐州巿2022年初中毕业、升学考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B铅笔填涂在答题卡上.2.作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有一个是正确的)....1.4的平方根是A.?2B.2C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元3.函数y?1x?1中自变量x的取值范围是A. x≥-1B. x≤-1C. x≠-1D. x =-1 4.下列运算中,正确的是A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x?x2=x-1 5.如果点(3,-4)在反比例函数y?kx的图象上,那么下列各点中,在此图象上的是A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方....盒的是A1B2022年中考试题C D7.⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是A.内含B. 内切C.相交D.外切8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数(第10题图)10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B.13 C.12 D.14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上)................11.因式分解:2x2-8=______▲________12.徐州巿部分医保定点医院2022年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若x1,x2为方程x2?x?1?0的两个实数根,则x1?x2?___▲___. 14.边长为a的正三角形的面积等于______▲______.15.如图,AB是⊙O的直径,点C在AB的延长线上,CD 与⊙O相切于点 D.若,若∠C=18°,则∠CDA=______▲_______.(第15题图)(第16题图)16.如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于____▲_____cm.第Ⅱ卷22022年中考试题三、解答题(每小题5分,共20分)17.计算:(?1)202218.已知x?x119.解不等式组?2?2x?1?5(x?1)??3?1,求x2??01?1?()?338.?2x?3的值.,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:四、解答题(本题有A、B两类题,A类题4分,B类题6分,你可以根据自己的学习情况,在两类题中任意选做一题,如果两类题都做,则以A类题计分)......21.(A类)已知如图,四边形ABCD中,AB=BC,AD =CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B车的平均速度之比为10∶7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各3BDAB45?30?21.414,31.732A6mD14m(第20题图)C(第21题图)C2022年中考试题题:项目金额/元金额/元60504030短信费月功能费4%基本话费40%月功能费5 基本话费长途话费短信费20220月功能费基本话费长途话费短信费长途话费36%项目(1)该月小王手机话费共有多少元?(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1,②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;42022年中考试题④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.Ay六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2022年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c为常数)行驶路程不超过3km的部分超过3km不超出6km的部分超出6km的部分每公里 2.1元每公里c元O367xyD13.3BxC收费标准调价前起步价6元调价后起步价a 元11.2C7AEBF每公里b元6 设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:①填空:a=______,b=______,c=_______.②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.52022年中考试题26.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断① OA=OC ② AB=CD ③ ∠BAD=∠DCB ④ AD∥BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题,画图并给出证明;...②构造一个假命题,举反例加以说明. ...七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B 两点随图象移至A′、B′,求△O A′B′的面积.28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30° 【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF...绕点旋转,并使边DE与边AB交于点P,边EF与边BC于点Q ..E...【探究一】在旋转过程中,(1)如图2,当CEEA=1时,EP与EQ满足怎样的数量关系?并给出证明.62022年中考试题(2)如图3,当CEEA=2时EP与EQ满足怎样的数量关系?,并说明理由.CEEA=m(3)根据你对(1)、(2)的探究结果,试写出当系式时,EP与EQ满足的数量关为_________,其中m的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.A(D)AFEPBC(E)BDQFCAEPDBQCF(图1)(图2)(图3)72022年中考试题徐州巿2022年初中毕业、升学考试数学试题参考答案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(x?2)(x?16.m17.解:原式=1+1-3+2=1 18.解:x222) 12. 3750元13.-1 14.34a2 15.126°?2x?3?(x?3)(x?1)3?1?3)(,将x?3?1代入到上式,则可得x?2x?3?(3?1?1)?(3?2)(3?2)??1?x119.解:?2?2x?1?5(x?1)? ?x??2?x??22?x?2?2x?1?5x?5x?2??20.解:如图所示,过点A、D分别作BC的垂线AE、DF分别交BC于点E、F,所以△ABE、△CDF均为Rt△,又因为CD=14,∠DCF=30°,所以DF=7=AE,且FC=73A6mD14m12.145?B30?C所以BC=7+6+12.1=25.1m. 21.证明:(A)连结AC,因为AB=AC,所以∠BAC=∠BCA,同理AD=CD 得∠DAC=∠DCAE FA所以∠A=∠BAC+∠DAC=∠BCA+∠DCAC(B)如(A)只须反过来即可.22.解方程的思想.A车150km/h,B车125km/h. 23.解:(1)125元的总话费(2)72° (3)项目金额/元月功能费5 基本话费50 长途话费45 短信费25 BD=∠C 82022年中考试题(4)24.(4)对称中心是(0,0)25.解:(1) a=7, b=1.4, c=2.1 (2)y1?2.1x?0.3A1A2B2BB1C1xCC2金额/元6050403020220月功能费基本话费长途话费短信费项目解:如下图所示,yA(3)有交点为(317,9)其意义为当x?317时是方案调价前合算,当x?317时方案调价后合算.26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1)y??x?2x?32(2)(0,3),(-3,0),(1,0)(3)略911/ 11。

徐州中考数学试题及答案

徐州中考数学试题及答案

徐州中考数学试题及答案一、选择题1. 已知正方形ABCD的周长为20cm,求它的面积是多少?A. 25 cm²B. 100 cm²C. 20 cm²D. 400 cm²2. 设a = (-5)^2,b = √36,则a + b = ?A. -31B. 11C. 31D. -113. 若二次函数y = ax² + bx + c的图像与x轴交于两个点(-1, 0)和(3,0),且顶点坐标为(1, -2),则a + b + c = ?A. 2B. -2C. -4D. 44. 若函数y = |x + 1| - |2x - 1|的图像与x轴交于点A(-2, 0),则x = ?A. -1B. 0C. 1D. 25. 已知三角形ABC的周长为18cm,AC = 3cm,BC = xcm,AB = (x + 1)cm,则x = ?A. 6B. 7C. 8D. 9二、填空题1. 设a,b是正整数,且满足a² - b² = 63,则a + b的值为______。

