数轴上动点问题
数轴上的动点问题
数轴上的动点问题1、数轴上点A对应的数为-1,点B对应的数为4,点P为数轴上一动点,其对应的数为x,(1)若点P到A、B的距离相等,则点P对应的数为(2)数轴上是否存在点P,使P到点A、点B的距离之和为9?若存在请求出点P。
(3)当点P以每分钟1个单位长度的速度从O点向右运动时,点A以每分钟2个单位长度的速度向左运动,点B以每分钟3个单位长度的速度向右运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?2、数轴上点B对应的数为8,点A是数轴上位于B点左侧一点,且AB=14,动点P从P点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒,(1)写出数轴上点A表示的数,点P表示的数(用含t的式子表示);(2)动点Q从点A出发,以每秒3个单位长度的速度向左匀速运动,若点P、Q同时出发,问点P运动多少秒时AQ=AP?(3)在(2)中P、Q两点运动的过程中,若M为BP的中点,在P点运动的过程中QPQB的值在某一个时间段内为定值,求出这个定值,并直接写出t的取值范围。
QM3. 已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,①当P、Q两点运动停止时,求点P和点Q的距离;②求当t为何值时P、Q两点恰好在途中相遇。
4、已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x. (1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从O点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?5、已知A、B两点在数轴上,点A表示的数为-10,点B在原点的右边,且OB=3OA,点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点O向右运动(M、N同时出发)(1)、数轴上点B对应的数为;AB=(2)、经过几秒,点M、点N分别到原点的距离相等?(3)、当点M运动到什么位置时,恰好使AM=3BN?6、在数轴上依次有A、B、C三点,其中点A,点B,点C分别为-1,1,5,点A、B、C在数轴上同时运动,点A以每秒1个单位长度的速度从点A向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,t秒后,问BC-AB的值是否随着t的变化而改变?若不变,求出其值。
数轴的动点问题公式
数轴的动点问题公式
数轴的动点问题是指一个点在数轴上按一定规律运动的问题。
为了描述这个运动过程,我们可以使用公式来表示动点的位置。
假设数轴上的起点为0,动点在某个时刻的位置为x。
动点按照某个速度v向左或向右运动,那么在经过t单位时间后,动
点的位置可以用下面的公式表示:
x=x0+vt
其中,x0表示初始位置,v表示速度,t表示时间。
如果速
度为正,表示向右移动;如果速度为负,表示向左移动。
如果动点在数轴上做匀速直线运动,那么速度v是常数,这
时可以将公式简化为:
x=x0+vt
如果动点在数轴上做加速或减速运动,速度v是变化的,那
么我们需要根据具体的问题来确定速度v的表达式。
常见的加
速或减速运动可以用以下几种公式表示:
匀加速运动:v=v0+at,其中v0表示初始速度,a表示加
速度。
匀减速运动:v=v0at,其中v0表示初始速度,a表示减速度。
自由落体运动:h=h0+v0t+(1/2)gt^2,其中h0表示初始高度,v0表示初始速度,g表示重力加速度。
希望上述内容能够对您有所帮助!如有任何疑问,请随时向我提问。
初中数轴上的动点问题
初中数轴上的动点问题1. 什么是数轴上的动点问题数轴嘛,大家都知道,就像一条有方向的线,上面有好多数。
动点问题呢,就是有个点在这个数轴上动来动去的。
比如说,这个点可能从一个数开始,然后按照一定的速度或者规则在数轴上移动。
这就像一个小蚂蚁在一根标了数字的绳子上爬,它一会儿在这个数字这儿,一会儿又跑到另一个数字那儿了。
动点问题可有趣啦,它就像是数轴这个舞台上的小演员,不停地变换位置,而我们呢,就要根据它的表演规则来搞清楚一些事情,比如它什么时候会到达某个特定的数,或者它在移动过程中和其他固定的点或者其他动点之间的距离关系。
2. 常见的动点问题类型求动点与定点的距离。
比如说,有一个点A在数轴上表示3,有个动点P从0开始,以每秒2个单位的速度向右移动,那我们就要算出经过几秒钟,点P和点A的距离是多少。
这就像是在玩一个追逐游戏,一个是站着不动的目标,一个是跑来跑去的追逐者,我们要算出他们之间的距离变化。
动点相遇问题。
就像有两个动点,一个从数轴左边出发,一个从右边出发,它们朝着对方移动,速度也不一样。
我们就得算出它们什么时候会在数轴上的某个地方相遇,就好像两个人在一条路上相对走来,什么时候会碰面一样。
还有动点的中点问题。
假如有两个动点,那它们之间的中点位置会随着它们的移动而改变,我们要找出这个中点在不同时刻所表示的数。
这就像是两个人拉着一根绳子的两端,绳子的中间点会随着他们的走动而移动,我们要知道这个中间点在任何时候的位置。
3. 解决数轴上动点问题的小技巧一定要先确定动点的起始位置和运动方向。
这就好比你要知道小蚂蚁从哪里出发,是向左还是向右爬。
如果题目说一个动点从 - 5开始,以每秒1个单位的速度向左移动,那这个信息就是解题的关键开头。
用代数式表示动点在不同时刻的位置。
比如说那个从0开始,以每秒2个单位速度向右移动的动点P,经过t秒后,它的位置就可以表示为2t。
这就像给小蚂蚁的位置做个标记,让我们能随时知道它在哪里。
数轴上的动点问题
数轴上的动点问题❖ 数轴上的动点问题,是很重要的一部分,但往往使学生感到很棘手.实际上,如果将动点问题“代数化”,“三招”就可轻松解决常见的问题.第一招:平移公式(平移规律)若数轴上点A 表示的数是a ,则当点A 向左平移t 个单位长度时表示的数为a t -;当点A 向右平移t 个单位长度时表示的数为a t +.简记为:左减右加.第二招:距离公式若数轴上,A B 两点表示的数分别是,a b ,则,A B 两点的距离AB a b =-.如果已知,A B 两点的位置关系,比如点A 在点B 的左边,则AB b a =-.第三招:中点公式若数轴上,A B 两点表示的数分别是,a b ,则线段AB 的中点表示的数是2a b + ❖ 常见题型:一、突破基础关—平移与距离数轴上点的平移和两点间的距离是数轴所有难点问题的突破口.点的平移是今后进一步研究动点问题的基础,两点间的距离则可以让学生感知数轴与线段之间的关系. 