最新初一数学知识点及例题讲解
七年级上册数学知识点讲解
七年级上册数学知识点讲解一、有理数。
1. 有理数的概念。
- 同学们。
有理数就像是数学世界里一群很有规矩的数。
简单来说呢,整数和分数统称为有理数。
整数就像我们平常数的数,像 - 3、 - 2、 - 1、0、1、2、3等等,这些都是整数。
分数呢,就是像(1)/(2)、(3)/(4)这样的数,还有像 - (2)/(3)这种带负号的分数也都是有理数哦。
2. 数轴。
- 数轴就像是一条有魔法的直线。
它有三个重要的元素:原点、正方向和单位长度。
原点就是0所在的位置,就像数轴的中心。
正方向呢,一般我们规定向右是正方向,当然你也可以自己规定,不过按照惯例是向右啦。
单位长度就是数轴上每个小格子代表的长度。
有了数轴,我们就可以把有理数在上面表示出来啦。
比如说2,就在原点右边2个单位长度的地方; - 3就在原点左边3个单位长度的地方。
就像每个有理数都在数轴上有自己的小房子一样。
3. 相反数。
- 相反数啊,就像是一对双胞胎,不过一个是正数,一个是负数。
比如说3的相反数就是 - 3, - 5的相反数就是5。
它们在数轴上到原点的距离是一样的,就像在原点两边对称的位置。
而且特别的是,0的相反数就是0自己哦。
4. 绝对值。
- 绝对值这个概念有点像在数轴上看一个数到原点的距离。
不管这个数是正数还是负数,它的绝对值都是一个非负数。
比如说|3| = 3,| - 3|也等于3。
就好像我们只关心这个数离原点有多远,不管它在原点的左边还是右边。
二、整式的加减。
1. 单项式。
- 单项式就像是数学里的小单元。
它是由数字和字母的积组成的代数式,单独的一个数或者一个字母也算是单项式。
比如说3x, - 2y,5这些都是单项式。
其中数字因数叫做单项式的系数,像在3x里,3就是系数;字母的指数的和叫做单项式的次数,在3x里,x的次数是1,所以这个单项式的次数就是1。
2. 多项式。
- 多项式呢,就像是由好几个单项式组成的大家庭。
几个单项式的和叫做多项式。
比如说2x+3y - 1就是一个多项式。
(完整word版)最新初一数学知识点讲解习题附答案大全(绝对实用)(良心出品必属精品)
第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42. a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( ) A a>0,b>0 B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
七年级全册数学知识点加例题
七年级全册数学知识点加例题数学是一门必修科目,是我们在学习过程中必须掌握的知识之一。
对于初中生来说,数学知识点是学习数学的基础,今天我们来一起学习一下七年级全册数学知识点,并通过例题来帮助大家更好地掌握知识。
一、整数整数包括正整数、负整数和零,整数中有加法、减法、乘法和除法四种基本运算。
整数的绝对值是它与0的距离。
例题1:计算3 + (-5)的值。
解析:3 + (-5) = 3 - 5 = -2例题2:计算(-7) - 9的值。
解析:(-7) - 9 = -16二、分数分数是一种数值表示法,它表示的是一个整体被划分成若干部分中的一部分。
分数由分子和分母两部分组成。
例题1:将5/8化为小数。
解析:5 ÷ 8 = 0.625,因此,5/8 = 0.625例题2:将0.45化为分数。
解析:0.45 = 45/100 = 9/20三、代数式代数式是一种由数字、字母和运算符号组成的表达式,其中字母表示未知数或变量。
代数式中常用的运算符号有加、减、乘、除和指数。
例题1:计算3a + 2b + 4a - b的值。
解析:3a + 2b + 4a - b = 7a + b例题2:将3x²y³ - 4xy² + 2x²y² - xy化简。
解析:3x²y³ - 4xy² + 2x²y² - xy = 3x²y³ + 2x²y² - 4xy² - xy四、平面图形的认识平面图形是由相互连接的直线段和曲线段组成的图形。
包括三角形、矩形、正方形、长方形、圆等。
例题1:如图,ABCD是一个正方形,E是AD的中点。
求BE 的长度。
