MBR和分区表DPT

合集下载

硬盘主引导扇区、分区表和分区引导扇区(MBR、DPT、DBR、BPB)详解(一)

硬盘主引导扇区、分区表和分区引导扇区(MBR、DPT、DBR、BPB)详解(一)

硬盘主引导扇区、分区表和分区引导扇区(MBR、DPT、DBR、BPB)详解!硬盘的主引导扇区,分区表,分区引导扇区(MBR、DPT、DBR、BPB)是电脑BIOS自检完成后,操作系统开始引导系统前整个电脑运作过程中需要检查的重要参数,硬盘的主引导扇区,分区表,分区引导扇区(MBR、DPT、DBR、BPB)参数错误可能导致系统无法启动或存储的数据丢失,这片文章我们介绍一下硬盘的主引导扇区,分区表,分区引导扇区(MBR、DPT、DBR、BPB)的详细信息。

硬盘的0柱面、0磁头、1扇区称为主引导扇区(也叫主引导记录MBR),该记录占用512个字节,它用于硬盘启动时将系统控制权转给用户指定的、在分区表中登记了某个操作系统分区。

MBR的内容是在硬盘分区时由分区软件(如FDISK)写入该扇区的,MBR不属于任何一个操作系统,不随操作系统的不同而不同,即使不同,MBR也不会夹带操作系统的性质,具有公共引导的特性。

但安装某些多重引导功能的软件或LINUX的LILO 时有可能改写它;它先于所有的操作系统被调入内存并发挥作用,然后才将控制权交给活动主分区内的操作系统(下图)。

MBR由三部分构成:1.主引导程序代码,占446字节2.硬盘分区表DPT,占64字节3.主引导扇区结束标志AA55H一、硬盘的主引导程序代码是从偏移0000H开始到偏移01BDH结束的446字节;主引导程序代码包括一小段执行代码。

启动PC 机时,系统首先对硬件设备进行测试,成功后进入自举程序INT 19H;然后读系统磁盘0柱面、0磁头、1扇区的主引导扇区MBR的内容到内存指定单元0:7C00 首地址开始的区域,并执行MBR程序段。

主引导代码实现下列功能:1.扫描分区表查找活动分区;2.寻找活动分区的起始扇区;3.将活动分区的引导扇区读到内存;4.执行引导扇区的运行代码。

如果主引导代码未完成这些功能,系统显示下列错误信息:Invalid partition tableError loading operating systemMissing operating system二、硬盘分区表DPT是从偏移01BEH开始到偏移01FDH结束的64字节(下图);硬盘分区表分为四小部分,每一小部分表示一个分区的信息,占16字节。

硬盘主引导记录详解

硬盘主引导记录详解

硬盘的数据结构关于一些朋友来讲老是很神密!什么缘故咱们删除的文件用软件能找到?什么缘故咱们格式化了的硬盘数据还能找回来?要回答这一切,你就得对硬盘的数据结构有个清醒的熟悉。

硬盘上的数据由五大部份组成,它们别离是:MBR区、DBR区,FAT区,DIR区和DATA区。

1.MBR(Main Boot Record)区,即主引导记录区,位于整个硬盘的0磁道0柱面1扇区.2.DBR(Dos Boot Record)区,操作系统引导记录区。

位于硬盘的0磁道1柱面1扇区,是操作系统能够直接访问的第一个扇区.3.FAT(File Allocation Table文件分派表)区;4.DIR(Directory)根目录区,记录着根目录下每一个文件(目录)的起始单元,文件的属性等;5.DATA区是真正意义上的数据存储的地址,位于DIR区以后,占据硬盘上的大部份数据空间。

了解了硬盘数据的大体结构,今天咱们把重点放在mbr所在的扇区:主引导扇区。

主引导扇区包括:mbr,dpt和终止标志。

位于硬盘的0磁道0柱面1扇区,用diskman能够读出其中的内容,下面是一次操作的结果:表一:0 1 2 3 4 5 6 7 8 9 A B C D E F00000000 EB48 90D0 BC00 7CFB 5007 501F FCBE 1B7C00000010 BF1B 0650 57B9 E501 F3A4 CBBE BE07 B10400000020 382C 7C09 7515 83C6 10E2 F5CD 188B 148B00000030 EE83 C610 4974 1638 2C74 F6BE 1007 030200000040 8000 0080 68B6 7600 0008 FAEA 507C 000000000050 31C0 8ED8 8ED0 BC00 20FB A040 7C3C FF7400000060 0288 C252 BE81 7DE8 3F01 F6C2 8074 5FB4 00000070 41BB AA55 CD13 7256 81FB 55AA 7550 A041 00000080 7C84 C075 0583 E101 7444 B448 BE00 7FC7 00000090 0442 00CD 1372 3766 8B4C 10BE 057C C644 000000A0 FF01 668B 1E44 7CC7 0410 00C7 4402 0100 000000B0 6689 5C08 C744 0600 7066 31C0 8944 0466 000000C0 8944 0CB4 42CD 1372 05BB 0070 EB7D B408 000000D0 CD13 730A F6C2 800F 84E8 00E9 8D00 BE05 000000E0 7CC6 44FF 0066 31C0 88F0 4066 8944 0431 000000F0 D288 CAC1 E202 88E8 88F4 4089 4408 31C0 00000100 88D0 C0E8 0266 8904 66A1 447C 6631 D266 00000110 F734 8854 0A66 31D2 66F7 7404 8854 0B89 00000120 440C 3B44 087D 3C8A 540D C0E2 068A 4C0A 00000130 FEC1 08D1 8A6C 0C5A 8A74 0BBB 0070 8EC3 00000140 31DB B801 02CD 1372 2A8C C38E 0648 7C60 00000150 1EB9 0001 8EDB 31F6 31FF FCF3 A51F 61FF 00000160 2642 7CBE 877D E840 00EB 0EBE 8C7D E838 00000170 00EB 06BE 967D E830 00BE 9B7D E82A 00EB 00000180 FE47 5255 4220 0047 656F 6D00 4861 726400000190 2044 6973 6B00 5265 6164 0020 4572 726F000001A0 7200 BB01 00B4 0ECD 10AC 3C00 75F4 C300000001B0 0000 0000 0000 0000 4CA6 4CA6 0000 8001000001C0 0100 0BFE 3FD8 3F00 0000 5A31 3500 0000000001D0 01D9 0FFE FFFF 9931 3500 04FF FB00 0000000001E0 0000 0000 0000 0000 0000 0000 0000 0000000001F0 0000 0000 0000 0000 0000 0000 0000 55AA这块10.2G(以下显示为9766MB,误差缘故不用我说明了吧?)的硬盘共分了四个区:分区结构如下:主引导扇区中前446字节--偏移地址从0000H-01BDH为mbr区,寄存着主引导程序,从上面的显示中,读者可能已经看出,那个硬盘以linux系统的grub为引导程序。