例1 请利用数轴回答下列问题:①如果点A 表示数3-,将点A 向右移动7个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;②如果点A 表示数3,将A 点先向左移动4个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;③如果点A 表示数3,将A 点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;④一般地,如果A 点表示的数为a ,将A 点向右移动m 个单位长度,再向左移动n 个单位长度,请你猜想终点B 表示的数是 ,A 、B 两点间的距离是 .二、突破应用关—平移、距离、对称、旋转(滚动)1.平移平移是所有动点问题的灵魂所在,也是数轴问题研究的基石,所以我们在突破数轴难点时,有必要进行深层次的探究.例2如果将A点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B表示的数是2,则起点A表示的数为 ,A、B两点间的距离是 .-.例3若AB为数轴上一线段,其中点A表示3,点B表示1①将线段沿着数轴左右平移,若平移后点A对应的数为5,则点B所对应的数是 ;-,则点A对应的数是 , AB的中点C对应的数②若平移后点B对应的数是4是 ;-,则A对应的数是 ,B对应的数③若平移后AB的中点C对应的数是1是 .2.距离距离是今后解决坐标系中数形结合问题的关键所在.在坐标系中,大多数问题归根结底是研究线段与线段之间的数量关系,也就是两点之间的距离.因此在初学数轴时,把水平距离问题理解透彻,对今后坐标系里几何问题的学习大有帮助.例4 数轴上有A、B两点,且A、B两点间的距离是3.①若A为原点,则点B表示的数是 ;②若点A表示的数是1,则点B表示的数是 ;③若点A表示的数是a,则点B表示的数是 ;例5数轴上有三点A、B、C,且A、B两点间的距离是3,B、C两点的距离是2,-,则点C表示的数是 .若A点表示的数为1-,C为例6 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为5数轴上的动点,若C到A的距离是C到B的距离的2倍,求此时C所表示的数是 .3.对称数轴上对称问题的关键是线段的中点.最简单的对称是相反数,它们关于原点对称,由此可把此类问题推广至一般,即关于数轴上任意点的对称.例7数轴上A、B两点表示的数为相反数,且AB的距离为5,点A在点B的右边,则A表示的数是 ,B表示的数是 .例8 将数轴沿着某一点A对折,使得1与6重合.①则A表示的数是 ;-重合的数是 ;②与10重合的数是 ;与3③若MN重合,且MN相距2015个单位长度(M在N的右边),则M表示的数是,N表示的数是 ;例9 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为一3,C为数轴上的动点,当A、B、C三个点中有一个点是另两个点的中点时,求此时C所表示的数.4.旋转(滚动)多边形的旋转问题或圆的滚动问题也是中考热点,实际在这类问题中也可以结合数轴来解答.例10 正方形ABCD在数轴上的位置如图5,点A、D对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B对应的数为1,则连续翻转2015次后,图5①数轴上数2015对应的点是 ;②连续翻转2015次后,数轴上数2014对应的点是 .例11 (1)如图6,数轴上有一半径为1的圆,起始点A与原点重合.若将圆沿着数轴-重合的,顺时针无滑动地滚动一周,点A所对应的数是 ;若起点A开始时是与2则圆在数轴上无滑动地滚动2周后点A表示的数是 .图6A B C D,(2)如图6所示,圆的周长为4个单位长度,在圆的4等分点处标上字母,,,-所对应的点重合,再让圆沿着数轴按逆先让圆周上字母A所对应的点与数轴上的数2-将与圆周上的字母重合.时针方向作无滑动滚动,那么数轴上的数2015三 、突破动点大题—试卷中经常出现的动点应用题解决此类问题的关键是确定动点表示的数,以及动点的运动方向.以下分为三类问题进行解析:1.方向不变例1 如图1,数轴上点B 表示的数是30,,P Q 两点分别从,O B 两点同时出发,分别以3单位/秒和2单位/秒的速度向右运动,运动时间为t 秒, M 为线段BP 上一点,且13PM PB =,N 为QM 的中点. (1)若12PB BQ =,求t 的值; (2)当t 的值变化时, NQ 的值是否发生变化?为什么?练习1:已知数轴上两点,A B 对应的数为-1 ,3,点P 为数轴上一动点,其对应的数为x .(1)数轴上是否存在点P ,使5PA PB +=?若存在,请求出x 的值;若不存在,请说明理由.(2)当点P 以每分钟1个单位长度的速度从O 点向右运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向右运动.在运动的过程中,,M N 分别是,AP OB 的中点,AB OP MN-的值是否改变,为什么?,B点对应的数为练习2:如图,已知A、B分别为数轴上两点,A点对应的数为20100.(1)AB中点M对应的数;(2)现有一只电子蚂蚁甲从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;(3)若当电子蚂蚁甲从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.练习3:已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
数轴上动点问题(电子蚂蚁)
一、与数轴上的动点问题相关的基本概念数轴上的动点问题离不开数轴上两点之间的距离。
主要涉及以下几个概念:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d=|a-b|也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
两点中点公式:线段AB中点坐标=(a+b)÷2 2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
二、数轴上的动点问题基本解题思路和方法:1、表示出题目中动点运动后的坐标(一般用含有时间t的式子表示)。
2、根据两点间的距离公式表示出题目中相关线段长度(一般用含有时间t的式子表示)。
3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程。
4、解绝对值方程并根据实际问题验算结果。
(解绝对值方程通常用0点分类讨论方法)已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=________,b=________,c=________ (2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|-|x-1|+2|x+5| (3)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和p个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.二、典例分析例1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
