函数图像变换公式大全定稿版
(完整word版)三角函数公式和图像大全,推荐文档
初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。
函数图像的移动数学公式记忆口诀
函数图像的移动数学公式记忆口诀函数图像的移动规律:假设把一次函数解析式写成y=k(*+0)+b、二次函数的解析式写成y=a(*+h)2+k的形式,那么用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。
图在二、四正相反,两个分支分别添;线越长越近轴,永久与轴不沾边。
我为大家带来的是函数图像的移动规律,相信同学们都已经轻松掌控了吧,接下来会为大家继续带来更全更精的公式大全集锦,盼望同学们关注了。
中学数学正方形定理公式关于正方形定理公式的内容精讲知识,盼望同学们很好的掌控下面的内容。
正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且相互垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。
盼望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌控,相信同学们会取得很好的成果的哦。
中学数学平行四边形定理公式同学们仔细学习,下面是老师对数学中平行四边形定理公式的内容讲解。
平行四边形平行四边形的性质:①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线相互平分;平行四边形的判定:①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③对角线相互平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。
上面对数学中平行四边形定理公式知识的.讲解学习,同学们都能很好的掌控了吧,相信同学们会从中学习的更好的哦。
中学数学直角三角形定理公式下面是对直角三角形定理公式的内容讲解,盼望给同学们的学习很好的援助。
直角三角形的性质:①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半;③直角三角形的两直角边的平方和等于斜边的平方〔勾股定理〕;④直角三角形中30度角所对的直角边等于斜边的一半;直角三角形的判定:①有两个角互余的三角形是直角三角形;②假如三角形的三边长a、b 、c有下面关系a^2+b^2=c^2,那么这个三角形是直角三角形〔勾股定理的逆定理〕。
函数图像变换(整理)
函数的图象变换函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。
由函数y = f (x)可得到如下函数的图象1. 平移:(1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。
(2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。
2. 对称:✧ 关于直线对称(Ⅰ) (1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。
(2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。
(3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。
(4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。
(5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。
(6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。
(Ⅱ)(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x)右侧的图象沿y 轴翻折至左侧。
(留正去负,正左翻(关于y 轴对称));(8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x)在x 轴下侧的图象沿x 轴翻折至上侧。
(留正去负,负上翻;)一般地:函数y = f (a+mx)与y = f (b -mx)的图象关于直线m2a b x -=对称。
✧ 关于点对称(1) 函数y = - f (-x)与y = f (x)的图象关于原点对称。
(2) 函数y = 2b -f (2a -x)与y = f (x)的图象关于点(a,b)对称。
3. 伸缩(1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的m 1倍得到。
函数图象变换
函数图象变换1、平移变换2、对称变换①y=f(-x)与y=f(x)关于y轴对称;②y=-f(x)与y=f(x)关于x轴对称;③y=-f(-x)与y=f(x)关于原点对称;④y=f-1(x)与y=f(x)关于直线y=x对称;⑤y=|f(x)|的图象可将y=f(x)的图象在x轴下方的部分以x轴为对称轴翻折到x轴上方,其余部分不变.⑥y=f(|x|)的图象:可将y=f(x),x≥0的部分作出,再利用偶函数关于y轴的对称性.三、伸缩变换①y=Af(x)(A>0)的图象,可将y=f(x)图象上每一点的纵坐标伸(A>1)缩(0<A<1)到原来的A倍,横坐标不变而得到.②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每一点的横坐标伸(0<a<1)缩(a>1)到原来的,纵坐标不变而得到.三、初等函数及图象(大致图象)【高考试题剖析】1.当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是( )【答案】A2.若函数f(x-1)=x2-2x+3(x≤1)则函数f-1(x)的草图是( )【解析】f(x-1)=(x-1)2+2 ①f(x)=x2+2 ②又∵①式中x≤1,∴x-1≤0,故②式中函数自变量x≤0,由②式得:x=-,即f-1(x)=- (x≥2).【答案】C3.已知函数f(x)=ax3+bx2+cx+d的图象如图2—6,则( )A.b∈(-∞,0)B.b∈(0,1)C.b∈(1,2)D.b∈(2,+∞)【解析】由题知f(x)=0有三个根0,1,2.∴f(x)=ax3+bx2+cx+d=ax(x-1)(x-2)=ax3-3ax2+2ax.∴b=-3a,∵a>0,∴b<0.【答案】A4.若函数y=f(x)的图象过点(1,0),则它的反函数的图象必经过点_____.【解析】点(1,0)关于直线y=x的对称点是(0,1).【答案】(0,1)5.要得到y=lg(3-x)的图象,只需作y=lgx关于_____轴对称的图象,再向_____平移3个单位而得到.