肖特二极管的工作原理是什么

合集下载

肖特基二极管 抑制串扰

肖特基二极管 抑制串扰

肖特基二极管抑制串扰肖特基二极管是一种特殊的二极管,被广泛应用于电子电路中,其主要功能是抑制串扰。

本文将详细介绍肖特基二极管的原理、特点以及在抑制串扰方面的应用。

一、肖特基二极管的原理和特点肖特基二极管是一种具有金属-半导体接触的二极管,其结构与普通的二极管有所不同。

它由P型半导体和金属材料构成,而普通二极管则由P型或N型半导体构成。

肖特基二极管的金属材料通常是铝或铬,而P型半导体是硅或镓。

肖特基二极管的特点主要体现在以下几个方面:1. 正向电压降低:与普通二极管相比,肖特基二极管在正向电压下的压降较小,约为0.2-0.4V。

这使得肖特基二极管能够在更低的电压下工作,从而降低功耗和发热。

2. 反向漏电流小:肖特基二极管在反向电压下的漏电流非常小,通常在几微安到几十微安之间。

这使得肖特基二极管具有更好的反向封锁能力,能够更好地抑制串扰。

3. 快速开关速度:由于肖特基二极管结构的特殊性,其开关速度较快。

这使得肖特基二极管在高频应用中能够更好地抑制串扰。

二、肖特基二极管在抑制串扰中的应用由于肖特基二极管具有低压降和快速开关速度的特点,因此在抑制串扰方面有着广泛的应用。

以下是几个常见的应用场景:1. 信号隔离:在电子电路中,不同信号之间可能存在相互干扰的问题,导致信号质量下降。

通过使用肖特基二极管进行信号隔离,可以有效地抑制串扰,提高信号质量。

2. 电源滤波:电源中的纹波噪声会对电路产生干扰,影响正常工作。

通过在电源输入端使用肖特基二极管进行滤波,可以将纹波噪声滤除,减少对电路的干扰。

3. 高频电路中的串扰抑制:在高频电路中,由于信号频率较高,容易产生串扰。

通过在信号线路中引入肖特基二极管,可以快速地将串扰信号抑制,保持信号的准确传输。

4. 高速数字电路中的串扰抑制:在高速数字电路中,由于信号上升和下降时间较短,容易产生串扰。

通过在信号线路中引入肖特基二极管,可以快速地将串扰信号抑制,保持信号的准确传输。

高频肖特基二极管

高频肖特基二极管

高频肖特基二极管肖特基二极管是一种具有高频带宽和快速开关速度的二极管,因其特殊的工作原理和优越的性能优势,被广泛应用于信号放大器、混频器、振荡器、调制解调器、高速逻辑电路等高频电子领域。

肖特基二极管的结构是由P型半导体和金属(一般用铝)构成,其工作原理是基于Schottky势垒形成的,其特点是具有低正向压降、快速开关速度、低反向电流和低噪声等优异的性能特点。

肖特基二极管的工作原理是当P型半导体和金属接触时,形成了Schottky势垒,电子从N型半导体中逸出,进入金属中,形成导电性,因此其正向压降低,导通能力强。

而在反向偏置下,几乎没有载流子通过肖特基结,因此反向电流很小,这一特点使得肖特基二极管在高频电路中应用广泛,如用于调制解调器中的检波器等。

另外,肖特基二极管的开关速度也很快,速度通常为普通二极管的几倍甚至更高,因为在正向极化时,金属端的导体中的载流子直接导电,并快速消失,从而迅速断开导通状态,因此其开关速度可以达到纳秒级别。