(完整版)数轴上的动点问题
数轴上的线段与动点问题一、与数轴上的动点问题相关的基本概念主要涉及以下几个概数轴上的动点问题离不开数轴上两点之间的距离.念:,=|a-b|1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d右边点表示的数=也即用右边的数减去左边的数的差.即数轴上两点间的距离.—左边点表示的数÷2.中点坐标=(a+b)2.两点中点公式:线段AB因此向右运动的速点在数轴上运动时,由于数轴向右的方向为正方向,3.这样在起点的基础上加上点的度看作正速度,而向左运动的速度看作负速度.b,向左运动运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a.a+bb;向右运动b个单位后所表示的数为个单位后表示的数为a—点分析数轴上点的运动要结合图形进行分析,4.数轴是数形结合的产物,. 在数轴上运动形成的路径可看作数轴上线段的和差关系数轴上的动点问题基本解题思路和方法:二、t.、表示出题目中动点运动后的坐标(一般用含有时间的式子表示)1t的式子表示). 根据两点间的距离公式表示出题目中相关线段长度 2、(一般用含有时间 3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程.4、解绝对值方程并根据实际问题验算结果.注:数轴上线段的动点问题方法类似AB两点对应数为-2、4,P为数轴上一动点,对应的数为x、已知数轴上1. 、 A B-2 -1 0 1 2 3 4(1) 若P为AB线段的三等分点,求P对应的数;(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,说明理由.(3)若点A,点B和点P(点P在原点)同时向左运动,它们的速度分别为1,2,1个长度单位/分,则第几分钟时,P为AB的中点?2 ++|abb、|=0c满足(c2、已知:-5b)是最小的正整数,且,请回答问题a、=________ b=________,c,1)请直接写出a、b、c的值.a=________(、、、、,xPc所对应的点分别为AB为一动点,其对应的数为C)(2a,点b+5|. -1|+2|xx ≤2时),请化简式子:|x+1|-|x0≤点P在0到2之间运动时(即请问个单位长度的速度向左运动,点C分别以每秒1个单位和2(3)若点A、CA,之间的距离为1个单位长度?几秒时,、、个单位长度的速度向左1A(4)点A以每秒BC开始在数轴上运动,若点个单位长度的速度向右个单位长度和5和点运动,同时,点BC分别以每秒2之A 之间的距离表示为BC,点与点BCt运动,假设秒钟过后,若点B与点的变化而改变?若变化,tAB的值是否随着时间BC间的距离表示为AB.请问:-请说明理由;若不变,请求其值.2b满足,且a,A在数轴上对应的数为a,点B在数轴上对应的数为b2.如图,若点2 B0. 1)= A -+|a2|+(b的长;(1)求线段AB1的根,在数轴上是否存在2x+-x1=C(2)点在数轴上对应的数为x,且x是方程2 2. P 对应的数;若不存在,说明理由PB+=PC,若存在,求出点点P,使PA点左侧运动时,点在ANPB的中点为,当PM左侧的一点,)若(3P是APA的中点为,的值不变,其中只有一个结论正确,PM的值不变;②PN-+有两个结论:①PMPN.请判断正确结论,并求出其值3,=10cm(如图所示)=60cm,BCCB、,满足OA=20cm,AB如图,3、在射线OM上有三点A、CO 从点C出发在线段出发,沿OOM方向以1cm/s的速度匀速运动,点Q点P从点. 匀速运动,两点同时出发上向点OQ运动的速度;Q运动到的位置恰好是线段AB的三等分点,求点=2(1)当PAPB时,点、两点相距70cm3cm/s,Q运动的速度为经过多长时间P;Q2()若点AP?OB、.的值,求EABOPABP3()当点运动到线段上时,取和的中点F EF4。
数轴上含速度的动点问题
数轴上含速度的动点问题一、基本概念1. 动点- 想象数轴就像一条长长的马路,动点呢,就像是马路上一辆跑来跑去的小汽车。
这个点不是固定在一个位置的,它会按照一定的速度移动。
- 比如说,有个点A在数轴上,它以每秒2个单位长度的速度向右移动。
这就好比汽车以每小时60千米的速度沿着马路向前开一样。
2. 起始位置- 动点开始的地方很重要哦。
就像汽车出发的时候是从停车场出发的,动点也有它的起始点。
比如点B在数轴上的位置是 - 3,这就是它的起始位置。
3. 方向- 动点在数轴上移动是有方向的,要么向左,要么向右。
向左就像汽车倒车一样,在数轴上表示数值越来越小;向右就像汽车正常向前开,数值越来越大。
如果一个动点以速度v向左移动,那它的位置变化就是不断地减去vt(t是时间);如果向右移动,就是不断地加上vt。
二、常见问题类型及解法1. 相遇问题- 就好比两辆车在马路上开,最后碰到一起了。
假设有两个动点A和B,A从数轴上的1这个位置出发,速度是每秒3个单位长度向右移动;B从5这个位置出发,速度是每秒2个单位长度向左移动。
- 那我们怎么知道它们什么时候相遇呢?我们可以设经过t秒相遇。
A移动后的位置是1 + 3t,B移动后的位置是5 - 2t。
当它们相遇的时候,这两个位置是相等的,也就是1+3t = 5 - 2t。
- 然后我们就像解普通方程一样,把t求出来。
首先把含有t的项移到一边,得到3t+2t = 5 - 1,也就是5t = 4,解得t = 0.8秒。
2. 追及问题- 这就像一辆车去追另一辆车。
比如说有动点C在数轴上2的位置,速度是每秒1个单位长度向右移动;动点D在5的位置,速度是每秒3个单位长度向右移动。
- 我们想知道D什么时候能追上C。
设经过t秒D追上C。
C移动后的位置是2+t,D移动后的位置是5 + 3t。
当D追上C的时候,它们的位置相同,也就是2+t = 5+3t。
- 移项得到3t - t=2 - 5,2t=-3,解得t=-1.5秒。
数轴上的动点问题训练(10题)
-1-2-33210O B A P 0123-3-2-1B A 数轴上的动点问题最新版1.如图,已知数轴上两点A 、B 对应的数分别为-1,3,点P 为数轴上一动点,其对应的数为x 。
(1)数轴上是否存在点P ,使点P 在点A 、点B 的距离之和为5?若存在,请求出x 的值,若不存在,请说明理由;(2)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时点P 到点A 、点B 的距离相等?(3)如图,若点P 从B 点出发向左运动(只在线段AB 上运动),M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出MN 的长。