【解析】由y=lgx的图象关于y轴对称得y=lg(-x)的图象,要得y=lg(3-x)即y=lg[-(x-3)]的图象,需将y=lg(-x)的图象向右平移3个单位.【答案】y 右【典型例题精讲】[例1]已知y=f(x)的图象如图2—7所示,则下列式子中能作为f(x)的解析式是( )A.B.x2-2|x|+1C.|x2-1|D.【解析】当f(x)=时,其图象恰好是上图.【答案】A[例2]画出函数y=lg|x+1|的图象.【解】y=lg|x+1|.[例3]要将函数y=的图象通过平移变换得到y=的图象,需经过怎样的变换?【解】y=-1,先沿x轴方向向左平移1个单位,再沿y轴方向向上平移1个单位,即可得到y=的图象.[例4]方程kx=有两个不相等的实根,求实数k的取值范围.【解】设y1=kx ①y2= ②方程①表示过原点的直线,方程②表示半圆,其圆心(2,0),半径为1,如图2—9.易知当OA与半圆相切时, ,故当0≤k<时,直线与半圆有两个交点,即0≤k<时,原方程有两个不相等的实根.[例5]作函数f(x)=x+的图象.【分析】f(x)=x+不能由已知函数图象变换得到,故需对函数f(x)的性质进行研究.【解】函数的定义域是(-∞,0)∪(0,+∞),∵f(-x)=-f(x),∴f(x)是(-∞,0)∪(0,+∞)上的奇函数,又|f(x)|=|x+|=|x|+≥2,当且仅当|x|=1时等号成立,∴当x>0时y≥2;当x<0时,y≤-2;当x∈(0,1)时函数为减函数,且急剧递减;当x∈[1,+∞)时函数为增函数,且缓慢递增,又x≠0,y≠0,∴图象与坐标轴无交点,且y轴是渐近线,作出第一象限的函数的图象,再利用对称性可得函数在定义域上的图象,如图2—10所示.【评述】(1)熟悉各种基本函数图的“原型”是函数作图的一项基本功;先研究函数的性质,再利用性质作图则能减少作图的盲目性,提高图象的准确性.(2)与图象有关的“辅助线”要用虚线作,以起到定形、定性、定位、定量的作用.【综合能力训练】1.f(x)是定义在区间[-c,c]上的奇函数,其图象如图所示.令g(x)=af(x)+b,则下列关于函数g(x)的叙述正确的是( )A.若a<0,则函数g(x)的图象关于原点对称B.若a=-1,-2<b<0,则方程g(x)=0有大于2的实根C.若a≠0,b=2,则方程g(x)=0有两个实根D.若a≥1,b<2,则方程g(x)=0有三个实根【解析】将f(x)图象上每点的纵坐标变为原来的a倍,横坐标不变,再将所得图象向上(b>0)或向下(b<0)平移|b|个单位,得g(x)=af(x)+b的图象.【答案】B2.(2007.全国Ⅱ)把函数y=ex的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)= ( )(A)e x-3+2 (B)e x+3-2 (C)e x-2+3 (D)e x+2-3【答案】C3.(2008·菏泽模拟)如图为函数y=m+的图象,其中m,n为常数,则下列结论正确的是 ( )(A)m<0,n>1 (B)m>O,n>l(C)m>O,0<n<1 (D)m<0,0<n<1【答案】D4.(2008.安庆模拟)函数y=e-|x-1|的图象大致是( )【答案】D5.在直角坐标系xOy中,已知△AOB三边所在直线的方程分别为x=0,y=0,2x+3y=30,则△AOB内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A.95 B.91 C.88D.75【解析】画出图象,补形做出长方形AOBC,共有整点数11×16=176,而六点(0,10),(3,8),(6,6),(9,4),(12,2),(15,0)在长方形的对角线上,所以符合题意的点数为(176+6)×=91.【答案】B6.将函数y=logx的图象沿x轴方向向右平移一个单位,得到图象C,图象C1与C关于原点对称,图象C2与C1关于直线y=x对称,那么C2对应的函数解析式是_____.【解析】C:y=log(x-1);由-y=log(-x-1)得C1:y=log2(-x-1);求C1的反函数得y=-1-2x.【答案】y=-1-2x7.若函数y=|-x2+4x-3|的图象C与直线y=kx相交于点M(2,1),那么曲线C与该直线有 个交点.【解析】(数形结合法)作y=|-x2+4x-3|的图象,知其顶点在M(2,1).过原点与点M(2,1)作直线y=kx,如图.∴曲线C与直线y=kx有四个交点.【答案】48.作函数y=()|x-1|的图象.【解】(1)y=故它在区间[1,+∞)上的图象,可由y=2-x(x≥0)的图象沿x轴方向向右平移1个单位得到;在区间(-∞,1)上的图象,可由y=2x(x<0)的图象沿x轴方向向右平移1个单位得到.9.已知函数y=f(x)(x∈R)满足f(a+x)=f(a-x),求证y=f(x)的图象关于直线x=a对称.【证明】设p(x0,y0)是y=f(x)图象上的任一点,则有y0=f(x0),设点P关于直线x=a的对称点为p′(x′,y′),则有,即 由y0=f(x0)y′=f[a-(a-x′)]=f(x′).即点p′(x′,y′)也在y=f(x)的图象上.∴y=f(x)的图象关于直线x=a对称.【评述】本题的结论应熟记.10.画出函数y=的图象,并利用此图象判定方程=x+a有两个不同的实数解时,实数a所满足的条件.【解】图象是抛物线y2=2x+1在y≥0上的部分.把y=x+a代入y2=2x+1,得(x+a)2=2x+1,即x2+2(a-1)x+a2-1=0,由Δ=0得a=1,此时直线与抛物线相切.又因抛物线顶点是(-,0),可知当直线过点(-,0)时,即a=时直线与抛物线有两交点,故当≤a <1时直线与此抛物线有两个交点,即原方程有两不同实数解.。
函数图象的变换
函数图象的变换①平移变换:Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y =f (x )h左移→y =f (x +h);2)y =f (x ) h右移→y =f (x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y =f (x ) h上移→y =f (x )+h ;2)y =f (x ) h下移→y =f (x )-h 。
②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到;y =f (x ) 轴y →y =f (-x )Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y =f (x ) 轴x →y = -f (x )Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y =f (x ) 原点→y = -f (-x )Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
