原理图规范与要求

合集下载

原理图命名

原理图命名

原理图命名
原理图命名规范及文中标题不重复要求:
1. 命名原理图时,应采用简明扼要的方式,不宜出现冗长的标题。

推荐使用简短的关键词或缩写,以确保文件名的清晰可读性。

2. 在编写文中内容时,要避免出现与原理图标题相同的文字,以免造成混淆或重复。

3. 如果需要在文中引用原理图内容,可以使用类似“图1”、“图2”等形式的编号,而不是直接使用原理图标题进行引用。

4. 在文中提到原理图中的某个特定部分或功能时,可以使用描述性的短语或关键词,但要确保与其他已使用的标题或命名不重复。

通过遵守以上规范,可以保证原理图命名的简洁明了以及文中内容的准确性和清晰度。

电路原理图设计规范

电路原理图设计规范

xxxx交通技术有限公司——原理图设计规范目录一、概述...........................................错误!未定义书签。

二、原理图设计.....................................错误!未定义书签。

1、器件选型:..................................错误!未定义书签。

(1)、功能适合性:.........................错误!未定义书签。

(2)、开发延续性:.........................错误!未定义书签。

(3)、焊接可靠性:.........................错误!未定义书签。

(4)、布线方便性:.........................错误!未定义书签。

(5)、器件通用性:.........................错误!未定义书签。

(6)、采购便捷性:.........................错误!未定义书签。

(7)、性价比的考虑.........................错误!未定义书签。

2、原理图封装设计:............................错误!未定义书签。

(1)、管脚指定:...........................错误!未定义书签。

(2)、管脚命名:...........................错误!未定义书签。

(3)、封装设计:...........................错误!未定义书签。

(4)、PCB封装:............................错误!未定义书签。

(5)、器件属性:...........................错误!未定义书签。

3、原理设计:.................................错误!未定义书签。

原理图设计通用规范

原理图设计通用规范

原理图设计通用规范一、标准图框图幅根据实际需要,我公司常用图幅为A2、A3、A4,并有标准格式的图框。

其中每一图幅可根据方向分为Landscape(纵向)及Portrait(横向)。

在选用图纸时,应能准确清晰的表达区域电路的完整功能。

二、电路布局原理图的作用是表示电路连接关系,因此需要注意电路结构的易读性。

一般可将电路按照功能划分成几个部分,并按照信号流程将各部分合理布局。

连线时,需注意避免线条的不必要交叉,以免难于辨识。

三、元件标注1.元件标注最基本信息,即显示在图上的信息应该包括元器件位号和元器件值。

其中元器件位号一般根据元器件种类以不同的英文字符表示,一般以英文首位字母表示:电阻R电容C电感L变压器T二极管D三极管Q继电器RL集成电路IC、U接插件CB、CZ根据在机器内分板不同或者实现功能不同,可在字母前后加一位固定数值,例如:1RXX、C2XX等。

长度一般控制在4个字符以下,少部分可以5个字符表示。

而元器件值应该包含元件值和必要的额定值。

2.电阻≤1ohm以小数表示,而不以毫欧表示0RXX,例如0R47、0R033≤999ohm整数表示为XXR,例如100R、470R包含小数表示为XRX,例如4R7、4R99、49R9≤999K整数表示为XXK,例如100K、470K包含小数表示为XKX,例如4K7、4K99、49K9≤1M整数表示为XXM,例如1M、10M包含小数表示为XMX,例如4M7、2M2电阻如只标数值,则代表其功率低于1/4W。

如果其功率大于1/4W,则需要标明实际功率。

为区别电阻种类可在其后标明: CF碳膜、MF金属膜、PF氧化膜、FS熔断、CE瓷壳。

3.电容≤1pF以小数加p表示,例如0p47≤999pF整数表示为XXp,例如100p、470p包含小数表示为XpX,例如4p7、6p8≤999nF整数表示为XXn,例如100n、470n包含小数表示为XnX,例如4n7、6n8习惯上,接近1uF的电容也可以以0.XXu表示,例如0.1u、0.22u≥1uF整数表示为XXu,例如100u、470u、1000u包含小数表示为XuX,例如4u7、6u8习惯上,大于1000uF的也可以Xm表示,1m=1000u容值后标明耐压,以“/”与容值隔开。

原理图绘制要求

原理图绘制要求

原理图绘制要求原理图是电子设计工程师在进行电路设计时必不可少的工具,它是电路设计的基础和框架,能够直观地展现电路的连接关系、元器件的型号和参数等重要信息。

因此,原理图的绘制要求十分严格,需要设计工程师具备一定的专业知识和技能。

下面将从原理图绘制的基本要求、常用工具和技巧等方面进行详细介绍。

首先,原理图绘制的基本要求包括准确性、清晰性和规范性。

准确性是指原理图上的元器件连接关系、参数等信息必顼准确无误,不能有错误或遗漏;清晰性是指原理图的绘制要清晰易懂,元器件的标注、连线的走向应当清晰可辨;规范性是指按照一定的标准和规范进行绘制,包括元器件的标注、连线的风格、页面的布局等方面。