2.如图,A 、B 、C 是数轴上的三点,O 是原点, BO=3,AB=2BO ,5AO=3CO .(1)写出数轴上点A 、C 表示的数;(2)点P 、Q 分别从A 、C 同时出发,点P 以每秒 2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒6个单位长度的速度沿数轴向左匀速运 动,M 为线段AP 的中点,点N 在线段CQ 上,且 CN=32CQ .设运动的时间为t (t >0)秒. ①数轴上点M 、N 表示的数分别是 (用含t 的 式子表示); ②t 为何值时,M 、N 两点到原点O 的距离相等?3.如图,数轴上有A 、B 、C 、D 四个点,分别对应数a 、b 、c 、d ,且满足a 、b 是方程91x +=的两根(a b <),2(16)c -与20d -互为相反数。
(1)求a 、b 、c 、d 的值;(2)若A 、B 两点以6个单位长度/秒的速度向右匀速运动,同时C 、D 两点以2个单位长度/秒的速度向左匀速运动,并设运动时间为t 秒。
问t 为多少时,A 、B 两点都运动在线段CD 上(不与C 、D 两个端点重合)?(3)在(2)的条件下,A 、B 、C 、D 四个点继续运动,当点B运动到点D 的右侧时,问是否存在时间t ,使B 与C 的距离是A 与D 的距离的4倍,若存在,求时间t ,若不存在,请说明理由。
(完整版)数轴上动点问题(电子蚂蚁)
一、与数轴上的动点问题有关的基本见解数轴上的动点问题离不开数轴上两点之间的距离。
主要波及以下几个概念:1 .数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d=|a-b|也即用右侧的数减去左侧的数的差。
即数轴上两点间的距离= 右侧点表示的数—左侧点表示的数。
两点中点公式:线段AB 中点坐标 = ( a+b) ÷22.点在数轴上运动时,因为数轴向右的方向为正方向,所以向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动行程就能够直接获得运动后点的坐标。
即一个点表示的数为a ,向左运动b 个单位后表示的数为 a— b ;向右运动 b 个单位后所表示的数为 a+b 。
3 .数轴是数形联合的产物,解析数轴上点的运动要联合图形进行解析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
二、数轴上的动点问题基本解题思路和方法:1、表示出题目中动点运动后的坐标(一般用含有时间t 的式子表示)。
2、依据两点间的距离公式表示出题目中有关线段长度(一般用含有时间 t 的式子表示)。
3、依据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程。
4、解绝对值方程并依据实指责题验算结果。
(解绝对值方程平常用 0 点分类谈论方法)已知: b 是最小的正整数,且a、 b 知足( c-5 )2+|a+b|=0 ,请回答以下问题(1)请直接写出 a、b、c 的值. a=________,b=________,c=________(2) a、 b、 c 所对应的点分别为 A、B、C,点 P 为易动点,其对应的数为 x,点 P 在 0 到 2 之间运动时(即 0≤x≤2 时),请化简式子: |x+1|-|x-1|+2|x+5|(3)(3)在( 1)( 2)的条件下,点 A、B、C 开始在数轴上运动,若点 A 以每秒 1 个单位长度的速度向左运动,同时,点 B 和点 C 分别以每秒 2 个单位长度和 p 个单位长度的速度向右运动,假定t 秒钟事后,若点 B 与点 C 之间的距离表示为 BC,点 A 与点 B 之间的距离表示为AB.请问: BC-AB的值能否跟着时间 t 的变化而改变?若变化,请说明原因;若不变,恳求其值.二、典例解析例1.已知数轴上有 A、B、C三点,分别代表— 24,— 10,10,两只电子蚂蚁甲、乙分别从 A、 C 两点同时相向而行,甲的速度为 4 个单位 / 秒。
七年级上数轴上的动点问题(最全版)
七年级上数轴上的动点问题(最全版)数轴上的动点问题最新版1.如图,已知数轴上两点A、B对应的数分别为-1,3,点P为数轴上一动点,其对应的数为x。
(1)数轴上是否存在点P,使点P在点A、点B的距离之和为5?若存在,请求出x的值,若不存在。
请说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时点P到点A、点B的距离相等?(3)如图,若点P从B点出发向左运动(只在线段AB 上运动),M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形。
并求出MN的长。
A-2-1OPB3-312-3122.如图,A、B、C是数轴上的三点,O是原点,BO=3,AB=2BO,5AO=3CO.(1)写出数轴上点A、C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒6个单位长度的速率沿数轴向左匀速活动,M 为线段AP的中点,点N在线段CQ上。
且CN=A-2-1B32CQ.设运动的时间为t(t>)秒.①数轴上点M、N表示的数分别是(用含t的式子3表示);②t为何值时,M、N两点到原点O的间隔相称?3.如图,数轴上有A、B、C、D四个点,分别对应数a、b、c、d,且满意a、b是方程x91的两根(a b),(c16)与d20互为相反数。
(1)求a、b、c、d的值;(2)若A、B两点以6个单位长度/秒的速度向右匀速运动,同时C、D两点以2个单位长度/秒的速度向左匀速运动,并设运动时间为t秒。
问t为多少时,A、B两点都运动在线段CD上(不与C、D两个端点重合)?(3)在(2)的条件下,A、B、C、D四个点继续运动,当点B运动到点D的右侧时,问是否存在时间t,使B与C的距离是A与D的距离的4倍,若存在,求时间t,若不存在,请说明理由。
数轴上的动点问题
数轴上的动点问题在数学的世界里,数轴是一个非常基础且重要的概念。
而其中的动点问题,则是许多同学在学习过程中感到头疼的一部分。
今天,咱们就来好好聊聊数轴上的动点问题,争取把它弄个明白。
首先,咱们得清楚数轴是啥。
简单来说,数轴就是一条带有方向、原点和单位长度的直线。
它就像是一个跑道,上面的点都有自己对应的位置。
那么动点问题又是怎么回事呢?动点,顾名思义,就是在数轴上移动的点。
这个点不像那些固定的数字一样老老实实待在原地,而是会按照一定的规律或者条件到处“跑”。
比如说,有一个点 A 在数轴上从某个位置开始,以每秒 2 个单位长度的速度向右移动。
这就是一个典型的动点问题描述。