解析:连接AC,$\because$ AC = 2BE,$\therefore$ BE = $\frac{1}{2}$ AC另一种解法:作 $\Delta$ ABE, $\because$ AE =$\frac{1}{2}$ AD, $\therefore$ $\Delta$ AEB和 $\Delta$ ACD全等,$\therefore$ CD = 2BE,$\therefore$ BE = $\frac{1}{2}$ CD五、计算器使用计算器是一种常用的计算工具,通过使用计算器可以方便、快捷地进行数字运算。
初一数学必考的21个知识点,附考试重难点
初一数学必考的21个知识点,附考试重难点知识点一:整数的加减运算包括带符号整数的相加、相减,掌握正负数的加减法规则,注意进位借位等概念。
知识点二:小数的加减运算掌握小数点的对齐,小数的进位和退位规则,注意小数的加减运算要多注意精度。
知识点三:分数的加减运算掌握分数的相加、相减运算方法,注意通分和约分的规则。
知识点四:平方数与平方根了解平方数的概念和性质,掌握求平方数和平方根的方法。
知识点五:计算器的使用了解计算器的基本功能和使用方法,能够使用计算器进行简单的四则运算。
知识点六:倍数和公约数了解倍数和公约数的概念,能够求一个数的倍数和公约数。
知识点七:分数的乘除运算掌握分数的乘法和除法运算方法,注意化简分数和约分的规则。
知识点八:比例与比例关系了解比例和比例关系的概念,能够根据已知的比例关系求解未知量。
知识点九:几何图形的认识了解常见的几何图形,如直线、尖角、直角、钝角、平行线等,并能够辨认不同的几何图形。
知识点十:面积与周长的计算掌握常见几何图形的面积和周长的计算方法,如矩形、正方形、三角形等。
知识点十一:三角形的性质了解三角形的性质,包括三角形的内角和为180度等。
知识点十二:百分数的计算掌握百分数的转化和计算方法,能够将百分数转化为小数和分数,并进行相关运算。
知识点十三:二次根式的运算了解二次根式的概念和运算方法,包括二次根式的加减运算和化简。
知识点十四:代数式的计算能够进行代数式的加减乘除运算,了解代数式的计算规则。
知识点十五:一元一次方程掌握一元一次方程的基本概念和解法,能够根据题意列方程并求解。
知识点十六:数据的收集与整理了解数据的收集方法和整理方法,能够根据已有的数据绘制图表。
知识点十七:统计与概率了解统计与概率的基本概念,能够进行简单的统计和概率计算。
知识点十八:商与余数的计算掌握除法的基本概念和计算方法,能够计算商和余数。
知识点十九:直角坐标系与图形了解直角坐标系的概念和特点,能够根据已知的坐标绘制图形。
初一数学知识点(精选5篇)
初一数学知识点(精选5篇)第一章有理数1.整数。
(正整数、0、负整数)2.正数和负数。
3.有理数。
(整数和分数统称有理数)4.自然数。
(非负整数)5.相反数。
(只有符号不同的两个数互为相反数)6.绝对值。
(一个数的绝对值就是表示这个数的点与原点的距离)第二章代数式1.代数式。
(用运算符号把数或表示数的字母连接起来的式子)2.代数式的值。
(求代数式的值就是给代数式中的字母个代数式确定值)第三章实数1.平方根。
(如果一个数的平方等于a,那么这个数就叫做a 的平方根)2.算数平方根。
(一个非负数的正的平方根叫做算数平方根)3.立方根。
(如果一个数的立方等于a,那么这个数就叫做a 的立方根)4.实数。
(有理数和无理数)5.实数的性质。
(实数能进行减、乘、除、加、乘方运算)6.近似数。
(通过四舍五入得到的与精确数接近的数)第四章整式和分式1.整式。
(与有理数相对的数式叫整式)2.分式。
(整式的一部分)3.分式的值为零。
(分子为零且分母不等于零)4.分式的乘除。
(乘除法转化成乘法计算)5.分式的加减。
(异分母的分式加减转化成通分后求和)6.分式方程。
(分母里含有未知数的方程叫分式方程)初一数学知识点篇21.有理数:有理数包括正整数、0和负整数。
有理数可以用分数表示。
2.数轴:数轴是一条直线,它的上面写着从0开始连续不断的点。
数轴上的0是正负数的分界线。
3.相反数:如果两个数的和为0,那么这两个数是一对相反数。
相反数包括正数和负数。
4.绝对值:一个数的绝对值是它离0的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数。
5.代数式:用代数式表示出数量关系和变化规律的式子。
包括等式、不等式、方程、不等式、函数等。
6.整式:整式包括单项式和多项式。
单项式是由数字和字母组成,多项式是由几个单项式组成。
7.分式:分式包括分子和分母。
分子是由数字和字母组成,分母是由分式和整式组成。