硬盘结构解析 和4KB硬盘的应用分析 及 簇、MBR、DBR、DPT介绍

硬盘结构解析 和4KB硬盘的应用分析 及 簇、MBR、DBR、DPT介绍

硬盘结构解析 和4KB硬盘的应用分析 及 簇、MBR、DBR、DPT介绍早期的硬盘和历史悠久的软盘可以简单地看作是由自中心按照固定的圆心角射出的一条条线分成扇区,每道扇区数相同。

那么,外圈磁道半径大,里圈磁道半径小,外圈与里圈扇区的面积自然会不一样。

不过,为了更好地读取数据,即使外圈扇区面积再大也只能和内圈扇区一样存放有限的字节数(512byte)。

这样一来,外圈的记录密度就要比内圈小,像wolf800说的那样,会浪费大量的存储空间。

如今的硬盘都使用ZBR(Zoned Bit Recording 分区域记录)技术,盘片表面从里向外划分为数个区域,不同区域的磁道扇区数目不同,同一区域内各磁道扇区数相同,盘片外圈区域磁道长扇区数目较多, 内圈区域磁道短扇区数目较少,大体实现了等密度,从而获得了更多的存储空间。

大多数产品划分了16个区域,最外圈的每磁道扇区数正好是最内圈的一倍(楼主说的373~746正是啦)。

这样的话,当磁盘主轴马达按一定角速度(每秒N转)旋转的时候,越往外,线速度越大,单位时间内读取的扇区数就越多,传输率就越高。

(是不是也可以稍微理解通常把系统盘数据放在磁盘最外圈的原因了~~)刚好在驱动中国看到了一张ZBR磁盘扇区结构示意图,很有点长跑跑道的感觉呢~硬盘的DOS管理结构1.磁道,扇区,柱面和磁头数硬盘最基本的组成部分是由坚硬金属材料制成的涂以磁性介质的盘片,不同容量硬盘的盘片数不等。

每个盘片有两面,都可记录信息。

盘片被分成许多扇形的区 域,每个区域叫一个扇区,每个扇区可存储128×2的N次方(N=0.1.2.3)字节信息。

在DOS中每扇区是128×2的2次方=512字节,盘片表 面上以盘片中心为圆心,不同半径的同心圆称为磁道。

硬盘中,不同盘片相同半径的磁道所组成的圆柱称为柱面。

磁道与柱面都是表示不同半径的圆,在许多场合, 磁道和柱面可以互换使用,我们知道,每个磁盘有两个面,每个面都有一个磁头,习惯用磁头号来区分。

最新硬盘分区表详解教学提纲

最新硬盘分区表详解教学提纲

硬盘分区表详解硬盘主引导扇区= 硬盘主引导记录(MBR)+ 硬盘分区表(DPT)----------------------------------------------------------------------------------------------------------------------物理位置:0面0道1扇区(clindyer 0, side 0, sector 1)大小:512字节其中:MBR 446字节(0000--01BD),DPT 64字节(01BE--01FD),结束标志2字节(55 AA)功能:MBR通过检查DPT分区信息引导系统跳转至DBR;读取: 使用NORTON DISKEDIT, 在OBJECT菜单中选择DRIVE——>PHYSICAL DISK-—HARD DISK,然后, 在OBJECT菜单中选择DISK PARTITION TABLE即可读取, 并使用TOOLS菜单中的WRITE OBJECT TO 选项存入指定文件备份;写入: 使用NORTON DISKEDIT, 在OBJECT菜单中选择DRIVE——>FLOOPY DISK, 选择备份的DPT文件, 然后使用TOOLS菜单中的WRITE OBJECT TO——>PHYSICAL SECTOR 选项写入001(clindyer 0, side 0, sector 1);详解:---------------------------------------------------------------------------------------------------------------------- 000H--08AH MBR启动程序(寻找开机分区)08BH--0D9H MBR启动字符串0DAH--1BCH 保留("0")1BEH--1FDH 硬盘分区表1FEH--1FFH 结束标志(55AA)活动分区主引导扇区(DBR)---------------------------------------------------------------------------------------------------------------------- 物理位置:1面0道1扇区(clindyer 0, side 1, sector 1)大小:FAT16 1扇区512字节FAT32 3扇区1536字节功能:包含机器CMOS等信息(0000--0059), 核对该信息并引导指定的系统文件, 如NTLDR 等;读取: 使用NORTON DISKEDIT, 在OBJECT菜单中选择DRIVE——>LOGICAL DISK-—DISK C,然后, 在OBJECT菜单中选择BOOT RECORD即可读取, 并使用TOOLS菜单中的WRITE OBJECT TO 选项存入指定文件备份;写入: 使用NORTON DISKEDIT, 在OBJECT菜单中选择DRIVE——>FLOOPY DISK, 选择备份的DBR文件, 然后使用TOOLS菜单中的WRITE OBJECT TO——>PHYSICAL SECTOR 选项写入011(clindyer 0, side 1, sector 1);详解:---------------------------------------------------------------------------------------------------------------------- 000H--002H 3 BYTE的跳转指令(去启动程序, 跳到03EH)003H--03DH BIOS参数区03EH--19DH DOS启动程序19EH--1E5H 开机字符串1E6H--1FDH 文件名(IO.SYS, MSDOS.SYS)1FEH--1FFH 结束标记(55AA)硬盘分区表(DPT)---------------------------------------------------------------------------------------------------------------------- 偏移地址字节数含义分析01BE 1 分区类型:00表示非活动分区:80表示活动分区;其他为无效分区。

硬盘(U盘、移动硬盘)MBR、DBR简介

硬盘(U盘、移动硬盘)MBR、DBR简介

硬盘(U盘、移动硬盘)MBR、DBR简介硬盘(U盘、移动硬盘)MBR、DBR简介(摘自无忧)一、几个概念BIOS(Basic Input/Output System)基本输入输出系统,全称是ROM-BIOS,是只读存储器基本输入/输出系统的简写,它实际是一组被固化到电脑中,为电脑提供最低级最直接的硬件控制的程序CMOS(Complementary Metal Oxide Semiconductor)意是指互补金属氧化物半导体,一种大规模应用于集成电路芯片制造的原料,在计算机领域,CMOS常指保存计算机基本启动信息(如日期、时间、启动设置等)的芯片。

CMOS 的功耗很低,计算机主板上一个纽扣电池就可以给它长时间地提供电力,即使系统掉电,信息也不会丢失。

而当主板电池供电不足时CMOS的信息会丢失,此时启动机器会有一些特殊的现象,如启动时提示 CMOS 参数丢失需重新设置,甚至机器黑屏,不能启动,更换主板上的纽扣电池即恢复正常。