只有满足这些基本要求,才能保证原理图的质量和可靠性。

其次,原理图的绘制需要借助一些常用的工具和技巧。

常用的原理图绘制工具包括CAD软件、绘图仪器、模板等,其中CAD软件是目前应用最为广泛的工具,它能够提高绘图效率和准确性。

在使用CAD软件进行原理图绘制时,设计工程师需要熟练掌握软件的操作技巧,包括绘制线条、添加元器件、标注参数等操作。

此外,设计工程师还需要掌握一些绘图技巧,比如合理利用层次、颜色和线型来区分不同的元器件和信号线,使原理图更加直观清晰。

最后,需要注意的是原理图的绘制是一个反复修改和完善的过程。

在绘制原理图的过程中,设计工程师可能会遇到各种问题和困难,比如元器件的选择、连线的走向、页面的布局等。

因此,需要不断地进行修改和调整,直至满足设计要求。

此外,设计工程师还需要与团队成员或客户进行充分的沟通和交流,及时了解他们的需求和意见,以便及时调整原理图。

综上所述,原理图的绘制要求严格,需要设计工程师具备一定的专业知识和技能。

只有满足基本要求、熟练掌握工具和技巧,并不断进行修改和完善,才能绘制出质量高、可靠性强的原理图。

希望设计工程师们能够在实际工作中不断提升自己的绘图能力,为电子设计工作贡献自己的力量。

原理图设计规范

原理图设计规范

原理图设计规范修订历史目录第1章硬件原理图设计规范··············································错误!未定义书签。

1.1 目的············································································错误!未定义书签。

1.2 基本原则······································································错误!未定义书签。

原理图绘制规范

原理图绘制规范

原理图绘制规范一. 在原理图绘制模式下:设置栅格捕捉距离为5,栅格可视距离为10,电气捕捉半径为5,见图1图1而在移动字符模式下:栅格距离参数不变,只需要关闭SnapOn 即可,见图2图2特别注意:在放置元件及电气线时,一定要打开SnapOn!否则容易出现电气线假接的问题!二.在元件库绘制模式下:设置栅格捕捉距离为5,栅格可视距离为10,见图3图3在绘制元件外形时:栅格距离参数不变,只需要关闭Snap即可,见图4图4特别注意:在放置电气Pin时,一定要放在5:5的格点上(或者打开SnapOn)!否则容易出现电气线假接的问题!见图5/图6/图7/图8/图9图5图6图7图8图9三.正确放置电气Pin,见图10/图11图10图11 特别注意:电气Pin的电气圆点向外!四.正确绘制电气接线,见图12图12特别注意,不可用Line来任代替Wire见图13/图14图13图14五.正确放置接地符号(其中,为安规规定符号),见图15图15五.自定义电源符号,方便快速放置,见图16图16电源接地符号配对关系,见图17图17六.正确使用网络标号与网络端口,见图18图18特别注意: Label:页内网络连接(不可跨越页面)2.Port:页间网络连接(可以跨越页面)3.同一电气线上不能同时放两个网络名称,如果一定要放,则需要用0Ω的贴片电阻隔离!4.因为NetLabel放置时需要捕捉到电气线,而且不直观,所以可以用Power Port的符号来代替,见图19图19七.正确使用网络标号与网络端口的示例,见图20图20八.由网络端口建立的总图,见图21图21九.原理图的布局示例,见图22/图23图22图23。

原理图规范要求与封装设计技巧

原理图规范要求与封装设计技巧

基本原则和要求
原理图设计应遵循一些基本原则和要求,如正确使用电气符号、标注清晰、布局合理、连线规范等。
常见的错误和不规范行为
在原理图设计中常见的错误和不规范行为包括不正确使用符号、连线错误、 标注混乱、布局不合理等。
如何制定符合规范的原理图
制定符合规范的原理图需要遵循一系列步骤,包括规范选择、符号库使用、 布局规划、连线指导等。
原理图中常用的符号及其意义
原理图中常用的符号有电源、电容、电阻、晶体管等,每个符号代表不同的 电子元件及其功能。
原理图中常用的线条类型及其作用
原理图中常用的线条类型有连线、虚线、箭头线等,用于连接元件、表示连通性和信号流向。
原理图中常用的标注方式及其规范
在原理图中,常用的标注方式有引脚号、元件型号、电流/电压标记等,用于帮助理解和标识电路。
如何进行封装设计
封装设计是指将原理图的元件封装成实际的器件外形和引脚布局,以便于 PCB布局和制造。
封装设计的目的和意义
封装设计的目的是确保元件与PCB的可靠连接、降低故障率、提高性能和可 维护性,以及适应不同的应用场景。
常用的封装类型及其特点
常用的封装类型有DIP、SMD、BGA等,每种封装类型有不同的特点,如尺 寸、功率、焊接难度等。
3D仿真和验证的意义及其基本 原理
3D仿真和验证可以提前评估封装的可行性、优化设计、减少实验验证的时间 和成本。
常用的3D仿真和验证工具
常用的3D仿真和验证工具有SolidWorks、ANSYS、COMSOL等,可进行封 装Байду номын сангаас热分析、应力分布等模拟。
如何进行封装的准确度和精度测试
封装的准确度和精度测试是通过实验和测量来验证封装的外形、引脚位置、尺寸等是否符合规格要求。