8.方程:用方程表示出两个量之间的关系,并且这个方程是一个等式。
初中数学知识点总结加例题
初中数学知识点总结加例题一、数与代数。
(一)有理数。
1. 概念。
- 有理数包括整数和分数。
整数又分为正整数、0、负整数;分数分为正分数和负分数。
- 数轴:规定了原点、正方向和单位长度的直线。
- 相反数:绝对值相等,符号相反的两个数。
例如,3和 - 3互为相反数。
- 绝对值:一个数在数轴上所对应的点与原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
- 减法:减去一个数等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法:除以一个不等于0的数,等于乘这个数的倒数。
例题1:计算:(-2)+3 - (-5)解析:- 根据有理数的减法法则,(-2)+3 - (-5)=(-2)+3 + 5。
- 然后,按照有理数的加法法则,先计算(-2)+3 = 1。
- 计算1 + 5=6。
(二)实数。
1. 无理数:无限不循环小数,如√(2)、π等。
2. 实数的运算:实数的运算顺序是先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。
例题2:计算:√(4)+3 - π(精确到0.1)解析:- 先计算√(4)=2。
- 然后计算2 + 3-π=5-π。
- 因为π≈3.14,所以5 - π≈5 - 3.14 = 1.86≈1.9。
(三)代数式。
1. 整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
- 多项式:几个单项式的和叫做多项式。
- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
2. 整式的乘除。
- 同底数幂相乘,底数不变,指数相加,即a^m· a^n=a^m + n。
初一数学重点题型归纳
初一数学重点题型归纳一、有理数相关1. 概念辨析题- 比如说判断“一个数不是正数就是负数”,这就是典型的坑人题。
实际上还有0呢,0既不是正数也不是负数。
这种题就像是在玩文字游戏,一不小心就掉进去了。
- 还有像“绝对值等于它本身的数是正数”,这也是错的,因为0的绝对值也等于它本身呀。
做这种题就像当侦探,得把所有的可能性都考虑到。
2. 有理数运算题- 混合运算那是重点中的重点。
像“计算:- 2^2+(-3)×[(-4)^2 + 2]-(-3)^3÷(-1)^2023”。
这里面要特别注意运算顺序,先算乘方,再算乘除,最后算加减。
就像盖房子,得一层一层来,先打好乘方这个地基,不然肯定会算错。
而且符号也很容易出错,负号就像调皮的小怪兽,随时可能把你的答案变得面目全非。
二、整式相关1. 整式的加减- 化简求值题是常考的。
例如“已知A = 3x^2 - 2x+1,B = 5x^2 - 3x - 2,求A - B的值,其中x = 2”。
首先要正确地进行整式的减法运算,把同类项合并好。
这就好比整理玩具,相同类型的玩具(同类项)要放在一起。
然后再把x = 2代入求值。
要是同类项合并错了,那就像把玩具放错了盒子,最后答案肯定不对。
2. 单项式与多项式的概念题- 比如“判断单项式-(2π x^2y)/(3)的系数和次数”。
系数就是数字因数,这里是-(2π)/(3),次数是所有字母的指数和,x的指数是2,y的指数是1,所以次数是3。
这种题就像给单项式这个小生物做体检,要准确找出它的各种特征。
三、一元一次方程相关1. 解方程题- 像“解方程:3(x - 2)+1 = x-(2x - 1)”。
这一步一步去括号、移项、合并同类项、系数化为1,就像走迷宫一样,每一步都得小心。
去括号的时候,如果括号前面是负号,括号里的各项都要变号,就像进了一个魔法门,符号都会变。
移项的时候也要注意变号,这是很多同学容易出错的地方,就像搬家的时候东西不能搬错地方。
2024年人教版七年级数学知识点总结(2篇)
2024年人教版七年级数学知识点总结一、有理数1. 有理数的概念:有理数是可以表示为两个整数的比值的数。
2. 有理数的分类:整数、分数、零。
3. 有理数的表示形式及比较大小:分数、小数、整数。
二、整数1. 整数的概念:由整数可以用整数1表示,包含正整数、负整数和零。
2. 整数的运算:加法、减法、乘法、除法的运算法则。