有时人们会把CMOS和BIOS混称,其实CMOS是主板上的一块可读写的RAM芯片,是用来保存BIOS的硬件配置和用户对某些参数的设定。

而对CMOS中各项参数的设定要通过专门的程序,现在多数厂家将CMOS设置程序做到了BIOS芯片中,在开机时通过按下某个特定键就可进入CMOS设置程序而非常方便地对系统进行设置,因此这种CMOS设置又通常被叫做BIOS设置。

ESCD(Extended System Configuration Data)扩展系统配置数据,ESCD是系统BIOS用来与操作系统交换硬件配置信息的一种手段,这些数据被存放在CMOS(一小块特殊的RAM,由主板上的电池来供电)之中,通常ESCD数据只在系统硬件配置发生改变后才会更新扇区(Sector)硬盘划分的最小单位,一个扇区固定为 512 个字节(Byte)MBR(master boot record)即主引导记录,有时也称主引导扇区。

主引导扇区

主引导扇区

主引导扇区主引导扇区是计算机开机后访问硬盘时所必须要读取的首个扇区,它在硬盘上的三维地址为{(柱面,磁头,扇区)|(0,0,1)}。

主引导扇区主要由三部分组成:主引导记录MBR(Master Boot Record或者Main BootRecord)、硬盘分区表DPT(Disk PartitionTable)和结束标志字三大部分组成。

主引导扇区记录着硬盘本身的相关信息以及硬盘各个分区的大小及位置信息,是数据信息的重要入口。

如果它受到破坏,硬盘上的基本数据结构信息将会丢失,需要用繁琐的方式试探性的重建数据结构信息后才可能重新访问原先的数据。

主引导扇区内的信息是通过FDISK 写入的,它是低级格式化的产物,和操作系统没有任何关系(操作系统是建立在高级格式化的硬盘分区之上,是和一定的文件系统主引导扇区的结构位置内容0000H -00D9H 主引导记录代码区00DAH -01BDH 空闲区01BEH -01CDH 分区1结构信息01CEH -01DDH 分区2结构信息01DEH -01EDH 分区3结构信息01EEH -01FDH 分区4结构信息01FEH -01FFH 55AAH 主引导记录有效标志相联系的)。

对于硬盘而言,一个扇区可能的字节数为128×2n(n=0,1,2,3)。

大多情况下,取n=2,即一个扇区(sector)的大小为512字节。

主引导扇区的组成主引导记录(MBR)主引导记录中包含了硬盘的一系列参数和一段引导程序。

其中的硬盘引导程序的主要作用是检查分区表是否正确并且在系统硬件完成自检以后引导具有激活标志的分区上的操作系统,并将控制权交给启动程序。

MBR是由分区程序(如Fdisk)所产生的,它不依赖任何操作系统,而且硬盘引导程序也是可以改变的,从而能够实现多系统引导。

硬盘分区表(DPT)硬盘分区结构信息偏移长度(字节)意义00H1分区状态:00-->非活动分区;80-->活动分区;其它数值没有意义01H1分区起始磁头号(HEAD),用到全部8位02H2分区起始扇区号(SECTOR),占据02H的位0-5;该分区的起始磁柱号(CYLINDER),占据02H的位6-7和03H的全部8位04H1文件系统标志位05H1分区结束磁头号(HEAD),用到全部8位06H2分区结束扇区号(SECTOR),占据06H的位0-5;该分区的起始磁柱号(CYLINDER),占据06H的位6-7和07H的全部8位08H4分区起始绝对扇区0CH4分区总的扇区数硬盘分区表占据MBR扇区的64个字节(偏移01BEH--偏移01FDH),可以对四个分区的信息进行描述,其中每个分区的信息占据16个字节。

MBR、EBR、DBR是什么

MBR、EBR、DBR是什么

通常情况下可以这样描述这几个概念:MBR:为计算机启动后从可启动介质上首先装入内存并且执行的代码,通常用来解释分区结构。

以硬盘为例,通常为LBA的0扇区。

EBR:自MICROSOFT推出扩展分区的概念后,扩展分区就沿用了基本分区所采用的DPT 结构,为了加以区别,人们通常把扩展分区的分区表所在的扇区称为EBR、E MBR、扩展MBR或虚拟MBR.DBR:为操作系统进入文件系统以后可以访问的第一个扇区,通常用来解释文件系统,在UNIX类文件系统中,等同于SUPERBLOCK。

FAT文件系统原理一、硬盘的物理结构:硬盘存储数据是根据电、磁转换原理实现的。

硬盘由一个或几个表面镀有磁性物质的金属或玻璃等物质盘片以及盘片两面所安装的磁头和相应的控制电路组成(图1),其中盘片和磁头密封在无尘的金属壳中。

硬盘工作时,盘片以设计转速高速旋转,设置在盘片表面的磁头则在电路控制下径向移动到指定位置然后将数据存储或读取出来。

当系统向硬盘写入数据时,磁头中“写数据”电流产生磁场使盘片表面磁性物质状态发生改变,并在写电流磁场消失后仍能保持,这样数据就存储下来了;当系统从硬盘中读数据时,磁头经过盘片指定区域,盘片表面磁场使磁头产生感应电流或线圈阻抗产生变化,经相关电路处理后还原成数据。

因此只要能将盘片表面处理得更平滑、磁头设计得更精密以及尽量提高盘片旋转速度,就能造出容量更大、读写数据速度更快的硬盘。

这是因为盘片表面处理越平、转速越快就能越使磁头离盘片表面越近,提高读、写灵敏度和速度;磁头设计越小越精密就能使磁头在盘片上占用空间越小,使磁头在一张盘片上建立更多的磁道以存储更多的数据。

二、硬盘的逻辑结构。

硬盘由很多盘片(platter)组成,每个盘片的每个面都有一个读写磁头。

如果有N个盘片。

就有2N个面,对应2N个磁头(Heads),从0、1、2开始编号。

每个盘片被划分成若干个同心圆磁道(逻辑上的,是不可见的。

)每个盘片的划分规则通常是一样的。

MBR、EBR、DBR是什么非常有用的基本概念

MBR、EBR、DBR是什么非常有用的基本概念

通常情况下可以这样描述这几个概念:MBR:为计算机启动后从可启动介质上首先装入内存并且执行的代码,通常用来解释分区结构。

以硬盘为例,通常为LBA的0扇区。

EBR:自MICROSOFT推出扩展分区的概念后,扩展分区就沿用了基本分区所采用的DPT结构,为了加以区别,人们通常把扩展分区的分区表所在的扇区称为EBR、E MBR、扩展MBR或虚拟MBR.DBR:为操作系统进入文件系统以后可以访问的第一个扇区,通常用来解释文件系统,在UNIX类文件系统中,等同于SUPERBLOCK。