2. 若三角形ABC中,∠A = 45°,AC = 8cm,则BC的值为______。

3. 将-6°表示成弧度制,则结果为______。

4. 设二次函数y = ax² + bx + c的图像与x轴交于两个点(-2, 0)和(1, 0),则a + b + c的值为______。

5. 若直线y = 2x + k与x轴交于点(3, 0),则k的值为______。

三、解答题1. 某班级有80名学生,其中50人喜欢数学,30人喜欢英语,而且45人两门都喜欢。

请问这个班级中喜欢数学或者英语的学生有多少人?2. 某地去年全年的降雨量为800mm,今年上半年降雨量为210mm,下半年的降雨量为全年的四分之一。

请问今年全年的降雨量是多少?4. 为了节约用水,某小区计划将1栋楼的自来水表计改为用水卡充值方式。

2022年江苏省徐州市中考数学试题(含答案解析)

2022年江苏省徐州市中考数学试题(含答案解析)
1.【答案】B
【详解】根据绝对值的性质得:|-3|=3.
故选B.
2.【答案】C
【详解】解:A、是中心对称图形,是轴对称图形,故A选项不合题意;
B、是中心对称图形,是轴对称图形,故B选项不合题意;
C、是轴对称图形,不是中心对称图形,故C选项不合题意;
D、是中心对称图形,是轴对称图形,故D选项不合题意;
(1) ;
(2) .
20.(1)解方程: ;
(2)解不等式组:
21.如图,将下列3张扑克牌洗匀后数字朝下放在桌面上.
(1)从中随机抽取1张,抽得扑克牌上的数字为3的概率为;
(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌的数字不同的概率.
22.《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?
17.若一次函数y=kx+b的图像如图所示,则关于kx+ b>0的不等式的解集为________.
18.若二次函数 的图象上有且只有三个点到x轴的距离等于m,则m的值为________.
三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19 计算:
请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.
26.如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面 ,坡角 .在阳光下,小明观察到在地面上的影长为 ,在坡面上的影长为 .同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).求立柱AB的高度.

江苏省徐州市2022年中考数学真题试题(含解析)

江苏省徐州市2022年中考数学真题试题(含解析)