原理图规范

原理图规范

原理图规范原理图是电子设计中的重要部分,它是用来表示电路连接和元件布局的图形化工具。

准确、规范的原理图可以帮助设计者更好地理解电路结构和功能,促使设计者更高效、便捷地进行电路设计和电路分析。

为了保证原理图的准确性和规范性,设计者需要遵循一些原理图规范,下面将介绍一些常见的原理图规范:1. 原理图分块:原理图应该按照功能块来分块,每个块应该包含一个完整的电路功能,各个块之间应该用统一的信号线标识符来连接。

2. 元件符号:使用标准的元件符号,不同功能的元件应使用不同的符号,如电阻、电容、晶体管等。

符号应该具有清晰、简洁的特点,以方便设计者快速识别和理解。

3. 元件标记:每个元件应该有唯一的标记,用于在原理图中进行引用和连接,比如使用R1、C1等进行标记。

4. 信号线标识符:使用统一的信号线标识符来连接各个功能块,如电源Vcc、地GND等。

信号线应该具有清晰、直观的特点,以方便设计者快速识别和理解。

5. 信号方向:原理图上的信号线应该标明信号的传输方向,如从输入到输出。

这有助于设计者理解电路结构和信号流动路径。

6. 线条样式:采用不同的线条样式来表示信号类型,如连续线表示电源线,虚线表示控制信号线等。

这有助于设计者快速识别各个信号的类型和功能。

7. 数字标识:在原理图中使用数字标识各个功能块的序号,以方便设计者进行交叉引用和分析。

8. 交叉线处理:当原理图中出现交叉线时,应该采用不同的线条样式或符号来表示交叉线的连接关系。

9. 标题和注释:在原理图中添加标题和注释,用于解释电路的功能和特点,以供设计者了解和参考。

10. 印刷布局:原理图的排版应该合理,元件、标记、线条应该清晰可见,避免交叉和重叠。

同时,应该采用适当的字体大小和线条粗细,以方便设计者清晰地看到每个元素的细节。

总之,准确、规范的原理图是电子设计的重要组成部分,它能够帮助设计者更好地理解电路结构和功能,促使设计者更高效、便捷地进行电路设计和电路分析。

原理图设计规范

原理图设计规范

原理图设计原理图设计规范•-原理图架构•原理图总体分为以下几个部分,原理图名称、目录、总体框图、电源部分、时钟部分、模块部分、端口部分、结构框图;•原理图第一页为原理图名称(包含原理图名称、版本号、设计者、检视者、日期等);•原理图第二页为目录(包含原理图设计部分、页数);•原理图第三页为总体功能框图(包括主要器件名称、总线类型、端口类型);•原理图最后一页为结构框图(包含端口丝印、大概位置、端口器件编码);•原理图建议倒数第二页为结构件图(包含地孔、测试点、散热器、屏蔽罩、MARK点、ICT孔等)原理图设计规范•电源部分在设计时,首先要增加1页或者2页的电源树和上电时序图进行说明;•时钟部分在设计时,首先要增加1页或者2页的时钟设计框图,标注器件选型、时钟频率、使用对象等;•JTAG总线设计时,首先要增加1页或者2页对JTAG总线的链路进行画图说明,并标注器件、电平;•IIC总线设计时, 首先要增加1页或者2页对IIC总线的链路进行画图说明,并标注器件IIC地址;原理图设计规范•-原理图网络命名•原理图网络命名时,字母必须为大写字母,不可以使用字母“0”;可以使用下划线和左斜线“/”;禁止使用小写字母、短横线、*等;•电源网络命名建议:10V以上命名举例,12V、36V等,数字在字母V前;10V以下电源命名举例,V33或者3V3、V18或者1V8、V09或者0V9;模拟电源命名举例,V33_AVDD_FPGA或者3V3_AVDD_FPGA;可以增加后缀说明电源使用对象;•时钟网络命名规则:时钟网络命名以CLK开头,后接频率,可以增加使用对象说明,举例CLK_50M_CPU;•总线网络命名规则:总线类型开头,后接使用对象或者总线方向,举例:SGMII_CPU_PHY、JTAG_TDI_CPU、PCIE_CPU_FPGA、IIC_SCL_EEPROM等;原理图设计规范•使能网络命名中包含EN,中断网络命名包含INT;•低有效信号命名规则,以“/”开头,例如/RST_CPU、/INT_PHY、/SPI_CS等;•指示灯信号命名规则:以LED开头,增加功能说明,举例LED_CPU_RUN、LED_CPU_ALARM、LED_FPGA_DEBUG、LED_V33等;•差分信号命名规则,以P N表示差分信号的+ -信号,举例PCIE_CPU_FPGA_0_P、 PCIE_CPU_FPGA_0_N,经过电阻、电容前或者后的信号,建议增加R C说明,举例PCIE_CPU_FPGA_0_C_P、PCIE_CPU_FPGA_0_C_N 。