FAT文件系统原理一、硬盘的物理结构:硬盘存储数据是根据电、磁转换原理实现的。

硬盘由一个或几个表面镀有磁性物质的金属或玻璃等物质盘片以及盘片两面所安装的磁头和相应的控制电路组成(图1),其中盘片和磁头密封在无尘的金属壳中。

硬盘工作时,盘片以设计转速高速旋转,设置在盘片表面的磁头则在电路控制下径向移动到指定位置然后将数据存储或读取出来。

当系统向硬盘写入数据时,磁头中“写数据”电流产生磁场使盘片表面磁性物质状态发生改变,并在写电流磁场消失后仍能保持,这样数据就存储下来了;当系统从硬盘中读数据时,磁头经过盘片指定区域,盘片表面磁场使磁头产生感应电流或线圈阻抗产生变化,经相关电路处理后还原成数据。

因此只要能将盘片表面处理得更平滑、磁头设计得更精密以及尽量提高盘片旋转速度,就能造出容量更大、读写数据速度更快的硬盘。

这是因为盘片表面处理越平、转速越快就能越使磁头离盘片表面越近,提高读、写灵敏度和速度;磁头设计越小越精密就能使磁头在盘片上占用空间越小,使磁头在一张盘片上建立更多的磁道以存储更多的数据。

二、硬盘的逻辑结构。

硬盘由很多盘片(platter)组成,每个盘片的每个面都有一个读写磁头。

如果有N个盘片。

就有2N个面,对应2N个磁头(Heads),从0、1、2开始编号。

每个盘片被划分成若干个同心圆磁道(逻辑上的,是不可见的。

)每个盘片的划分规则通常是一样的。

MBR、EBR、DBR是什么非常有用的基本概念

MBR、EBR、DBR是什么非常有用的基本概念

通常情况下可以这样描述这几个概念:MBR:为计算机启动后从可启动介质上首先装入内存并且执行的代码,通常用来解释分区结构。

以硬盘为例,通常为LBA的0扇区。

EBR:自MICROSOFT推出扩展分区的概念后,扩展分区就沿用了基本分区所采用的DPT结构,为了加以区别,人们通常把扩展分区的分区表所在的扇区称为EBR、E MBR、扩展MBR或虚拟MBR.DBR:为操作系统进入文件系统以后可以访问的第一个扇区,通常用来解释文件系统,在UNIX类文件系统中,等同于SUPERBLOCK。

FAT文件系统原理一、硬盘的物理结构:硬盘存储数据是根据电、磁转换原理实现的。

硬盘由一个或几个表面镀有磁性物质的金属或玻璃等物质盘片以及盘片两面所安装的磁头和相应的控制电路组成(图1),其中盘片和磁头密封在无尘的金属壳中。

硬盘工作时,盘片以设计转速高速旋转,设置在盘片表面的磁头则在电路控制下径向移动到指定位置然后将数据存储或读取出来。

当系统向硬盘写入数据时,磁头中“写数据”电流产生磁场使盘片表面磁性物质状态发生改变,并在写电流磁场消失后仍能保持,这样数据就存储下来了;当系统从硬盘中读数据时,磁头经过盘片指定区域,盘片表面磁场使磁头产生感应电流或线圈阻抗产生变化,经相关电路处理后还原成数据。

因此只要能将盘片表面处理得更平滑、磁头设计得更精密以及尽量提高盘片旋转速度,就能造出容量更大、读写数据速度更快的硬盘。

这是因为盘片表面处理越平、转速越快就能越使磁头离盘片表面越近,提高读、写灵敏度和速度;磁头设计越小越精密就能使磁头在盘片上占用空间越小,使磁头在一张盘片上建立更多的磁道以存储更多的数据。

二、硬盘的逻辑结构。

硬盘由很多盘片(platter)组成,每个盘片的每个面都有一个读写磁头。

如果有N个盘片。

就有2N个面,对应2N个磁头(Heads),从0、1、2开始编号。

每个盘片被划分成若干个同心圆磁道(逻辑上的,是不可见的。

)每个盘片的划分规则通常是一样的。

硬盘主引导记录(MBR)+ 硬盘分区表(DPT) 详解

硬盘主引导记录(MBR)+ 硬盘分区表(DPT) 详解

硬盘主引导记录(MBR)+ 硬盘分区表(DPT)详解硬盘主引导扇区 = 硬盘主引导记录(MBR)+ 硬盘分区表(DPT)--------------------------------------------------------------物理位置:0面0道1扇区(clindyer 0, side 0, sector 1)大小: 512字节其中:MBR 446字节(0000--01BD),DPT 64字节(01BE--01FD),结束标志2字节(55 AA)功能:MBR通过检查DPT分区信息引导系统跳转至DBR;读取: 使用NORTON DISKEDIT, 在OBJECT菜单中选择DRIVE——>PHYSICAL DISK-—HARD DISK,然后, 在OBJECT菜单中选择DISK PARTITION TABLE即可读取, 并使用TOOLS菜单中的WRITE OBJECT TO 选项存入指定文件备份;写入: 使用NORTON DISKEDIT, 在OBJECT菜单中选择DRIVE——>FLOOPY DISK, 选择备份的DPT文件, 然后使用TOOLS菜单中的WRITE OBJECT TO——>PHYSICAL SECTOR 选项写入001(clindyer 0, side 0, sector 1);详解:000H--08AH MBR启动程序(寻找开机分区)08BH--0D9H MBR启动字符串0DAH--1BCH保留("0")1BEH--1FDH 硬盘分区表1FEH--1FFH结束标志(55AA)活动分区主引导扇区(DBR)--------------------------物理位置:1面0道1扇区(clindyer 0, side 1, sector 1)大小: FAT16 1扇区 512字节FAT32 3扇区 1536字节功能:包含机器CMOS等信息(0000--0059), 核对该信息并引导指定的系统文件, 如NTLDR 等;读取: 使用NORTON DISKEDIT, 在OBJECT菜单中选择DRIVE——>LOGICALDISK-—DISK C,然后, 在OBJECT菜单中选择BOOT RECORD即可读取, 并使用TOOLS 菜单中的WRITE OBJECT TO选项存入指定文件备份;写入: 使用NORTON DISKEDIT, 在OBJECT菜单中选择DRIVE——>FLOOPY DISK, 选择备份的DBR文件, 然后使用TOOLS菜单中的WRITE OBJECT TO——>PHYSICAL SECTOR 选项写入011(clindyer 0, side 1, sector 1);详解:000H--002H 3 BYTE的跳转指令(去启动程序, 跳到03EH)003H--03DH BIOS参数区03EH--19DH DOS启动程序19EH--1E5H开机字符串1E6H--1FDH文件名(IO.SYS, MSDOS.SYS)1FEH--1FFH 结束标记(55AA)硬盘分区表(DPT)---------------------偏移地址字节数含义分析01BE 1 分区类型:00表示非活动分区:80表示活动分区;其他为无效分区。