肖特基二极管在高频电子应用中的具体用途包括:一、在低噪音放大电路中,肖特基二极管作为前置放大器可抑制噪声,增强信号。

二、在调制解调器中,肖特基二极管作为检波器,能够将信息信号从高频信号中分离出来,实现信息传输。

三、在振荡器中,肖特基二极管的开关速度较快,因此可以稳定地产生高频振荡信号,应用于石英、陶瓷振荡器等。

肖特基二极管的一些应用案例包括:应用于调幅电视机的视频放大器中,应用于数字式手持无线电话的收发机中,应用于雷达中的高频检波器等。

在应用肖特基二极管时需要注意:一、应用肖特基二极管时,尽量避免发生静电放电,因为静电放电会对其产生微小的损坏。

二、在选择肖特基二极管时,应根据具体应用场合,考虑到其电压和电流特性以及其频率响应等因素。

三、当肖特基二极管在正向偏压下工作时,应将其负极与小信号地面连接,以降低电磁干扰和噪音。

而在反向偏置下,应用大功率肖特基二极管,在应用时应注意流过其的反向电流,以避免热失效。

肖特基二极管整流

肖特基二极管整流

肖特基二极管整流
肖特基二极管整流是一种常见的电路应用,它可以将交流电转换为直流电。

肖特基二极管整流的原理是利用肖特基二极管的非对称性,使得电流只能从P型半导体流向N型半导体,而不能反向流动。

这样,当交流电输入时,只有正半周的电流能够通过肖特基二极管,而负半周的电流则被阻止,从而实现了整流的效果。

肖特基二极管整流的优点是具有低压降和快速响应的特性。

由于肖特基二极管的结电容较小,因此其响应速度比普通二极管快得多。

此外,肖特基二极管的正向压降也比普通二极管低,因此可以减少能量损耗,提高整流效率。

这些特点使得肖特基二极管整流在高频电路和低功耗电路中得到广泛应用。

肖特基二极管整流的缺点是其最大反向电压较小,一般只有30V 左右。

因此,在高电压应用中需要采用多个肖特基二极管级联的方式来实现整流。

此外,肖特基二极管的价格也比普通二极管高,因此在成本敏感的应用中可能不太适合使用。

肖特基二极管整流是一种常见的电路应用,具有低压降和快速响应的特点,适用于高频电路和低功耗电路。

但其最大反向电压较小,需要在高电压应用中采用多个肖特基二极管级联的方式来实现整流。

肖特基二极管结构原理及参数 知乎

肖特基二极管结构原理及参数 知乎

一、肖特基二极管结构原理肖特基二极管(Schottky Diode)是一种特殊的二极管,它的结构原理和普通的 PN 结二极管有所不同。

普通的 PN 结二极管是由 P 型半导体和 N 型半导体材料构成的,而肖特基二极管是由金属和半导体材料构成的。

具体而言,肖特基二极管是由金属和半导体的接触界面构成的,通常是一种金属覆盖在 N 型半导体表面上,形成一种金属-半导体接触。

二、肖特基二极管的参数对于肖特基二极管来说,有一些关键的参数需要我们了解。

其中最重要的参数之一是肖特基势垒高度,记作Φ_B。

它是描述金属和半导体接触界面的势垒高度的重要参数。

另外,肖特基二极管还有正向电压降(V_F)、反向漏电流(I_R)、最大反向工作电压(V_RRM)等参数,这些参数都影响着肖特基二极管的性能和应用。

三、深度探讨:肖特基二极管的优势和应用相对于普通的 PN 结二极管,肖特基二极管具有许多优势和特点。

它的正向压降较小,约为0.3V左右,这意味着在一些特定的应用场合中,肖特基二极管可以替代普通的 PN 结二极管,实现更低的功耗和更高的效率。

肖特基二极管的开关速度非常快,这使得它在高频和射频电路中得到广泛应用。

四、广度探讨:肖特基二极管的应用领域肖特基二极管由于其独特的特性,在许多领域都有着广泛的应用。

在通信领域,肖特基二极管被广泛应用于射频功率放大器和射频混频器等电路中,用于实现信号的调制和解调。

在开关电源和电源管理领域,肖特基二极管也被用于设计高效、稳定的开关电源电路和直流电源管理电路。

在光伏领域、功率电子领域和微波领域,肖特基二极管也都有着重要的应用。

五、总结与回顾通过本文的深度和广度探讨,我们对肖特基二极管的结构原理和参数有了全面的了解。

肖特基二极管作为一种特殊的二极管,在功耗、开关速度和应用领域等方面有着许多优势,因此在现代电子电路中有着广泛的应用前景。

希望本文能够帮助读者深入理解肖特基二极管,并在实际应用中发挥其重要作用。

肖特基二极管和快恢复二极管有什么区别

肖特基二极管和快恢复二极管有什么区别

肖特基二极管和快恢复二极管有什么区别肖特基二极管的基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。

肖特基与PN结的整流作用原理有根本性的差异。

其耐压程度只有40V 左右。

其特长是:开关速度非常快:反向恢复时间特别地短。

因此,能制作开关二极管和低压大电流整流二极管。

肖特基二极管(Schottky Barrier Diode)它是具有肖特基特性的“金属半导体结”的二极管。

其正向起始电压较低。

其金属层除钨材料外,还可以采用金、钼、镍、钛等材料。

其半导体材料采用硅或砷化镓,多为型半导体。

这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。

由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。

其工作频率可达100GHz。

并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。

肖特基二极管(Schottky Diodes):肖特基二极管利用金属与半导体接触所形成的势垒对电流进行控制。

它的主要特点是具有较低的正向压降(0.3V至0.6V);另外它是多子参与导电,这就比少子器件有更快的反应速度。

肖特基二极管常用在门电路中作为三极管集电极的箝位二极管,以防止三极管因进入饱和状态而降低开关速度。

肖特基势垒二极管SBD(Schottky Barrier Diode,简称肖特基二极管)是近年来间世的低功耗、大电流、超高速半导体器件。

其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V 左右,而整流电流却可达到几千安培。

这些优良特性是快恢复二极管所无法比拟的。

中、小功率肖特基整流二极管大多采用封装形式。

1.结构原理综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。

肖特基二极管的作用及工作原理

肖特基二极管的作用及工作原理

肖特基二极管的作用及工作原理肖特基二极管是一种大电流、超高速、低功耗的半导体二极管器件。

它最显著的特点为反向恢复的时间很短,正向导通压降只有0.4V左右,而整个流电流却可高达到几千安培。

肖特基二极管多用作可以是大电流整流二极管、续流二极管、保护二极管、高频、低压、也有用在微波通信等电路中作、整流二极管使用。

常常用在电视的二次、电源整流中。

下面就由我为大家简单的介绍一下吧。

肖特基二极管不是利用P型半导体或者N型半导体接触形成PN结的原理制作,而是利用少量金属与半导体接触后形成的金属半导体。

所以,肖特基二极管也称为金属半导体(接触)肖特基二极管是贵金属称A为阳极,把N型半导体B称为阴极,它利用A与N接触面上形成的势垒,让它具有整流特性而制成的多属半导体原器件。