2022年江苏省徐州中考数学试题试卷第一卷〔共60分〕一、选择题:本大题共8个小题,每题3分,共24分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.5-的倒数是〔 〕A .5-B .5C .15D .15- 【答案】D .【解析】试题解析:-5的倒数是-15; 应选D .考点:倒数2. 以下图形中,既是轴对称图形,又是中心对称图形的是〔 〕A .B .C .D .【答案】C .考点:1.中心对称图形;2.轴对称图形.3.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为〔 〕A .77.110⨯B .60.7110-⨯C .77.110-⨯D .87110-⨯【答案】C .【解析】试题解析:数字0.00000071用科学记数法表示为7.1×10-7,应选C .考点:科学记数法—表示较小的数.4. 以下运算正确的选项是〔 〕A .()a b c a b c -+=-+B .235236a a a ⋅= C. 5302a a a += D .()2211x x +=+ 【答案】B .【解析】试题解析:A 、原式=a-b-c ,故本选项错误;B 、原式=6a 5,故本选项正确;C 、原式=2a 3,故本选项错误;D 、原式=x 2+2x+1,故本选项错误;应选B .考点:1.单项式乘单项式;2.整式的加减;3.完全平方公式.5.在“朗读者〞节目的影响下,某中学开展了“好书伴我成长〞读书话动,为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数0 1 2 3 4 人数 4 12 16 17 1关于这组数据,以下说法正确的选项是〔 〕A .中位数是2B .众数是17 C. 平均数是2 D .方差是2【答案】A .∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,应选A .考点:1.方差;2.加权平均数;3.中位数;4.众数.6.如图,点,,A B C ,在⊙O 上,72AOB ∠=,那么ACB ∠= 〔 〕A .28B .54 C.18 D .36【答案】D .考点:圆周角定理.7.如图,在平面直角坐标系xOy 中,函数()0y kx b k =+≠与()0m y m x=≠的图象相交于点()()2,3,6,1A B --,那么不等式m kx b x+>的解集为 〔 〕A .6x <-B .60x -<<或2x >C. 2x > D .6x <-或02x <<【答案】B .【解析】试题解析:不等式kx+b >m x的解集为:-6<x <0或x >2, 应选B .考点:反比例函数与一次函数的交点问题.8.假设函数22y x x b =-+的图象与坐标轴有三个交点,那么b 的取值范围是〔 〕A .1b <且0b ≠B .1b > C.01b << D .1b <【答案】A .考点:抛物线与x 轴的交点.第二卷〔共90分〕二、填空题〔本大题有10小题,每题3分,总分值30分,将答案填在答题纸上〕9.4的算术平方根是 .【答案】2【解析】试题解析:∵22=4,∴4的算术平方根是2.考点:算术平方根.10.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为 .【答案】23. 【解析】试题解析:∵共6个数,小于5的有4个,∴P 〔小于5〕=42=63. 考点:概率公式.11.使6x -有意义的x 的取值范围是 . 【答案】x≥6.考点:二次根式有意义的条件.12.反比倒函数k y x =的图象经过点()2,1M -,那么k = . 【答案】-2.【解析】试题解析:∵反比例函数y=k x的图象经过点M 〔-2,1〕, ∴1=-2k ,解得k=-2. 考点:反比例函数图象上点的坐标特征.13.ABC ∆中,点,D E 分别是,AB AC 的中点,7DE =,那么BC = .【答案】14.【解析】试题解析:∵D ,E 分别是△ABC 的边AC 和AC 的中点,∴DE 是△ABC 的中位线,∵DE=7,∴BC=2DE=14.考点:三角形中位线定理.14.10,8a b a b +=-=,那么22a b -= .【答案】80.【解析】试题解析:∵〔a+b 〕〔a-b 〕=a 2-b 2,∴a 2-b 2=10×8=80.考点:平方差公式.15.正六边形的每个内角等于 .【答案】120°.考点:多边形的内角与外角.16.如图,AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直,垂足为,2D AB BC ==,那么AOB ∠= .【答案】60°.【解析】试题解析:∵OA ⊥BC ,BC=2,∴根据垂径定理得:BD=12BC=1. 在Rt △ABD 中,sin ∠A=12BD AB =. ∴∠A=30°. ∵AB 与⊙O 相切于点B ,∴∠ABO=90°.∴∠AOB=60°.考点:切线的性质.17.如图,矩形ABCD 中,4,3AB AD ==,点Q 在对角线AC 上,且AQ AD =,连接DQ 并延长,与边BC 交于点P ,那么线段AP = .【答案】17考点:1.相似三角形的判定与性质;2.勾股定理;3.矩形的性质.18.如图,1OB =,以OB 为直角边作等腰直角三角形1A BO .再以1OA 为直角边作等腰直角三角形21A AO ,如此下去,那么线段n OA 的长度为 .【答案】2n .∴A 2A 3=OA 2=2,OA 3222∵△OA 3A 4为等腰直角三角形,∴A 3A 4=OA 32OA 423=4.∵△OA 4A 5为等腰直角三角形,∴A 4A 5=OA 4=4,OA 5242∵△OA 5A 6为等腰直角三角形,∴A 5A 6=OA 52OA 625=8.∴OA n 2n .考点:等腰直角三角形.三、解答题 〔本大题共10小题,共86分.解容许写出文字说明、证明过程或演算步骤.〕19.〔1〕1201(2)20172-⎛⎫--+ ⎪⎝⎭; 〔2〕2421244x x x x +⎛⎫+÷ ⎪--+⎝⎭. 【答案】〔1〕3;〔2〕x-2.〔2〕〔1+4-2x〕÷2244xx x+-+=()2224•22xxx x--+-+=()222•22xxx x-+-+=x-2.考点:1.分式的混合运算;2.实数的运算;3.零指数幂;4.负整数指数幂.20.〔1〕解方程:231 x x=+;〔2〕解不等式组:2012123xx x>⎧⎪+-⎨>⎪⎩.【答案:〔1〕x=2;〔2〕0<x<5.【解析】试题分析:〔1〕分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;〔2〕分别求出不等式组中两不等式的解集,找出解集的公共局部即可.试题解析:〔1〕231 x x=+,去分母得:2〔x+1〕=3x,解得:x=2,经检验x=2是分式方程的解,故原方程的解为x=2;〔2〕2012123x >①x x >②+-⎧⎪⎨⎪⎩, 由①得:x >0;由②得:x <5,故不等式组的解集为0<x <5.考点:1.解分式方程;2.解一元一次不等式组.21.某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽取局部学生做了一次问卷调查,要求学生选出自己喜欢的一个版面,将调查数据进行了整理、绘制成局部统计图如下:各版面选择人数的扇形统计图 各版面选择人数的条形统计图请根据图中信息,解答以下问题: 〔1〕该调查的样本容量为 ,a = 00,“第一版〞对应扇形的圆心角为 ; 〔2〕请你补全条形统计图;〔3〕假设该校有1000名学生,请你估计全校学生中最喜欢“第一版〞的人数.【答案】〔1〕50,36,108.〔2〕补图见解析;〔3〕240人.试题解析:〔1〕设样本容量为x .由题意5x=10%,解得x=50,a=1850×100%=36%,第一版〞对应扇形的圆心角为360°×1550=108°〔2〕“第三版〞的人数为50-15-5-18=12,考点:1.条形统计图;2.