3. 知识点:正负整数的加减法、乘法及除法的运算规则。
三、分数1. 分数的概念:分母为0的数除外,一个不能化为整数的数叫分数。
2. 分数的基本概念:分子、分母、真分数、假分数和带分数。
3. 分数的化简和等值分数:化简分数的方法,等分数的概念。
4. 分数的加减法:同分母的分数相加减,异分母的分数相加减。
5. 分数的乘法:分数与整数相乘,分数之间相乘。
6. 分数的除法:分数与整数相除,分数之间相除。
四、小数1. 小数的概念:有限小数和无限循环小数。
2. 小数的读法和写法:小数的读法,小数的书写规则。
3. 小数的四则运算:小数的加减法,小数的乘法,小数的除法。
4. 小数与分数的相互转换:小数转分数,分数转小数。
五、实数1. 实数的定义:有理数和无理数的统称。
2. 无理数的概念:不能表示为两个整数之比的数,如根号2,根号3等。
六、代数式与方程式1. 代数式的概念:用字母表示数的式子。
2. 方程式的概念:含有等号的代数式叫做方程式。
3. 一元一次方程的解:方程的根、方程的解集。
4. 一元一次方程的应用:利用一元一次方程解决实际问题。
七、比例与百分数1. 比例的概念:两个含有比的式子叫做比例。
2. 比例的性质:比例的基本性质、相等比例的性质。
3. 比例的计算:已知两个相等比例的三个量中的任意两个量,可以求出第三个量。
4. 百分数的概念:以百分号表示的数。
5. 百分数与分数、小数的相互转换。
6. 增长量和减少量的计算:已知原数和增长量(减少量)之比和增长率(减少率),可以求出增加量(减少量)。
八、平面图形的初步认识1. 二维图形的分类:几何图形、点、线段、直线、角、多边形、平行四边形、正方形、长方形、正三角形、等腰三角形。
初一数学题重点知识点
初一数学题重点知识点一、有理数的运算。
1. 计算:(-2)+3-(-5)。
- 解析:根据有理数的加减法法则,减去一个数等于加上这个数的相反数。
所以-(-5)= + 5,则原式=(-2)+3 + 5。
先计算(-2)+3 = 1,再计算1+5 = 6。
2. 计算:-2×(-3)÷(1)/(2)。
- 解析:根据有理数的乘除法法则,先计算乘法-2×(-3)=6,再计算除法6÷(1)/(2)=6×2 = 12。
3. 计算:(-2)^3+(-3)×[(-4)^2 - 2]-(-3)^2。
- 解析:- 先计算指数运算,(-2)^3=-8,(-4)^2 = 16,(-3)^2 = 9。
- 然后计算括号内的式子(-4)^2-2 = 16 - 2=14。
- 接着计算乘法-3×14=-42。
- 最后计算原式=-8+(-42)-9=-8 - 42-9=-59。
二、整式的加减。
4. 化简:3a + 2b - 5a - b。
- 解析:合并同类项,3a-5a=(3 - 5)a=-2a,2b - b=(2 - 1)b = b,所以化简结果为-2a + b。
5. 先化简,再求值:(2x^2 - 3xy+4y^2)-3(x^2 - xy+(5)/(3)y^2),其中x=-2,y = 1。
- 解析:- 先化简式子,(2x^2-3xy + 4y^2)-3(x^2-xy+(5)/(3)y^2)=2x^2-3xy + 4y^2-3x^2 + 3xy-5y^2=(2x^2-3x^2)+(-3xy + 3xy)+(4y^2-5y^2)=-x^2 - y^2。
- 当x = -2,y = 1时,代入-x^2-y^2=-(-2)^2-1^2=-4 - 1=-5。
6. 已知A = 3x^2+2x - 1,B=-x^2+3x+2,求A - B。
- 解析:A - B=(3x^2+2x - 1)-(-x^2+3x + 2)=3x^2+2x - 1+x^2-3x -2=(3x^2+x^2)+(2x-3x)+(-1 - 2)=4x^2 - x - 3。
七年级数学知识点归纳及例题
七年级数学知识点归纳及例题一、整数的概念与运算(一)整数的概念整数由正整数、0和负整数组成,用Z表示,其中0既不是正整数也不是负整数。
(二)整数的加减法整数的加法:两个正数相加或两个负数相加,结果为正;一个正数与一个负数相加,结果为负;0与任何整数相加,结果为原数。
整数的减法:减去一个整数相当于加上它的相反数。
(三)整数的乘除法整数的乘法:两个正数相乘或两个负数相乘,结果为正;一个正数与一个负数相乘,结果为负;0与任何整数相乘,结果为0。
整数的除法:整数除数除以非零整数被除数,所得商为整数,余数为0或者绝对值小于除数的绝对值。