y =f (x ) xy =→直线x =f (y )Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )ay ⨯→y =af (x )Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到。
函数图像变换公式大全(可编辑修改word版)
蕾博士函数图像变换公式大全一、点的变换.设 P (x 0 , y 0 ) ,则它(1) 关于 x 轴对称的点为(x 0 ,- y 0 ) ;(2) 关于 y 轴对称的点为(-x 0 , y 0 ) ;(3) 关于原点对称的点为(-x 0 ,- y 0 ) ;(4) 关于直线 y = x 对称的点为( y 0 , x 0 ) ;(5) 关于直线 y = -x 对称的点为(- y 0 ,-x 0 ) ;(6) 关于直线 y = b 对称的点为(x 0 ,2b - y 0 ) ;(7) 关于直线 x = a 对称的点为(2a - x 0 , y 0 ) ;(8) 关于直线 y = x + a 对称的点为( y 0 - a , x 0 + a ) ;(9) 关于直线 y = -x + a 对称的点为(- y 0 + a , a - x 0 ) ;(10) 关于点(a , b ) 对称的点为(2a - x 0 ,2b - y 0 ) ;(11)按向量(a , b ) 平移得到的点为(x 0 + a , y 0 + b ) .二、曲线的变换.曲线 F (x , y ) = 0 按下列变换后所得的方程:(1) 按向量(a , b ) 平移,得到 F (x - a , y - b ) = 0 ;(2) 关于 x 轴对称,得到 F (x ,- y ) = 0 ;(3) 关于 y 轴对称,得到 F (-x , y ) = 0 ;(4) 关于原点对称,得到 F (-x ,- y ) = 0 ;(5) 关于直线 x = a 对称,得到 F (2a - x , y ) = 0 ;(6) 关于直线 y = b 对称,得到 F (x ,2b - y ) = 0 ;(7) 关于点(a , b ) 对称,得到 F (2a - x ,2b - y ) = 0 ;(8) 关于直线 y = x 对称,得到 F ( y , x ) = 0 ;(9) 关于直线 y = x + a 对称,得到 F ( y - a , x + a ) = 0 ;(10) 关于直线 y = -x + a 对称,得到 F (-x + a , a - y ) = 0 ; (11) 纵坐标不变横坐标变为原来的a 倍,得到方程 F ( x, y ) = 0 ;a(12) 横坐标不变纵坐标变为原来的b 倍,得到方程 F (x , y) = 0b三、两个函数的图象对称性1:左右平移: y = f (x ± a ) ( a > 0 )的图像可由 y = f (x ) 的图像向左(+)或向右(—)平移a 个单位而得到; y = f (mx ± a ) ( m > 0, a > 0 )的图像可由 y = f (mx ) 的图像向左(+)或向右(—)平移 a个单位而得到;m2. 上下平移: y = f (x ) ± b (b > 0)的图像可由 y = f (x ) 的图像向上(+)或向下(—)平移b 个单位而得到;3. y = f (-x ) 的图像与 y = f (x ) 的图像关于 y 轴对称;换句话说: y = f (x ) 与y = g (x ) 若满足 f (x ) = g (-x ) ,即它们关于 x = 0 对称。
函数图象变换
y
y = 2|x-1|
把 y = 2|x| 图象向右平移1个单位 得到函数 y = 2|x-1| 的图象. 由图象知函数的对称轴为 x=1 ,
0
x
函数的单调增区间为 [1 ,+∞), 单调减区间为 (-∞,1].
函数图象的四大变换之
对称变换
1 例6设f(x)= (x>0),求函数y=-f(x)、y=f(-x)、y=x
∴ y = 2|x| 图象关于y轴对称.
y = 2|x|
0
x
例5.
先作出函数 y = 2|x| 的图象, 解: 2 x ••• x 0) x ( 2 •• x 0) ( | x| y 2 x 1 x 2 ( x 0) ( ) ( x 0) 2 又 y = 2|x| 是偶函数,
f(-x)的解析式及其定义域并分别作出它们的图象。
y
y=f(x) y=f(-x)
y
y=f(x)
y
y=f(x)
o
1
x
o
1
x
o
y=-f(-x)
1
x
y=-f(x)
对 称 变 换
图象关于 x轴对称
图象关于
图象关于
原点对称
y轴对称
例7.指数函数 y = 2x 的图象与函数 y = 2-x ,y=-2x ,y = -2-x 的图象的关系:
x 3
(3,4) 3 图象恒过定点 _________.
3 图象是由 y a 3
沿 x 轴向右平移 3 个单位,再
沿 y 轴向上平移 3 个单位所得 .
又 y a 图象过定点 0 , , ( 1 )
(完整版)高等数学公式大全及常见函数图像
180°+α
-sinα
-cosα
tgα
ctgα
270°-α
-cosα
-sinα
ctgα
tgα
270°+α
-cosα
sinα
-ctgα
-tgα
360°-α
-sinα
cosα
-tgα
-ctgα
360°+α
sinα
cosα
tgα
ctgα
·和差角公式: ·和差化积公式:
·倍角公式:
·半角公式:
·正弦定理: ·余弦定理:
高等数学公式
导数公式:
基本积分表:
三角函数的有理式积分:
一些初等函数: 两个重要极限:
三角函数公式:
·诱导公式:
函数
角A
sin
cos
tg
ctg
-α
-sinα
cosα
-tgα-ctgα90°αcosαsinα
ctgα
tgα
90°+α
cosα
-sinα
-ctgα
-tgα
180°-α
sinα
-cosα
-tgα
斯托克斯公式——曲线积分与曲面积分的关系:
常数项级数:
级数审敛法:
绝对收敛与条件收敛:
幂级数:
函数展开成幂级数:
一些函数展开成幂级数:
欧拉公式:
三角级数:
傅立叶级数:
周期为 的周期函数的傅立叶级数:
微分方程的相关概念:
一阶线性微分方程:
全微分方程:
二阶微分方程:
二阶常系数齐次线性微分方程及其解法:
(*)式的通解
函数图象的四大变换
y y
x
x
x
x
A
B
C
D
解析:由f(x)g(x)是偶函数否定A、D, 当x→±∞时,f(x)g(x) →-∞,故选C.
2、画函数图象,由图象求解析式
例2 已知函数y=f (x)是在R上以2为周期的奇函数,在区 间[0,1)上的图象如下图所示,并已知该区间上图象是 一个二次函数的图象的一部分,点(1,1)是其顶点.试作出 y=f (x)在区间[-2,2]上的图象,并求该区间上的解析式.
. .
-1
-1
-1
.
1
2
.
X
-2
. . . . .