总体、个体、样本、样本容量;.用样本估计总体;4.扇形统计图.22.一个不透明的口袋中装有4张卡片,卡片上分別标有数字1,3,5,7--,这些卡片除数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张.请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.【答案】13.【解析】试题分析:画树状图展示所有12种等可能的结果数,再找出两人抽到的数字符号相同的结果数,然后根据概率公式求解.试题解析:画树状图为:共有12种等可能的结果数,其中两人抽到的数字符号相同的结果数为4,所以两人抽到的数字符号相同的概率=41=123. 考点:列表法与树状图法.23.如图,在平行四边形ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 延长线于点E 连接,BD EC .〔1〕求证:四边形BECD 是平行四边形;〔2〕假设50A ∠=,那么当BOD ∠= 时,四边形BECD 是矩形. 【答案】〔1〕证明见解析;〔2〕100°又∵O 为BC 的中点, ∴BO=CO ,在△BOE 和△COD 中,OEB =ODC BOE =COD BO =CO ∠∠∠∠⎧⎪⎨⎪⎩, ∴△BOE ≌△COD 〔AAS 〕; ∴OE=OD ,∴四边形BECD 是平行四边形;∴四边形BECD 是矩形;考点:1.矩形的判定;2.平行四边形的判定与性质.24. 4月9日上午8时, 2022 徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄. 【答案】今年妹妹6岁,哥哥10岁. 【解析】试题分析:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁,根据两个孩子的对话,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.试题解析:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁, 根据题意得:()()16322342x y =x y =+++++⎧⎪⎨⎪⎩, 解得:610x =y =⎧⎨⎩.答:今年妹妹6岁,哥哥10岁. 考点:二元一次方程组的应用.25.如图,AC BC ⊥,垂足为,4,33C AC BC ==,将线段AC 绕点A 按逆时针方向旋转60,得到线段AD ,连接,DC DB .〔1〕线段DC = ; 〔2〕求线段DB 的长度. 【答案】〔1〕4;〔2〕7.〔2〕作DE ⊥BC 于点E .∵△ACD 是等边三角形, ∴∠ACD=60°, 又∵AC ⊥BC ,∴∠DCE=∠ACB-∠ACD=90°-60°=30°,考点:旋转的性质.26.如图① ,菱形ABCD 中,5AB =cm ,动点P 从点B 出发,沿折线BC CD DA --运动到点A 停止,动点Q 从点A 出发,沿线段AB 运动到点B 停止,它们运动的速度相同.设点P 出发xs 时,BPQ ∆的面积为y 2cm .y 与x 之间的函数关系.如图 ②所示,其中,OM MN 为线段,曲线NK 为抛物线的一局部,请根据图中的信息,解答以下问题:〔1〕当12x <<时,BPQ ∆的面积 〔填“变〞或“不变〞〕; 〔2〕分别求出线段OM ,曲线NK 所对应的函数表达式; 〔3〕当x 为何值时,BPQ ∆的面积是52cm ?【答案】〔1〕不变;〔2〕y=10x ;y=10〔x-3〕2;〔3〕当x=12或3-22时,△BPQ 的面积是5cm 2. 【解析】试题分析:〔1〕根据函数图象即可得到结论;〔2〕设线段OM 的函数表达式为y=kx ,把〔1,10〕即可得到线段OM 的函数表达式为y=10x ;设曲线NK 所对应的函数表达式y=a 〔x-3〕2,把〔2,10〕代入得根据得到曲线NK 所对应的函数表达式y=10〔x-3〕2;〔3〕把y=5代入y=10x 或y=10〔x-3〕2即可得到结论.试题解析:〔1〕由函数图象知,当1<x <2时,△BPQ 的面积始终等于10, ∴当1<x <2时,△BPQ 的面积不变;〔3〕把y=5代入y=10x 得,x=12, 把y=5代入y=10〔x-3〕2得,5=10〔x-3〕2,∴x=3±22∵3+22>3, ∴x=3-22, ∴当x=12或3-22时,△BPQ 的面积是5cm 2. 考点:四边形综合题.27.如图,将边长为6的正三角形纸片ABC 按如下顺序进行两次折叠,展开后,得折痕,AD BE 〔如图①〕,点O 为其交点.〔1〕探求AO 与OD 的数量关系,并说明理由; 〔2〕如图②,假设,P N 分别为,BE BC 上的动点. ①当PN PD +的长度取得最小值时,求BP 的长度;②如图③,假设点Q 在线段BO 上,1BQ =,那么QN NP PD ++的最小值= .【答案】〔1〕AO=2OD,理由见解析;〔2〕①3;②10.〔3〕如图③,作Q关于BC的对称点Q′,作D关于BE的对称点D′,连接Q′D′,即为QN+NP+PD的最小值.根据轴对称的定义得到∠Q′BN=∠QBN=30°,∠QBQ′=60°,得到△BQQ′为等边三角形,△BDD′为等边三角形,解直角三角形即可得到结论.试题解析:〔1〕AO=2OD,理由:∵△ABC是等边三角形,∴∠BAO=∠ABO=∠OBD=30°,∴AO=OB,∵BD=CD,∴AD⊥BC,∴∠BDO=90°,∴OB=2OD,∴OA=2OD;〔2〕如图②,作点D关于BE的对称点D′,过D′作D′N⊥BC于N交BE于P,那么此时PN+PD的长度取得最小值,∵BE垂直平分DD′,∴BD=BD′,∵∠ABC=60°,∴△BDD′是等边三角形,∴BN=12BD=32,∵∠PBN=30°,∴32 BNPB,∴PB=3;∴△BQQ′为等边三角形,△BDD′为等边三角形,∴∠D′BQ′=90°,∴在Rt △D′BQ′中, D′Q′=22301=1+. ∴QN+NP+PD 的最小值=10, 考点:28.如图,二次函数2449y x =-的图象与x 轴交于,A B 两点与y 轴交于点C ,⊙C 的半径为5,P 为⊙C 上一动点.〔1〕点,B C 的坐标分别为B 〔 〕,C 〔 〕;〔2〕是否存在点P ,使得PBC ∆为直角三角形?假设存在,求出点P 的坐标;假设不存在,请说明理由; (3)连接PB ,假设E 为PB 的中点,连接OE ,那么OE 的最大值= .【答案】〔1〕3,0;0,-4;〔2〕〔-1,-2〕或〔〔115,225〕,或〔455,-355-4〕或〔--455,355〕;〔3〕2905. CP 2=OE=x ,得到BE=3-x ,CF=2x-4,于是得到FP 2=115,EP 2=225,求得P 2〔115,-225〕,过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1〔-1,-2〕,②当BC ⊥PC 时,△PBC 为直角三角形,根据相似三角形的判定和性质即可得到结论;①当PB与⊙相切时,△PBC为直角三角形,如图〔2〕a,连接BC,∵OB=3.OC=4,∴BC=5,∵CP2⊥BP2,CP25∴BP25,过P2作P2E⊥x轴于E,P2F⊥y轴于F,那么△CP2F∽△BP2E,四边形OCP2B是矩形,∴2222=2P F CPP E BP=,设OC=P2E=2x,CP2=OE=x,∴BE=3-x,CF=2x-4,∴3224BE xCF x-==-,∴x=115,2x=225,∴FP2=115,EP2=225,∴P2〔115,225〕,过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1〔-1,-2〕,综上所述:点P的坐标为:〔-1,-2〕或〔〔115,225〕,或〔455,-355-4〕或〔--455,355〕;〔3〕如图〔3〕,当PB与⊙C相切时,PB与y 轴的距离最大,OE的值最大,∵过E作EM⊥y轴于M,过P作PF⊥y轴于F,∴OB∥EM∥PF,∵E为PB的中点,考点:二次函数综合题.。