那咱们怎么去解决这类问题呢?第一步,咱们要仔细读题,把题目中的关键信息都找出来。
比如动点的初始位置、移动的速度、方向,还有可能存在的时间限制等等。
就拿刚才那个例子来说,点 A 初始位置如果是在-3 这个点上,向右移动的速度是每秒 2 个单位长度,移动了 5 秒钟。
那咱们就能算出 5 秒钟后点 A 跑到哪儿去了。
因为向右移动是增加,速度是每秒 2 个单位长度,移动了 5 秒,所以一共移动了 2×5 = 10 个单位长度。
再加上初始位置-3,那么 5 秒钟后点 A 的位置就是-3 + 10 = 7 。
但是,动点问题可没这么简单,有时候会有多个动点同时在数轴上移动。
比如说,点 B 从 2 的位置开始,以每秒 1 个单位长度的速度向左移动,同时点 A 从-5 的位置开始,以每秒 3 个单位长度的速度向右移动。
经过多少秒,点 A 和点 B 会相遇?这时候,咱们就得设经过 t 秒它们相遇。
相遇的时候,点 A 和点 B所在的位置是一样的。
点 A 移动的路程就是 3t ,点 B 移动的路程就是 t (因为向左移动是减少)。
那么就可以列出方程:-5 + 3t = 2 t 。
解这个方程:3t + t = 2 + 5 ,4t = 7 ,t = 7/4 。
数轴上的动点问题
数轴上的动点问题(一)1、如图,C 为线段AB 上一点,且AC=2BC ,AC 的41比BC 小5。
(1)求AC 、BC 的长;(2)点P 从A 点出发,以1个单位/秒的速度在线段AB 上向B 点运动,设运动时间为t 秒(t <10),D 为PB 的中点,E 为PC 的中点,若CD=52DE ,试求点P 运动时间t 的值;(3)若P 从A 点出发,以1个单位/秒的速度在线段AB 上向B 点运动,同时点Q 从B 点出发,以65个单位/秒的速度在AB 的延长线上与P 点同向运动,运动时间t <30,D 为PB 的中点,F 为DQ 的中点,E 为线段PD 上一点,且PB PE 31,当P 、Q 两点运动过程中,给出下面两个结论:①DE+DF 的值不变;①|DE -DF|的值不变,其中只有一个结论是正确的,请判断正确的结论并求其值。
2、在一条长为a 米的马路AB 上,有一个男孩在玩长为b 米的滑板CD ,滑板的高度忽略不计。
(不考虑调头)如图所示,建立一个数轴,并以A 为原点。
(1)当滑板的端点C 与A 重合时,试用a 、b 表示BD 的中点N 对应的数。
(2)当滑板在A 、B 之间滑动时,线段AC 、BD 的中点M 和N 之间的距离是否改变呢?试说明理由;(3)当滑板从A 滑动到B 处后仍向前滑动。
线段AC 、BD 的中点M 和N 之间的距离是否改变呢?试说明理由。
A BC D M N(C ) A D N BA B C3、(1)如图,有一个玩具火车放置在数轴上,若将火车在数轴上水平移动,则当A点移动到B点时,B点所对应的数为12;当B点移动到A点时,A点所对应的数为3(单位:单位长度)。
由此可得玩具火车的长为个单位长度。
(2)现在你能借助“数轴”这个工具解决下面问题吗?一天,小明去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已经是老寿星了,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?你能帮小明求出来吗?(可使用任何你喜欢的方法)(3)在(1)的条件下在数轴上放置与AB相同的玩具火车CD,使O与C重合,两列玩具小火车分别从O和A同时出发,已知CD火车速度为0.5个单位/秒,AB火车速度为1个单位/秒(两火车都可前后开动),问几秒后两车头A与C相距6个单位?4、点A在数轴上对应的数为a,点B对应的数为b,且a、b满足2|2|(1)0a b++-=(1)求线段AB的长;(2)点C在数轴上对应的数为x,且x是方程12122x x-=+的根,在数轴上是否存在点P使P A +PB = PC,若存在,求出点P对应的数,若不存在,说明理由;(3)若P点是A点左侧一点,P A的中点为M,PB的中点为N,当P在A的左侧运动时,有两个结论:①PM+PN的值不变;①PN–PM的值不变,其中只有一个结论正确,请判断出正确结论,并求出其值。
第4讲 数轴上的动点问题
第4讲数轴上的动点问题班级姓名学号例 1 已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A、B两点间的距离为10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动.设运动时间为()0>t t秒.(1)数轴上点B表示的数是,点P表示的数是.(用含t的式子表示)(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,求:当点P运动多少秒时,点P和点Q相遇?(3)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,求:①当点P运动多少秒时,点P和点Q相遇?②当点P运动多少秒时,点P和点Q相距8个长度单位?变式1 如图,已知A,B分别为数轴上两点,A点对应的数为-20,B点对应的数为100.(1)求AB中点M对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位长度/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位长度/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;(3)若当电子蚂蚁P从B点出发时,以6个单位长度/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位长度/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.例2 如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+2|+(b+2a)2=0(1)求点C表示的数;(2)若点P从A向右运动,点M为AP中点,在P点到达点B之前,求证:2BM﹣BP为定值.(3)点P从A点以每秒2个单位的速度向右运动,点Q同时从B点出发以每秒1个单位的速度向左运动,若AP+BQ=2PQ,求时间t.变式2 已知数轴上A,B两点表示的数分别为a,b,且(a-2)2+|b+1|=0.(1)请直接写出a=,b=,点A,B两点之间的距离AB=;(2)数轴上一点P从点A出发以1单位长度/秒的速度向右运动,同时点Q从点B出发以2单位长度/秒的速度向右运动,问它们运动多少秒时满足BP=2PQ;(3)数轴上一点M从点A出发向数轴的负方向运动,点C为AM的中点,点D为BM的中点,在整个运动过程,试探究线段CD的长是否为定值.若为定值,请求出定值;若不是,请说明理由.。
专题——数轴上的动点问题