例题:求a=-3,b=5的商和余数。
解:a÷b=-1···2。
所以商为-1,余数为2。
二、分数的概念与运算(一)分数的概念分数是用来表示除法的一种表达式。
分子为除数,分母为被除数。
(二)分数的加减乘除法分数的加减法:分母相同的分数相加减,只需将分子相加减即可;分母不同的分数相加减,先通分,再按分母相同的情况计算。
分数的乘法:分数相乘,分子相乘,分母相乘。
分数的除法:分数除分数,倒数相乘,分子分母分别乘以被除数的倒数。
(三)分数的化简与约分化简分数是指将分数以分子与分母的最大公约数除去。
约分分数是指将分数以分子与分母的最大公约数除去,使分数变为最简分数。
例题:将 $\frac{9}{12}$ 变为最简分数。
解:$\frac{9}{12}$ 的最大公约数为3,所以 $\frac{9}{12}$ 可化简为 $\frac{3}{4}$。
三、代数式(一)代数式的概念代数式是由数、字母及各种符号组成,可表示一切数或量的式子,如:$3x+5$。
(二)代数式的展开代数式的展开是指用运算法则把含有括号的代数式化为含有若干个项的代数式,比如:$(a+b)^2=a^2+2ab+b^2$。
(三)代数式的因式分解代数式的因式分解是指将代数式分解为若干个不可再分的乘积的形式,如 $12x^2+18x=6x(2x+3)$。
初一数学有理数知识点与经典例题
初一数学有理数知识点与经典例题一、有理数知识点。
(一)有理数的概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。
2. 有理数的分类。
- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。
1. 数轴的定义。
- 规定了原点、正方向和单位长度的直线叫做数轴。
2. 数轴上的点与有理数的关系。
- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。
一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。
(三)相反数。
1. 相反数的定义。
- 只有符号不同的两个数叫做互为相反数。
特别地,0的相反数是0。
例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。
2. 相反数的性质。
- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。
(四)绝对值。
1. 绝对值的定义。
- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
2. 绝对值的性质。
- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。
例如,|3| = 3,| - 3|=3,|0| = 0。
- 非负性:| a|≥s lant0。
(五)有理数的大小比较。
1. 法则。
- 正数大于0,0大于负数,正数大于负数。
- 两个负数,绝对值大的反而小。
例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。
2024初一数学知识点总结
2024初一数学知识点总结数学是一门系统性极强的学科,包含了广泛的知识点和应用。
以下是2024年初一数学知识点的总结:一、集合与运算1. 集合的概念和表示方法2. 元素与子集的关系3. 集合的并、交和差运算4. 集合的补运算二、数的整除与因数1. 整数的概念和分类2. 整数的绝对值和相反数3. 整数的加、减、乘、除运算4. 整数的整除关系和因数5. 最大公约数和最小公倍数的计算三、小数与分数1. 小数和分数的概念和表示方法2. 分数的加、减、乘、除运算3. 小数的四则运算4. 小数与分数的相互转化四、代数与方程1. 代数式的表示和化简2. 一元一次方程的解法3. 一元一次方程在实际问题中的应用4. 带有括号的一元一次方程的解法5. 一元一次方程组的解法五、平面几何1. 平面图形的分类和性质2. 直线、射线和线段的概念3. 角的概念和度量4. 三角形的分类和性质5. 三角形的周长和面积计算6. 平行线与转角定理的应用六、立体几何1. 空间图形的分类和性质2. 三棱柱和四棱柱的概念和计算3. 三角锥和四棱锥的概念和计算4. 立方体和正方体的概念和计算5. 圆柱体和圆锥体的概念和计算6. 球体的概念和计算七、统计与概率1. 数据的收集和整理方法2. 数据的图表表示和分析3. 数据的中心趋势和离散程度4. 事件的概念和样本空间5. 概率的计算和应用以上是2024年初一数学知识点的大致总结。