2023年江苏省徐州市中考数学试题附解析

2023年江苏省徐州市中考数学试题附解析

2023年江苏省徐州市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,⊙O的直径 AB 与弦 AC 的夹角为35°,过C点的切线 PC 与 AB 的延长线交于点P,那么∠P 等于()A.15°B.20°C.25°D.30°2.一枚均匀的正方体骰子,六个面分别标有数字 1、2、3、4、5、6,连续抛掷两次,朝上的数字分别是 m、n,若把m、n作为点A 的横纵坐标,则点 A(m,n)在函数2y x=的图象上的概率是()A.118B.112C.16D.133.样本频数分布反映了()A.样本数据的多少 B.样本数据的平均水平C.样本数据的离散程度 D.样本数据在各个小范围内数量的多少4.下列函数中是一次函数的是()A.y=kx+b B.2yx-=C.2331y x x=-++D.112y x=-+5.小明家的坐标为(1,2),小丽家的坐标为(一2,一l),则小明家在小丽家的()A.东南方向B.东北方向C.西南方向D.西北方向6.已知0a<,且不等式组x ax b>⎧⎨>⎩的解是x a>,则不等式组x ax b<⎧⎨->⎩的解是()A.b x a-<<B.x b>或x a<C.x a<D.无解7.如图,将四边形AEFG变换到四边形ABCD,其中E ,G分别是AB、AD 的中点,下列叙述不正确...的是()A.这种变换是相似变换B.对应边扩大到原来到2倍C.各对应角度数不变D.面积是原来2倍8.计算(2)(3)x x-+的结果是()A.26x-B.26x+C.26x x+-D.26x x--9.若代数式2231a a++的值是 6,则代数式2695a a++的值是()3.A .18B .16C .15D .20 10.计算-6+3等于( )A . -9B . 9C .-3D . -3 11.若有理数0a b c ++<,则( )A .三个数中至少有两个负数B .三个数中有且只有一个负数C .三个数中最少有一个负数D .三个数中有两个负数12.给出下述几种说法,其中正确的说法有( )①763万精确到万位;②1.2亿精确到0.1;③8067保留2个有效数字的近似值是8.1 ×103;④22.20精确到0.01.A .3个B .2个C .1个D .0个二、填空题13.如图是一束平行的阳光从教室的窗户射入的平面示意图,光线与地面所成角60°,在教室地面的影长 MN= 23m ,若窗户的下檐到教室地面的距离 BC= lm ,则窗户的上檐地面的距离 AC 为 m .14.如图所示,D 、E 两点分别在△ABC 两条边上,且DE 与BC 不平行,请填上一个你认为适合的条件_________,使得△ADE ∽△ABC .15.半径为6 ㎝,弧长为2π2π的扇形面积为 ㎝2.16.多项式221x ny x y -+++中不含字母y ,则Q(n 2+1,2n)点关于x 轴的对称点的坐标是 .17.已知一组数据为5,6,8,6,8,8,8,则这组数据的众数是_________,平均数是_________.18.如图,∠1=75°,∠2 =75°,∠3 = 105°,那么∠4 = ,可推出的平行关系有 .19.当x =__________时,分式x 2-9x -3的值为零. 20.小王想把 20 元人民币全部兑换成 2元和 5元两种面值的人民币,她有 种不同的兑换方法(只兑换一种币值也可以).21.如图所示,已知在Rt △ABC 中,∠C=90°,AD 是△ABC 的角平分线,BC=5,CD :BD=2:3,则点D到AB的距离为.22.△ABC与△DEF全等,AB=DE,若∠A=50°,∠B=60°,则∠D= .23.如图,∠1=30°,∠2=40°,则∠EOB= ,∠AOF= .三、解答题24.张明、王成两位同学l0次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如图所示:(1)根据图中提供的数据填写下表:平均成绩/分中位数/分众数/分方差张明80王成85260的成绩视为优秀,则优秀率高的同学是;(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.25.已知△ABC中,∠C=Rt∠,BC=a,AC=b.(1)若a=1,b=2,求c;(2)若a=15,c=17,求b.26.如图,甲、乙两人蒙上眼睛投掷飞标.(1)若甲击中黄色区域,则甲胜;若击中白色区域,则乙胜,此游戏公平吗?为什么?(2)利用图中所示,请你再设计一个公平的游戏.27.如图是蝴蝶的部分示意图,请你在方格中画出另一半.28.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?29.利用计算器比较下列各数的大小,并用<”号连结:3563734π333<4576π30.A市辖区内的B、C、D、E四县市正被日益严重的水污染所困扰,居民的饮用水长期达不到较高的标准.为了人民的身体健康,该市与四个县市的领导、专家多次研究,计划从A市某水库引水,供给四县市的城市居民.五个市县间的距离如图所示(单位:km).已知铺设引水管道需费用14500元/km如果不考虑其它因素,请你设计出几种不同的引水管道铺设方案.并指出哪种铺设方案最经济.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.D4.D5.B6.D7.D8.C9.D10.C11.C12.A二、填空题13.314.∠1=∠B (答案不唯一)15.6π 16.(2,-2)17.8,718.105°;1l ∥2l 、3l ∥4l19.3-=x 20.321.222.50°或60°23.110°,ll0°三、解答题24.(1)表中数据依次为80,80,60,80,90;(2)王成;(3)略.25.(1;(2)826.(1)不公平,因为甲击中黄色区域的成功率小于击中白色区域的成功率;(2)公平的规则:若甲击中黄色区域,则甲胜;若击中绿色区域,则乙胜 (答案不唯一) 27.图略28.解:设这个队胜了x场,依题意得:+--=,解得:5x x3(145)19x=.答:这个队胜了5场.29.333<<<<30.4576π方案一:A→B→C→D→E,W1=(30+30+45+30)×14500=1.9575×106(元)方案二:W2=(55+30+45+30)×14500=2.32×106(元)方案三:W3=(50+30+45+30)×14500=2.2475×106(元)方案四:W4=(30+50+30+45)×14500=2.24755×106(元)方案五:W5=(354-55+45+30)×14500=2.3925×106(元)方案六:W6=(30+55+50+35)×14500=2.465×106(元)方案七:A→E→D→C→B,W7=(35+30+45+30)×14500=2.03×106(元)方案八:W8=(30+30+35+30)×14500=1.8125×106(元)通过以上八个方案的比较,铺设方案八即从最经济,总费用只需181.25万元.。