原理图设计规范

原理图设计规范

原理图设计规范用图形符号、文字符号、项目代号等表示电路各个电气元件之间的关系和工作原理的图称为电气原理图。

电气原理图目的是便于阅读和分析控制线路,应根据结构简单、层次分明清晰的原则。

它包括所有电器元件的导电部件和接线端子,但并不按照电器元件的实际布置位置来绘制,也不反映电器元件的实际大小。

1.电气原理图的绘制原则如下:1)原理图必须采用公司统一的原理图库2)原理图上的各种标注应清晰,不允许文字重叠。

3) 相同功能的电路,如无特殊要求应采用相同的电路和器件。

4)凡有模块电路、通用电路,能满足设计要求者,无特殊原因一律采用模块电路。

5)控制电路和外围电路应分开绘制。

控制电路是由各种逻辑电路,接口电路,驱动电路,继电器触点组成的,实现所要求的控制功能;外围电路包括信号、保护电路,执行部件、应用点划线围住,并加以必要的文字说明。

6)简图中元件符号的布置,只考虑便于看出他们所表示的元件功能关系,而不考虑实际位置。

在此布局中,将表示对象划分为若干功能组,按照因果关系从左到右或从上到下布置;每个功能组的元件应集中布置在一起,并尽可能按工作顺序排列。

7)图中自左而右或自上而下表示操作顺序,并尽可能减少线条和避免线条交叉。

8)如果信息流或能量流从右到左或从上到下,以及流向对看图都不明显时,应在连接线上画开口箭头。

开口箭头不应与其他符号相邻近。

9)在闭环电路中,前向通路上的信息流方向应该是从左到右或从上到下。

反馈通路的方向则相反。

10)图的输入输出信号最好画在图纸边框附近。

11)图中有直接电联系的交叉导线的连接点(即导线交叉处)要用黑圆点表示。

无直接电联系的交叉导线,交叉处不能画黑圆点。

12)电源必须标清负荷范围。

13)由多块PCB板组成的固定搭配产品各版的原理图应绘制在同一张原理图上,每块板需用点划线围框。

14)元器件编号时按标准顺序编号。

2.图线、字体及其他2.1 图线:粗实线、细实线、波浪线、双折线、虚线、细点划线、粗点划线、双点划线2.2 字体:仿宋_GB23122.3箭头和指引线开口箭头:用于电气能量、电气信号的传递方向(能量流、信息流流向)实心箭头:用于可变性、力或运动方向,以及指引线方向。