1 -1 1 -1
2
2
X
C
D
分析:根据y=F(x)= xf `(x)的图象,得F(1)= f `(1)=0, F(-1)= - f `(- 1)=0, ∴ f `(1)= f `(- 1)=0, ∴ x=1和x= - 1是f (x)的极值点.故选C. Y 提问:本例除了从图形获取有效信息: 2 .1 f `(1)= f `(- 1)=0之外, .-2 -1. .1 还能获取什么有效信息? -1. [注:如1<x<2时,xf `(x)>0,∴ f `(x) >0,
(1)f(x-1)=(x-1)2 (2)f(x+1)=(x+1)2 (3)f(x)+1=x2+1 (4)f(x) -1=x2-1
y=f(x+1) 1 -1 O y=f(x)-1-1 1 y=f(x-1)
x
函数图象的平移变换:
左右平移 (a>0) 上下平移 (a>0)
y=f(x) y=f(x) y=f(x) y=f(x)
函数转换公式范文
函数转换公式范文在函数转换中,最常见的转换包括平移、缩放和翻折。
下面将分别介绍这三种转换以及对应的公式。
1.平移:平移是将函数的图形沿着坐标轴上下左右移动。
平移的公式如下:平移后的函数:y=f(x-a)+b其中,a表示在x轴方向上平移的距离,b表示在y轴方向上平移的距离。
当a为正时,函数图像向右平移;当a为负时,函数图像向左平移;当b为正时,函数图像向上平移;当b为负时,函数图像向下平移。
2.缩放:缩放是通过改变函数的幅度对函数的图形进行变换。
缩放的公式如下:缩放后的函数:y = a * f(bx)其中,a表示纵向的缩放比例,b表示横向的缩放比例。
当a大于1时,函数图像被放大;当a介于0和1之间时,函数图像被缩小;当b大于1时,函数图像在x轴方向上被压缩;当b介于0和1之间时,函数图像在x轴方向上被拉伸。
3.翻折:翻折是通过改变函数的符号对函数的图形进行变换。
翻折的公式如下:翻折后的函数:y=-f(x)其中,函数图像关于x轴翻折后,原本在x轴上方的部分会转移到x轴下方;函数图像关于y轴翻折后,原本在y轴右侧的部分会转移到y轴左侧。
除了这三种基本的函数转换方式,还可以通过组合多个转换来实现复杂的变换效果。
例如,先进行平移再进行缩放可以实现图像在坐标系中的任意位置和大小的变换;组合使用平移、缩放和翻折,可以实现更加丰富多样的图像变换。
总结起来,函数转换公式是描述函数图形在坐标系中进行平移、缩放和翻折等变换的数学关系。
函数转换公式的掌握对于研究函数图像的性质和应用具有重要的意义。
在实际应用中,通过对函数进行转换可以更好地理解函数的特点,并根据需要对函数进行调整,以满足相关需求。
函数图像的变换法则
( 0,1 )和( 0,1 ) ( 2,0 )和( 2, 2 )
三﹑对称变换
y
(-x,y) .
(-x,-y) .
(y,x) . .(x,y)
x
.(x,-y)
函数图象对称变换的规律:
1. y f ( x) y f ( x)
关于x轴对称
2. y f ( x) y f ( x)
函数图象变换的应用:
①作图﹑② 识图﹑ ③用图
(2)方程 f(x)-a=x 的根的个数等价于 y=f(x)与 y=x-a 的交点的个数,所以可以借助图像进行分析.
规范解答 解
2 x-2 -1, x∈-∞,1]∪[3,+∞ f(x)= 2 -x-2 +1, x∈1,3
作出图像如图所示.
[2 分]
(1)递增区间为[1,2],[3,+∞), 递减区间为(-∞,1],[2,3]. [4 分] (2)原方程变形为 |x2-4x+3|=x+a, 于是,设 y=x+a,在同一坐标系下再作出 y=x+a 的图 像.如图. 则当直线 y=x+a 过点(1,0)时,a=-1; [6 分]
a a
1 x
a
a ax a a a
x
ax a ax
1 y 1
a a a
x
a
x
x
a a
f (1 x)
所以,函数y=f(x)的图象关于点(1/2,1/2)对称
(2)由对称性知f(1-x)+f(x)=1,所以 f(-2)+ f(-1)+ f(0)+ f(1)+ f(2)+ f(3)=3。
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.
函数的图像及变换(完整版)
函数的图像及变换一、函数图像的变换对称变换(||)翻折翻折变换|()|翻折左右平移平移变换上下平移横坐标不变,纵坐标伸缩伸缩变换纵坐标不变,横坐标伸缩y f x y f x ⎧⎪⎧=⎪⎨⎪=⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩关于x 轴对称:(,)(,)x y x y →- 关于y 轴对称:(,)(,)x y x y →- 关于原点对称:(,)(,)x y x y →-- 关于y x =对称:(,)(,)x y y x →关于y x =-对称:(,)(,)x y y x →-- 关于直线x a =对称:(,)(2,)x y a x y →-(轴对称) 关于y x b =+对称:(,)(,)x y y b x b →-+ 关于y x b =-+对称:(,)(,)x y b y x b →--+ 关于点(,)P a b 对称:(,)(2,2)x y a x b y →--(点对称)例1:已知2()2f x x x =-,且()g x 与()f x 关于点(1,2)对称,求()g x 的解析式.(相关点法)例2:已知函数()y f x =的图像关于直线1x =-对称,且当(0,)x ∈+∞时,有1()f x x=,则当 (,2)x ∈-∞-时,()f x 的解析式是( ).A. 1x -B. 12x +C.12x -+D. 12x-例3:下列函数中,同时满足两个条件“①x R ∀∈,()()01212f x f x ππ++-=;②当6π-<x 3π<时,'()0f x >”的一个函数是( ) A.()sin(2)6f x x π=+B. ()cos(2)3f x x π=+C. ()sin(2)6f x x π=-D. ()cos(2)6f x x π=-①关于形如()y f x =的图像画法:当0x ≥时,()y f x =;当0x ≤时,()y f x =-()y f x =为偶函数,关于y 轴对称,即把0x ≥时()y f x =的图像画出,然后0x ≤时的图像与 0x ≥的图像关于y 轴对称即可得到所求图像.②关于形如()y f x =的图像画法当()0f x ≥时,()y f x =;当()0f x ≤时,()y f x =-先画出()y f x =的全部图像,然后把()y f x =的图像x 轴下方全部关于x 轴翻折上去,原x 轴上方的图像保持不变,x 轴下方的图像去掉不要即可得到所求图像.例3:画出下列函数的图像.(1)12log y x = (2)228y x x =--例4:设函数2()45f x x x =--.