立体图形梳理
七年级上册立体图形知识点
七年级上册立体图形知识点立体图形,是指具有高度、宽度和长度三个方向的图形,它们是空间中的实体物体。
在初中数学的学习中,学生需要学习一些基本的立体图形知识,本文将带大家对七年级上册立体图形的知识点进行梳理与总结。
一、三棱柱1. 什么是三棱柱三棱柱是一种侧面为三角形,两个平面为平行四边形的立体图形。
它有三个顶点、三条棱和三个侧面。
2. 三棱柱的表面积和体积(1)三棱柱的表面积公式为:S = 底面积 + 侧面积,其中底面积可以直接用底边长a和高h计算出来,即:底面积 = 1/2 × a × h;侧面积则通过三角形面积公式计算,即侧面积 = 3 × (1/2 ×底边长a ×高h)。
(2)三棱柱的体积公式为:V = 底面积 ×高h。
二、三棱锥1. 什么是三棱锥三棱锥是以一个三角形为底面,其余三个侧面都在一个顶点上的立体图形。
它有四个顶点、四条棱和四个侧面。
2. 三棱锥的表面积和体积(1)三棱锥的表面积公式为:S = 底面积 + 侧面积,其中底面积可以直接用底边长a和高h计算出来,即:底面积 = 1/2 × a × h;侧面积则通过三角形面积公式计算,即侧面积 = 3 × (1/2 ×底边长a ×斜高l)。
(2)三棱锥的体积公式为:V = 1/3 ×底面积 ×高h。
三、三棱台1. 什么是三棱台三棱台是一种底面为三角形,顶面与底面平行且相等的立体图形。
它有五个顶点、八条棱和五个侧面。
2. 三棱台的表面积和体积(1)三棱台的表面积公式为:S = 上底面积 + 下底面积 + 侧面积,其中上底面积和下底面积可以直接用底边长a、上底边长b和高h计算出来,即上底面积 = 1/2 × b × h,下底面积 = 1/2 × a × h;侧面积则通过直角三角形面积公式计算,即侧面积 = 1/2 ×侧棱长×高l。
2023-2024年小学数学一年级上册 第6讲 认识图形 知识梳理巩固提升(北师大版含详解)
第6讲认识图形知识点一:认识立体图形1.长方体、正方体都有6个面,长长方方长方体,正正方方正方体。
2.圆柱和球都能滚动,圆柱的上下圆面一样大。
知识点二:进一步巩固立体图形的特点2个一样的正方体可以拼成长方体,8个一样的正方体可以拼成一个大的正方体。
考点一:立体图形的分类及识别【例1】数一数,填一填。
4个3个3个2个【分析】正方体:有8个顶点,6个面,每个面面积相等(或每个面都有正方形组成);长方体:有8个顶点,6个面,每个面都由长方形或相对的一组正方形组成;圆柱:上下两个面为大小相同的圆形,有一个曲面叫侧面;球:球是生活中最常见的图形之一,例如篮球、足球都是球,球是由一个面所围成的几何体。
【解答】解:如表:4个3个3个2个故答案为:4,3,3,2。
【点评】本题考查了长方体、正方体、圆柱及球的特征及认识。
1.圈出形状是圆柱的物体。
【分析】圆柱:上下两个面为大小相同的圆形,有一个曲面叫侧面,据此特征解答。
【解答】解:如图:【点评】本题考查了圆柱的特征及认识生活中的圆柱。
2.下面四个立体图形的截面是什么形状?请在括号里填上相应的编号。
【分析】正方体:有8个顶点,6个面,每个面面积相等(或每个面都有正方形组成);长方体:有8个顶点,6个面,每个面都由长方形或相对的一组正方形组成;圆柱:上下两个面为大小相同的圆形,有一个曲面叫侧面;球:球是生活中最常见的图形之一,例如篮球、足球都是球,球是由一个面所围成的几何体。
【解答】解:如图:【点评】本题考查了长方体、正方体、圆柱及球的特征及认识。
3.认识图形。
【分析】正方体:有8个顶点,6个面,每个面面积相等(或每个面都有正方形组成);长方体:有8个顶点,6个面,每个面都由长方形或相对的一组正方形组成;圆柱:上下两个面为大小相同的圆形,有一个曲面叫侧面;球:球是生活中最常见的图形之一,例如篮球、足球都是球,球是由一个面所围成的几何体。
【解答】解:如图:【点评】本题考查了长方体、正方体、圆柱及球的特征及认识。
生活中的立体图形(知识梳理与考点分类讲解)-2023-2024学年七年级数学上册基础知识(北师大版)
生活中的立体图形(知识梳理与考点分类讲解)【知识点1】常见的几何体及分类⎧⎧⎪⎨⎩⎪⎪⎧⎪⎨⎨⎩⎪⎪⎪⎪⎩圆柱:两个底面平行并且大小相同的圆,侧面是曲面柱体棱柱:两个底面平行并且大小相同的多边形,侧面是平行四边形圆锥:底面是圆,侧面是有一个顶点的曲面几何体锥体棱锥:底面是多边形,侧面是有一个公共顶点的三角形球如图所示,请将下列几何体分类.【答案】答案不唯一,见解析【分析】对于立体图形的分类,可按照不同标准进行,①按照立体图形的种类分类;②根据立体图形包含的平面类型分类.解:方法一:(1)、(3)、(5)是一类,都是柱体;(2)是锥体;(4)是球体.方法二:(1)、(3)是一类,全是由平面构成的;(2)、(5)是一类,既有平面,又有曲面;(4)是一类,只有曲面.【点拨】本题考查立体图形的认识,掌握分类时的标准选择是解题关键. 【变式】下列是我们常见的几何体,按要求将其分类(只填写编号).(1)如果按“柱”“锥球”来分,柱体有______,椎体有______,球有______;(2)如果按“有无曲面”来分,有曲面的有______,无曲面的有______.【答案】(1)①②⑥;③④;⑤;(2)②③⑤;①④⑥【分析】(1)根据立体图形的特点从柱体的形状特征考虑.