徐州中考数学试题及答案

徐州中考数学试题及答案

徐州中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx + cC. y = ax^2 + bx^3 + cD. y = ax^2 + bx^3 + cx^2答案:A2. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是多少?A. 22cmB. 26cmC. 28cmD. 30cm答案:B3. 计算下列表达式的值:(2x - 3)(x + 4)。

A. 2x^2 + 5x - 12B. 2x^2 + 5x + 12C. 2x^2 - 5x + 12D. 2x^2 - 5x - 12答案:A4. 如果一个圆的直径是10cm,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:B5. 计算下列表达式的值:(3x^2 - 2x + 1) / (x - 1)。

A. 3x + 2 + 1/(x - 1)B. 3x - 2 + 1/(x - 1)C. 3x + 2 - 1/(x - 1)D. 3x - 2 - 1/(x - 1)答案:A6. 一个直角三角形的两个直角边长分别为3cm和4cm,那么这个三角形的斜边长是多少?A. 5cmB. 6cmC. 7cmD. 8cm答案:A7. 计算下列表达式的值:(2x + 3)(2x - 3)。

A. 4x^2 - 6x + 9B. 4x^2 + 6x + 9C. 4x^2 - 6x - 9D. 4x^2 + 6x - 9答案:A8. 如果一个矩形的长是8cm,宽是5cm,那么这个矩形的面积是多少平方厘米?A. 40cm^2B. 35cm^2C. 30cm^2D. 25cm^2答案:A9. 计算下列表达式的值:(5x - 2)^2。

A. 25x^2 - 20x + 4B. 25x^2 + 20x + 4C. 25x^2 - 20x - 4D. 25x^2 + 20x - 4答案:A10. 一个等边三角形的边长为6cm,那么这个三角形的高是多少?A. 3√3cmB. 4√3cmC. 5√3cmD. 6√3cm答案:B二、填空题(每题3分,共15分)11. 一个数的平方根是2,那么这个数是______。

徐州中考数学试题及答案详解

徐州中考数学试题及答案详解

徐州中考数学试题及答案详解一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3y = 5B. 2x + 3y = 5x + 3yC. 2x + 3y = 5x - 3yD. 2x + 3y ≠ 5x + 3y答案:D解析:选项A、B、C都表示等式,而选项D表示不等式,根据题目要求,正确的选项是D。

2. 一个角的补角是它的两倍,这个角的度数是多少?A. 30°B. 60°C. 90°D. 120°答案:B解析:设这个角为x,则它的补角为180°-x。

根据题意,180°-x = 2x,解得x = 60°。

3. 下列哪个函数是一次函数?A. y = 2x + 3B. y = x^2 + 3C. y = 3x^2 + 2D. y = 2/x答案:A解析:一次函数的一般形式为y = kx + b,其中k和b为常数,k≠0。

选项A符合一次函数的定义。

4. 一个数的相反数是-3,这个数是多少?A. 3B. -3C. 0D. 6答案:A解析:一个数的相反数是它的负数,所以这个数是3。

5. 一个等腰三角形的底角是45°,它的顶角是多少?A. 45°B. 90°C. 135°D. 180°答案:C解析:等腰三角形的两个底角相等,所以另一个底角也是45°。

根据三角形内角和定理,顶角为180° - 45° - 45° = 90°。

6. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B解析:圆的面积公式为A = πr^2,其中r为半径。

将r = 5代入公式,得到A = π(5^2) = 25π。

7. 一个数的绝对值是5,这个数是多少?A. 5B. -5C. 5或-5D. 0答案:C解析:一个数的绝对值表示它到0的距离,所以这个数可以是5或-5。

江苏省徐州巿2022年中考数学真题试题(含解析)

江苏省徐州巿2022年中考数学真题试题(含解析)

江苏省徐州巿2022年中考数学真题试题(含解析)1.14.〔3.00分〕已知函数y=2x-3,那么y=8的解为x=5.15.〔3.00分〕如图,正方体ABCD-EFGH的棱长为2,P、Q分别为AE、BF的中点,那么PQ的长度为√2.16.〔3.00分〕已知集合A={1,2,3,4},集合B={x|x=2n,n∈N*},则A∪B={1,2,3,4,6,8}.三、解答题〔共42分〕17.〔6.00分〕已知函数y=2x-3,那么解方程y=0的根为x=1.5.解析】当y=0时,有2x-3=0,解得x=1.5.18.〔6.00分〕如图,已知正方体ABCD-EFGH的棱长为2,P、Q分别为AE、BF的中点,连接PQ,求PQ的长度.解析】由于P、Q分别为AE、BF的中点,所以PQ平行于AB且PQ=1/2AB,而AB的长度为2√2,因此PQ的长度为√2.19.〔6.00分〕如图,已知三角形ABC中,∠B=90°,AB=3,AC=4,D是BC上一点,且AD⊥BC,求AD的长度.解析】根据勾股定理,可得BC=5.由于AD⊥BC,所以∠BAD=∠ACB,因此三角形ABD与三角形ABC相似,即AD/AB=AC/BC,代入已知数据可得AD=9/5.20.〔12.00分〕如图,在矩形ABCD中,AE=AF=6,BF=CG=8,求矩形ABCD的面积.解析】首先根据勾股定理,可得CE=10,BD=10.由于AE=AF=6,BF=CG=8,所以AEFB和CGDA都是正方形,且边长均为6.因此矩形ABCD的面积为6×8+6×10=84.14.正三角形的面积为a²×√3÷4.15.∠CDA=72°。

16.△ABE的周长为10cm。

17.(-1)²=1.18.x²+π-1-2x-3=-x²+π-4x+1,化简得2x²-2x-2=0,解得x=1±√2,整数解为x=1.19.x4.20.坝高≈12.9m,坝底宽≈18.4m。