(1)在区间[2,6]-上,画出函数()f x 的图像;(2)设集合{}()5A x f x =≥,(,2][0,4][6,)B =-∞-+∞.试判断集合A B 、之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方.①左右平移把函数()y f x =的全部图像沿x 轴方向向左(0a >)或向右(0a <)平移a 个单位即可得到函数()y f x a =+的图像②上下平移把函数()y f x =的全部图像沿y 轴方向向上(0a >)或向下(0a <)平移a 个单位即可得到函数()y f x a =+的图像例4:将函数lg(32)1y x =-+按向量(2,3)a =-平移后得到新的图象解析式为 例5:把一个函数的图象按向量(,2)8a π=-平移后得到的图象的解析式为sin(2)24y x π=+-,则原来函数的解析式 .Ⅰ.将函数()y f x =的全部图像中的每一点横坐标不变,纵坐标伸长(1)a >或缩短(01)a <<为原来的a 倍得到函数()(0)y af x a =>的图像.Ⅱ. 将函数()y f x =的全部图像中的每一点纵坐标不变,横坐标伸长(1)a >或缩短(01)a <<为原来的1a倍得到函数()(0)y f ax a =>的图像. 例6:已知函数21()2lg(2)-=++x f x x ,把函数()y f x =的图像关于y 轴对称,然后向右平移1个单位,最后纵坐标保持不变,横坐标变为原来的2倍得到()g x 的图像,求()g x 的解析式.例7:已知函数2()log (1)f x x =+,将()y f x =的图像向左平移1个单位,再将图像上所有点纵坐标伸长到原来的2倍,得到函数()y g x =的图像. (1)求()y g x =的解析式和定义域; (2)求函数()(1)()F x f x g x =--的最大值.【练习】1.为了得到函数321x y -=-的图像,只需要把函数2x y =的图像上所有的点( ).A.向右平移3个单位长度,再向下平移1个单位长度B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度D.向左平移3个单位长度,再向上平移1个单位长度 2.下面四个图形中,与函数22log (1)yx x =+≥的图像关于y x =对称的是( ).3.若函数()()y f x x R =∈满足(2)()f x f x +=,且[1,]x ∈-时,()f x x =,则函数()y f x =的图像与函数4log y x =的图像的交点的个数为( ).A.3B.4C.6D.84.将函数by a x a=++的图像向右平移2个单位长度后又向下平移2个单位,所得到的函数图像与原图像如果关于直线y x =对称,那么( ).A. 1,0a b =-≠B. 1,a b R =-∈C.1,0a b =≠D. 0,a b R =∈ 5.已知21()f x x x =+,且()g x 与()f x 关于点(1,0)-对称,求()g x 的解析式.6.画出下列函数的图像.(1)ln y x = (2)26y x x =--7. 函数()2xf x =和3()g x x =的图像的示意图如图所示,设两函数的图像交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出示意图中曲线12,C C 分别对应于哪一个函数;(2)若12[,1],[,1]x a a x b b ∈+∈+,且{},1,2,3,4,5,6,7,8,9,10,11,12a b ∈,指出,a b 的值,并说明理由;(3)结合函数图像的示意图,判断(6),(6),(2010),(2010)f g f g 的大小关系.8.已知函数()f x 和()g x 的图像关于原点对称,且2()2f x x x =+. (1)求函数()g x 的解析式; (2)解不等式()()1g x f x x ≥--;(3)若()()()1h x g x f x λ=-+在[1,1]-上是增函数,求实数λ的取值范围.6. 已知函数()y f x =,把函数()y f x =的图像向左平移1个单位,然后横坐标保持不变,纵坐标变为原来的3倍再向下平移3个单位得到()g x 的图像,求()g x 的解析式.补充:请把相应的幂函数图象代号填入表格.①32x y =;②2-=x y ;③21x y =;④1-=x y ;⑤31x y =;⑥23x y =;⑦34x y =; ⑧21-=x y ;⑨35x y =.常规函数图像有:HI对称性结论1.函数)(x f y =图象关于a x =对称⇔⇔-=+)()(x a f x a f )2()(x a f x f -=⇔)2()(x a f x f +=-;2.若函数=y )(x f 定义域为R ,且满足条件)()(x b f x a f -=+,则函数)(x f y =的图象关于直线2ba x +=对称. 3.函数)(x f y =图象关于),(b a 成中心称⇔b x a f x a f 2)()(=++- b x f x a f 2)()2(=+-⇔4.若函数)(x f y =定义域为R ,且满足条件c x b f x a f =-++)()((c b a ,,为常数),则函数)(x f y =的图象关于点)2,2(cb a +对称.。
函数的图像变换(hsj)
三、函数图象的对称性
对于函数 y=f(x), 若对定义域内的任意 x 都有: 直线 x=a ① f(a-x)=f(a+x)(或 f(x)=f(2a-x)), 则 f(x) 的图象关于 对称; ② f(a-x)+f(a+x)=2b(或 f(x)+f(2a-x)=2b), 则 f(x) 的图象关 于 点 (a, b)
设函数yfx与函数ygx的图象如图所示则函数yfxgx的图象可能是下面的4x31求函数fx的单调区间并指出其增减性
函数的图像变换
一、函数的图象
在平面直角坐标系中, 以函数 y=f(x) 中的 x 为横坐标, 函数 值 y 为纵坐标的点 (x, y) 的集合, 叫做函数 y=f(x) 的图象.
注: 图象上每一点的坐标 (x, y) 均满足函数关系 y=f(x), 反过 来, 满足 y=f(x) 的每一组对应值 x, y 为坐标的点 (x, y), 均在其图 象上.
y=f(x+a); y=f(x+a)+b.
(2)对称变换:
① y=f(x) 与 y=f(-x) ② y=f(x) 与 y= -f(x) ③ y=f(x) 与 y= -f(-x)
关于 y 轴对称 关于 x 轴对称 关于原点对称 保留 y 轴右边图象, 去掉左边图象, ⑥ y=f(x) 与 y=f(|x|) 再作关于 y 轴的对称图象. ⑦ y=f(x) 与 y=|f(x)| 保留 x 轴上方图象, 将 x 轴下方图 象翻折上去.