当然,具体课程安排和内容可能会因不同学校和地区而有所差异。
希望对你有所帮助!。
初一全册数学总复习
育华教育暑期培训初一数学总复习上册:第一章有理数一、知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:1、正数(position number):大于0的数叫做正数。
2、负数(negation number):在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点(origin);(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。
6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
掌握初一数学:重难点题型全面解析
掌握初一数学:重难点题型全面解析引言初一下册数学内容丰富,涵盖了相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组等多个重要知识点。
本文将对这些重难点题型进行详细解析,帮助学生更好地掌握初一数学。
一、相交线和平行线1.重难点解析:平行线的性质:平行线的性质是初中数学的重要内容,常以选择题和填空题形式出现。
1.例题:已知两条平行线被第三条直线所截,求对应角、内错角和同位角的关系。
2.解析:利用平行线的性质,找出对应角、内错角和同位角的相等关系。
2.平行线的判别方法:掌握平行线的判别方法是解题的关键。
1.例题:给出几组角度,判断哪些角度可以判定两条直线平行。
2.解析:根据平行线的判别方法,判断角度关系是否满足平行条件。
二、实数1.重难点解析:实数的概念和运算:实数的概念和运算是基础内容,常以计算题形式出现。
1.例题:计算给定实数的加减乘除。
2.解析:熟练掌握实数的运算规则,进行正确计算。
2.实数的分类:了解实数的分类及其性质。
1.例题:将给定的数分类为有理数或无理数。
2.解析:根据实数的定义和性质进行分类。
三、平面直角坐标系1.重难点解析:坐标系的基本概念:掌握平面直角坐标系的基本概念和应用。
1.例题:在坐标平面上标出给定点的坐标。
2.解析:理解坐标系的构成,正确标出点的位置。
2.函数图像的绘制:学会绘制简单函数的图像。
1.1.例题:绘制一次函数的图像。
2.解析:根据函数的解析式,确定函数图像的形状和位置。
四、二元一次方程组1.重难点解析:方程组的解法:掌握解二元一次方程组的方法,如代入法和加减法。
1.例题:解给定的二元一次方程组。
2.解析:选择合适的方法,逐步求解方程组。
2.应用题的解法:将实际问题转化为二元一次方程组进行求解。
1.例题:根据题意列出二元一次方程组并求解。
2.解析:理解题意,正确列出方程组并求解。
五、不等式和不等式组1.重难点解析:不等式的解法:掌握一元一次不等式和不等式组的解法。
2024年初一数学重点知识点归纳总结(2篇)
2024年初一数学重点知识点归纳总结一、整数运算1. 整数的概念及表示法2. 整数的比较和顺序关系3. 正整数和负整数的加法、减法和乘法运算4. 整数的乘法交换律和分配律5. 整数的乘方运算6. 整数的除法及其性质二、分数与小数1. 分数的概念及表示方法2. 分数的化简与比较3. 分数的加法、减法和乘法运算4. 分数的除法及其性质5. 分数的乘方运算6. 小数的概念及表示方法7. 小数与分数的相互转化8. 使用小数进行算术运算三、平方根与立方根1. 正整数的平方与立方2. 平方根与立方根的概念3. 平方根的性质4. 计算平方根与立方根的方法四、图形的认识1. 点、线、线段、射线的概念2. 角的概念及分类3. 直角、钝角、锐角的认识4. 三角形、四边形、多边形的概念及分类5. 线对称和点对称的概念五、长度、面积和体积1. 长度的认识及单位换算2. 面积的认识及常见图形的面积计算3. 体积的认识及立体图形的体积计算六、简单的代数表达式与方程1. 代数式与代数式的运算2. 一元一次方程的认识及解法七、数据的统计与图表1. 数据收集的方法2. 数据整理与总结3. 条形图、折线图和折线图的画法4. 数据的分析与比较八、简单的几何运动1. 直线运动和曲线运动的概念2. 速度的概念及速度的计算3. 速度与运动的关系4. 图表表示运动以上是____年初一数学重点知识点的归纳总结,希望对你有所帮助!2024年初一数学重点知识点归纳总结(2)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