(2)根据面的形状特征考虑.(1)解:∵(1)是四棱柱,(2)是圆柱,(3)是圆锥,(4)是棱锥,(5)是球,(6)是三棱柱,∴柱体有(1),(2),(6),锥体有(3),(4),球有(5),故答案为:(1),(2),(6);(3),(4);(5);(2)∵(2)(3)(5)有曲面,其它几何体无曲面,∴按“有无曲面”来分,有曲面的有(2),(3),(5),无曲面的有:(1),(4),(6),故答案为:(2),(3),(5);(1),(4),(6).【点拨】本题考查了认识立体图形,解决本题的关键是认识柱体的形状特征.【知识点2】利用几何的定义认识几何体【例2】写出下图中各个几何体的名称.①__________;②__________;③__________;④__________;⑤__________;⑥__________.【答案】①圆柱;②圆锥;③四棱锥;④五棱柱;⑤三棱锥;⑥长方体(或四棱柱)【分析】分别根据圆柱、圆锥、四棱锥、五棱柱、三棱锥、四棱柱的基本特点即可进行判断得出.解:圆柱的侧面展开图是一个长方形,两个底面是圆形,由此可得①为圆柱;圆锥的侧面展开图是一个扇形,底面是一个圆形,可得②为圆锥;四棱锥的侧面是四个三角形,底面是一个四边形,可得③为四棱锥;五棱柱的侧面是五个长方形,底面是两个五边形,可得④为五棱柱;三棱锥的侧面是三个三角形,底面也是一个三角形,可得⑤为三棱锥;四棱柱的侧面是四个长方形,底面是两个四边形,可得⑥为四棱柱或长方体.【点拨】题目主要考查基本立体图形的特点,熟练掌握多种常见的几何体的特点是解题关键.【变式】把图中的几何图形与它们相应的名称连接起来.【分析】根据常见立体图形的特征直接连线即可.解:如图所示,即为所求.【点拨】本题考查几何体的识别,解题的关键是掌握基本几何体的特征.【知识点3】棱柱的相关概念及特征1、相关概念:在棱柱中,相邻两个面的交线叫做棱,相邻的两个侧面的交线叫做侧棱。
6.1.1 立体图形与平面图形 考点梳理及难点突破(课件)
点 清
1. 立体图形的展开图
单 解 立体图 有些立体图形是由一些平面图形围成的,将它
读 形的展 们的表面适当展开,可以展开成平面图形.这样
开图 的平面图形称为相应立体图形的展开图
注意 事项
不是所有立体图形都可以展开,如球就不能 展开
考
2. 几种常见立体图形的展开图
点
清
正方体 长方体 五棱柱
单
解 读
混 分
轮廓线通常画成虚线.
析
领悟提能 确定观察方向及每个组成部分看到的图形,
从前面看反映物体的长和高,从上面看反映物体的长和宽
,从左面看反映物体的高和宽.
返回目录
考
点 清
典例4
单) 解
读
对点典例剖析 如图,下列图形属于正方体的展开图的是 (
考 [解题思路]
点
清 单
选项
选项分析
解 读
A 无法拼成
B “凹”字型
C “田”字型
D “二三一”型
[答案] D
判断 × × × √
返回目录
返回目录
重 ■题型 利用展开图解决正方体相对面的有关问题
难 题
例 如图所示的是正方体的展开图,把展开图折叠成
第六章 几何图形初步 考点梳理及难点突破
6.1.1 立体图形与平面图形
● 考点清单解读 ● 重难题型突破 ● 易错易混分析
返回目录
考 ■考点一 几何图形
点 清
1. 几何图形及分类
单 解
定义
从实物中抽象出的各种图形统称为几何图形
读
有些几何图形的各部分都不在同一平面内,
立体
它们是立体图形.如长方体、正方体、圆柱、
)
立体图形知识点梳理总结
立体图形知识点梳理总结立体图形是指在三维空间中存在的图形。
它具有体积和表面积的概念。
立体图形是立体几何的研究对象,包括了各种各样的形态,如立方体、长方体、圆柱体、球体、锥体等等。
掌握立体图形的知识对于学生学习数学和物理都是非常重要的。
本文将系统地总结立体图形的相关知识点,包括定义、性质、计算公式等内容,帮助读者更好地理解和掌握立体图形的概念。
一、基本概念1. 立体图形的定义立体图形是在三维空间中存在的图形。
它具有长度、宽度和高度三个方向。
立体图形由许多平面图形组成,例如长方体由6个矩形组成,圆柱体由两个平行的圆面和一个侧面组成。
2. 常见立体图形的名称和特点(1)长方体- 定义:长方体是六个面都是矩形的立体图形。
- 性质:长方体的体积为长×宽×高,表面积为2×(长×宽+长×高+宽×高)。
(2)正方体- 定义:正方体是六个面都是正方形的立体图形。
- 性质:正方体的体积为边长的立方,表面积为6×(边长的平方)。
(3)圆柱体- 定义:圆柱体是由两个相同的平行圆面和一个侧面组成的立体图形。
- 性质:圆柱体的体积为底面积×高,表面积为2×底面积+侧面积。
(4)球体- 定义:球体由无数个与球心距离相等的点组成的立体图形。
- 性质:球体的体积为4/3×π×半径的立方,表面积为4×π×半径的平方。
(5)圆锥体- 定义:圆锥体是由一个圆锥面和一个底面组成的立体图形。
- 性质:圆锥体的体积为1/3×底面积×高,表面积为π×底面半径×斜高+底面积。