[6 分]
1,0)时,a=-1;
5.若 1<x<3, a 为何值时, x2-5x+3+a=0 有两解, 一解, 无解?
解: 原方程即为 a=-x2+5x-3 (1) 作出函数 y=-x2+5x-3(1<x<3)的图象, 显然该图象与直线 x=a 的交点的横坐标是方程 (1) 的解. y 由图象知: 13 13 当 3<a< 4 时, 原方程有两解; 4 3 当 1<a≤3 或 a= 13 时, 原方程有一解; 4 y=a 13 当 a≤1或 a> 4 时, 原方程无解. 1 o 1 2 3 x
函数公式、图像汇总
初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscαcosα·secαtanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA •CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π-a)半角公式sin(2A)=2cos 1A -cos(2A )=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=AA cos 1sin +和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosa cos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan2a a+ cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a -其它公式a •sina+b •cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a •sin(a)-b •cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -a a cosh(a)=2e e -a a tg h(a)=)cosh()sinh(a a 公式一设α为任意角,终边一样的角的同一三角函数的值相等:sin 〔2k π+α〕= sin αcos 〔2k π+α〕= cos αtan 〔2k π+α〕= tan αcot 〔2k π+α〕= cot α公式二设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin 〔π+α〕= -sin αtan〔π+α〕= tanαcot〔π+α〕= cotα公式三任意角α与-α的三角函数值之间的关系:sin〔-α〕= -sinαcos〔-α〕= cosαtan〔-α〕= -tanαcot〔-α〕= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin〔π-α〕= sinαcos〔π-α〕= -cosαtan〔π-α〕= -tanαcot〔π-α〕= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin〔2π-α〕= -sinαcos〔2π-α〕= cosαtan〔2π-α〕= -tanα公式六2π±α及23π±α与α的三角函数值之间的关系: sin 〔2π+α〕= cos α cos 〔2π+α〕= -sin α tan 〔2π+α〕= -cot α cot 〔2π+α〕= -tan α sin 〔2π-α〕= cos α cos 〔2π-α〕= sin α tan 〔2π-α〕= cot α cot 〔2π-α〕= tan α sin 〔23π+α〕= -cos α cos 〔23π+α〕= sin α tan 〔23π+α〕= -cot α cot 〔23π+α〕= -tan αsin 〔23π-α〕= -cos α cos 〔23π-α〕= -sin α tan 〔23π-α〕= cot α cot 〔23π-α〕= tan α (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A •sin(ωt+θ)+B •sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明〔全部〕公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b ≤a ≤b|a-b|≥|a|-|b|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:〔a,b〕是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的外表积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h--------------------------------------------------------------------------------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。
(完整版)高等数学公式大全及常见函数图像
180°+α
-sinα
-cosα
tgα
ctgα
270°-α
-cosα
-sinα
ctgα
பைடு நூலகம்tgα
270°+α
-cosα
sinα
-ctgα
-tgα
360°-α
-sinα
cosα
-tgα
-ctgα
360°+α
sinα
cosα
tgα
ctgα
·和差角公式: ·和差化积公式:
·倍角公式:
·半角公式:
·正弦定理: ·余弦定理:
斯托克斯公式——曲线积分与曲面积分的关系:
常数项级数:
级数审敛法:
绝对收敛与条件收敛:
幂级数:
函数展开成幂级数:
一些函数展开成幂级数:
欧拉公式:
三角级数:
傅立叶级数:
周期为 的周期函数的傅立叶级数:
微分方程的相关概念:
一阶线性微分方程:
全微分方程:
二阶微分方程:
二阶常系数齐次线性微分方程及其解法:
(*)式的通解
两个不相等实根
两个相等实根
一对共轭复根
二阶常系数非齐次线性微分方程
五类基本初等函数及图形
-----------------------------------(1)幂函数----------------------------------
, 是常数;
-----------------------------------(2)指数函数----------------------------------
·反三角函数性质:
高阶导数公式——莱布尼兹(Leibniz)公式:
函数的图像变换
函数的图像变换在数学的世界里,函数就像是一个个神秘的密码,而函数的图像则是解开这些密码的关键线索。
函数的图像变换,就如同给这些线索施加魔法,让我们能从不同的角度去理解和洞察函数的性质。
让我们先从最简单的平移变换说起。
想象一下,你在一张纸上画了一个函数的图像,比如 y = x²。
现在,如果你把这整个图像向左移动 3 个单位,那么原来的点(x, y) 就变成了(x + 3, y)。
这就像是把整个图像在水平方向上推了一把。
同样的,如果要向右平移,那就是(x 3, y);向上平移呢,就是(x, y + 3);向下平移就是(x, y 3)。
比如说,函数 y =(x 2)²的图像,就是把 y = x²的图像向右平移了 2 个单位。
这种平移变换在实际问题中也很常见。
比如,假设一个物体的运动轨迹可以用函数来描述,而这个物体的起始位置发生了变化,那么就需要通过平移变换来得到新的函数图像,从而准确地描述它的运动。
接下来是伸缩变换。