初一数学下册知识点
初一数学下册知识点一、知识概述1. 《二元一次方程组》①基本定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
把两个含有相同未知数的二元一次方程联立在一起,就组成了一个二元一次方程组。
说实话,就像两个小伙伴一起合作,缺了谁都不行。
②重要程度:在初一数学下册里,这是很关键的内容。
它能帮我们解决很多实际问题,就像一个万能钥匙,能打开好多类型问题的大门。
③前置知识:要先掌握一元一次方程,因为二元一次方程组的很多解法思路和一元一次方程有关。
就好比你要先学会走,才能跑起来。
④应用价值:在生活中如果遇到需要同时根据两个不同条件去求两个未知量的情况,二元一次方程组就派上用场了。
像算两种不同价格的物品一共花多少钱、两种不同速度的交通工具赶路需要多久之类的。
二、知识体系①知识图谱:它是一元一次方程的延伸拓展,也是后续学习更多复杂方程、函数等知识的基础。
就像是一座桥,连接了之前学的基础和后面更深奥的知识。
②关联知识:和整式的运算有关,因为在解方程组过程中会运用到整式加减等知识。
好比做饭,整式运算就是准备食材的过程,二元一次方程组就是烹饪这些食材的锅。
③重难点分析:重难点在于消元这个方法的掌握。
就是把两个未知数变成一个未知数的关键一步,就像要把两条乱麻拧成一股绳一样不容易。
④考点分析:在考试中占比挺重的,常见考查方式是让你解方程组,或者根据实际问题列出方程组再求解。
三、详细讲解【理论概念类】①概念辨析:核心就是两个未知量,次数是一次,而且是以方程组合的形式存在,就像两个并肩作战的士兵。
②特征分析:主要特征就是每个方程里有两个未知数,未知数最高次是1次。
形象点说就像一个跷跷板两边重量都是单一形式的。
③分类说明:一般有普通的二元一次方程组,还有一些特殊形式的,比如果系数有一定规律或某些项的值特殊。
④应用范围:只要是涉及两个相关的未知数量并且关系符合一次函数形式的,都可以用。
但是遇到不是一次关系或者未知量之间关系特别复杂的时候就不适用了,就像小刀只能切小菜,遇到大骨头就不行了。
初一数学一元一次方程知识点总结与例题练习
第一讲: 一元一次方程一、牢记概念1. 方程的概念: 方程是指含有未知数的等式。
2. 方程的解使方程左右两边的值相等的未知数的值, 叫做方程的解。
反过来, 已知方程的解, 则代入后, 方程左右两边的值相等(可以用于验算)3. 一元一次方程当一个方程中值含有一个未知数(元), 并且未知数的次数都是1, 这样的方程叫做一元一次方程。
4.等式的性质:(1) 等式两边加(或减)同一个数字(或式子), 结果仍相等。
(2) 等式两边乘同一个数, 或除以同一个不为0的数, 结果仍相等。
5. 解一元一次方程的一般步骤(1) 去分母: 方程两边同时乘以各项分母的最小公倍数;(2) 去括号: 可先去小括号, 再去中括号, 最后去大括号(也可以按照自己擅长的方式去括号);(3) 移项: 把含有未知数的项都移到等号的一边(通常是左边), 其他的常数项移到右边;移项的时候, 把某一项移动到等号的另外一边, 需要将该项原先的符号改变, 即“+”变为“-”, “-”变为“+”;(4) 合并同类项: 将含未知数的项和常数项都合并起来, 使得方程化成一般式的形式:(5) 系数化为1: 方程两边都除以未知数的系数a, 得到方程的解二、例题分析例1判断下列哪些是一元一次方程?(1)3+1=4 (2)2+5>3(3)5-3(4)3X+1=4(5)2X+5>3(6)5X-3(7)4X+2Y=6(8)72x +6=13(9)x 35-3=2(10)78-23=21X-3X (11)2x -3X=7(12)xy+3y=8例2解下列一元一次方程(1)3(x-2)=2-5(x-2) (2) 2x -13 =x+22+1(3) 143321=---m m (4)52221+-=--y y y三、练习(1) 3(1)2(2)23x x x +-+=+ (2) 3(2)1(21)x x x -+=--(3) 2x -13 =x+22 +1 (4) 12131=--x(5) x x -=+38 (6) 12542.13-=-x x(7) 310.40.342x x -=+ (8) 3142125x x -+=-(9) 31257243y y +-=- (10) 576132x x -=-+四、作业一. 