这种部件的构成相对的比较复杂,我们需要很耐心的具体了解。

在肖特基二极管的整个电流管中,它的内部电路的结构大多是以N型半导体作为基片的,上面所形成的被称作N 型的外延层。

正极使用铝作为阻挡层的材料。

使用二氧化硅用来消除边缘区域的电磁场,调高电流管的抗压峰值。

这些都是肖特基二极管的显著特点,所以我们在使用的时候一定要先弄清楚。

在应用上,我们能最先想到的是在双极型晶体管里面所涉及到的开关电路问题。

它是通过在bjt上链接一个二极管来箝位,使我们的晶体管通过导通状态下无限的解决截止状态,以此来提高晶体管的开关运行的速度。

这种方式是我们在典型数字ttl电路内部常常使用到的电子技术。

音乐它的正向电压VF较小,所以在相同的电流下,我们要考虑通过正向电压降压的方式来恢复。

它也有一些缺点,那就是,耐压能力比较的低,对电路的要求比较高,存在漏电量大的情况。

小结:对这些专业知识性比较强的,我们最好多翻阅一下专业的资料。

对这些知识架构属于专业的范畴,我只能给出我的理解。

在我的理解来说可能是对的,但是在实际的应用范畴中,可能会出现少许的偏差,这些都是能被理解的。

以上就是我关于肖特基二极管的一些见解,希望能够帮助到大家。

500a 肖特基二极管

500a 肖特基二极管

500a 肖特基二极管500A肖特基二极管是一种常用的功率二极管,它具有低反向恢复时间、低反向漏电流和高正向导通电流等优点。

在电子设备和电源中,它被广泛应用于开关电源、电机驱动器和逆变器等场合。

下面将对500A肖特基二极管进行详细介绍。

一、500A肖特基二极管的结构500A肖特基二极管由P型半导体和N型半导体组成。

P区称为阳极区,N区称为阴极区。

阳极区与阴极区之间的结为肖特基结。

肖特基结的形成是通过在N型半导体上扩散氮或其他杂质形成的。

二、500A肖特基二极管的工作原理500A肖特基二极管正向偏置时,阳极区P型半导体与阴极区N型半导体形成P-N结。

由于P区具有较高的杂质浓度,电子与空穴复合速度较快,因此肖特基二极管具有较高的正向导通电流和较低的正向压降。

此时,肖特基二极管处于导通状态。

而当肖特基二极管反向偏置时,主要是肖特基结区域的效应起作用。

由于N型半导体具有较低的杂质浓度,因此反向击穿电压较高,从而限制了反向漏电流。

同时,由于扩散效应的存在,反向恢复时间也较短。

三、500A肖特基二极管的特点1.低反向恢复时间:肖特基二极管的反向恢复时间较短,可用于高频应用。

反向恢复时间短可以减小反向漏电流,从而提高二极管的效率。

2.低反向漏电流:肖特基二极管的反向漏电流很小,这是由于肖特基结区域的形成以及杂质浓度的控制。

较低的反向漏电流减小了功耗,并且可以提高开关电源的效率。

3.高正向导通电流:肖特基二极管具有较高的正向导通电流。

这是因为肖特基结的形成使得在正向工作区域电子与空穴复合速度加快,从而增大了电流。

4.低正向压降:肖特基二极管的正向压降很低,这是由于肖特基结的形成和材料的优化控制。

较低的正向压降可以减小功耗,并提高设备的效率。

四、500A肖特基二极管的应用领域500A肖特基二极管广泛应用于电源和开关电路中。

例如,它可以用于交流调直流电源以及开关电源等应用。

此外,肖特基二极管还常用于电动机驱动器、逆变器和UPS等场合,以提高设备的效率和可靠性。

肖特基二极管原理及作用

肖特基二极管原理及作用

肖特基二极管原理及作用一、肖特基二极管的原理1.肖特基结的形成肖特基二极管的肖特基结是由金属与N型半导体直接接触形成的。

当金属与N型半导体接触时,金属中的自由电子会扩散到N型半导体中,形成一个电子云区域。

云区域内的电子与N型半导体中的电子进行复合,形成静电势垒。

这种结构不同于普通二极管中由P型半导体和N型半导体结合形成的肖特基结。

2.肖特基结的特性肖特基结的最大特点是具有快速恢复的特性。

普通二极管在正向工作时需要一定的时间才能从导通状态恢复到截止状态,而肖特基二极管在反向击穿截止后可以非常快速的恢复到被反偏截止状态。

这是由于肖特基结中金属与半导体的接触,使得电子从金属向半导体中迅速传输形成的。

3.肖特基二极管的电流特性与普通二极管相比,肖特基二极管的正向电流较大,而反向电流较小。

这是由于肖特基二极管的肖特基结中的电子云区域能够有效降低正向导通和反向击穿时的电流,从而提高了正向电流和反向电流的工作范围。

二、肖特基二极管的作用1.电源保护2.稳压和恒流源肖特基二极管的电流特性使其可以用于稳压和恒流源电路的设计。

在稳压电路中,肖特基二极管可以配合稳压二极管使用,提供更加精确的输出电压。

在恒流源电路中,通过利用肖特基二极管的电流特性,可以设计出稳定的恒流源。

这些应用都有助于提高电路的稳定性和可靠性。

3.混频器由于肖特基二极管的快速开关特性和较低的正向电压,可以用于射频(Radio Frequency,RF)混频器的设计。

混频器是一种常用于无线通信中的电路,用于将两个不同频率的信号进行混合,产生新的频率信号。