电路原理图绘制规范

电路原理图绘制规范

电路原理图绘制规范
在绘制电路原理图时,遵循以下规范:
1. 使用标准符号:使用符合国际标准或行业标准的电子元件符号,确保符号的准确性和一致性。

2. 保持简洁:只绘制必要的电子元件和连接线,避免不必要的复杂性。

删除所有标题和多余的文字。

3. 使用连续线条:使用直线连接电子元件,确保线条的连续性和一致性。

避免使用折线或曲线,以防止造成误解。

4. 绘制方向:按照电流流动的方向绘制电子元件和连接线。

一般情况下,电流从正极流向负极。

5. 绘制整齐:将电子元件与连接线布局整齐,尽量避免交叉线条。

可以使用虚线表示连接线在实际电路中的路径。

6. 添加必要的标记:为每个电子元件添加必要的标记,如电阻上的阻值、电容上的容值等。

确保标记的清晰可读。

7. 使用标准尺寸:按照标准尺寸绘制电子元件和连接线,以确保图纸的易读性。

8. 使用颜色:使用不同颜色区分不同类型的电子元件或电路功能,增强可读性。

9. 使用符号图例:在图纸的一角添加符号图例,对所用符号进行解释和说明。

这样其他人可以很容易地理解图纸。

10. 保持一致性:绘制多个电路图时,保持一致的风格和规范,以方便对比和理解。

以上是绘制电路原理图的一些基本规范,通过遵循这些规范,可以确保电路图的准确性和易读性。

原理图设计规范

原理图设计规范

原理图设计规范原理图设计规范是指在进行原理图设计时,需要遵守的一系列规范和要求。

原理图是电子产品设计的基础,它直接影响着产品的性能和可靠性。

因此,设计师在进行原理图设计时需要遵守一定的规范,以确保设计的准确性和稳定性。

首先,原理图设计需要清晰明了。

设计师应该将电路图分成模块,每个模块内部应该简洁明了,不应该出现交叉线和过多的连接线。

同时,应该避免线路交叉过多的情况。

如果有必要,可以通过引线进行引出,以提高可读性。

其次,原理图设计需要符合电子设计的常规要求。

比如,每个电路模块应该有明确的供电引脚和地引脚,以确保正常工作。

电路模块之间的连接应该清晰,并标明连接的方式,如电源线、信号线或地线等。

另外,需要注意电路板布局的合理性和稳定性,避免产生干扰或者短路。

第三,原理图设计需要保持一致性。

设计师应该使用统一的符号和标记,以便于他人理解和修改。

在设计原理图时,应该遵循一套统一的规范和标准,如使用国际标准符号。

同时,应该标明每个元器件的型号、规格和参数,以便后续的选型和测试。

第四,原理图设计需要考虑到可靠性和稳定性。

设计师应该避免使用过长的连接线和过多的弯曲,以免造成信号衰减或者信号串扰。

另外,应该合理选择电阻、电容和电感等元器件的数值和型号,以满足设计要求并提高工作效率。

最后,原理图设计需要考虑到可维护性和可扩展性。

设计师应该留出足够的空间,以方便维修和修改。

在设计过程中,应该考虑到后续可能的扩展需求,为未来的升级和改进提供方便。

总之,原理图设计规范是保证电子产品设计质量的基础。

设计师应该严格按照规范进行设计,保证原理图的准确性、稳定性和可靠性,以提高产品的性能和可靠性。

同时,在实际设计中,设计师也可以根据具体需求进行适当的调整和优化,以更好地满足用户的需求。

ORCAD原理图规范

ORCAD原理图规范

原理图设计规范:1、原理图上所有的文字方向应该统一,文字的上方应该朝向原理图的上方(正放文字)或左方(侧放文字)。

原理图上的各种标注应清晰,不允许文字重叠。

2、仅和芯片相关的上拉或下拉电阻等器件,建议放置在芯片附近3、差分信号规定使用“+/-”符号,“+/-”可以在网络名的中间或末尾。

4、芯片的型号和管脚标注,精密电阻、大功率电阻、极性电容、高耐压电容、共模电感、变压器、晶振,保险丝等有特殊要求的器件参数要显示出来,LED应标示型号或颜色。

5、所有的时钟网络要有网络标号,以CLK 字符结尾,以便于SI分析、PCB布线和检查;非时钟信号禁止以CLK等时钟信号命名后缀结尾。

时钟信号命名应体现出时钟频率信息。

6、采用串联端接的信号(包括时钟),串阻在原理图上应就近放置于驱动器的输出端。

串阻和驱动器之间不放置网络标号,串阻后的网络进行命名(时钟信号必须命名并满足时钟信号的命名规范)。

7、所有单板内部电源网络的命名都必须采用“VCC”开头,单板接口电源的定义和系统定义保持统一。

经过滤波的电源必须命名,命名也必须以“VCC”开头。

8、使用Alias连接的网络,必须使用网络标号的方式进行连接,不能使用连线(wire)进行连接。

9、所有出页网络应放置出页符offpage/offpg,出页符的方向应和信号流向一致。

原理图必须进行交叉标注。

除总线等字符太多无法调整的网络之外,交叉标注的字符不应重叠。