专题——数轴上的动点问题数轴上的动点问题处理数轴上动点问题的策略:1.两点间距离的计算:两点间距离等于它们对应的坐标差的绝对值,即右边点的坐标减去左边点的坐标。
2.数的表示:在数轴上,向右运动的速度看作正速度,向左运动的速度看作负速度。
点在起点的基础上加上运动路程就可以得到运动后的坐标。
例如,一个点表示的数为a,向左运动b个单位后表示的数为a-b,向右运动b个单位后表示的数为a+b。
3.分类讨论:数轴是数形结合的产物,分析点的运动要结合图形进行分析,注意多种情况的分类讨论。
4.绝对值策略:若点的左右位置关系不明确或有多种情况,可用两点距离的绝对值表示它们之间的距离,从而避免复杂分类讨论。
5.中点公式:若数轴上点A,B表示的数分别为a,b,M为线段AB中点,则M点表示的数为(a+b)/2.类型一:数轴上两点距离的应用例1:已知数轴上A,B两点表示的数分别为-2和5,点P为数轴上一点1)若点P到A,B两点的距离相等,求P点表示的数。
2)若PA=2PB,求P点表示的数。
3)若点P到点A和点B的距离之和为13,求点P所表示的数。
练1:已知数轴上A、B两点对应数分别为-2和4,P为数轴上一动点,对应数为x。
(1)若P为线段AB的三等分点,则x的值为-1;(2)若线段PA=3PB,则P点表示的数为2;(3)若点P到A点、B点距离之和为10,则P点表示的数为1.类型二:绝对值的处理策略例2:已知数轴上A,B两点表示的数分别为-8和20,点P,Q分别从A,B两点同时出发,P点运动速度为每秒3个单位,Q点运动速度为每秒1个单位,设运动时间为t秒1)点P向右运动,Q点向左运动,当t为何值时,P,Q两点之间距离为8?2)若P点和Q点都向右运动,多少秒后,P,Q两点之间距离为8?3)在(2)的条件下,另一动点M同时从O点出发,以每秒2个单位的速度向右运动,多少秒后,点M到点P和点Q的距离相等?练2、已知数轴上有A、B两点,其中点A对应的数为-8,点B对应的数为4.动点P从点A出发,以每秒2个单位长度的速度向右运动,同时动点Q从点B出发,以每秒1个单位长度的速度向左运动。
数轴中的动点问题洋葱数学
数轴中的动点问题洋葱数学
摘要:
1.数轴上的动点问题的概念
2.动点问题的应用
3.动点问题的解题方法
4.动点问题的挑战与展望
正文:
一、数轴上的动点问题的概念
数轴上的动点问题指的是在数轴上,有一个或多个动点,其位置随时间变化而变化。
我们需要研究这些动点的位置关系、运动规律以及相关性质。
在数学领域中,动点问题是一个重要的研究方向,其应用广泛,涉及到多个数学分支。
二、动点问题的应用
动点问题在实际生活中有很多应用,例如在物理学中,粒子在数轴上的运动可以看作是一个动点问题;在计算机科学中,算法中的动态规划也涉及到动点问题;此外,动点问题还与最优化理论、微积分等数学分支密切相关。
三、动点问题的解题方法
解决动点问题有多种方法,如几何法、代数法、逻辑法等。
几何法主要是利用几何图形的性质来解决问题,例如通过作图找到动点的位置关系;代数法则是通过建立数学模型,利用代数方法求解;逻辑法则是利用逻辑推理来解决问题。
在实际解题过程中,我们需要灵活运用各种方法。
四、动点问题的挑战与展望
尽管动点问题在数学领域中取得了很多成果,但仍然存在许多挑战和未解决的问题。
例如,如何更好地描述动点的运动规律,如何求解更复杂的动点问题等。
在今后的研究中,我们需要不断探索新的方法和技巧,以解决这些挑战。
总之,数轴上的动点问题既是一个有趣的数学问题,也是一个具有广泛应用价值的研究方向。
从物理学到计算机科学,从最优化理论到微积分,动点问题都发挥着重要作用。
初一数学上册数轴动点问题
初一数学上册数轴动点问题一、什么是数轴动点问题数轴动点问题呢,就是在数轴这个特定的数学环境里,有一些点是可以动来动去的,然后让我们根据这些点的运动情况去解决各种各样的数学问题。
比如说,一个点从数轴上的某个位置开始,按照一定的速度向左或者向右移动,然后问我们在某个时刻这个点的位置在哪里呀,或者几个点之间的距离是多少啦之类的。
这就像一群小蚂蚁在数轴这条小路上跑来跑去,我们得搞清楚它们的位置变化情况。
二、常见的题型类型1. 求动点表示的数这种题就是给你一个动点在数轴上的初始位置,还有它运动的方向和速度,然后让你求出经过一段时间后这个动点所表示的数。
比如说,一个点在数轴上表示3,它以每秒2个单位长度的速度向右运动,经过5秒后,这个点就向右移动了2×5 = 10个单位长度,那这个点表示的数就变成了3+10 = 13啦。
2. 求两点之间的距离有时候会给你两个动点,它们分别在数轴上运动,然后问你在某个时刻这两个动点之间的距离是多少。
这就需要我们先算出这两个动点在那个时刻分别在数轴上的位置,然后用较大的数减去较小的数(如果是求绝对值距离的话就直接求两个数差的绝对值)。
就像两个人在数轴这条跑道上跑,我们要看看他们之间隔了多远。
3. 动点与线段的关系还有一种题型是关于动点和线段的关系的。
比如说,一个动点在数轴上运动,问这个动点什么时候会在线段的中点上,或者什么时候这个动点会把某条线段分成一定比例的两段。
这就比较复杂啦,我们要综合考虑线段的端点位置、动点的运动情况等很多因素呢。
三、解决数轴动点问题的小技巧1. 画数轴这可是超级重要的一步哦。
把题目中的情况在数轴上画出来,这样我们就能很直观地看到各个点的位置关系啦。
就像画画一样,把那些抽象的数字和动点变成我们能看得见的东西。
比如说,题目里说一个点在 -2的位置,另一个点在4的位置,我们就把它们在数轴上标出来,然后再根据动点的运动情况,一点一点地画出它们的新位置。
数轴上的动点问题
数轴上的动点问题一.解答题(共15小题)1.数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM﹣BM=OM,求的值.2.已知在数轴上A,B两点对应数分别为﹣4,20.(1)若P点为线段AB的中点,求P点对应的数.(2)若点A、点B同时分别以2个单位长度/秒的速度相向运动,点M(M点在原点)同时以4个单位长度/秒的速度向右运动.几秒后点M到点A、点B的距离相等?求此时M对应的数.(3)在(2)的条件下,是否存在M点,使3MA=2MB?若存在,求出点M对应的数;若不存在,请说明理由.3.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?4.已知数轴上A,B两点对应数分别为﹣2和5,P为数轴上一点,对应数为x.(1)若P为线段AB的三等分点(把一条线段平均分成相等的三部分的两个点),求P 点对应的数.(2)数轴上是否存在点P,使P点到A点,B点距离和为10?若存在,求出x值;若不存在,请说明理由.(3)若点A,点B和点P(P点在原点)同时向左运动,它们的速度分别为1,6,3个长度单位/分,则第几分钟时,A,B,P三点中,其中一点是另外两点连成的线段的中点?5.已知数轴上两点A.B对应的数分别为﹣2和7,点M为数轴上一动点.