二、计算公式1. 计算立体图形的体积和表面积(1)长方体的体积和表面积计算公式- 体积:V=长×宽×高- 表面积:S=2×(长×宽+长×高+宽×高)(2)正方体的体积和表面积计算公式- 体积:V=边长的立方- 表面积:S=6×(边长的平方)(3)圆柱体的体积和表面积计算公式- 体积:V=底面积×高- 表面积:S=2×底面积+侧面积(4)球体的体积和表面积计算公式- 体积:V=4/3×π×半径的立方- 表面积:S=4×π×半径的平方(5)圆锥体的体积和表面积计算公式- 体积:V=1/3×底面积×高- 表面积:S=π×底面半径×斜高+底面积2. 其他常见立体图形的计算公式(1)平面图形组成的立体图形的计算- 若一个立体图形由多个平面图形组成,可以通过计算每个平面图形的面积和相加来得到立体图形的体积和表面积。
小升初数学课程:第六讲 立体图形的特征及计算(一)
第六讲立体图形的特征及计算(一)长方体与正方体一、知识梳理1、长方体和正方体的认识一个长方体至少可以有两个面是正方形,最多可以有6个面是正方形,但不会存在3个、4个、5个面是正方形二、例题精讲例1:(1)判断和填空:长方体的六个面一定是长方形; ( × )正方体的六个面面积一定相等; ( √ )一个长方体(非正方体) 最多有四个面面积相等; (√ )相交于一个顶点的三条棱相等的长方体一定是正方体。
( √ )一个长方体中,可能有4个面是正方形。
(×)正方体是特殊的长方体。
(√)有两个面是正方形的长方体一定是正方体。
( × )一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
(√)(2)一个长方体最多有( 2 )个面是正方形,最多有( 8 )条棱长度相等。
(3)一个长方体的底面是一个正方形,则它的4个侧面是(完全一样的长方)形。
(4)正方体不仅相对的面相等,而且所有相邻的面(相等),它的六个面都是相等的(正方)形。
(5)把长方体放在桌面上,最多可以看到( 3 )个面。
最少可以看到( 1 )个面。
2、长方体与正方体的棱长总和公式长方体棱长总和=(长+宽+高)×长+宽+高=棱长总和÷4长方体棱长总和=下面周长×2+高×4长方体棱长总和=右面周长×2+长×4长方体棱长总和=前面周长×2+宽×4正方体棱长总和=棱长×棱长=棱长和÷12例2:(1)看图,并填空单位:厘米这个长方体长( 6 )厘米,宽(3)厘米,高(4) 厘米。
由一个顶点引出的三条棱的长度和是(13 )厘米。
棱长总和是( 52 )厘米。
上下两个面是( 长方 )形。
(2)一个长方体的棱长总和是 80厘米,其中长是 10厘米,宽是 7厘米,高是( 3 )厘米。
(3)有一个长方体的鱼缸,长50厘米,宽30厘米,高30厘米,需要在用铝合金包裹玻璃连接处,需要( 4.4 )米的铝合金(4)把两个棱长 1厘米的正方体拼成一个长方体,这个长方体的棱长总和是( 16 )厘米。
立体几何与空间向量知识梳理
立体几何与空间向量知识梳理
立体几何与空间向量是数学中的两个重要分支,它们都涉及到三维空间的计算和处理。
下面是它们的知识梳理:
一、立体几何
1. 立体几何基本概念:点、线、面、立体、平行、垂直、角度、投影等。
2. 立体图形的性质:体积、表面积、对称性、切割等。
3. 立体几何基本公式:立方体、长方体、正方体、圆柱、圆锥、球等的体积和表面积公式。
4. 立体几何运用:解决物体体积和表面积的计算问题,如容器的容积、房间的面积等。
二、空间向量
1. 空间向量定义及表示:三维空间中的有向线段,可以用起点坐标和终点坐标表示。
2. 空间向量的运算:加、减、数乘、点乘、叉乘等。
3. 空间向量的性质:模长、模长计算公式、向量方向,空间向量的平行性、垂直性等。
4. 空间向量的应用:用向量来表示物理量,如力、速度、加速
度等。
总结
立体几何和空间向量是数学中两个重要的分支,它们在三维空间中进行计算和处理。
在应用方面,立体几何可以解决物体的体积和表面积计算问题,而空间向量则可以用来表示和处理物理量。
在学习过程中,要注意掌握基本概念和公式,熟练掌握基本运算和性质,逐渐深入到应用层面。
立体图形知识梳理
立体图形知识梳理正方体:正方体有6个面,每个面面积相等,形状完全相同。
正方体有8个顶点,12条棱,每条棱长度相等。
正方体是特殊的长方体。
正方体的体积公式:V =a×a×a正方体的面积求和公式:S =axax6正方体棱长求和公式:C=ax12长方体:长方体有6个面,每个面都是长方形,(特殊情况时有两个面是正方形,并且完全相同)相对的两个面完全相等。
长方体有8个顶点,12条棱,相对的棱长度相等。
长方体的体积公式:V = abh长方体的面积求和公式:S = 2 ( ab + bc + ca)长方体的棱长求和公式:C=4(a+b+c)圆柱:圆柱有三个面。
圆柱有两个完全相同的圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面的对应点之间的距离叫做高(高有无数条)。
把圆柱的侧面打开,得到一个长方形,这个长方形的长就是圆柱的底周长。
圆柱体积公式:如S为底面积,高为h,体积为V,则V=Sh圆柱侧面积公式:S侧=Ch(C表示底面的周长,h表示圆柱的高)圆柱表面积求和公式:圆柱的表面积=侧面积+两个底面积S表=2πr*r+2πrhs表=s侧+s底圆锥:圆锥有两个面。
圆锥有一个圆面的底面;一个曲面,叫做侧面。
圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高。
圆锥的高只有一条。
圆锥体积公式:V圆锥是与它等底等高的V圆柱体积的1/3V=1/3Sh补充:1.把一个圆柱沿高切下去,增加了两个长方形的面,长方形的长是圆柱的高,宽是圆柱的底面直径。