offpage/offpg符号的调用,应根据信号流向采用正确的符号,不应将符号进行翻转、镜像后使用。

10、CPU等的控制信号应使用上/下拉电阻保证上电时的状态确定。

要考虑器件输出或驱动器输出的驱动能力,等效负载不能超过器件的驱动能力的80%。

11、不带内部上下拉和总线保持功能的CMOS/BiCMOS器件,未用输入端严禁悬空,必须通过电阻进行上拉或下拉处理。

12、信号线上的上拉或下拉电阻能够满足可靠预置电平要求。

13、对于CMOS器件,如无特殊要求单个管脚的上拉或下拉可以取10k,多个管脚或其他具体情况可以参见下面的条目和以及进行计算确定。

原理图PCB板设计制作规范标准

原理图PCB板设计制作规范标准

原理图PCB板设计制作规范标准1.原理图设计规范标准(1)命名规范:元件、管脚、信号和电源名称要规范命名,方便理解和维护。

可以采用英文缩写、音译或中文拼音等。

(2)元件库的选择:选择适合自己设计的元件库,要求库的内容完整,符合组织结构,元件属性准确。

(3)连线规范:连线要整齐划一,不交叉,避免拐弯和折线。

信号线要分类,分层布线,并遵循最短路径原则,尽量减小信号传输时延。

(4)参考识别:添加参考识别,包括PCB板图名、版次、日期等,方便识别和追溯。

(5)技术文件:原理图要包括技术文件,如元件清单、电源电压要求、信号电平要求等,方便后期调试和维护。

2.PCB板设计规范标准(1)PCB尺寸:根据产品的空间限制和规划,确定PCB板的尺寸,尽量利用空间,减小板面积。

(2)元件布局:根据电路功能和元件特性,合理布局元件,避免干扰和信号串扰。

功率大的元件和高频元件要分开布局,并留出足够的散热空间。

(3)关键信号处理:对于关键信号,如时钟信号、高速信号等,要特别处理。

如增加阻抗控制、差分布线、屏蔽等。

(4)电源和地线:电源和地线要分层布局,减小干扰。

同时要考虑电源电流的分布和供电稳定性,合理设计电源网络。

(5)线宽和间距:根据电流和信号传输要求,选择适当的线宽和间距。

高速信号要考虑传输线的阻抗匹配。

(6)引脚和焊盘:确定元件的引脚和焊盘布局,要考虑元件安装和焊接时的易用性和可靠性。

(1)层数和堆叠:根据电路复杂度和性能要求,确定PCB板的层数和堆叠方式。

(2)板材选择:根据电路功率、频率等要求,选择适合的板材,如FR4、高TG板等。

(3)焊接工艺:确定焊接工艺和焊接方式,如SMT、DIP等。

要考虑焊点的可靠性和焊接质量。

(4)表面处理:根据焊接方式和要求,选择适当的表面处理方式,如HASL、ENIG等,保证焊点的可靠性。

(5)丝印和标识:在PCB板上添加丝印和标识,包括元件位置、极性标识、工艺信息等,方便组装和维护。

原理图制图规范

原理图制图规范

原理图制图规范(摘自中兴电路设计规范)(软件版本:应该是Cadence)1、原理图上所有的文字方向应该统一,文字的上方应该朝向原理图的上方(正放文字)或左方(侧放文字)下图分别为符合规范和不符合规范的例子。

2、原理图上的各种标注应清晰,不允许文字重叠不允许文字重叠。

3、去耦电容的放置去耦电容分为两种:局部去耦和全局去耦。

局部去耦目的很明确的布置在芯片附近,为芯片和附近的信号提供信号回流路径和电源去耦。

全局电容布置于板上各处。

将去耦电容和器件在原理图上靠近放置,可以有针对性、有计划地添加局部去耦,在布局时应该注意将相应位号的电容摆放在需要去耦的芯片附近。

全局去耦电容主要分布在单板上没有去耦电容的部分,以及换层过孔的附近,提供信号回流通路。

4、差分线命名差分线推荐使用+/-(p/n)结尾,便于在辨认网络,在布线时添加合适的约束以及信号完整性分析。

无特殊情况推荐将+/-符号放在信号名最后。

Altium Designer中推荐使用p/n结尾。

5、时钟信号的命名为了方便信号完整性分析和布线约束制定,并保证不引起歧义,时钟信号必须以规定的CLK后缀结束。

其他信号,例如时钟使能信号等,一律禁止以该信号命名后缀结束。

时钟信号命名还应体现出时钟频率。

根据绘图者的习惯,可以体现出时钟的流向、用途、来源等信息。

例如:FPGA1_8K_CLK,FPGA2_33M_CLK,OIB0_52CHIP_TCLK 都是符合规范的命名。

串联端接时钟网络的命名参见串联端接网络的绘制和命名6、串联端接网络的绘制和命名对于源端端接网络,正确的画法应该是将串阻直接画在驱动器件的输出端,串阻和驱动器件之间的网络可以不进行命名,串阻之后的网络进行命名。

如下图所示为一个正确的范例。

如果将串阻放在接收端,或者在串阻之前的信号进行命名,串阻之后的信号不进行命名,都会使得布线的分析和检查困难,甚至会造成串阻被放置在接收端而未被查出的结果,导致信号完整性较差。