(1)请画出数轴,并在数轴上标出点A、点B;(2)若点M到A的距离是点M到B的距离的两倍,我们就称点M是【A,B】的好点.①若点M运动到原点O时,此时点M【A,B】的好点(填是或者不是)②若点M以每秒1个单位的速度从原点O开始运动,当M是【B,A】的好点时,求点M的运动方向和运动时间(3)试探究线段BM和AM的差即BM﹣AM的值是否一定发生变化?若变化,请说明理由:若不变,请求其值.6.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿AC方向,以每秒1个单位的速度向终点C运动,设点P运动时间为t秒.(1)用含t的代数式表示点P到点A、C的距离,P A=;PC=.(2)当点P运动到点B时,点Q从C点出发,沿CA方向,以每秒3个单位的速度向A 点运动,当其中一点到达目的地时,另一点也停止运动.①当t=,点P、Q相遇,此时点Q运动了秒.②请用含t的代数式表示出在P、Q同时运动的过程中PQ的长.7.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B 两点相距4个单位长度.8.如图,A,B分别为数轴上的两点,点A对应的数是﹣2,点B对应的数是10.现有点P 从点A出发,以4个单位长度/秒的速度向右运动,同时另一点Q从点B出发,以1个单位长度/秒的速度向右运动,设运动时间为t秒.(1)A、B两点之间的距离为;(2)当t=1时,P、B两点之间的距离为;(3)在运动过程中,线段PB、BQ、PQ中是否会有两条线段相等?若有,请求出此时t 的值;若没有,请说明理由.9.已知数轴上三点A,O,B表示的数分别为6,0,﹣4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.10.(1)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(2)当x为何值时,点P到点A的距离等于点P到点B的距离的2倍?(3)当x=2时,点A以2个单位长度/秒的速度向右运动,同时点B以1个单位长度/秒向右运动,问多长时间后点P到点A,点B的距离相等?11.【背景知识】数轴上A点、B点表示的数为a、b,则A、B两点之间的距离AB=|a﹣b|;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣40和20,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数为.(2)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(3)当t为多少时,线段AB的中点M表示的数为﹣5?12.如图数轴上三点A,B,C对应的数分别为﹣6,2,x.请回答问题:(1)若点A先沿着数轴向右移动8个单位长度,再向左移动5个单位长度后所对应的数字是;(2)若点C到点A、点B的距离相等,那么x对应的值是;(3)若点C到点A、点B的距离之和是10,那么x对应的值是;(4)如果点A以每秒4个单位长度的速度向右运动,点B以每秒2个单位长度的速度向左运动,点C从原点以每秒1个单位长度的速度向左运动,且三点同时出发.设运动时间为t秒,请问t为何值时点C到点A、点B的距离相等?13.如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC﹣AB的值是否随着时间的变化而改变?请说明理由.14.已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是,此时点Q表示的有理数是;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过秒,点P,Q到数轴上表示有理数20的点的距离相等.15.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,你知道D点对应的数是多少吗?。
专题02 数轴上的三种动点问题
专题02 数轴上的三种动点问题引言在数学中,数轴是一个常见的工具,用于表示实数集合。
它是一条无限长的直线,上面的每个点都对应着一个实数。
在数轴上,我们可以研究各种动点问题,这些问题涉及到点在数轴上的移动和相对位置的变化。
本文将介绍三种常见的数轴上的动点问题,并提供解决问题的方法和示例。
问题一:点的坐标变化问题问题描述在数轴上,有两个动点A和B,初始坐标分别为a和b。
点A每秒钟向右移动x个单位,点B每秒钟向左移动y个单位。
问在t秒后,点A和点B的坐标分别是多少?解决方法这个问题可以通过简单的数学运算来解决。
首先,我们可以得到点A和点B在t秒后的位移分别为xt和-yt。
将初始坐标与位移相加,即可得到点A和点B在t秒后的坐标。
具体而言,点A在t秒后的坐标为:坐标A = a + xt点B在t秒后的坐标为:坐标B = b - yt示例假设点A的初始坐标为5,点B的初始坐标为10,点A每秒钟向右移动2个单位,点B每秒钟向左移动3个单位。
我们要求在2秒后,点A和点B的坐标。
根据上述解决方法,点A在2秒后的坐标为:坐标A = 5 + 2*2 = 9点B在2秒后的坐标为:坐标B = 10 - 3*2 = 4因此,点A在2秒后的坐标是9,点B在2秒后的坐标是4。
问题二:点的相对位置问题问题描述在数轴上,有两个动点A和B,初始坐标分别为a和b。
点A每秒钟向右移动x个单位,点B每秒钟向左移动y个单位。
问在t秒后,点A和点B相对位置发生了怎样的变化?解决方法要解决这个问题,我们可以通过分析点A和点B的运动情况来确定它们的相对位置是否发生了变化。
首先,我们需要确定点A和点B在t秒内是否相遇。
如果点A在t秒内移动的距离和点B在t秒内移动的距离之和大于等于它们的初始距离,那么它们相遇;反之,则它们没有相遇。
如果它们相遇了,我们可以继续分析它们的相对位置。
如果点A在相遇时位于点B的左侧,则相对位置发生了变化;反之,则相对位置没有发生变化。
初一数学数轴上的动点问题
初一数学数轴上的动点问题
初一数学中的数轴上的动点问题通常涉及一个或多个点在数轴上按照一定的速度和方向移动,需要解决的问题可能包括:
1.计算动点在某个时间点的坐标;
2.求解动点从一个位置运动到另一个位置所需的时间;
3.计算两个动点之间的距离或者它们何时会相遇;
4.解决涉及到动点与线段、射线或圆等图形关系的问题。
要解答这些问题,可以遵循以下基本步骤:
1.找出基准坐标:确定每个动点开始运动时所在的初始位置(即基准坐标)。
2.计算动点运动后的坐标:
(1)向右运动时,新的坐标= 基准坐标+ 运动的距离(或速度×时间)。
(2)向左运动时,新的坐标= 基准坐标- 运动的距离(或速度×时间)。
3.表示线段长度:线段长度可以通过线段右端点的数减去线段左端点的数来
表示。
4.列方程:根据题目给出的条件,建立包含未知量(如时间t、速度V或所
求坐标)的方程。