2.把一个圆柱沿着横截面切下去,增加了两个底面积。
3.当一个圆锥和一个圆柱体积相等,底面积相等时,圆锥的高是圆柱高的三倍,圆柱高是圆锥高的1/3。
4.当一个圆锥和一个圆柱体积相等,高相等时,圆锥底面积是圆柱底面积的三倍,圆柱底面积是圆锥底面积的1/3。
5.把一个正方体削成一个最大的圆柱,圆柱的底面直径和高都等于正方体的棱长。
高中立体几何知识点梳理
高中立体几何知识点梳理立体几何是三角形、圆形、多边形等基本图形的空间组成,以及空间中点、线、面等几何要素的组合和变换,是高中数学中不可或缺的一部分。
因此,本文将从立体几何基础知识到各种几何形状的体积和表面积计算,对高中立体几何知识点进行详细梳理。
一、立体几何基础知识1. 射影用于求平面和直线在空间中的射影位置、射影轴等。
为了求出射影,需要先进行坐标变换,使直线或平面方程中其中一项系数为1,然后再将其带入到另一个方程中。
2. 点、线、面在立体几何中,点、线、面是三个最基本的概念,需要注意的是,在空间中,线和面一般是不平行的。
当然,在几何建模中,可以将直线或面旋转或平移,以便更清晰地表现相应的三维图形。
3. 空间向量空间向量在几何建模中有着重要的作用,它可以表示空间中的大小和方向。
空间向量的两点可以用坐标表示,也可以用点的名称来表示。
在计算空间向量的长度和方向时,需要用到三维坐标系,而在计算空间向量之间的夹角时,需要使用点乘运算。
二、各种几何形状的体积和表面积计算接下来,我们将对各种几何形状的体积和表面积计算进行详细梳理。
1. 正多面体正多面体是一种有限的立体图形,它的每个面都是相等的正多边形,每个顶点都是相等的多面角。
正多面体的体积,可以用以下公式进行计算:V = (1/3) x S x h其中,S为底面积,h为高。
正多面体的表面积,可以用以下公式进行计算:S = n x a² / (4 x tanπ/n)其中,n表示正多边形的边数,a表示正多边形的边长。
2. 椎体与锥台椎体和锥台是两种常见的几何形状,它们的体积和表面积计算都十分简单。
椎体的体积,可以用以下公式进行计算:V = (1/3) x S x h其中,S为底面积,h为高。
椎体的表面积,可以用以下公式进行计算:S = S底面+ πr x l其中,r为底面半径,l为斜高。
锥台的体积,可以用以下公式进行计算:V = (1/3) x S x h其中,S为底面积与顶面积的平均值,h为高。
人教版八年级数学知识点梳理立体几何与空间形
人教版八年级数学知识点梳理立体几何与空间形【人教版八年级数学知识点梳理】立体几何与空间形立体几何是数学中的一个重要分支,与平面几何共同构成了几何学的两个基本领域。
而在数学课程中,立体几何与空间形也是八年级的数学学习内容之一。
本文将对人教版八年级数学中与立体几何与空间形相关的知识点进行梳理和总结,希望能够帮助学生更好地掌握这一部分内容。
一、点、直线、平面及其位置关系在立体几何与空间形的学习中,首先要了解的是点、直线、平面及其位置关系。
点是几何中最基本的图形元素,它没有长度、宽度和高度,只有位置。
直线是由无数个点组成的一维图形,没有宽度和厚度。
平面是由无数个点和直线组成的二维图形,它有无限的长度与宽度。
在空间中,点可以在平面内、平面外或平面上。
而直线也可以在平面内、平面外或平面上。
平面可以与另一个平面相交、平行或重合。
掌握了点、直线、平面及其位置关系的概念,可以为后续的学习打下基础。
二、立体图形的认识与分类在立体几何与空间形的学习中,我们还需要认识和分类立体图形。
立体图形是由有限条线段组成,并封闭起来的图形。
常见的立体图形有正方体、长方体、圆柱体、圆锥体、球体等。
正方体是一种六个面全部都是正方形的立体图形,它有八个顶点、十二条棱和六个面。
长方体是一种六个面全部都是长方形的立体图形,它有八个顶点、十二条棱和六个面。
圆柱体是一种两个底面相等的圆柱形,它有两个底面、一个称为侧面的矩形和一个称为轴线的直线。
圆锥体是一种底面是一个圆形的锥形,它有一个底面、一个称为侧面的三角形和一个称为轴线的直线。
球体是由空间中的一个定点到这个点距离相等的各个点构成的图形。
对于立体图形的分类,学生需要学会根据面的特征进行分类,如几何体的底面、顶面、侧面等。
同时,学生还需了解立体图形的性质和特点,这有助于进一步认识和理解立体图形。
三、立体图形的表面积与体积计算在学习立体几何与空间形过程中,学生需要掌握计算立体图形的表面积与体积。
人教版数学一年级上册第四单元《认识图形》知识点梳理
人教版数学一年级上册
第四单元《认识图形》知识梳理
一、认识立体图形
(一)知识点:
1.长方体:长长的,有6个平平的面,有些面是一样的,有些面是不一样,长方体对面(2个面)相等。
2.正方体:四四方方的,有6个平平的面,它的边也是直直的。
而且它的棱都是一样长,每个面(6个面)都相等,无论怎么平放在桌子上,它的高矮都是一样的。
3.圆柱:圆柱就像一根柱子,直直的,上下两个圆面大小一样。
放在桌子上能滚动。
立在桌子上不能滚动。
4.球:圆圆的,很光滑,它的表面是曲面。
放在桌子上能向任意方向滚动。
(二)考点:
辨认几种立体图形,学会分类
(三)考试题型:
图形分类
(四)易错点:
容易辨认出错,导致分类不正确,容易与平面图形混淆