填空题1.下列方程中, 解为-2的方程是( )A.3x-2=2xB.4x-1=2x+3C.3x+1=2x-1D.2x-3=3x+22. 下列变形式中的移项正确的是( )A.从5+x=12得x=12+5 B 、从5x+8=4x 得5x —4x=8C.从10x—2=4—2x得10x+2x=4+2D.从2x=3x—5得2x=3x—5=3x—2x=5 3.如果x=0是关于x的方程3x—2m=4的根, 则m的值是()A.2B.—2C.1D.—1二. 填空题1. 已知方程3x2n+3+5=0是一元一次方程, 则n=__________2. 若, 则x+y=___________3、设k为整数, 方程kx=4-x的解x为自然数, 则k=__________三、解下列方程(21)124362x x x-+--=(22)xx23231423=⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-(23) 112[(1)](1)223x x x--=-(24)27(3y+7)=2 -32y。
2024年七年级数学重要知识点总结(二篇)
2024年七年级数学重要知识点总结七年级数学是中学数学的入门阶段,主要涉及到整数、分数、多边形、圆等基础概念和运算。
下面是七年级数学重要知识点的总结,供您参考。
一、整数1. 整数的概念:正整数、负整数、零。
2. 整数的大小比较:绝对值大小比较、同号比较、异号比较。
3. 整数的加法、减法、乘法和除法运算:注意正负数之间的运算规则。
4. 整数的绝对值:正整数的绝对值是它本身,负整数的绝对值是去掉负号。
5. 整数的乘方:正整数的乘方、负整数的乘方、零的乘方。
二、分数1. 分数的概念:分子、分母。
2. 分数的大小比较:相同分母比较分子大小。
3. 分数的加法和减法运算:通分后相加减,结果再化简为最简分数。
4. 分数的乘法和除法运算:分子相乘除,分母相乘除,结果再化简为最简分数。
5. 分数的整数倍和最小公倍数:分子分母同乘一个数,得到的分数是原分数的整数倍;两个分数的最小公倍数是它们的分母的最小公倍数。
三、多边形1. 多边形的概念:三角形、四边形、五边形、六边形等。
2. 三角形的分类:按边长分类(等边三角形、等腰三角形、普通三角形);按角度分类(直角三角形、锐角三角形、钝角三角形)。
3. 四边形的分类:按对边关系分类(平行四边形、矩形、正方形、菱形)。
4. 多边形的内角和:三角形等于180度,四边形等于360度,五边形等于540度,以此类推。
5. 多边形的边长和周长:各边长相加得到多边形的边长,所有边长相加得到多边形的周长。
四、圆1. 圆的概念:圆周、弧、直径、半径、圆心。
2. 圆的性质:半径相等的圆互为同心圆,同心圆上的弦相等,等弧对应的角相等。
3. 圆的面积和周长:圆的面积公式为πr²,圆的周长公式为2πr。
五、方程与方程式1. 方程的概念:等式的两边存在未知数,称为方程。
2. 一元一次方程:形如ax + b = 0的方程,其中a、b是已知数,x是未知数。
3. 解方程的基本步骤:移项、合并同类项、消去分母、去括号、化简、得到方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学知识点及例题分析
第一章有理数
【知识梳理】
1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一
一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到
原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;
几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不
一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵
活的使用运算律是掌握好实数运算的关键。
【能力训练】
一、选择题。
1.下列说法正确的个数是( )。