还是以 y = x²为例,如果我们想把图像在水平方向上压缩一半,那么原来的 x 就要变成 2x,函数就变成了 y =(2x)²= 4x²。
反之,如果要在水平方向上拉伸两倍,那就是 y =(05x)²= 025x²。
在垂直方向上的伸缩变换也是类似的道理。
伸缩变换可以帮助我们更好地观察函数的某些特征。
比如,对于一些周期函数,如果把周期伸缩,就能更清楚地看到它的变化规律。
然后是对称变换。
函数图像关于 x 轴对称时,原来的点(x, y) 就变成了(x, y);关于 y 轴对称时,就变成了(x, y);关于原点对称时,则变成了(x, y)。
比如,y = x²的图像就是 y = x²关于 x 轴对称的结果;y = x³关于原点对称的函数就是 y = x³。
对称变换在解决一些几何问题和物理问题时非常有用。
高中数学之函数图形变换
函数平移:把y =f (ax )向右平移m 个单位,再向下平移n 个单位所得的新解析式为y +n =f (a(x -m ))把y =f (ax )向左平移m 个单位,再向上平移n 个单位所得的新解析式为y -n =f (a(x +m ))把y =f (ax )向左平移m 个单位,再向下平移n 个单位所得的新解析式为y +n =f (a(x +m ))这些规律又可总结为左右平移“x 右减左加”,上下平移“y 上减下加”函数的轴对称:y = f(x) 与 y = f(-x) 关于 x=0 对称 y = f(x) 与 y = -f(x) 关于 y=0 对称定理1:如果函数()y f x =满足()()f a x f a x +=-,则函数()y f x =的图象关于直线x a =对称.定理2:如果函数()y f x =满足()()2f x f a x =-,则函数()y f x =的图象关于直线x a =对称.定理3:如果函数()y f x =满足()()2f x f a x -=+,则函数()y f x =的图象关于直线x a =对称.定理4:如果函数()y f x =满足()()f a x f b x +=-,则函数()y f x =的图象关于直线2a bx +=对称.定理5:如果函数()y f x =满足()()f x f x =-,则函数()y f x =的图象关于直线0x =(y 轴)对称.函数的点对称:y = f(x) 与 y= -f(-x) 关于点 (0,0) 对称定理1:如果函数()y f x =满足()()2f a x f a x b ++-=,则函数()y f x =的图象关于点(,)a b 对称.定理2:如果函数()y f x =满足()()22f x f a x b +-=,则函数()y f x =的图象关于点(,)a b 对称.定理3:如果函数()y f x =满足()()22f x f a x b -++=,则函数()y f x =的图象关于点(,)a b 对称.定理4:如果函数()y f x =满足()()0f a x f a x ++-=,则函数()y f x =的图象关于点(,0)a 对称.定理5:如果函数()y f x =满足()()0f x f x +-=,则函数()y f x =的图象关于原点(0,0)对称.含绝对值的函数图象的画法:一、含绝对值的函数常见情况的分类:已知函数()R x x f y ∈=,,x 叫做函数的自变量;y 叫做函数的应变量(函数值)。
函数图像的四种变换
函数图像的四种变换1. 平移变换平移变换左加右减,上加下减左加右减,上加下减)()(a x f y x f y +=¾®¾=沿x 轴左移a 个单位;个单位;)()(a x f y x f y -=¾®¾=沿x 轴右移a 个单位;个单位;a x f y x f y +=¾®¾=)()(沿y 轴上移a 个单位;个单位;a x f y x f y -=¾®¾=)()(沿y 轴下移a 个单位。
个单位。
2.2.对称变换对称变换对称变换同一个函数求对称轴或对称中心,则求中点或中心。
同一个函数求对称轴或对称中心,则求中点或中心。
两个函数求对称轴或对称中心,则求交点。
两个函数求对称轴或对称中心,则求交点。
(1)对称变换)对称变换①函数)(x f y =与函数)(x f y -=的图像关于直线x=0(y 轴)对称。
对称。
②函数)(x f y =与函数)(x f y -=的图像关于直线y=0(x 轴)对称。
对称。
③函数)(a x f y +=与)(x b f y -=的图像关于直线2a b x -=对称对称 (2)中心对称)中心对称①函数)(x f y =与函数)(x f y --=的图像关于坐标原点对称的图像关于坐标原点对称 ②函数)(x f y =与函数)2(2x a f y b -=-的图像关于点(的图像关于点(a,b a,b a,b)对称。
)对称。
)对称。
3伸缩变换伸缩变换(1))(x af y =的图像,可以将)(x f y =的图像纵坐标伸长(的图像纵坐标伸长(a>1a>1a>1)或缩)或缩短(短(a<1a<1a<1)到原来的)到原来的a 倍,横坐标不变。
倍,横坐标不变。
(2))(ax f y =(a>0a>0)的图像,可以将)的图像,可以将)(x f y =的横坐标伸长(的横坐标伸长(0<a<10<a<10<a<1))或缩短(或缩短(a>1a>1a>1)到原来的)到原来的1/a 倍,纵坐标不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图像变换公式大全 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】蕾博士函数图像变换公式大全一、点的变换.设),(00y x P ,则它(1)关于x 轴对称的点为),(00y x -;(2)关于y 轴对称的点为),(00y x -;(3)关于原点对称的点为),(00y x --;(4)关于直线x y =对称的点为),(00x y ;(5)关于直线x y -=对称的点为),(00x y --;(6)关于直线b y =对称的点为)2,(00y b x -;(7)关于直线a x =对称的点为),2(00y x a -;(8)关于直线a x y +=对称的点为),(00a x a y +-;(9)关于直线a x y +-=对称的点为),(00x a a y -+-;(10)关于点),(b a 对称的点为)2,2(00y b x a --;(11)按向量),(b a 平移得到的点为),(00b y a x ++.二、曲线的变换.曲线0),(=y x F 按下列变换后所得的方程:(1)按向量),(b a 平移,得到0),(=--b y a x F ;(2)关于x 轴对称,得到0),(=-y x F ;(3)关于y 轴对称,得到0),(=-y x F ;(4)关于原点对称,得到0),(=--y x F ;(5)关于直线a x =对称,得到0),2(=-y x a F ;(6)关于直线b y =对称,得到0)2,(=-y b x F ;(7)关于点),(b a 对称,得到0)2,2(=--y b x a F ;(8)关于直线x y =对称,得到0),(=x y F ;(9)关于直线a x y +=对称,得到0),(=+-a x a y F ;(10)关于直线a x y +-=对称,得到0),(=-+-y a a x F ;(11)纵坐标不变横坐标变为原来的a 倍,得到方程0),(=y a xF ;(12)横坐标不变纵坐标变为原来的b 倍,得到方程0),(=byx F三、两个函数的图象对称性1:左右平移:)(a x f y ±=(0>a )的图像可由)(x f y =的图像向左(+)或向右(—)平移a 个单位而得到;)(a mx f y ±=(0,0>>a m )的图像可由)(mx f y =的图像向左(+)或向右(—)平移ma个单位而得到; 2.上下平移:)(0)(>±=b b x f y 的图像可由)(x f y =的图像向上(+)或向下(—)平移b 个单位而得到;3. )(x f y -=的图像与)(x f y =的图像关于y 轴对称;换句话说:)(x f y =与)(x g y =若满足)()(x g x f -=,即它们关于0=x 对称。