电路原理图设计规范

电路原理图设计规范

电路原理图设计规范1. 使用统一的符号和符号约定:在设计电路原理图时,应使用国际通用的电路符号,同时遵循统一的符号约定,确保图纸的易读性和标准化。

2. 保持简洁明了:电路原理图应尽量简洁,避免过多的冗余信息和装饰。

每个电路元件应以最简单的形式呈现,不要使用过多的修饰线条或图形。

3. 垂直放置电路元件:电路元件应尽量垂直放置,以便在纸上更好地呈现。

避免元件之间的交叉和重叠,使图纸更易读和理解。

4. 垂直和水平线路对齐:尽量保持电路元件之间的连线垂直或水平对齐,以提高图纸的整体美观度。

避免过多的斜线和交叉线。

5. 使用适当的引线:对于引线过长的电路元件,应采用适当的方式引出,避免元件之间的交叉和混乱。

引线应尽量垂直或水平延伸。

6. 使用合适的字体和字号:在电路原理图中使用文字时,选择合适的字体和字号,确保文字清晰可读。

文字应与电路元件相对应,标注清楚,并尽量使用工程常用的缩写词和专业术语。

7. 分区和分块布局:对于复杂的电路原理图,可以采用分区和分块的方式布局,将相关的电路元件放在一起,并用适当的网格或边框划分。

这有助于提高电路原理图的整体清晰度和可读性。

8. 使用颜色和填充:可以使用不同的颜色和填充效果来区分不同类型的元件或功能块,提高图纸的可读性和美观度。

但要注意不要过分使用颜色和填充,以免造成混乱。

9. 添加必要的说明和注解:在电路原理图中,可以添加必要的说明和注解,解释电路的特殊功能或注意事项。

这有助于更好地理解和使用电路原理图。

10. 定期检查和更新:电路原理图设计完成后,应定期检查和更新。

随着电路的改进和优化,可能需要对原理图进行修改和更新,确保其与实际电路的一致性。

原理图设计规范

原理图设计规范

原理图标准:原理图设计基本要求:清晰,准确,规范,易读。

具体要求如下:1. 原理图文件的命名规则,原理图文件的文件名遵循以下原则:(项目名称)(版本号)(_)(本图完成日期)。

如:N21V1.0_071112。

2. 各功能块布局要合理,整份原理图需布局均衡。

避免有些地方很挤,而有些地方又很松,同PCB 设计同等道理。

3. 尽量将各功能部分模块化(如功放,RADIO,E.VOL,SUB-WOOFER 等),以便于同类机型资源共享,各功能模块界线需清晰。

4. 元件库中应将元件的所有管脚标识出来,不得有遗漏或者超出,如果元件有未用的空脚,用NC表示并且显示在元件上,所有的电源和地均应显示在元件上。

保证原理图中的元件与PCB封装的引脚编号、数量完全一致。

5. 接插口(如电源/喇叭插座, AUX IN, RCA OUTPUT, KB/CD SERVO 接口等)尽量分布在图纸的四周围,示意出实际接口外形及每一管脚的功能。

6. 可调元件(如电位器),切换开关等对应的功能需标识清楚。

7. 每一部件(如TUNER,IC 等)电源的去耦电阻/电容需置于对应脚的就近处。

8. 滤波器件(如高/低频滤波电容,电感)需置于作用部位的就近处。

9. 在PCB板上摆放位置有特殊要求的元件、布线有特殊要求的网络和比较重要的控制或信号线,需加标注,标明流向及功能。

10. CPU 为整机的控制中心,接口线最多。

故CPU周边需留多一些空间进行布线及相关标注,而不至于显得过分拥挤。

11. CPU 的设置二极管(如AREA1/AREA2, CLOCK1/CLOCK2等)需于旁边做一表格进行对应设置的说明。

12. 重要器件(如接插座,IC, TUNER 等)外框用粗体线(统一 0.5mm)13. 用于标识的文字类型需统一,文字高度可分为几种(重要器件如接插座,IC, TUNER 等可用大些的字,其它可统一用小些的)。

14. 元件标号按照以下标准统一标注:l 电容,排容的位号统一为:C;l 电阻位号统一为:R,排阻位号为RP;l 磁珠,电感位号统一为:L;l 连接器位号统一为:CN ;l ESD防静电器件和一些芯片位号统一为:U;l 压敏电阻位号统一为:VR;l 二极管,LED灯位号统一为:D;l 三极管位号统一为:Q;l MIC位号统一为:M;l EMI Filter的位号统一为:E;l 键盘上的按键在原理图中位号统一为:SW;l 晶振的位号统一为:OSC;l SAW Filter 的位号统一为:F;l 在原理图第一页同类型器件位号以101开始,第二页以201开始,依次类推。