肖特基二极管可以在高频信号的开关过程中提供较小的非线性失真和较低的功耗,从而提高混频器的性能。

进一步推广,肖特基二极管在太阳能电池、红外线传感器等领域也有着重要应用,通过合理地利用肖特基二极管的特性,可以提高电路性能、降低功耗、增强功能等。

肖特基二极管的工作原理和特点

肖特基二极管的工作原理和特点

肖特基二极管的工作原理和特点肖特基二极管的工作原理是基于金属与半导体之间的肖特基势垒形成。

当P型半导体与金属结合时,由于P型半导体中少子的轨道电子会被金属电极吸引,形成一个额外的电子层,这个电子层称为肖特基层。

肖特基层的存在导致肖特基二极管的结电容较小,这是与普通PN结二极管明显不同的一个特点。

当正向偏置肖特基二极管时,P型半导体中的空穴与N型半导体中的自由电子结合,形成一个正向电流流动的通道。

此时,由于肖特基层的存在,其内部电场较小,使得肖特基二极管的开启电压较低。

此外,肖特基层的存在还使得肖特基二极管具有更高的正向电导,因此具有快速开关速度和较低的正向电压降。

相反,当反向偏置肖特基二极管时,由于金属电极对于反向电场的屏蔽作用,使得肖特基二极管的截止电压较高。

这样的特性对于一些低功耗电路和抑制反向电流的应用非常有利。

除了上述的工作原理之外,肖特基二极管还有以下几个特点:1.高速开关特性:由于肖特基层的存在,肖特基二极管的开启速度非常快,可以实现高速开关。

2.低电压降:肖特基二极管的正向电压降较低,这使得它能够在低电压应用中发挥作用。

3.低反向电流:肖特基二极管的反向电流非常小,可以抑制反向电流的流动。

4.抑制热失真:肖特基二极管具有良好的线性特性和较低的温度依赖性,可以在高温环境中抑制热失真的发生。

5.高频特性优越:由于肖特基层的存在,肖特基二极管的结电容较小,具有良好的高频特性。

肖特基二极管在电子设备中具有广泛的应用。

由于其快速开关特性和低功耗特点,常被用于高频功率放大器、射频收发器、无线通信设备和计算机外设等领域。

此外,由于其良好的温度稳定性,肖特基二极管还可以在高温环境中工作,因此广泛应用于汽车电子、航天航空等特殊环境中。

综上所述,肖特基二极管是一种具有独特结构和特性的二极管,它利用肖特基势垒形成的肖特基层来实现快速开关、低电压降和低反向电流等特点。

肖特基二极管具有广泛的应用领域,是电子设备中不可或缺的一部分。

肖特基的工作原理

肖特基的工作原理

肖特基的工作原理肖特基(Schottky)二极管是一种特殊类型的二极管,其工作原理基于金属-半导体的接触。

它由一个金属与半导体材料形成的PN结构组成,而不是常规的PN结构中的两种不同类型的半导体材料。

肖特基二极管的工作原理可以通过金属与半导体接触形成的面积电势垒来解释。

在肖特基二极管中,金属接触到n型半导体材料的一侧,而p型半导体材料的一侧则未被金属覆盖。

这种金属与半导体之间的接触形成了一个正向电势垒,使电子从n型半导体向金属辐射,并形成一个逆向漏电流。

当施加正向偏压时,即将正电压施加到金属端,而负电压施加到半导体端时,电子会从金属向半导体材料注入。

由于金属对电子具有很低的功函数和高电导率,电子可以在金属-半导体界面上快速通过,并进入半导体材料。

这种注入过程在肖特基二极管中被称为“电子注入”。

当电子注入到半导体材料时,它们会与空穴发生复合,导致电流流过二极管。

在肖特基二极管中,正向工作时,由于电子注入的数量较大,电流可以在非常短的时间内形成。

这使得肖特基二极管具有快速开关和高频应用的能力。

与之相反,当施加反向偏压时,即将正电压施加到半导体端,而负电压施加到金属端时,电子注入被抑制。

这是因为在反向偏压下,电子注入需要克服金属与半导体接触面处的电势垒才能发生,而这个电势垒反向偏压中会增加。

因此,在反向偏压下,肖特基二极管有很小的漏电流。

肖特基二极管的一个重要特性是其低阈值电压。

由于金属-半导体界面形成的电势垒较低,肖特基二极管可以在较低的电压下开始导通,从而在一些特定的应用中提供更高的效率。

肖特基二极管还具有快速开关速度和低反向恢复时间的优势。

这是因为在肖特基二极管中,电子注入和抽取的过程非常迅速。

由于电子的移动速度远高于空穴,因此反向恢复的时间也更短。

此外,肖特基二极管还具有低功耗和高耐压能力的优点。

由于电子注入和抽取过程的高效率,肖特基二极管的功耗较低。

同时,它们还能承受较高的电压,使其在高压应用中具有重要的作用。

齐纳二极管工作原理

齐纳二极管工作原理

齐纳二极管工作原理齐纳二极管,又称为二极管或者肖特基二极管,是一种常见的电子元件,广泛应用于电子电路中。

它是由一个P型半导体和一个N型半导体构成,形成PN结。

齐纳二极管的工作原理基于PN结的特性,其主要作用是将电流限制在一个方向上,从而实现整流和信号调制等功能。

齐纳二极管的工作原理可以通过以下几个方面来解释:1. PN结的形成:齐纳二极管由P型半导体和N型半导体组成,通过掺杂和扩散工艺创造而成。

在P型半导体中,掺入了三价元素,如硼(B),形成空穴(正电荷载体);而在N型半导体中,掺入了五价元素,如磷(P),形成自由电子(负电荷载体)。