(五)典型题目:
二、立体图形的拼摆
(一)知识点:
立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。
用小圆柱可以拼成更大的圆柱。
(二)考点:
组合正方体个数,至少需要几个小正方体能拼成一个大正方体
(三)考试题型:
数一数
(四)易错点:
容易数漏遮住的正方体
(五)典型题目:
1.根据图确定方向和距离;
2.根据方向距离和比例尺作图。
(三)考试题型:
1.填空
2.选择
(四)易错点:
1.方向找错,参照点确定错误;
2.换算图上距离和实际距离易错。
(五)典型题目:。
小学数学图形与几何知识点汇总立体图形
小学数学图形与几何知识点汇总——立体图形一、长方体、正方体都有6个面,12条棱,8个顶点。
正方体是特殊的长方体。
二、圆柱的特征:一个侧面、两个底面、无数条高。
三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。
四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
五、体积:物体所占空间的大小叫做物体的体积。
容器所能容纳其它物体的体积叫做容器的容积。
六、圆柱和圆锥三种关系:①等底等高:体积1︰3②等底等体积:高1︰3③等高等体积:底面积1︰3七、等底等高的圆柱和圆锥:①圆锥体积是圆柱的1/3,②圆柱体积是圆锥的3倍,③圆锥体积比圆柱少2/3,④圆柱体积比圆锥多2倍。
八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。
九、立体图形公式推导:【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)①圆柱的侧面展开后一般得到一个长方形。
②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。
④圆柱的侧面展开后还可能得到一个正方形。
正方形的边长=圆柱的底面周长=圆柱的高。
【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?①把圆柱分成若干等份,切开后拼成了一个近似的长方体。
②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。
即:V=Sh。
【3】请画图说明圆锥体积公式的推导过程?①找来等底等高的空圆锥和空圆柱各一只。
②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。
③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。
2-从不同的方向看立体图形和立体图形展开图知识梳理
立体图形与平面图形的转化
知识梳理:
立体图形可以通过从不同方向看立体图形(三视图)或立体图形的展开图转化为平面图形问题进行研究。
1. 从不同方向看立体图形
(1)从不同方向看是指从正面(从前向后)、上面和左面三个方向看立体图形。
当我们分别从正面、上面和左面看一个立体图形时,就得到这个立体图形的三个平面图形,然后把这三个平面图形按一定的规则放在同一个平面上,就把立体图形转化成了平面图形。
从不同方向看把立体图形转化成平面图形的规则是:
①从上面看的图形放在从正面看的图形的下面;从左面看的图形放在从正面看的图形的右面。
②长对正:从上面、正面观察,所得的图形长度相等;高平齐:从上面、左面观察,所得的图形高度相等;宽相等:从上面、左面观察,所得的图形宽度相等。
(2)常见的几种几何体从正面、左面、上面看到的几何图形:
2. 立体图形的展开图
(1)对于由一些平面围成的立体图形,将它们的表面适当的剪开,展开成平面图形,这个平面图形叫做这个立体图形的展开图。
(2)几种常见的立体图形的展开图
解析:[1] 不是所有的立方体图形都可以展开,如球就不能展开;
[2] 对于同一个立方体按不同的方式展开,可以得到不同的展开图,如正方体有11种展开图;
[3] 由立方体的展开图可以识别出立方体的形状,具体方法是:展开图中有圆,一般考虑圆柱或圆锥;展开图中有三角形,一般考虑棱柱或棱锥;展开图中有长方形或正方形,一般考虑棱柱。
[4]
[5]
[6] 立体图形展开图中,相邻面的规律:①有公共顶点的面是相邻的面; ②有公共边的面是相邻的面。
如图三棱柱的展开图是( )。
人教版第三单元《长方体和正方体》知识点梳理总结
人教版第三单元《长方体和正方体》知识点梳理总结1、长方体或正方体的认识①一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
判断:长方体的三条棱分别叫做长方体的长宽高。
(×)长方体特点:有6个面(6个面都是长方形或者4个面是长方形,2个面是正方形),8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
一个长方体(不含正方体)最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
最多有4个面完全相同。
用6个完全一样的长方形可以围成一个长方体(×)。
长方体12条棱可以分成3组,分别有4条长、4条宽、4条高。