4. )(x f y -=的图像与)(x f y =的图像关于x 轴对称;换句话说:)(x f y =与)(x g y =若满足)()(x g x f -=,即它们关于0=y 对称。
5. )(x f y --=的图像与)(x f y =的图像关于原点对称;6. |)(|x f y =的图像可如此得到:)(x f y =的图像在x 轴下方的部分以x 轴为对称轴翻折到x 轴的上方,其余不变;7. )||(x f y =的图像:保留)(x f y =的图像在y 轴右侧的部分,并沿y 轴翻折到y 轴左边部分代替原y 轴左边部分;8.)(a x f y +=与)(x b f y -=关于直线2ab x -=对称(在函数()y f a x =+上任取一点11(,)x y ,则11()y f a x =+,点11(,)x y 关于直线2b ax -=对称点(1b a x --,y 1)。
由于1111[()][]()f b b a x f b b a x f a x y ---=-++=+=,故点(1b a x --,y 1)在函数()y f b x =-上。
由点11(,)x y 是函数()y f a x =+图象上任一点因此()y f a x =+与()y f b x =-关于直线2b a x -=对称。
);换句话说,)(x a f y -=与)(b x f y -=关于直线2ba x +=对称; 换句话说, )(x f y -=与)(b x f y -=关于直线2bx =对称. 9. )(x f y =与)(2x f a y -=关于直线a y =对称。
换种说法:)(x f y =与)(x g y =若满足a x g x f 2)()(=+,即它们关于a y =对称;10. )2(2)(x a f b y x f y --==与关于点(,)a b 对称。
换种说法:)(x f y =与)(x g y =若满足b x a g x f 2)2()(=-+,即它们关于点(,)a b 对称。
特别提醒①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =-④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =--⑤函数()y f x =与()a x f a y -=-的图像关于直线x y a +=成轴对称。
11.伸缩变换:)0)((>=A x Af y 的图像,可将)(x f y =的图像上每一个点的横坐标不变,纵坐标变为原来的A 倍而得到;12. )0)((>=k kx f y 的图像,可将)(x f y =的图像上每一个点的纵坐标不变,横坐标变为原来的k1倍而得到; 13.)(1x f y -=与)(x f y =关于直线x y =对称;14. )(1x f y --=-的图像与)(x f y =的图像关于直线x y -=对称;15. 函数)(mx a f y +=的图像与)(mx b f y -=的图象关于直线mab x 2-=对称。
四.单个函数的图象1. 若对任意,x )()(x b f a x f -=+,则)(x f y =的图像关于直线x =2ba +对称;反之亦然;若对任意x ,)()(x c f x f -=,则)(x f y =的图像关于直线x =2c对称,反之亦然;若)(a x f +是偶函数,则)(x f y =关于a x =对称。
(在()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于直线2a bx +=的对称点11(,)a b x y +-,当1x a b x =+-时11111()[()][()]()f a b x f a b x f b b x f x y +-=+-=--==,故点11(,)a b x y +-也在函数()y f x =图象上。
由于点11(,)x y 是图象上任意一点,因此,函数的图象关于直线2a bx +=对称(特别地,0==b a 时,该函数为偶函数)). 2. 对任意x ,)()(x a f a x f -=+-(或)2()(x a f x f --=的充分必要条件是)(x f y =的图像关于点)0,(a 对称;3. 若)(x f 有两条对称轴a x =和)(b a b x <=(证明:∵()()f a x f a x +=-得()(2)f x f a x =-,()()f b x f b x +=-得()(2)f x f b x =-∴(2)(2)f a x f b x -=-, ∴()(22)f x f b a x =-+∴函数()y f x =是周期函数,且22b a -是一个周期。
),或有两个对称点)0,(a 和)0,(b (b a <),则)(2a b -是)(x f 的一个周期;4. 若)(x f 以a x =为对称轴,且以)0,(b 为对称中心,则)(4a b -是)(x f 的一个周期;5.)(x f y =的图像关于点),(b a 对称的充分必要条件是对任意,x b x a f x a f 2)()(=-++成立(更一般地,若c x b f x a f =-++)()(,则)(x f y =的图像关于点(2b a +,2c)对称(在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于点(2a b+,2c )的对称点(1a b x +-,c -y 1),当1x a b x =+-时,1111()[()]()f a b x c f b b x c f x c y +-=---=-=-,即点(1a b x +-,c -y 1)在函数()y f x =的图象上。
由于点11(,)x y 为函数()y f x =图象上的任意一点可知函数()y f x =的图象关于点(2a b+,2c)对称。
(注:当a =b =c =0时,函数为奇函数。
) 特别提醒:①函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ⇔=--。
②函数()y f x =的图象关于原点对称(奇函数))()(x f x f -=-⇔。
③函数)(a x f y +=是奇函数)(x f ⇔关于点()0,a 对称。
6.若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期7. 对于非零常数A ,若函数()y f x =满足(A)()f x f x +=-,则函数()y f x =必有一个周期为2A 。
8.对于非零常数A ,函数()y f x =满足1(A)()f x f x +=,则函数()y f x =的一个周期为2A 。
9.对于非零常数A ,函数()y f x =满足1()()f x A f x +=-,则函数()y f x =的一个周期为2A 。
10. 已知函数()x f y =对任意实数x ,都有()()b x f x a f =++,则()x f y =是以 2a 为周期的函数11. 若函数)(x f y =对定义域中的任意x 的值,都满足 )()(mx b f mx a f -=+, 则函数)(x f y =的图象关于直线2ba x +=对称.12. 对于非零常数A ,函数()y f x =满足1()()21()A f x f x f x ++=-或1()()21()A f x f x f x -+=+则函数()y f x =的一个周期为2A 。