硬盘结构介绍--mbr及分区

硬盘结构介绍--mbr及分区

硬盘结构介绍--mbr及分区硬盘刚买来使⽤时需要经过分区然后格式化才能够使⽤,硬盘经过分区后,分区软件便会写⼀个主引导扇区,这个扇区位于硬盘的 0 磁道 0柱⾯第1扇区(即0区)(注意:该扇区为隐含扇区,0道0⾯的全部扇区均为隐含扇区,普通的磁盘访问命令⽆法直接访问,同时该磁道的其他62个扇区也是隐含的,因此有引多系统引导程序就把⾃⼰的程序代码放在其他隐含扇区,有些引导区病毒也把⾃⼰的代码放在其他隐含扇区。

)。

在该扇区512字节中,硬盘的主引导记录区MBR (Main Boot Record)只占⽤了前 446 个字节(偏移 000H-- 偏移 1BDH ),另外的 64个字节(偏移 1BEH-- 偏移 1FDH )是硬盘分区表DPT(Disk Partition Table ) , 最后两个字节 "55 AA" (偏移 1FEH-偏移 1FFH )是分区结束标志。

主引导记录中包含了硬盘的⼀系列参数和⼀段引导程序。

其中的硬盘引导程序的主要作⽤是检查分区表是否正确并且在系统硬件完成⾃检以后引导具有活动标志(80H)的分区上的操作系统,并将控制权交给活动盘上的操作系统的启动程序。

其具体结构如下:MBR的产⽣不依赖哪⼀种操作系统,⽽且硬盘引导程序也是可以改变的,从⽽实现多系统共存。

主引导区的引导程序也可以全部为0,只是此时的硬盘不能引导起动。

不论硬盘所装的什么样的操作系统,其MBR区的分区表的结构是⼀样的,引导程序在WINDOWS操作系统下基本⼀样,MSDOS6.22和MSDOS7.0不⼀样,其内容有所改变,但⼯作原理是⼀样的。

如果你的电脑C盘安装的是NT操作系统时,其MBR 区的引导程序就会和WIN98的不同。

每个硬盘都只能有⼀个主引导区,扩展分区表可以有多个。

⽽当我们⽤分区软件建⽴好逻辑盘之后,需要对其进⾏格式化,对于不同的系统节构其格式也不同,对于Dos/Win操作系统,格式化会于分区逻辑⾸扇区建⽴引导扇区,其后是⽂件分配表(FAT),再后就是⽬录表和数据区了。

MBR和分区表DPT

MBR和分区表DPT

MBR和分区表DPT零磁道,MBR和分区表DPT:零磁道处于硬盘上一个非常重要的位置,硬盘的主引导记录区(MBR)就在这个位置上。

零磁道一旦受损,将使硬盘的主引导程序和分区表信息遭到严重破坏,从而导致硬盘无法自举。

MBR:当通过Fdisk或其他分区工具对硬盘进行分区时,分区软件会在硬盘0柱面0磁头1扇区建立MBR(Main Boot Record),即为主引导记录区,位于整个硬盘的第一个扇区,在总共512字节的主引导扇区中,主引导程序只占用了其中的446个字节,64个字节交给了DPT(DiskPartion Table硬盘分区表),最后两个字节(55 AA)属于分区结束标志。

主引导程序的作用就是检查分区表是否正确以及确定哪个分区为引导分区,并在程序结束时把该分区的启动程序调入内存加以执行。

DPT:分区表DPT(Disk Partion Table),把硬盘空间划分为几个独立的连续的存储空间,也就是分区。

分区表DPT则以80H或00H为开始标志,以55AAH为结束标志。

分区表决定了硬盘中的分区数量,每个分区的起始及终止扇区、大小以及是否为活动分区等。

通过破坏DPT,即可轻易地损毁硬盘分区信息。

分区表分为主分区表和扩展分区表。

主分区表位于硬盘MBR的后部。

从1BEH字节开始,共占用64个字节,包含四个分区表项,这也就是为什么一个磁盘的主分区和扩展分区之和总共只能有四个的原因。

每个分区表项的长度为16个字节,它包含一个分区的引导标志、系统标志、起始和结尾的柱面号、扇区号、磁头号以及本分区前面的扇区数和本分区所占用的扇区数。

其中”引导标志”表明此分区是否可引导,即是否活动分区。

当引导标志为”80″时,此分区为活动分区;”系统标志”决定了该分区的类型,如”06″为DOSFAT16分区,”0b”为DOSFAT32分,”63″为UNIX分区等;起始和结尾的柱面号、扇区号、磁头号指明了该分区的起始和终止位置。

分区表项的16个字节分配如下:第1字节:引导标志第2字节:起始磁头第3字节:低6位为起始扇区,高2位与第4字节为起始柱面第4字节:起始柱面的低8位第5字节:系统标志第6字节:终止磁头第7字节:低6位为终止扇区,高2位与第8字节为终止柱面第8字节:终止柱面的低8位第9-12字节:该分区前的扇区数目第13-16字节:该分区占用的扇区数目扩展分区作为一个主分区占用了主分区表的一个表项。

硬盘主引导扇区MBRDPTDBRBPB详解

硬盘主引导扇区MBRDPTDBRBPB详解
一、FAT32 的分区引导扇区
为了使加载文件的操作更加灵活,加上 FAT32 文件系统采用"活动"
的 FDT 表,,同时考虑到引导程序的代码量和为今后发展保留适当的余量,FAT32 文
件系统分区引导扇区占据了 6 个扇区,只有前 3 个扇区作为系统的分区引导扇区,其
余 3 个扇区保留暂未使用。分区引导扇区对于操作系统的启动和磁盘文件的访问具有至 关重要的作用;引导程序代码的损坏将导致操作系统不能正常启动,磁盘读写参数的破 坏将造成存储在磁盘上的文件不能正常读写。
硬盘分区表分为四小部分,每一小部分表示一个分区的信息,占 16 字节。在这里我们 可以看出,硬盘的总分区数为什么不能大于 4。其中可激活分区数不得大于 3,扩展分 区数不得大于 1,当前活动分区数必须小于等于 1。
分区表的每一分区的第 0 个字节是自举标志,其值为 80H 时,表示该分区是当前 活动分区,可引导,其值为 00H 时,表示该分区不可引导。
扩展分区中的每个逻辑驱动器都存在一个类似于 MBR 的扩展引导记录(Extended Boot Record,EBR)(图四)。
扩展引导记录包括一个扩展分区表和扇区结束标志 55AA。一个逻辑驱动器中的引 导扇区一般位于相对扇区 32 或 63。
如果磁盘上没有扩展分区,那么就不会有扩展引导记录和逻辑 驱动器。第一个逻辑驱动器的扩展分区表中的第一项指向它自身的引导扇区;第二项指 向下一个逻辑驱动器的 EBR,如果不存在进一步的逻辑驱动器,第二项就不会使用,而 被记录成一系列零。如果有附加的逻辑驱动器,那么第二个逻辑驱动器的扩展分区表的 第一项会指向它本身的引导扇区,第二个逻辑驱动器的扩展分区表的第二项指向下一个 逻辑驱动器的 EBR。扩展分区表的第三项和第四项永远都不会被使用。

