多普勒雷达原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽笛声变调的启示--多普勒雷达原理
1842年一天,奥地利数学家多普勒路过铁路交叉处,恰逢一列火车从他身
旁驰过,他发现火车由远而近时汽笛声变响,音调变尖(注:应为“汽笛声的音频频率变高”);而火车由近而远时汽笛声变弱,音调变低(应为“汽笛声的音频频率降低了”)。他对这种现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的缘故,称为频移现象。因为这是多普勒首先提出来的,所以称为多普勒效应。
由于缺少实验设备,多普勒当时没有用实验进行验证。几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,验证了该效应。
为了理解这一现象,需要考察火车以恒定速度驶近时,汽笛发出的声波在传播过程中表现出的是声波波长缩短,好像波被“压缩”了。因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被“拉伸”了。因此,汽笛声听起来就显得低沉。
用科学语言来说,就是在一个物体发出一个信号时,当这个物体和接收者之间有相对运动时,虽然物体发出的信号频率固定不变,但接收者所接收到的信号频率相对于物体发出的信号频率出现了差异。多普勒效应也可以用波在介质中传播的衰减理论解释,波在介质中传播,会出现频散现象,随距离增加,高频向低频移动。
多普勒效应不仅适用于声波,它也适用于所有类型的波,包括电磁波。
多普勒效应被发现以后,直到1930年左右,才开始应用于电磁波领域中。常见的一种应用是医生检查就诊人用的“彩超”,就是利用了声波的多普勒效应。简单地说,“彩超”就是高清晰度的黑白B超再加上彩色多普勒。超声振荡器产生一种高频的等幅超声信号,向人体心血管器官发射,当超声波束遇到运动的脏器和血管时,便产生多普勒效应,反射信号为换能器所接受,根据反射波与发射波的频率差可以求出血流速度,根据反射波的频率是增大还是减小判定血流方向。
20世纪40年代中期,也就是多普勒发现这种现象之后大约100年,人们才将多普勒效应应用于雷达上。多普勒雷达就是利用多普勒效应进行定位,测速,测距等的雷达。当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差(称为多普勒频率),根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。20世纪70年代以来,随着大规模集成电路和数字处理技术的发展,多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备以及科学研究、业务应用装置。
多普勒天气雷达,是以多普勒效应为基础,当大气中云雨等目标物相对于雷达发射信号波有运动时,通过测定接收到的回波信号与发射信号之间的频率差异就能够解译出所需的信息。它与过去常规天气雷达仅仅接收云雨目标物对雷达发射电磁波的反射回波进了一大步。这种多普勒天气雷达的工作波长一般为5~10厘米,除了能起到常规天气雷达通过回波测定云雨目标物空间位置、强弱分布、垂直结构等作用,它的重大改进在于利用多普勒效应可以测定降水粒子的运
动速度,从而推断降水实体速度分布、风场结构特征、垂直气流速度等,这对研究降水的形成、分析中小尺度天气系统、警戒强对流天气等具有重要意义,这是以往天气雷达做不到的。因此,被称为智能型探测系统。
多普勒频移
定义
主要内容为:物体辐射的波长因为波源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移blue shift)。多普勒频移,当运动在波源后面时,会产生相反的效应。波长变得较长,频率变得较低(红移red shift)。
物理现象
概述
多普勒效应示意图
多普勒频移,当运动在波源后面时,会产生相反的效应。波长变得较长,频率变得较低(红移red shift)。波源的速度越高,所产生的效应越大。根据光波红(蓝)移的程度,可以计算出波源循着观测方向运动的速度
多普勒频移及信号幅度的变化等如图2所示。当火车迎面驶来时,鸣笛声的波长被压缩(如图2右侧波形变化所示),频率变高,因而声音听起来尖利刺耳。当火车远离时,声音波长就被拉长(如图2左侧波形变化所示),频率变低,从而使得声音听起来减缓且低沉。
图2 声波的多普勒效应引起的多普勒频移
这种现象也存在于其他类型的波中,例如光波和电磁波。科学家们观察发现,从外太空而来的光波,其频率在不断变低,既向频率较低的红色波段靠拢,这是光波遵从多普勒效应从而引起多普勒频移的例证。对于电磁波,高度运动的物体上(例如高铁)进行无线通信,会出现信号质量下降等现象,就是电磁波存在多普勒频移现象的实例。
多普勒频移导致无线通信中发射和接收的频率不一致,从而使得加载在频率上的信号无法正确接收,甚至无法接收到。
发生原因
把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你每走一步时,面前的声源发出的脉冲相对于你的传播距离比你站立不动时近了一步,而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。
所谓多普勒效应就是当发射源与接收体之间存在相对运动时,接收体接收的发射源发射信息的频率与发射源发射信息频率不相同,这种现象称为多普勒效应,接收频率与发射频率之差称为多普勒频移。声音的传播也存在多普勒效应,当声源与接收体之间有相对运动时,接收体接收的声波频率f'与声源频率f存在多普勒频移Δf(doppler shift)即
Δf=f'-f
当接收体与声源相互靠近时,接收频率f'大于发射频率f即:Δf>0
当接收体与声源相互远离时,接收频率f'小于发射频率即:Δf<0
可以证明若接收体与声源相互靠近或相互远离的速度为v,声速为c,则接收体接收声波的多普勒频率为:
f'= f·(c+-v1)/(c-+v2)
括号中分子和分母的加、减运算分别为“接近”和“远离”之意。
多普勒频移最基本的计算公式是:
多普勒频移基本公式
例如在一个运动速度为100 km/h的列车上,使用GSM 900 MHz的手机进行通话,假设发射频率为900 MHz,则最大的多普勒频移为fm=100000/3600/300*900*1=83 Hz,此时列车移动的方向与无线电波发射的方向一致。如果列车运动的方向与发射方向成90°角,则无多普勒频移,夹角在两者之间时,为0~83 Hz的范围值。如列车移动方向与无线电波发射的方向相反或呈90°~180°角,则频移为负值,范围为-83 Hz~0。无线通话中频率误差的标准一般为ppm,即百万分之,则900 MHz允许的频率误差为900*=45 Hz。
从而可以看出,列车运动时通话的接收频率的误差经常会超过频率误差,多普勒频移已经影响到了通话质量。因此消除或降低多普勒频移对无线通信的影响,是高速运动中进行无线通信必须解决的问题。解决这个问题通常采用的方法是:估算多普勒频移,并对估算的频率偏差进行补偿。尤其是多普勒效应影响非常大的水中无线通信,业界和学术界已经有很多研究成果,采用的方法大多都是通过某些算法进行多普勒频移的消除或补偿。
多普勒频移
当移动台以恒定的速率v在长度为d,端点为X和Y的路径上运动时收到来自远端源S发出的信号,如下图所示。