②由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:正方体有12条棱,它们的长度都相等。
有8个顶点。
正方形的6个面是完全相同的正方形。
正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
③比较图片④长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷12例1、如图,有一个长5分米、宽和高都是3分米的长方体硬纸箱,如果用绳子将箱子横着捆两道,长着捆一道,打结处共用2分米。
一共要用绳子多长?2、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?2、长方体或正方体的表面积表面积的意义:长方体或者正方体的6个面的总面积,叫做它的表面积。
高中数学立体几何知识点总结(超详细)
立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。
高一立体几何知识点的梳理总结
高一立体几何知识点的梳理总结1.三维几何基础概念空间:由长、宽和高组成的无限延伸的虚拟领域。
点:空间中没有大小和形状的基本元素。
线:由一系列点按特定顺序连接而成。
面:由一系列的线围成,有两个维度。
体:由一系列的面围成,有三个维度。
2.空间图形的投影正交投影:将三维空间中的物体投影到一个平面上,保持空间中物体的大小和形状。
斜投影:将三维空间中的物体投影到一个平面上,不保持空间中物体的大小和形状。
3.空间图形的展开图折线法:将三维空间中的图形展开成一个或多个平面图形,然后通过折线的方式还原出原来的图形。
4.立体图形的表面积和体积立方体:所有面都是正方形的立体图形,表面积等于边长的平方乘以6,体积等于边长的立方。
圆柱体:由圆和矩形围成的立体图形,表面积等于底面积乘以2再加上侧面积,体积等于底面积乘以高度。
锥体:由圆锥和矩形围成的立体图形,表面积等于底面积加上侧面积,体积等于底面积乘以高度除以3.球体:由一条弧线旋转形成的立体图形,表面积等于4乘以π乘以半径的平方,体积等于4/3乘以π乘以半径的立方。
5.齐次坐标和平面方程齐次坐标:用向量表示的点在三维空间中的坐标,可以用来表示直线和平面。
平面方程:用三个系数表示的平面的一般方程形式,可以通过该方程求出平面上的点。
6.空间直线和空间平面的位置关系直线与平面的位置关系:相交、平行、重合、相交于一点、相交于一条直线。
平面与平面的位置关系:相交、平行、重合、相交于一条直线。
以上是高一立体几何的一些基础知识点的梳理总结,通过学习这些知识点,可以更好地理解和解决与立体几何相关的问题。
第三单元认识立体图形考点梳理 (课件)2024-2025学年一年级上册数学人教版
第三单元考点梳理
第
考 ■考点一 立体图形的认识
点 清
1. 长方体:长长方方的,有 6 个平平的面,相对的两
单 个面大小一样。 解
读 2. 正方体:正正方方的,有 6 个平平的面,6 个面大
小一样。
3. 圆柱:直直的,上下一样粗,上下两个圆圆的面一
样大。 平放着能滚动,立着不能滚动。
4. 球:圆圆的,它的表面是曲面,可以向任意方向滚
动。
第
考 重难突破 长方体和正方体怎么区分?
点
清 单
答:正方体的 6 个面大小都一样,是四四方方的;长方
解 体最多有 2 个相对的面是四四方方的,其余 4 个例 1 数一数,填一填。(填序号) 点 清 单 解 读
正方体有( 长方体有(
巧 一层地数出每层的个数,再把它们相加即可。 点
拨
第
方 例 数一数,填一填。 法 技 巧 点 拨
第
方 [解析]可以把整体按层拆开,一层一层地数。 法 技 巧 点 拨
[答案] 5
第
考 重难突破 怎么使积木搭得最高?
点
清 单
答:不易滚动的立体放在下面且尽量竖着放,能够搭得
解 高。
读
第
考 典例 2 在搭得最稳的图形下面画“√”。 点 清 单 解 读
第
考 [解题思路] 点 清 单 解 读
[答案] 在第1个括号里画“√”。
第
方 ■方法:利用拆分法数组合图形个数的问题
法 技
做此类题时,应仔细看图,可以把整体按层拆分,一层
) 圆柱有( )
) 球有(
)
[解题思路] 根据图形的特征判断。
[答案]⑦ ③⑤ ①⑥ ④
北师大版一年级上册数学 6-1-1认识立体图形 知识点梳理重点题型练习课件
知 识 点 2 提炼名称,认识数学方面的立体图形
3. 连一连。
解析:根据生活中物品的外形特点与对应的立体图 形及其名称连起来即可。
提 升 点 正确数出各立体图形的总数
4. 数一数,填一填。
5
4
3
解析:根据立体图形的特点进行分类,可以用标数 字的方法数,注意不要漏数或重复。
第六单元 认识图形 1. 认识图形
第1课时 认识立体图形
知 识 点 1 认识生活物品的形状并寻找外形的共同点
1. 分一分,形状特征相同的连一连。
解析:本题考查立体图形的初步认识,仔细观察图 中的物品,把形状相同的连在一起即可。
2. 观察下面的图形,把每组中不同类的圈出来。
解析:第 1组中有3个圆柱、1个球,圈球;第 2组 中有3个长方体、1个圆柱,圈圆柱;第 3组中有3个 正方体、1个长方体,圈长方体;第 4组中有3个球、 1个正方体,圈正方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体图形的框架结构分析内容领域:空间与图形一级结构:立体图形二级结构:立体图形的认识立体图形的测量教材对立体图形分三个层次安排的:1、直观整体感知。