MBR、DBR、DPT详解

MBR、DBR、DPT详解
(clindyer 0, side 1, sector 1);
详解:
000H--002H 3 BYTE的跳转指令(去启动程序, 跳到03EH)
003H--03DH BIOS参数区
03EH--19DH DOS启动程序
19EH--1E5H 开机字符串
1E6H--1FDH 文件名(IO.SYS, MSDOS.SYS)
功能:MBR通过检查DPT分区信息引导系统跳转至DBR;
读取: 使用NORTON DISKEDIT, 在OBJECT菜单中选择DRIVE——>PHYSICAL DISK-—HARD DISK,
然后, 在OBJECT菜单中选择DISK PARTITION TABLE即可读取, 并使用TOOLS菜单中的WRITE OBJECT TO 选项存入指定文件备份;
物理位置:1面0道1扇区(clindyer 0, side 1, sector 1)
大小: FAT16 1扇区 512字节
FAT32 3扇区 1536字节
功能:包含机器CMOS等信息(0000--0059), 核对该信息并引导指定的系统文件, 如NTLDR等;
读取: 使用NORTON DISKEDIT, 在OBJECT菜单中选择DRIVE——>LOGICAL DISK-—DISK C,
逻辑驱动器
-----------
扩展分区的信息位于以上所示的硬盘分区表(DPT)中, 而逻辑驱动器的信息则位于扩展分区的
起始扇区, 即该分区的起始地址(面/扇区/磁道)所对应的扇区, 该扇区中的信息与硬盘主引导
扇区的区别是不包含MBR, 而16字节的分区信息则表示的是逻辑驱动器的起始和结束地址等.

硬盘分区的相关概念(主分区,扩展分区,逻辑分区,MBR,DBR)

硬盘分区的相关概念(主分区,扩展分区,逻辑分区,MBR,DBR)

硬盘分区的相关概念(主分区,扩展分区,逻辑分区,MBR,DBR)简介:指定⽂件系统格式前需要分区,分区概念,对理解操作系统启动很有必要,分区是硬盘被系统使⽤的前置条件。

记录并且归纳了⼀下,可能存在Windows和Linux系统⼀些概念的混淆,欢迎指正1,系统启动过程简介BIOS在知道了哪些硬件基本信息后开始读硬盘,⾸先读取MBR(Master Boot Record,即主引导记录)然后从MBR中了解操作的位置从⽽加载操作系统。

⽽这个MBR的内容是在分区操作的时候确定的。

MBR的在硬盘的位置和格式是固定的(即硬盘上第0磁道的第⼀个扇区)。

补充内容:硬盘⾸扇区:即主引导扇区主引导扇区:每块硬盘(不是每个分区)都只有⼀个主引导扇区,即该硬盘0号柱⾯,0号磁头的第⼀个扇区,⼤⼩为512字节。

主引导扇区包含的MBR(硬盘主引导记MBR占446bytes)、DPT(分区表DP占64bytes)、MN(硬盘有效标志Magic Numbe占2byte。

AA和55被称为幻数(Magic Number),BOIS读取MBR的时候总是检查最后是不是有这两个幻数,如果没有就被认为是⼀个没有被分区的硬盘),这3个区域是操作系统⽆关的,在每块硬盘上都存在;MBR是⼀段可执⾏程序,由各个操作系统写⼊不同的代码。

MBR的存储空间限制为446字节,MBR所做的唯⼀的事情就是装载第⼆引导装载程序。

Windows产⽣的MBR装载运⾏PBR;GRUB产⽣的MBR装载运⾏grldrMBR:它是⼀段程序,长度为446字节,作⽤是加载bootloader的。

主引导扇区2,为什么要分区2.1,对数据隔离,⽅便格式化和数据安全主要⽅⾯:系统需要重装⾸先系统分区需要进⾏格式化,所在分区数据需要提前处理次要⽅⾯:读取越频繁,磁盘越容易受损,把读写频繁的⽬录挂载到⼀个单独的分区关于Linux分区,⽐较赞成单独分区的列出来(按优先级排列):1.根⽬录(/),必须挂载到分区!2.家⽬录(/home):⾮常建议挂载的单独分区!3./SWAP(交换分区/虚拟内存):根据本机内存决定若本机实体内存较⼤,⽽且系统应⽤环境对内存需求不⾼(如本机内存有4G,⽽只是⽤于⽇常练习),可以不需要该分区。

我对硬盘MBR、DBR、BPB、FAT和FDT的理解

我对硬盘MBR、DBR、BPB、FAT和FDT的理解

我对硬盘MBR、DBR、BPB、FAT和FDT的理解硬盘存储数据是根据电、磁转换原理实现的。

硬盘由一个或几个表面镀有磁性物质的金属或玻璃等物质盘片以及盘片两面所安装的磁头和相应的控制电路组成(图1),其中盘片和磁头密封在无尘的金属壳中。

硬盘工作时,盘片以设计转速高速旋转,设置在盘片表面的磁头则在电路控制下径向移动到指定位置然后将数据存储或读取出来。

当系统向硬盘写入数据时,磁头中“写数据”电流产生磁场使盘片表面磁性物质状态发生改变,并在写电流磁场消失后仍能保持,这样数据就存储下来了;当系统从硬盘中读数据时,磁头经过盘片指定区域,盘片表面磁场使磁头产生感应电流或线圈阻抗产生变化,经相关电路处理后还原成数据。

因此只要能将盘片表面处理得更平滑、磁头设计得更精密以及尽量提高盘片旋转速度,就能造出容量更大、读写数据速度更快的硬盘。

这是因为盘片表面处理越平、转速越快就能越使磁头离盘片表面越近,提高读、写灵敏度和速度;磁头设计越小越精密就能使磁头在盘片上占用空间越小,使磁头在一张盘片上建立更多的磁道以存储更多的数据。

硬盘由很多盘片(platter)组成,每个盘片的每个面都有一个读写磁头。

如果有N个盘片。

就有2N个面,对应2N个磁头(Heads),从0、1、2开始编号。

每个盘片被划分成若干个同心圆磁道(逻辑上的,是不可见的。

)每个盘片的划分规则通常是一样的。

这样每个盘片的半径均为固定值R的同心圆再逻辑上形成了一个以电机主轴为轴的柱面(Cylinders),从外至里编号为0、1、2……每个盘片上的每个磁道又被划分为几十个扇区(Sector),通常的容量是512byte,并按照一定规则编号为1、2、3……形成Cylinders×Heads×Sector个扇区。