当P型和N型半导体相接触时,形成为了PN结。

2. PN结的势垒:PN结的形成使得P区的空穴和N区的自由电子发生扩散运动,直到达到一个平衡状态。

在平衡状态下,P区的空穴和N区的自由电子会发生重新组合,形成势垒。

势垒是由于P区的正电荷和N区的负电荷之间的电场产生的,同时也会产生一个电位差。

3. 正向偏置:当外加电压的正极连接到P区,负极连接到N区时,形成为了正向偏置。

在正向偏置下,外加电场会抵消PN结的势垒,使得空穴和自由电子能够更容易地通过PN结。

此时,齐纳二极管处于导通状态,电流可以流过。

4. 反向偏置:当外加电压的正极连接到N区,负极连接到P区时,形成为了反向偏置。

在反向偏置下,外加电场会增加PN结的势垒,妨碍空穴和自由电子通过PN结。

此时,齐纳二极管处于截止状态,电流几乎无法流过。

需要注意的是,齐纳二极管在正向偏置下具有较低的电阻,可以承受较大的正向电流;而在反向偏置下,其电阻非常高,只能承受极小的反向电流。

齐纳二极管的工作原理使其在电子电路中有着广泛的应用。

以下是一些常见的应用场景:1. 整流器:齐纳二极管可以将交流信号转换为直流信号。

在整流电路中,将齐纳二极管正向偏置,使得电流只能从P区流向N区,实现了电流的单向传输。

这样就可以将交流信号的负半周截去,只保留正半周,实现了整流。

肖特基二极管整流

肖特基二极管整流

肖特基二极管整流一、什么是肖特基二极管肖特基二极管(Schottky diode)是一种特殊的二极管,由石墨和金属接触而成。

它具有非常低的回复时间、低电压损耗以及高工作频率的特性,常被用于高速开关、功率整流、电压转换等领域。

二、肖特基二极管的原理肖特基二极管的原理是基于肖特基效应。

当金属与半导体接触时,由于金属与半导体之间的势垒形成,电子会从金属转移到半导体中。

由于金属的电子云密度远高于半导体,电子从金属转移到半导体时不会留下空穴,因此没有复合电流。

这使得肖特基二极管的正向压降(正向偏置时的电压降)相对较低,导通电阻小,自带电压小于标准PN结二极管。

三、肖特基二极管的特点肖特基二极管具有以下特点:1.低电压损耗:由于肖特基二极管没有耗散在扩散区的电流,因此在正向导通时具有较低的电压降,使得能量损耗减少。

2.快速开关速度:由于肖特基二极管的结容量小,载流子注入和抽取速度快,具有较快的开关速度。

3.高工作频率:由于其快速开关速度,肖特基二极管适用于高频率应用,能够满足高速交换要求。

4.低反向漏电流:由于肖特基二极管没有扩散区,只有冲击离子化的反向电流,因此反向漏电流小。

5.温度特性好:肖特基二极管的反向特性稳定,温度变化对其性能影响较小。

四、肖特基二极管的应用1.功率整流器:由于肖特基二极管的低电压损耗和快速开关速度,可以用于功率整流电路,提高整流效率和功率因数。

2.电压倍增器:肖特基二极管可以用于电压倍增电路,实现输入电压的倍增。

3.开关电源:肖特基二极管的快速开关特性和高工作频率使其成为开关电源中的重要元件。

4.频率多重器:由于肖特基二极管的高工作频率,可以用于频率多重器,将输入信号的频率倍增。

5.调制解调器:肖特基二极管可以用于调制解调器中的整流和检波。

6.高频放大器:由于肖特基二极管的低噪声和高频特性,适用于高频放大器。

五、肖特基二极管的选型和应用注意事项选用肖特基二极管时,需要考虑以下因素:1.导通电压降:根据具体应用需求选择合适的导通电压降,以确保电路正常工作。

肖特基二极管整流原理

肖特基二极管整流原理

肖特基二极管整流原理
肖特基二极管是一种特殊的二极管,其具有快速开关速度和低压降的特点,常用于电源整流电路中。

其整流原理是利用PN
结和金属半导体结的特性。

当肖特基二极管的PN结处于正向偏置时,P区的短路电流将
从N区侧注入。

此时,电压高于PN结的垒位电势垒,导致垒内少数载流子浓度增加,电流增大。

正向电压的升高会使得正向导通时的导通压降变小,进而降低开关时的功耗。

在反向偏置状态下,PN结会有较大的阻抗。

当voltage输入为负值时,二极管基本上是关闭的,几乎不存在上述短路电流。

这就使得在电源中得到一个明确的整流效果,只有在正半周的输入电压超过一定的电压阈值时,肖特基二极管才能够导通,产生正向电压输出。

总的来说,肖特基二极管通过利用PN结的特性和正反向偏置,使得电流只能在一个方向上流动,实现了整流功能。

这样就可以将交流电信号转换为直流电信号,用于电子设备的工作和稳定。

肖特基二极管的原理和封装介绍

肖特基二极管的原理和封装介绍

肖特基二极管的原理和封装介绍一、肖特基二极管原理肖特基二极管是由德国物理学家沃尔特·肖特基发明的一种二极管。

与普通二极管不同的是,肖特基二极管的结电容很小,开关速度很快,具有低电压降和较高的阻值等优点。

肖特基二极管的原理是在p型半导体与金属之间形成Schottky势垒,使得电流从p型半导体流向金属时,需要克服这个势垒,同时由于金属具有一定的能带结构,肖特基二极管还可以将电流从金属转移到p型半导体。