最新江苏省徐州市中考数学原题试卷附解析

最新江苏省徐州市中考数学原题试卷附解析

江苏省徐州市中考数学原题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若x 是3和6的比例中项,则x 的值为( )A . 23B . 23-C . 23±D .32±2.如图所示,点 B 在圆锥母线V A 上,且13VB VA =,过点B 作平行于底面的平面截得一个小圆锥,若小圆锥的侧面积为 S 1, 原圆锥的侧面积为S ,则下列判断中正确的是( ) A .113S S = B .114S S = C .116S S = D .119S S =3.如图,在等腰梯形ABCD 中,AD ∥BC ,AC ,BD 相交于点0. 有下列四个结论:①AC=BD ;②梯形ABCD 是轴对称图形;③∠ADB=∠DAC ;④△AOD ≌△ABO. 其中正确的是( )A . ①③④B . ①②④C . ①②③D . ②③④4.如图,在□ABCD 中,EF ∥GH ∥AB ,MN ∥BC ,则图中的平行四边形的个数为(• )A .12个B .16个C .14个D .18个5.在菱形ABCD 中,若∠ADC=120°,则BD :AC 等于( )A 3 2B 3 3C .1:2D 3:16.已知y 是x 的一次函数.表1中列出了部分对应值,则m 的值等于( )x- 1 0 1 y 1 m -17.把不等式组1020x x +≥⎧⎨->⎩的解集表示在数轴上,正确的是( )A .B .C .D . 8.下列各式从左到右的变形中,是因式分解的为( )A .()a x y ax ay -=-B .2221+(1)(1)x y x x y -=-++ C .221()a b a a b a +=+ D .1(1)(1)ab a b a b -+-=+- 9.钝角减去锐角所得的差是( )A .锐角B .直角C .钝角D .都有可能10.下列说法正确的是( )A .记向东行为正,- 30 km 表示向西行-30 kmB .正有理数和负有理数统称有理数C .整数和分数统称有理数D .温度上升2℃记作+2℃,则-3℃表示温度为零下3℃二、填空题11.在△ABC 中,∠C= 90°,AC= 5,tanB=15,则 BC= . 12. 一水池内储水 20m 3,设放完这池水所需的时间为 T(h),每小时流水量为 W(m 3/h),规 定放水时间不得超过10h ,则 T 关于W 的函数解析式为 ,自变量W 的取值范围 .13.现有一批救灾货物要从A 市运往B 市,若两城市的路程为400km ,车的平均速度为x (km/h ),从A 市到B 市所需的时间y (h ),则则y 关于x 的函数解析式为 ,若平均车速为50(km/h ),则从A 市到B 市所需的时间为 h .14.将点A(1,-3)向右平移3个单位,再向下平移1个 单位后,得到点B(a ,b),则ab = .15.如图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象,可得关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的的解是 .16.已知铁的质量m 与体积V 成正比例,已知当V=5cm 3时,m=39g ,则铁的质量m 关于体积V 的函数解析式是 .17.一次函数y kx b =+的图象经过点A(0,2),B(3,0),则此函数的解析式为 .18.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3= .19.已知△CDE 是△CAB 经相似变换后得到的像,且∠A=30°,∠CDE=30°,AB=4,DE=2,AC=3,则CD= .20.已知一个角的补角是这个角的余角的3倍,那么这个角的度数是_______.21. 探索规律:(1)1+3=41+3+5=91+3+5+7=161+3+5+7+9=251+3+5+…+(2n-1)= .(2)三、解答题22.人体下半身(脚底到肚脐的长度)与身高的比例越接近 0. 618,越给人美感.遗憾的 是,即使是身材修长的芭蕾舞演员也达不到如此的完美.某女士,身高1.68m ,下半身 1.02m ,她应选择多高的高跟鞋看起来更美呢?(精确到0.01 m)输入x -1O 输出23.截止2007年底,某城市自然保护区的覆盖率为 4%,尚未达到国家A 级标准,因此市政府决定加快绿化建设,力争到2009年底自然保护区的覆盖率达到 8%以上,若要达到最低目标8%,则这个城市自然保护区的年平均增长率是多少(保留 2个有效数字)?24.用总长为20 m 的篱笆围成一长方形场地.(1)写出长方形面积S(m 2)与一边x(m)之间的函数解析式和自变量X 的取值范围;(2)分别求当x=2,5,8时,函数S 的值.25. 若0=++c b a ,求证:02222=++-ac c b a .26.约分: (1)2322()4()x x y y x y --;(2)2222444y x x xy y --+-27.随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”,刚好50km 的记为“0”.(2)若每行驶100km 需用汽油8L ,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?(可用计算器计算)28.某日小明在一条东西方向的公路上跑步;他从A 地出发,每隔 10 分钟记录下自己的跑步情况( 向东为正方向,单位:米):- l008, 1100 , -976 , 1010 , -827 , 9461小时后他停下来,此时他在A地的什么方向?离A地有多远?这 1小时内小明共跑了多远?29.如图所示,长方形ABCD与长方形BEFG等长等宽,如将长方形BEFG向右平移,距离为EF,长方形ABCD向右平移距离为3个BC,则恰好构成新长方形AEPQ,若AEPQ周长为56,求长方形AEPQ的面积.30.在如图所示的立体图形中,它们分别有几个面?哪些面是平面?哪些面是曲面?面面相交的地方形成了几条线?这些线是直的还是曲的?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.C4.D5.B6.B7.C8.D9.D10.C二、填空题11.2512.20T W=,W ≥2 13.400y x=,8 14.-l615.42x y =-⎧⎨=-⎩16. M=7.8v17.223y x =-+18. 135°19.3220. 45°21.(1)2n (2)3x ,31x -,312x -,312χ-;-2,12-三、解答题22.设她应选择 x(m)的高跟,则 1.020.6181.68x x +=+,解得0.05x ≈,即她应选择 0.05m 高的高跟. 23.41%24.(1)210S x x =-+(0<x<10);(2)16,25,1625.证略.26.(1)2()2x x yy-;(2)22x yx y+-27.(1)1500km;(2)6825.6元略.28.他在A地的东面,离A地245 米远,共跑了 5867 米29.19230.图①由三个面构成;两个平面一个曲面;面与面相交成两条曲线.图②是由一个曲面和一个平面组成;面与面相交形成一条曲线.图③由六个平面构成;面与面相交形成12条直线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年江苏省徐州中考数学试题试卷
第Ⅰ卷(共60分)
一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 5-的倒数是()
A.5-B.5C.
1 5
D.
1
5
-
2. 下列图形中,既是轴对称图形,又是中心对称图形的是()
A.B.C.D.
3. 肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()
A.7
7.110
⨯B.6
0.7110-
⨯C.7
7.110-
⨯D.8
7110-