这三个参数即是硬盘的物理参数。

[摘自:《FAT文件系统原理》] 以下为我的理解(gliethttp)Cylinders柱面个数为同心不同径的磁道个数Heads磁头个数为一个存放Cylinders个磁道的存储介质表面的面数Sector就是一个磁道上的扇区个数所以Cylinders×Heads×Sector就是这个物理硬盘的扇区总数.MBR->DPT主分区1-->起始扇区DBR[包括BPB和扩展BPB]-->FAT1-->FAT2-->FDT-->数据区主分区2-->下一个扩展分区信息描述主分区3主分区4MBR-->位于绝对的第0扇区MBR的引导程序占了其中的前446个,紧接着的后64个字节是硬盘分区表DPT,最后2个字节是"55 AA",为磁盘有效结尾标志值[0x000~0x1BD]存放MBR--对于pc电脑bios执行完自举之后,会将cpu控制权交给此间的最大446个字节的loader程序[0x1BE~0x1FD]存放MBR--DPT硬盘分区表,每16个字节描述一个主分区,根据分区类型字节域,我们可以知道该分区类型所以pc上主分区最多只能有4个.(注:DPT中对于>1字节的组合类型数据的存储,按小端模式[little endian]存储)几个常见的分区类型值:0x01 --- FAT320x04 --- FAT16<32M0x05 --- Extended(扩展分区)0x06 --- FAT160x07 --- NTFS0x0B --- WIN95 FAT320x0C --- WIN95 FAT320x0E --- WIN95 FAT160x0F --- WIN95 Extended>8GB0x11 --- Hidden FAT120x14 --- Hidden FAT16<32GB0x16 --- Hidden FAT160x17 --- Hidden NTFS0x1B --- Hidden FAT320x82 --- Linux swap0x83 --- Linux0x85 --- Linux extended0xA6 --- Open BSDpc执行完bios之后,将cpu控制权交给MBR的前446个字节的loader程序,位于MBR中的loader程序会加载活动主分区对应的DBR区,即—操作系统启动程序,之后MBR将cpu控制权交给DBR,所以DBR 的第1个扇区的前3个字节必须对应x86的跳转指令”E8 58 90”,该指令负责跳过接下来的几个不可执行的字节(BPB BIOS参数记录表和扩展BPB),跳到操作系统引导代码部分。

主引导扇区(MBR),分区表(DPT)及活动分区(DBR)

主引导扇区(MBR),分区表(DPT)及活动分区(DBR)

主引导扇区(MBR),分区表(DPT)及活动分区(DBR)主引导扇区:硬盘的0柱⾯、0磁头、1扇区(也叫主引导记录MBR),⼤⼩为512Byte。

分区表(DPT):位于主引导分区,从偏移01BEH开始到偏移01FDH结束的64字节。

活动分区DBR:DBR(DOS BOOT RECORD,原意为DOS引导记录),位于柱⾯0,磁头1,扇区1(操作系统可以访问的第⼀个扇区),即逻辑扇区0。

DBR分为两部分:DOS引导程序和BPB(BIOS参数块)⼀、硬盘的0柱⾯、0磁头、1扇区称为主引导扇区(也叫主引导记录MBR),该记录占⽤512个字节,它⽤于硬盘启动时将系统控制权转给⽤户指定的、在分区表中登记了某个操作系统分区。

MBR的内容是在硬盘分区时由分区软件(如FDISK)写⼊该扇区的,MBR不属于任何⼀个操作系统,不随操作系统的不同⽽不同,即使不同,MBR也不会夹带操作系统的性质,具有公共引导的特性。

但安装某些多重引导功能的软件或LINUX的LILO时有可能改写它;它先于所有的操作系统被调⼊内存并发挥作⽤,然后才将控制权交给活动主分区内的操作系统。

MBR由三部分构成:1.主引导程序代码,占446字节2.硬盘分区表DPT,占64字节3.主引导扇区结束标志AA55H标准 MBR 结构地址描述长度(字节)Hex Oct Dec0000 0000 0 代码区 440(最⼤ 446)01B8 0670 440 选⽤软盘标志 401BC 0674 444 ⼀般为空值; 0x0000 201BE 0676 446 标准 MBR 分区表规划(四个16 byte的主分区表⼊⼝) 6401FE 0776 510 55h MBR 有效标志:0xAA55 201FF 0777 511 AAhMBR, 总⼤⼩: 446 + 64 + 2 = 512⼆、硬盘的主引导程序代码是从偏移0000H开始到偏移01BDH结束的446字节;主引导程序代码包括⼀⼩段执⾏代码。

磁盘数据结构笔记

磁盘数据结构笔记

1、 低级格式化:对硬盘划分磁道和扇区,在扇区的地址域上标注地址信息( CHS 物理地址),并剔岀坏磁道。

2、 分区:允许整个物理硬盘在逻辑上划分最多4个主分区,如果想划分更多的分区,可将1个主分区划分成扩展分区,然后再将扩展分区划分成一个或多个逻辑盘。

3、 MBR (Master Boot Record ):硬盘上建立分区表的同时建立,排在最前边的一个扇区(可存放512字节)里,存放着用于硬盘正常工作的很重要代码,这些代码分三个部分:一是用于启动硬盘的一些引导指令(即主引导程序 MBR ,446字节);二是分区表(DPT ,64字节);三是硬盘正常的标志55AA 。

4、 EBR ( Extended Boot Record )则是与 MBR 相对应的一个概念。

MBR 里有一个 DPT (Disk Partition T able,磁盘分区表)的区域,它一共是64字节,按每16个字节一个分区表项,它最多只能容纳 4个分区。

在MBR 的DPT 里说明的分区称为主分区,如果想分更多的分区, 微软的解决方案:在 MBR 里放不多于三个主分区(通常一个),剩下的分区则由EBR 扩展分区引导记录(与MBR 结构相像的分区结构)里说明。