原理图绘制规范

原理图绘制规范

原理图绘制要求1. 层次性设计原理图为了更直观的了解整个系统的概况,当电路较复杂的情况下,我们采用层次性原理图设计方法,当电路较简单时则不需要。

原则上保证电路连接正确的前提下让原理图更加简单、直观、易懂。

层次设计原理图的方法通常有两种:自顶向下和自底向上。

具体实现方法可参考技术文档。

需要注意的标示规范如下:①方块图(Sheet Symbol)的标注:【Designator】用于标示模块的一个标号,可用Part1、Part2等来进行标示。

【Filename】用于标示文件的内容,可以用模块的功能进行标示如:ADC、MCU、Power等进行标注。

上述两个标注应在原理图中直观的显示出来,放置于贴近模块的明显位置。

②连接端口(Sheet Entry)的标注:【Name】用于标注引脚名称如:SDA、SCL、P1[0..8]。

【I/O Type】用于设置端口方向如:Input(输入)、Output(输出)、Bidirectional(双向),需要根据引脚功能进行选择,不可随意选择。

【Stytle】用于设置端口的形状,一般输入端口选择尖头向内,输出选择向外,双向这两端都为尖头。

③在满足电路连接正确的前提下,应尽量使模块摆放规整,电路简洁明了,模块应有相应的标注提示功能,最好可以添加相应注释(简要说明电路功能,绘制PCB需要注意事项等。

也可在子模块电路中进行注释)。

注释添加方式:菜单栏-> Place -> Text Frame。

提示:在连接电路图时,应将栅格设置为10 ,禁止设置为1 ,以防连接失败而难于发现。

当所有电路连接正确后,为方便调整字符位置可将栅格设置为 1 ,调整完毕重新设置为10。

///绘制原理图设置栅格为10、不设置1,以防连接失效,而观察不到,在确定电路连接完毕之后,可用小的栅格来调整字符。

///原理图中未连接引脚进行画叉号“×”在原理图编译时检查未连接引脚。

///数据线尽量采用总线连接,减少连线数量,便于观察。

电路原理图设计规范

电路原理图设计规范

电路原理图设计规范一.原理图格式标准:原理图设计格式基本要求 : 清晰,准确,规范,易读.具体要求如下:1.1 各功能块布局要合理,整份原理图需布局均衡.避免有些地方很挤,而有些地方又很松,同 PCB 设计同等道理 .1.2 尽量将各功能部分模块化(如步进电机驱动、直流电机驱动,PG电机驱动,开关电源等), 以便于同类机型资源共享 , 各功能模块界线需清晰 .1.3 接插口(如电源输入,输出负载接口,采样接口等)尽量分布在图纸的四周围 , 示意出实际接口外形及每一接脚的功能 .1.4 可调元件(如电位器 ), 切换开关等对应的功能需标识清楚。

1.5 每一部件(如 TUNER,IC 等)电源的去耦电阻 / 电容需置于对应脚的就近处 .1.6 滤波器件(如高 / 低频滤波电容 , 电感)需置于作用部位的就近处 .1.7 重要的控制或信号线需标明流向及用文字标明功能 .1.8 CPU 为整机的控制中心,接口线最多 . 故 CPU 周边需留多一些空间进行布线及相关标注 , 而不致于显得过分拥挤 .1.9 CPU 的设置二极管需于旁边做一表格进行对应设置的说明 .1.10 重要器件(如接插座 ,IC, TUNER 等)外框用粗体线(统一 0.5mm).1.11 用于标识的文字类型需统一, 文字高度可分为几种(重要器件如接插座、IC、TUNER 等可用大写的字 , 其它可统一用小写的).1.12 元件标号按功能块进行标识 .1.13 元件参数 / 数值务求准确标识 . 特别留意功率电阻一定需标明功率值 ,高耐压的滤波电容需标明耐压值 .1.14 每张原理图都需有公司的标准图框 , 并标明对应图纸的功能 , 文件名 ,制图人名/ 确认人名 , 日期 , 版本号 .1.15 设计初始阶段工程师完成原理图设计并自我审查合格后 , 需提交给项目主管进行再审核 , 直到合格后才能开始进行 PCB 设计 .二.原理图设计标准参考:2.原理图设计前的方案确认的基本原则:2.1 详细理解设计需求,从需求中整理出电路功能模块和性能指标要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原理图规范与要求和具体操作
一、规范与要求
1)电路原理图必须使用VISIO重新编辑;
2)VISIO文档页面尺寸:A4纸,默认值;
3)字体:中文黑,西文ARIAL, 字体大小要求:芯片管脚名称和数字6pt,芯片名称描述等8pt,突出显示的内容10pt(如电源电路四个字);
4)线形。

通用线粗为03类型,芯片边框线粗05,总线线形粗为09,黑色;
5)结点,二极管,三极管等需要填充为黑色;
6)电容电感微级单位统一使用μ,而不是u;
7)图片颜色使用黑白色;
8)图片不允许缩放,100%显示;
9)图片必须转换为JPG格式,分辨率300×300,质量100%然后插入于文档中;
10)每个WORD文档必须有配套的VISIO文档图片库,图片的修改必须在VISIO图片库中完成,然后转换成PJG格式后再插入文档中,VISIO文档的图片库,必须与文档一块提交。

二、具体操作
第一步:打开visio软件,新建、选择绘图类型、框图、基本框图,即创建了一个新文件并保存;
第二步:设置页面尺寸-文件、页面设置、页面尺寸、自定义大小(150*100mm);
第三步:字体与线条。

字体:格式、文本、字体、黑体中文/arial(西文),大小6pt,黑色;
线条:板式、线条、图案01、粗细03、颜色00/黑色
第四步:绘制图形。

使用绘图工具条上的工具,画图。

第五步:另存为JPG格式的文件。

要求把visio图保存为质量为100%,分辨率为300*300像素的jpg图片。

特别注意:visio可以将protel绘制的原理图通过复制粘贴到visio中,取消组合后,可以进行编辑调整,并另存为jpg格式的文件。

方便转换并保存用Protel绘制的电路原理图。

其简要步骤如下:
用VISIO处理PROTEL电路图的简要步骤
1 在PROTEL中选中电路图并复制;
2 粘贴到VISIO空白的文档中;
3 在VISIO中选中整个图,右击图,在弹出的卡中,选择形状,取消组合后即可对图进行编辑;
4 编辑好后再组合,并另存为JPG格式即可。

相关文档
最新文档