]
4. 下列运算正确的是()
A.()
a b c a b c
-+=-+B.235
236
a a a
⋅=
C. 530
2
a a a
+=D.()22
11
x x
+=+
5. 在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书话动,为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:
册数01234
!
人数
41216171
关于这组数据,下列说法正确的是()
A.中位数是2B.众数是17 C. 平均数是2D.方差是2
6.如图,点,,
A B C,在⊙O上,72
AOB
∠=,则ACB
∠=()
~
A .28
B .54 C.18 D .36
7.如图,在平面直角坐标系xOy 中,函数()0y kx b k =+≠与()0m y m x
=≠的图象相交于点()()2,3,6,1A B --,则不等式m kx b x
+>的解集为 ( )
A .6x <-
B .60x -<<或2x >
C. 2x > D .6x <-或02x <<
8. 若函数2
2y x x b =-+的图象与坐标轴有三个交点,则b 的取值范围是( )
A .1b <且0b ≠
B .1b > C.01b << D .1b < 第Ⅱ卷(共90分)
二、填空题(本大题有10小题,每题3分,满分30分,将答案填在答题纸上)
9.4的算术平方根是 .

10. 如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为 .
11.使6x -有意义的x 的取值范围是 .
12.反比倒函数k y x
=的图象经过点()2,1M -,则k = . 13.ABC ∆中,点,D E 分别是,AB AC 的中点,7DE =,则BC = .
14.已知10,8a b a b +=-=,则22
a b -= .
15.正六边形的每个内角等于 .
16.如图,AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直,垂足为,2D AB BC ==,则AOB ∠= .
17.如图,矩形ABCD 中,4,3AB AD ==,点Q 在对角线AC 上,且AQ AD =,连接DQ 并延长,与边BC 交于点P ,则线段AP = .
^
18.如图,已知1OB =,以OB 为直角边作等腰直角三角形1A BO .再以1OA 为直角边作等腰直角三角形21
A AO ,如此下去,则线段n OA 的长度为 .
三、解答题(本大题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.)
19. (1)
1
20
1
(2)2017
2
-


-
-+

⎝⎭

(2)
2
42
1
244
x
x x x
+
⎛⎫


--+
⎝⎭
.
20. (1)解方程:
23
1
x x
=
+

(2)解不等式组:
20
121
23
x
x x
>


+-

>
⎪⎩
.
21. 某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽取部分学生做了一次问卷调查,要求学生选出自己喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:
各版面选择人数的扇形统计图各版面选择人数的条形统计图

请根据图中信息,解答下列问题:
(1)该调查的样本容量为,a00,“第一版”对应扇形的圆心角为;(2)请你补全条形统计图;
(3)若该校有1000名学生,请你估计全校学生中最喜欢“第一版”的人数.
22.一个不透明的口袋中装有4张卡片,卡片上分別标有数字1,3,5,7--,这些卡片除数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张.请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.
23. 如图,在平行四边形ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 延长线于点E 连接,BD EC .
(1)求证:四边形BECD 是平行四边形;
(2)若50A ∠=,则当BOD ∠= 时,四边形BECD 是矩形.
)
24. 4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:
根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.
25.如图,已知AC BC ⊥,垂足为,4,33C AC BC ==AC 绕点A 按逆时针方向旋转60,得到线段AD ,连接,DC DB .
(1)线段DC = ;
(2)求线段DB 的长度.
26. 如图① ,菱形ABCD 中,5AB =cm ,动点P 从点B 出发,沿折线BC CD DA --运动到点A 停止,动点Q 从点A 出发,沿线段AB 运动到点B 停止,它们运动的速度相同.设点P 出发xs 时,BPQ ∆的面积为y 2cm .已知y 与x 之间的函数关系.如图 ②所示,其中,OM MN 为线段,曲线NK 为抛物线的一部分,请根据图中的信息,解答下列问题:
(1)当12x <<时,BPQ ∆的面积 (填“变”或“不变”);
(2)分别求出线段OM ,曲线NK 所对应的函数表达式;
\
(3)当x 为何值时,BPQ ∆的面积是52cm
27.如图,将边长为6的正三角形纸片ABC 按如下顺序进行两次折叠,展开后,得折痕,AD BE (如图①),点O 为其交点.
(1)探求AO 与OD 的数量关系,并说明理由;
(2)如图②,若,P N 分别为,BE BC 上的动点.
①当PN PD +的长度取得最小值时,求BP 的长度;
②如图③,若点Q 在线段BO 上,1BQ =,则QN NP PD ++的最小值= .
图① 图② 图③
28.如图,已知二次函数2449y x =
-的图象与x 轴交于,A B 两点与y 轴交于点C ,⊙C 的半径为5,P 为⊙C 上一动点.
(1)点,B C 的坐标分别为B ( ),C ( );
(2)是否存在点P ,使得PBC ∆为直角三角形若存在,求出点P 的坐标;若不存在,请说明理由;
(3)连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值= .。

相关文档
最新文档