因此,肖特基二极管具有更低的前向压降和开关速度快的特点。

二、肖特基二极管封装介绍肖特基二极管的封装形式有多种,常见的有TO-220、SOT-23、SMB等形式。

下面分别进行介绍:1. TO-220封装:TO-220是肖特基二极管常用的封装形式,由于其结构紧凑、安装简便等优点,应用范围广。

TO-220封装的肖特基二极管可以承受一定的电流和功率,但由于体积较大,适用于一些对封装体积要求不高的应用场景。

2. SOT-23封装:SOT-23封装是一种非常小巧的封装形式,体积仅为TO-220的1/10左右,非常适合于轻量化、小型化的应用场景。

由于体积较小,其承受的电流和功率较低,但在电子设备中的应用非常广泛。

3. SMB封装:SMB封装是一个面积较小的封装形式,适合于高密度集成的应用场景。

由于体积小,电容值和电阻值相对较小,通常用于高频电路或路由器等设备中。

总之,肖特基二极管的封装形式多种多样,我们需要根据应用需求选择合适的封装形式。

结语:肖特基二极管的应用范围非常广泛,包括电源管理、变换器、放大器、模拟信号处理等领域。

掌握其原理和封装形式,能够在使用过程中更加准确地选择和应用。

肖特基二极管结构原理及参数 知乎

肖特基二极管结构原理及参数 知乎

肖特基二极管结构原理及参数知乎肖特基二极管是一种常见且重要的半导体器件,具有许多独特的特性和广泛的应用。

它与普通二极管相比,拥有更高的开关速度、较低的反向电流以及更低的电压下的工作能力。

那么,让我们深入探讨一下肖特基二极管的结构原理和参数,并了解其在实际应用中的重要性。

一、结构原理肖特基二极管由P型半导体和n型金属或合金构成。

正如其名字所示,这种二极管是以物理学家沃尔特·肖特基的名字命名的。

1.1 结构示意图肖特基二极管的结构由两个主要部分组成:P型区和肖特基金属结区。

P型区与n型金属之间形成一个肖特基势垒,这种势垒具有吸收和透射电子的特性。

1.2 肖特基势垒形成原因肖特基势垒的形成是由P型区和n型金属之间的结合引起的。

具体来说,当P型区与n型金属接触时,通过复杂的界面反应,形成了一个类似PN结的界面。

在该界面上,P型区中电子的能级高于n型金属中电子的能级,因此会发生电子从P型区向n型金属的扩散。

而由于肖特基金属的特殊属性,它可以使这些从P型区扩散过来的电子透射到n型金属中。

这个过程将导致P型区与n型金属之间形成一个肖特基势垒,使得肖特基二极管具备了与普通二极管截然不同的性能。

二、参数分析了解肖特基二极管的结构原理之后,让我们来探讨一些与该器件相关的重要参数。

2.1 肖特基二极管的正向电压和反向电压能力正向电压是指在正向偏置下,肖特基二极管中电流开始流动的最低电压。

与普通二极管相比,肖特基二极管的正向电压往往更低,通常在0.2V至0.5V之间。

这意味着在正向工作条件下,肖特基二极管比普通二极管具有更低的能耗和更高的效率。

反向电压能力是指肖特基二极管能够承受的最大反向电压。

由于肖特基势垒较低,该参数通常在比较低的范围内,一般为20V至50V。

2.2 肖特基二极管的开关速度开关速度是指肖特基二极管从导通到截止的转换时间。

由于肖特基势垒的形成,肖特基二极管的开关速度往往比普通二极管更快。

这使得它特别适用于高频应用。

肖特基二极管作用原理

肖特基二极管作用原理

肖特基二极管作用原理肖特基二极管(Schottky Diode)是一种特殊的二极管,具有独特的工作原理和性能。

它是由金属与半导体材料接触而形成的,因此也被称为金属半导体二极管(Metal-Semiconductor Diode)。

肖特基二极管具有许多优点,如快速开关速度、低电压损耗和低反向电流等,因此在各种电子设备中得到广泛应用。

肖特基二极管的工作原理是基于金属与半导体之间的肖特基势垒效应。

当金属与半导体接触时,金属中的自由电子会向半导体中注入。

这些自由电子与半导体中的载流子相结合,形成一个耗尽区域,从而形成了一个势垒。

这个势垒比普通PN结二极管的势垒要低,因此肖特基二极管具有更低的开启电压。

肖特基二极管的导通特性主要取决于金属与半导体之间的势垒高度。

当外加正向电压时,势垒被降低,电子可以轻易地穿过势垒进入半导体,形成一个导电通道。

因此,肖特基二极管具有快速的导通特性,开关速度非常快。

与普通二极管相比,肖特基二极管的反向特性更为优越。

由于肖特基二极管的势垒较低,反向电压时只需小于势垒高度即可使势垒消失,从而减小了反向电流的大小。

这使得肖特基二极管具有较低的反向电流和较小的反向漏电流,提高了电路的效率和稳定性。

肖特基二极管的应用非常广泛。

由于其快速开关速度和低电压损耗特性,常被用于高频电路和高速开关电路中。

在功率放大电路、混频器和频率倍频器等电子设备中也有着重要的应用。

此外,由于肖特基二极管具有低反向漏电流和快速恢复时间的优点,还可以用于电源管理、电池充电和放电保护等应用领域。

肖特基二极管作为一种特殊的二极管,其工作原理和性能使其在电子领域中有着广泛的应用。

其快速开关速度、低电压损耗和低反向电流等特点,使其成为现代电子设备中不可或缺的元件之一。

随着科技的不断发展和进步,肖特基二极管的应用前景将更加广阔,为电子技术的发展带来更多的可能性。

肖特基势垒光电二极管

肖特基势垒光电二极管

肖特基势垒光电二极管
肖特基势垒光电二极管是一种基于肖特基二极管原理的光电探测器。

其结构与普通二极管相似,但使用的是金属和半导体之间的肖特基势垒,而不是 pn 结。

肖特基势垒光电二极管具有许多优点,如快速响应速度、低噪声和高灵敏度。

它们在光通信、光电子学和光谱学等领域中得到广泛应用。

肖特基势垒光电二极管的工作原理是光子被吸收后,激发电子-空穴对,使其进入肖特基势垒区域。

在该区域,电子受到金属和半导体的合力,形成一个阻止电子流动的势垒。

这导致电子被拖曳到肖特基势垒区域并产生电流。

肖特基势垒光电二极管有许多不同的变种,如侧向肖特基势垒光电二极管、反向肖特基势垒光电二极管和金属半导体金属肖特基势垒光电二极管等。

每种变种都有其独特的应用场景和特点。

总之,肖特基势垒光电二极管是一种高性能的光电探测器,可以帮助人们实现高速、高精度的光学测量。

- 1 -。

肖特基二极管的工作原理

肖特基二极管的工作原理

肖特基二极管的工作原理
肖特基二极管的工作原理是利用金属与半导体接触面上形成的
势垒具有整流特性。

肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属半导体器件。

因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。

显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。

随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。

但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。

当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。

肖特基二极管

肖特基二极管

肖特基(Schottky)二极管,又称肖特基势垒二极管(简称SBD),它属一种低功耗、超高速半导体器件。