一个EBR 不够用时,可以增加另一个 EBR ,如此像一根根链条一样地接下去。

5、 DBR (DOS Boot Record ),就是每个逻辑盘的最前的一个扇区里,用于引导和加载相应文件管理系统的一些系统代码。

也称作操作系统引导扇区(OBR )MBR 446空闲同左引导 扇区数据S EBR扩展分区引导 扇区数据DPT 64DBR° P1DBR55AA55AA55AA 55AAEBR扩展 分区21引导 扇区55/AA 55AA数据Start Sectors第一分区表 第二分区表 第三分区表 第四分区表几个概念:Partitionl系统保留Extended Partition逻辑E 盘磁盘寻址:1、 物理寻址 CHS (柱面 磁头 扇区)2、 逻辑寻址LBAPartition2 C 盘M B R:主引导记录(C H S0柱0磁头1扇区):引导代码446字节(白字为PE启动标志):分区表64个字节:结束标志55A A 分区表:扇区倒数第五行,倒数第二个字节开始,64个字节引导标志:表示活动分区;表示非活动分区。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DIR是DIRECTORY即根目录区的简写,根目录区存储了文件系统的根目录中的文件或者目录的信息(包括文件的名字,大小,所在的磁盘空间等等),FAT12,FAT16的DIR紧接在第二FAT表之后,而FAT32的根目录区可以在分区的任何一个簇。
MFT(Master File Table)是NTFS中存储有关文件的各种信息的数据结构,包括文件的大小,时间,所占据的数据空间等等。
以FAT32为例,FAT32分区的的0-2扇区为FAT32文件系统的DBR即引导扇区,3-5扇区为0-2扇区的备份。6-31扇区为空,32扇区开始为第一个FAT表,FAT表的大小与硬盘的分区的大小有关。随后是第2个FAT表,剩余的空间都是实际的文件所占用的,包括目录和文件。FAT32文件系统的根目录并不一定是数据区的第一个簇,它可以位于数据区的任何一个簇,这也是FAT32的根目录大小不在受255个文件限制的原因,这也是FAT32的文件名可以支持长文件名的原因之一。
簇,是文件系统中最小的数据存储单元,由若干个连续的扇区组成,硬盘的扇区的大小是512字节(几乎是用于所有的硬盘),也就是既是一个字节的文件也要分配给它1个簇的空间,剩余的空间都被浪费了,簇越小,那么对小文件的存储的效率越高,簇越大,文件访问的效率高,但是浪费空间比较严重。
FAT(file allocation table)即文件分配表,记录了分区中簇的的使用情况,FAT表的大小与硬盘的分区的大小有关,为了数据安全起见,FAT一般做两个, 二FAT为第一FAT的备份,用于FAT12,FAT16,和FAT32文件系统。
主分区表位于硬盘MBR的后部。从1BEH字节开始,共占用64个字节,包含四个分区表项,这也就是为什么一个磁盘的主分区和扩展分区之和总共只能有四个的原因。每个分区表项的长度为16个字节,它包含一个分区的引导标志、系统标志、起始和结尾的柱面号、扇区号、磁头号以及本分区前面的扇区数和本分区所占用的扇区数。其中”引导标志”表明此分区是可引导,即是否活动分区。当引导标志为”80″时,此分区为活动分区;”系统标志”决定了该分区的类型,如”06″为DOS FAT16分区,”0b”为DOS FAT32分,”63″为UNIX分区等;起始和结尾的柱面号、扇区号、磁头号指明了该分区的起始和终止位置。
零磁道,MBR和分区表DPT:
零磁道处于硬盘上一个非常重要的位置,硬盘的主引导记录区(MBR)就在这个位置上。零磁道一旦受损,将使硬盘的主引导程序和分区表信息遭到严重破坏,从而导致硬盘无法自举。
MBR:
当通过Fdisk或其他分区工具对硬盘进行分区时,分区软件会在硬盘0柱面0磁头1扇区建立MBR(Main Boot Record),即为主引导记录区,位于整个硬盘的第一个扇区,在总共512字节的主引导扇区中,主引导程序只占用了其中的446个字节,64个字节交给了DPT(Disk Partition Table硬盘分区表),最后两个字节(55 AA)属于分区结束标志。主引导程序的作用就是检查分区表是否正确以及确定哪个分区为引导分区,并在程序结束时把该分区的启动程序调入内存加以执行。
第9-12字节: 该分区前的扇区数目
第13-16字节: 该分区占用的扇区数目
扩展分区作为一个主分区占用了主分区表的一个表项。在扩展分区起始位置所指示的扇区(即该分区的第一个扇区)中,包含有第一个逻辑分区表,同样从1BEH字节开始,每个分区表项占用16个字节。逻辑分区表一般包含两个分区表项,一个指向当前的逻辑分区,另一个则指向下一个扩展分区。下一个扩展分区的首扇区又包含了一个逻辑分区表,这样以此类推,扩展分区中就可以包含多个逻辑分区。为方便说明,我们把这一系列扩展分区和逻辑分区分别编号,主扩展分区为 1号扩展分区,第一个逻辑分区表所包含的两个分区分别标为 1号逻辑分区和 2号扩展分区,依次类推。
分区表项的16个字节分配如下:
第1字节: 引导标志
第2字节: 起始磁头
第3字节: 低6位为起始扇区, 高2位与第4字节为起始柱面
第4字节: 起始柱面的低8位
第5字节: 系统标志
第6字节: 终止磁头
第7字节: 低6位为终止扇区, 高2位与第8字节为终止柱面
第8字节: 终止柱面的低8位
分区表丢失,表现为硬盘原先所有分区或者部分分区没了,在磁盘管理器(winxp win2000 win2003)看到未分区的硬盘或者未分区的空间。有多种可能:
病毒,当年的cih病毒会用无效的数据填充分区表和第一个分区的数据,这种情况下,从前面介绍的分区的性质来看,c盘的数据很难恢复,而随后d盘和e盘等分区的实际数据并没有被破坏,而仅仅是分区表丢失而已,所以只要找到D盘和E盘等分区的正确的起始和结束位置,很容易恢复。
DPT:
分区表DPT(Disk Partition Table),把硬盘空间划分为几个独立的连续的存储空间,也就是分区。分区表DPT则以80H或00H为开始标志,以55AAH为结束标志。分区表决定了硬盘中的分区数量,每个分区的起始及终止扇区、大小以及是否为活动分区等。
通过破坏DPT,即可轻易地损毁硬盘分区信息。分区表分为主分区表和扩展分区表。
主分区表中的分区是主分区,而扩展分区表中的是逻辑分区,并且只能存在一个扩展分区。
FS即文件系统,位于分区之内,用于管理分区中文件的存储以及各种信息,包括文件名字,大小,时间,实际占用的磁盘空间等。windows 目前常用的文件系统包括FAT12,FAT16,FAT32和NTFS系统。
DBR(Dos Boot Record)是*作系统引导记录区。它位于硬盘的每个分区的第一个扇区,是*作系统可以直接访问的第一个扇区,它一般包括一个位于该分区的*作系统的引导程序和相关的分区参数记录表。
重新分区,使用fdisk对磁盘重新划分空间分布,那么原来的分区表被新的分区表取代,这个时候,同样是原来分区的数据没有损坏,仅仅是分区表指向了不正确的位置。
相关文档
最新文档