(第一学段认识长方体、正方体、圆柱和球)2、具体刻画特征。
(第二学段认识长正方体和圆柱圆锥的特征。
)3、度量。
(第二学段从测量表面积、体积的角度认识)第一学段第二学段一上二上三上四下五下六上六下认识物体观察物体观察物体观察物体认识长方体展开与折叠露在外面的面观察物体面的旋转认识圆柱体认识圆锥1、教材呈现形式:一上:(1)通过分、摸实物认识几何体特征。
(2)建立实物与立体图形的联系,认识立体图形。
(3)拼搭积木进一步认识几何体。
二上:(1)观察长方体实物(讲桌)体验最多只能看到三个面。
(2)观察长方体模型辨认正、侧、上三个面。
(3)观察正方体搭成的简单物体,辨认表示三个方向观察到的形状(4)搭建简单物体并观察,体验不同物体的某一面的形状可能相同。
三上:(1)根据指令搭积木,初步学会用“上、下、左、右、前、后”等词语描述正方体的相对位置。
(2)问问题搭立体图形,想象所搭形状,提高形象思维能力。
四下:(1)根据观察点想先对象形状的变化,判断位置与变化图的对应关系。
培养空间想象力和空间推理能力。
五下:(1)长方体的认识:a、借助生活场景辨认长、正方体。
b、借助长、正方体模型认识顶点、面、棱。
c、通过自主探索发现长、正方体的特点,并利用表格进行整理,加深对长、正方体特点的认识。
(2)长方体、正方体的展开图:a、剪长、正方体盒子,直观认识长、正方体的展开图。
b、通过将展开图折成长、正方体,体会展开图与长、正方体的联系。
(3)露在外面的面:a、呈现堆箱子的生活情境,观察并求出露在外面的面积。
b、用学具摆出其他的堆放方法,体会堆放方法不同,露出的面积可能会发生相应变化。
c、按图摆放小正方体,探索露出部分的变化规律。
(4)折叠:a、通过想、画、做将平面图形折叠成立体图形,体会立体图形和它的平面展开图之间的关系。
六上:a、辨认不同方向观察到的立体图形的形状并画出平面图形。
b、把平面图形还原成立体图形,体会两个方向观察到的平面形状,可以确定用正方体的数量。
c、观察平面图形还原立体图形,知道三个方向才能确定立体图形的形状六下:面的旋转(圆柱和圆锥的认识):a、结合具体生活情境体会“点、线、面”之间的联系。
b、转动不同形状的小旗,体会“面和体”之间的联系。
c、从实物中找出学过的立体图形,深化对立体图形的认识。
d、动手操作,探索圆柱和圆锥的特征。
e、认识圆柱、圆锥的直观图及各部分名称,提高识图能力。
2、从教材的编排上看:学生在第一学段直观认识立体图形时,初步体会了特征,达到直观认识水平。
而长方体和正方体的认识则是学生系统学习立体几何图形的开始,是中小学生学习空间中的线线、线面、面面之间关系的重要载体,对长正方体的认识实现了小学生对几何形体认识的一次质的飞跃。
因此这一单元的教学十分关键。
长正方体到圆柱圆锥的编排也使学生对面的认识从平面过度到了曲面。
3、从认识水平上看:学生对立体图形的认识从“直观的整体感知”水平上升到“具体精细认识”水平。
(即了解立体图形的形成过程,说出各部分的名称,会求立体图形的度量量。
)4、教材将立体图形认识的学习内容分成了两部分:一部分是认识图形的特征,另一部分是立体图形与平面图形的转换。
(几何体与其展开图之间的转化以及几何体与其三视图之间的转化,使学生在观察、操作、想象、分析的过程中发展空间观念。
)认识图形特征这部分主要是从图形的形成过程来认识:一是静态的认识,借助直观抽象而成;一类是动态生成,使学生感受到点动成线,线动成面,面动成体的几何事实。
4、课程基本理念:在活动中探索长、正方体的特征,加深对长正方体的认识,并能进行长、正方体与其展开图的转化。
能辨认不同看到立体图形的形状,根据三个方向的平面形状还原立体图形,并根据两个方向的平面形状确定正方体的数量。
通过观察、操作,认识圆柱和圆锥5、涉及的数学文化:使用最久的数学教科书——《几何原本》《几何原本》(The Elements)由希腊数学家欧几里得(Euclid,公元前330年~公元前275年)所著,是用公理方法建立演绎数学体系的最早典范。
是至今流传最广、影响最大的一部世界数学名著。
几何原本》全书共13卷。
第1卷,给出了欧几里得几何学的基本概念、定义、公理、公设等;第2卷,面积和变换;第3卷,圆及其有关图形;第4卷,多边形及圆与正多边形的作图;第5、6卷,比例与相似形;第7卷,数论;第8卷,连比例;第9卷,数论;第10卷,不可通约量的理论;第11卷,立体几何;第12卷,利用“穷竭法”证明圆面积的比等于半径平方的比;球体积的比等于半径立方的比,等等;第13卷,正多面体。
《几何原本》一书从很少的几个定义、公设、公理出发,推导出大量结果,最重要的是它给出的公理体系标志着演绎数学的成熟,主导了其后数学发展的主要方向,使公理化成为现代数学的根本特征之一。
《几何原本》是数学史上的一个伟大的里程碑,问世以来,受到广泛的重视与传播。
除《圣经》之外,没有任何一本著作,其使用、研究与印行之广泛能与《几何原本》相比。
2000多年来,它一直支配着几何的教学。
因此,有人称《几何原本》为数学的《圣经》。
战争使大量人类文化和珍贵书籍化为灰烬。