最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V 左右。

其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。

在通信电源、变频器等中比较常见。

一个典型的应用,是在双极型晶体管BJT 的开关电路里面, 通过在BJT 上连接Shockley 二极管来箝位,使得晶体管在导通状态时其实处于很接近截止状态,从而提高晶体管的开关速度。

这种方法是74LS,74ALS,74AS 等典型数字IC 的TTL内部电路中使用的技术。

肖特基(Schottky)二极管的最大特点是正向压降VF 比较小。

在同样电流的情况下,它的正向压降要小许多。

另外它的恢复时间短。

它也有一些缺点:耐压比较低,漏电流稍大些。

选用时要全面考虑。

肖特基势垒二极管肖特基势垒二极管SBD(Schottky Barrier Diode,简称肖特基二极管)是近年来间世的低功耗、大电流、超高速半导体器件。

其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千安培。

这些优良特性是快恢复二极管所无法比拟的。

中、小功率肖特基整流二极管大多采用封装形式。

一、肖特基二极管原理肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的多属-半导体器件。

因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。

显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。

随着电子不断从B扩散到A,B表面电子浓度表面逐渐降轻工业部,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。

但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。

上海肖特基 二极管稳压

上海肖特基 二极管稳压

上海肖特基二极管稳压一、肖特基二极管的基本原理肖特基二极管是由金属与半导体接触形成的二极管,其结构与普通的pn结二极管不同。

肖特基二极管的金属-半导体接触处形成了一个势垒,使得只有在正向偏置时才能进行电流传输。

而在反向偏置时,由于势垒高度较大,电子难以穿越势垒而形成反向电流,因此具有较好的单向导电性。

二、肖特基二极管稳压原理肖特基二极管可以用来实现稳压功能。

当输入电压变化时,输出端的电压并不随之变化,这就是稳压作用。

其基本原理是利用肖特基二极管正反向偏置下不同的导通机制来实现。

1. 正向偏置下当输入电压为正向偏置时,由于金属-半导体接触处存在势垒,在一定范围内只有当输入电压高于该势垒高度时才能通过肖特基二极管。

这种情况下输出端的电压可以近似看作等于肖特基二极管的截止电压,因此可以实现稳定的输出电压。

2. 反向偏置下当输入电压为反向偏置时,由于势垒高度较大,肖特基二极管几乎不会产生反向电流。

因此,输出端的电压也近似等于输入端的电压,也就是说,在反向偏置下肖特基二极管并没有稳压作用。

三、上海肖特基二极管的特点和应用上海肖特基二极管是一种具有高性能和可靠性的稳压器件。

其主要特点包括:1. 低漏电流:由于金属-半导体接触处存在势垒,因此在反向偏置下几乎没有反向电流。

2. 快速响应:由于肖特基二极管具有较快的开关速度和低内部电阻,因此可以实现快速响应。

3. 高稳定性:在正向偏置下可以实现稳定输出,并且具有较好的温度稳定性。

上海肖特基二极管广泛应用于各种类型的稳压器件中,如DC-DC转换器、LED驱动器、太阳能光伏系统等。

同时,由于其快速响应和低漏电流等优点,也被广泛应用于高速开关电路中。

四、上海肖特基二极管的优势和劣势上海肖特基二极管具有以下优势:1. 高稳定性:在正向偏置下可以实现稳定输出,并且具有较好的温度稳定性。

2. 快速响应:由于肖特基二极管具有较快的开关速度和低内部电阻,因此可以实现快速响应。

3. 低漏电流:由于金属-半导体接触处存在势垒,因此在反向偏置下几乎没有反向电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

肖特二极管的工作原理是什么SBD是肖特基势垒二极管(Schottky Barrier Diode,缩写成SBD)的简称。

SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。

因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。

肖特基二极管是近年来问世的低功耗、大电流、超高速半导体器件。

其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。

这些优良特性是快恢复二极管所无法比拟的。

中、小功率肖特基整流二极管大多采用封装形式。

肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。

因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。

显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。

随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。

但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。

当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。

典型的肖特基二极管基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。

阳极使用钼或铝等材料制成阻档层。

用二氧化硅(SiO2)来消除边缘区域的电场,提高管子的耐压值。

N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。

在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。

通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒,当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。

综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。

肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。

因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,肖特基二极管图解所以电子便从浓度高的B中向浓度低的A中扩散。

显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。

随着电子不断从B扩散到A,B表面电子浓度表面逐渐降轻工业部,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。