可能需要用到的关系有速度=距离/时间,以及两点间的距离公式。
5.解方程:使用代数方法解出所需的未知量。
6.检验答案:确保得到的答案满足题目中的所有条件。
如果题目中提到分类讨论的思想,可能意味着你需要考虑不同的情况,例如动点向不同方向移动的情况,或者有两个动点同时移动的情况。
对于这类问题,你可能需要为每种情况分别建立并解方程,然后将结果合并起来。
在解题过程中,注意运用数形结合的思想,通过画图来帮助理解问题和检查答案的合理性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴上动点问题
【教学目标】
1、学会用动态思维、方程的思想去分析问题和解决问题
2、学会抓住动中含静的思路(动时两变量间的关系,静时两个变量间的等量关系)
【教学重难点】
重点:学会用动态思维、方程的思想去分析问题和解决问题;学会抓住动中含静的思路(动时两变量间的关系,静时两个变量间的等量关系)
难点:会抓住动中含静的思路(动时两变量间的关系,静时两个变量间的等量关系)【教学过程】
知识精讲:
数轴上的动点问题离不开数轴上两点之间的距离。
1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
典型例题:
例1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位
⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇
⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗若能,求出相遇点;若不能,请说明理由。
例2.如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。
⑴求AB 中点M 对应的数;
⑵现有一只电子蚂蚁P 从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数;
⑶若当电子蚂蚁P 从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数。
例3.已知数轴上两点A 、B 对应的数分别为—1,3,点P 为数轴上一动点,其对应的数为x 。
⑴若点P 到点A 、点B 的距离相等,求点P 对应的数;
⑵数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为5若存在,请求出x 的值。
若不存在,请说明理由
⑶当点P 以每分钟一个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度向左运动,点B 一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P 点到点
A 、点
B 的距离相等
例4.点A 1、A 2、A 3、……A n (n 为正整数)都在数轴上,点A 1在原点O 的左边,且A 1O=1,点A 2在点A 1的右边,且A 2A 1=2,点A 3在点A 2的左边,且A 3A 2=3,点A 4在点A 3的右边,且A 4A 3=4,……,依照上述规律点A 2008、A 2009所表示的数分别为()。
A .2008,—2009
B .—2008,2009
C .1004,—1005
D .1004,—1004
例5.数轴上点A 对应的数为a ,点B 对应的数为b ,点A 在负半轴,且|a|=3,b 是最小的正整数。
(Ⅰ)求线段AB 的长;
(Ⅱ)若点C 在数轴上对应的数为x,且x 是方程2x+1=3x4的根,在数轴上是否存在点P 使PA+PB=2
1BC+AB ,若存在,求出点P 对应的数,若不存在,说明理由。
(Ⅲ)如图,若Q 是B 点右侧一点,QA 的中点为M,N 为QB 的四等分点且靠近于Q 点,当Q 在B 的右侧运动时,有两个结论:①
21QM+43BN 的值不变,②QM 32BN 的值不变,其中只有一个结论正确,请你判断正确的结论,并求出其值。
例6.已知点 A 在数轴上对应的数为 a ,点 B 对应的数为 b ,且|2b ﹣6|+ (a+1) 2 =0,A 、B 之间的距离记作 AB ,定义:AB=|a ﹣b|.
(1)求线段 AB 的长.
(2)设点 P 在数轴上对应的数 x,当 PA﹣PB=2 时,求 x 的值.
(3)M、N 分别是 PA、PB 的中点,当 P 移动时,指出当下列结论分别成立时,x 的取值范围,并说明理由:①PM÷PN 的值不变,②|PM﹣PN|的值不变.
练习题:
1.已知数轴上A、B两点对应数分别为—2,4,P为数轴上一动点,对应数为x。
⑴若P为线段AB的三等分点,求P点对应的数。
⑵数轴上是否存在P点,使P点到A、B距离和为10若存在,求出x的值;若不存在,请说明理由。
⑶若点A、点B和P点(P点在原点)同时向左运动。
它们的速度分别为1、2、1个单位长度/分钟,则第几分钟时P为AB的中点
2.电子跳蚤落在数轴上的某点K0,第一步从K0向左跳一个单位到K1,第二步由K1向右跳2个单位到K2,第三步由K2向左跳3个单位到K3,第四步由K3向右跳4个单位到K4……按以上规律跳了100步时,电子跳蚤落在数轴上的K100所表示的数恰是。
试求电子跳蚤的初始位置K0点表示的数。
3.动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4 (速度单位:单位长度/秒).
(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒时,原点恰好处在两个动点的正中间
(3)在(2)中A、B两点同时向数轴负方向运动时,另一动点C和点B同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度
4、已知数轴上A、B两点对应数为-2、4,P为数轴上一动点,对应的数为x。
-2 -1 0 1 2 3 4
(1)若P为AB线段的三等分点,求P对应的数;
(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,
说明理由。
(3)A 点、B 点和P 点(P 在原点)分别以速度比1 :10 :2(长度:单位/分),向右
运动几分钟时,P 为AB 的中点。
5.如图 1,直线 AB 上有一点 P ,点 M 、N 分别为线段 PA 、PB 的中点,
AB=14.
(1)若点 P 在线段 AB 上,且 AP=8,求线段 MN 的长度;
(2)若点 P 在直线 AB 上运动,试说明线段 MN 的长度与点 P 在直线 AB 上的位置无关;
(3)如图 2,若点 C 为线段 AB 的中点,点 P 在线段 AB 的延长线上,下列结论:① PC PB PA -的值不变;②PC PB PA +的值不变,请选择一个正确的结论并求其值.。