欧几里得的《几何原本》手稿至今也荡然无存。
现存《几何原本》的一种版本是公元4世纪末泰恩(Theon)的《几何原本》修订本。
还有一个版本是18世纪在梵蒂冈图书馆发现的一个10世纪的《几何原本》希腊手抄本,其内容早于泰恩的修订本。
《几何原本》传人中国,首先应归功于明末科学家徐光启。
徐光启(1562~1633),字子先,上海吴淞人。
他在加强国防、发展农业、兴修水利、修改历法等方面都有相当的贡献,对引进西方数学和历法更是不遗余力。
他认识意大利传教士利玛窦之后,决定一起翻译西方科学著作。
利玛窦主张先译天文历法书籍,以求得天子的赏识。
但徐光启坚持按逻辑顺序,先译《几何原本》。
他们于1606年完成前6卷的翻译,1607年在北京印刷发行。
徐光启和利玛窦《几何原本》中译本的一个伟大贡献在于确定了研究图形的这一学科中文名称为“几何”,并确定了几何学中一些基本术语的译名。
“几何”的原文是“geometria”,徐光启和利玛窦在翻译时,取“geo”的音为“几何”,而“几何”二字中文原意又有“衡量大小”的意思。
用“几何”译“geometria”,音义兼顾,确是神来之笔。
几何学中最基本的一些术语,如点、线、直线、平行线、角、三角形和四边形等中文译名,都是这个译本定下来的。
这些译名一直流传到今天,且东渡日本等国,影响深远。
徐光启要求全部译完《几何原本》,但利玛窦却认为应当适可而止。
由于利玛窦的坚持,《几何原本》的后9卷的翻译推迟了200多年,才由清代数学家李善兰和英国人伟烈亚力合作完成。
李善兰(1811~1882),字壬叔,号秋纫,浙江海宁人,自幼喜欢数学。
1852年到上海后,李善兰与伟烈亚力相约,继续完成徐光启、利玛窦未完成的事业,合作翻译《几何原本》后9卷,并与1856年完成此项工作。
至此,欧几里得的这一伟大著作第一次完整地引入中国,对中国近代数学的发展起到了重要的作用。
徐光启在评论《几何原本》时还说过:“此书为益能令学理者祛其浮气,练其精心;学事者资其定法,发其巧思,故举世无一人不当学。
”其大意是:读《几何原本》的好处在于能去掉浮夸之气,练就精思的习惯,会按一定的法则,培养巧妙的思考。
所以全世界人人都要学习几何。
二、立体图形的测量1、教材呈现形式:(1)长方体的表面积:a 、分析长方体与其展开图各部分的对应关系。
b 、通过解决实际问题,认识表面积并探索长方体表面积的计算方法。
c 、解决实际问题,探索正方体表面积得计算方法(2)体积与容积:a 、交流物体的大小和盛东西的多少,初步感知。
b 、直观实验比较两个物体的大小,揭示体积的概念。
c 、引导学生设计实验比较哪个杯子装水多,揭示容积的概念。
d 、通过搭小正方体的活动,判断谁搭的长方形体积大。
(3)体积单位:a 、利用直观模型引入、认识体积单位。
b 、通过实际操作体会13cm 、13分米、13米的实际大小。
c 、说说生活中13cm 、13分米、13米的物体,加深对体积单位的实际感受。
d 、结合实物、图示揭示升、毫升的含义,感受升的实际意义并介绍容积单位与体积单位之间的关系。
e 、通过测量、估测活动,体会毫升的意义。
(4)长方体的体积:a 、比较三组长方体,初步感知体积与长、宽、高有关系。
b 、用小正方体摆不同的长方体,探索、归纳长方体体积的计算方法。
c 、思考并推理出正方体体积公式。
d 、计算体积,探索体积与底面积和高的关系。
(5)体积单位的实际意义及换算:a 、通过摆体积单位模型,认识和理解3cm 和3dm 之间的进率,进而思考并推导出升与毫升之间的关系。
b 、计算认识3dm m 3和之间的进率。
(6)有趣的测量:a 、通过测量石块体积的实验,探索测量不规则物体体积的方法。
b 、运用测量方法解决实际问题。
(7)包装的学问:a 、创设生活情景,讨论如何节约包装纸,提高解决实际问题的能力。
b 、讨论三盒的情况,进一步体会表面积最小的最优策略。
(8)圆柱的表面积:a 、创设情景,引导学生结合具体物体理解圆柱表面积的意义。
b、探索圆柱侧面展开后的形状以及计算方法。
c、在情境中计算圆柱的表面积。
d、计算无盖水桶的表面积,提高解决实际问题的能力。
(9)圆柱的体积:a、结合情景体会圆柱体积与容积的实际含义。
b、呈现长、正方体体积计算方法,猜想圆柱体积计算方法。
c、验证说明猜想。
d、运用公式解决问题。
(10)圆锥的体积:a、结合生活情景,猜想圆锥的体积计算方法。
b、验证说明猜想,推导计算公式。
c、运用公式解决实际问题。
2、图形的测量从教材的编排上看经历了以下过程:(1)感知表面积、体积和容积,建立概念。
(2)认识测量单位(体积、容积),体会测量单位的实际意义。
(3)测量的实施。
(4)度量在生活中的应用。
3、对测量单位的认识:(1)理解测量的量(体积、容积)的实际意义同时体会度量的含义。
(2)确定、比较物体体积的大小。
(3)认识、体会测量单位的实际意义。
表面积的测量:长方体——正方体——圆柱体积的测量:规则图形(长、正方体、圆柱、圆锥)——不规则物体4、数学思想:(1)圆柱、圆锥体积的教学中,引导学生通过类比长正方体和圆柱、圆柱和圆锥,猜想圆柱、圆锥体积的计算方法并进行验证说明。
(2)用堆得过程说明“底面积×高”计算圆柱体积的道理,渗透的是积分的思想。
(3)把圆柱的体积转化为长方体的体积,渗透了转化的思想和极限的思想。