但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。

当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。

典型的肖特基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N -外延层。

阳极使用钼或铝等材料制成阻档层。

用二氧化硅(SiO2)来消除边缘区域的电场,提高管子的耐压值。

N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。

在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。

通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒,如图所示。

当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。

综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。

肖特基二极管 - 结构新型高压二极管新型高压SBD的结构和材料与传统SBD是有区别的。

传统SBD是通过金属与半导体接触而构成。

金属材料可选用铝、金、钼、镍和钛等,半导体通常为硅(Si)或砷化镓(GaAs)。

由于电子比空穴迁移率大,为获得良好的频率特性,故选用N型半导体材料作为基片。

为了减小SBD的结电容,提高反向击穿电压,同时又不使串联电阻过大,通常是在N+衬底上外延一高阻N-薄层。

CP是管壳并联电容,LS是引线电感,RS是包括半导体体电阻和引线电阻在内的串联电阻,Cj和Rj分别为结电容和结电阻(均为偏流、偏压的函数)。

金属导体内部有大量的导电电子。

当金属与半导体接触(二者距离只有原子大小的数量级)时,金属的费米能级低于半导体的费米能级。

在金属内部和半导体导带相对应的分能级上,电子密度小于半导体导带的电子密度。

因此,在二者接触后,电子会从半导体向金属扩散,从而使金属带上负电荷,半导体带正电荷。

由于金属是理想的导体,负电荷只分布在表面为原子大小的一个薄层之内。

而对于N型半导体来说,失去电子的施主杂质原子成为正离子,则分布在较大的厚度之中。

电子从半导体向金属扩散运动的结果,形成空间电荷区、自建电场和势垒,并且耗尽层只在N型半导体一边(势垒区全部落在半导体一侧)。

势垒区中自建电场方向由N型区指向金属,随热电子发射自建场增加,与扩散电流方向相反的漂移电流增大,最终达到动态平衡,在金属与半导体之间形成一个接触势垒,这就是肖特基势垒。

在外加电压为零时,电子的扩散电流与反向的漂移电流相等,达到动态平衡。

在加正向偏压(即金属加正电压,半导体加负电压)时,自建场削弱,半导体一侧势垒降低,于是形成从金属到半导体的正向电流。

当加反向偏压时,自建场增强,势垒高度增加,形成由半导体到金属的较小反向电流。

因此,SBD与PN结二极管一样,是一种具有单向导电性的非线性器件。

肖特基二极管 - 结构原理肖特基二极管肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的多属-半导体器件。

因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。

显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。

随着电子不断从B扩散到A,B表面电子浓度表面逐渐降轻工业部,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。

但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。

当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。

典型的肖特基整流管的内部电路结构如图1所示。

它是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。

阳极(阻档层)金属材料是钼。

二氧化硅(SiO2)用来消除边缘区域的电场,提高管子的耐压值。

N型基片具有很小的通态电阻,其掺杂浓度较H-层要高1 00%倍。

在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。

通过调整结构参数,可在基片与阳极金属之间形成合适的肖特基势垒,当加上正偏压E时,金属A和N型基片B分别接电源的正、负极,此时势垒宽度Wo变窄。

加负偏压-E时,势垒宽度就增加。

综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。

肖特基整流管仅用一种载流子(电子)输送电荷,在势垒外侧无过剩少数载流子的积累,因此,不存在电荷储存问题(Qrr→0),使开关特性获得时显改善。

其反向恢复时间已能缩短到10ns以内。

但它的反向耐压值较低,一般不超过去时100V。

因此适宜在低压、大电流情况下工作。

利用其低压降这特点,能提高低压、大电流整流(或续流)电路的效率。

肖特基二极管 - 封装肖特基二极管肖特基二极管分为有引线和表面安装(贴片式)两种封装形式。

采用有引线式封装的肖特基二极管通常作为高频大电流整流二极管、续流二极管或保护二极管使用。

它有单管式和对管(双二极管)式两种封装形式。

肖特基对管又有共阴(两管的负极相连)、共阳(两管的正极相连)和串联(一只二极管的正极接另一只二极管的负极)三种管脚引出方式。

采用表面封装的肖特基二极管有单管型、双管型和三管型等多种封装形式,有A~19种管脚引出方式。

肖特基二极管 - 作用肖特基二极管肖特基(Schottky)二极管,又称肖特基势垒二极管(简称 SBD),它属一种低功耗、超高速半导体器件。

最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。

其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。

在通信电源、变频器等中比较常见。

一个典型的应用,是在双极型晶体管 BJT 的开关电路里面,通过在 BJT 上连接 Shockley 二极管来箝位,使得晶体管在导通状态时其实处于很接近截止状态,从而提高晶体管的开关速度。

这种方法是 74LS,74ALS,74AS 等典型数字 IC 的 TTL内部电路中使用的技术。

肖特基(Schottky)二极管的最大特点是正向压降 VF 比较小。

在同样电流的情况下,它的正向压降要小许多。

另外它的恢复时间短。

它也有一些缺点:耐压比较低,漏电流稍大些。

选用时要全面考虑。

肖特基二极管 - 优点肖特基二极管SBD具有开关频率高和正向压降低等优点,但其反向击穿电压比较低,大多不高于60V,最高仅约100V,以致于限制了其应用范围。

像在开关电源(SMPS)和功率因数校正(PFC)电路中功率开关器件的续流二极管、变压器次级用100V以上的高频整流二极管、RCD缓冲器电路中用600V~1.2kV的高速二极管以及PFC升压用600V二极管等,只有使用快速恢复外延二极管(FRED)和超快速恢复二极管(UFRD)。

UFRD的反向恢复时间Trr也在20ns以上,根本不能满足像空间站等领域用1MHz~3MHz的SMPS需要。

即使是硬开关为100kHz的SMPS,由于UFRD的导通损耗和开关损耗均较大,壳温很高,需用较大的散热器,从而使SMPS体积和重量增加,不符合小型化和轻薄化的发展趋势。

因此,发展100V以上的高压SBD,一直是人们研究的课题和关注的热点。

近几年,SBD已取得了突破性的进展,150V和200V的高压SBD已经上市,使用新型材料制作的超过1kV的SBD也研制成功,从而为其应用注入了新的生机与活力。

相关文档
最新文档