1.微波毫米波及光波理论、2.微波毫米波技术及应用、3.光

合集下载

微波毫米波集成天线技术

微波毫米波集成天线技术

效 的将其 用于热点区域的带宽保障并不 断的解 决 盲 点 区域 的 覆 盖 问 题 ,这 样 就 能 有 效 的将 流 量 进 行 分 担 。 此 外 , 无 线 回传 方 式 具 有 简 单 、 快速部署 的特 点。因此 ,运用平衡式馈 电高增 益 缝 隙天 线 阵 就 能 有 效 的 解 决 点 对 点 大容 量 网 络 回传 问题 , 从 而 就 能 不 断 的 提 高 运 行效 益 。 其 中 ,为 了有 效 的 提 高 缝 隙 天 线 的增 益 ,我 们 就应将缝 隙天 线进行串馈激励 。平衡式馈 电缝 隙 天 线 的 设计 原 理 主 要 为 : 为 了有 效 的使 基 片 集 成 波 导 与缝 隙 之 间 能 够 达 到 良好 的 匹配 ,我 们 就 应 不 断 的促 进缝 隙 单 元 中 的 电导 能够 满 足
性,而且还具备方 向图稳定 以及后瓣辐射 小等 特 点 。 因 此 , 其 也 受 到 了较 为 广 泛 的应 用 。 而 本 文 所 提 出 的 主 要 是 一 种 采 用 SICL激 励 的 电 磁 偶 极 子 背 腔 贴 片 天 线 , 该 天 线 的 阻抗 带 宽 较 宽 , 且 能 够 有 效 的 覆 盖 住 整 个 工 作 频 段 , 这 样 不 仅 能 够 增 加 方 向 图的 稳 定 性 ,而 且 还 能 有 效 的 提 高 整 个 天 线 的 增 益 ,从 而 不 断 的促 进 整 个 通 信 技 术 的 稳 定 发 展 。此 外 ,该 天 线 主 要 采 用 标准 的多层 板 PCB工 艺进行 加工 ,这样就 仃 利于生产和 电路集成 ,从而不断 的提高电线的 增 益 。 其 中 , 电磁 偶 极 子背 腔 贴 片 天 线 的 主 要
相 应 的条 件 ,这 样 就 能 有 效 的 降低 天 线 的驻 波 。 运 行 原 理 为 : 在 电偶 极 予和 磁 偶 极 子 的 共 同 辐

微波毫米波技术基本知识

微波毫米波技术基本知识

微波毫米波技术基本知识目录一、内容概要 (2)1. 微波毫米波技术的定义 (2)2. 微波毫米波技术的历史与发展 (3)二、微波毫米波的基本特性 (4)1. 微波毫米波的频率范围 (5)2. 微波毫米波的传播特性 (6)3. 微波毫米波的波形与调制方式 (7)三、微波毫米波的传输与辐射 (8)1. 微波毫米波的传输介质 (10)2. 微波毫米波的辐射方式 (10)3. 微波毫米波的天线与馈电系统 (11)四、微波毫米波的探测与测量 (12)1. 微波毫米波的探测原理 (13)2. 微波毫米波的测量方法 (14)3. 微波毫米波的检测器件 (15)五、微波毫米波的应用 (16)1. 通信领域 (18)2. 雷达与导航 (19)3. 医疗与生物技术 (20)4. 材料科学 (21)六、微波毫米波系统的设计 (22)1. 系统架构与设计原则 (24)2. 混频器与中继器 (25)3. 功率放大器与低噪声放大器 (26)4. 检测与控制电路 (27)七、微波毫米波技术的未来发展趋势 (29)1. 新材料与新结构的研究 (30)2. 高速与高集成度的发展 (31)3. 智能化与自动化的应用 (32)八、结论 (34)1. 微波毫米波技术的贡献与影响 (35)2. 对未来发展的展望 (36)一、内容概要本文档旨在介绍微波毫米波技术的基本知识,包括其定义、原理、应用领域以及发展趋势等方面。

微波毫米波技术是一种利用微波和毫米波进行通信、雷达、导航等系统的关键技术。

通过对这一技术的深入了解,可以帮助读者更好地掌握微波毫米波技术的相关知识,为在相关领域的研究和应用提供参考。

我们将对微波毫米波技术的概念、特点和发展历程进行简要介绍。

我们将详细阐述微波毫米波技术的工作原理,包括传输方式、调制解调技术等方面。

我们还将介绍微波毫米波技术在通信、雷达、导航等领域的应用,以及这些领域中的主要技术和设备。

在介绍完微波毫米波技术的基本概念和应用后,我们将对其发展趋势进行分析,包括技术创新、市场前景等方面。

微波和毫米波技术基本知识

微波和毫米波技术基本知识
真空中有如下公式:
频率=光速/波长
光速=30万公里/秒 波数=2π/λ
麦克斯韦方程(微分形式)
法拉第电磁感应定律 安培全电流定律
磁通连续性 高斯定律 电荷守恒定律 三个组成关系:
麦克斯韦方程(积分形式)
法拉第电磁感应定律
安培全电流定律 磁通连续性 高斯定律 电荷守恒定律
电磁场量和电路量
由积分形式可看出场量与电路量之间的关系 :
麦克斯韦预言的基本要点概括如下: (1)变化的磁场能够在周围空间产生电场, 变化的电场能够在周围产生磁场; (2)均匀变化的磁场,产生稳定的电场,均 匀变化的电场,产生稳定的磁场;这里的“ 均匀变化”指在相等时间内磁感应强度(或 电场强度)的变化量相等,或者说磁感应强 度(或电场强度)对时间变化率一定.
麦克斯韦预言
(3)不均匀变化的磁场产生变化的电场, 不均匀变化的电场产生变化的磁场;
(4)周期性变化(振荡)的磁场产生同频 率的振荡电场,周期性变化(振荡)的电场 产生同频率的振荡磁场;
(5)变化的电场和变化的磁场总是相互联 系着,形成一个不可分离的统一体,这就是 电磁场,它们向周围空间传播就是电磁波。
大气透明窗口:35GHz,95GHz,220GHz,140GHz,225GHz 大气吸收频段:60GHz,120GHz, 185GHz
二、无线电波传播特性
长波在地面与电离层下边界之间形成的“球 形波导”内以空间波形式传播; 中波在白天以表面波形式传播,而夜间既有 表面波也有空间波形式传播; 短波的远距离传播则依靠电离层反射的空间 波;白天与夜晚电离层高度和密度差别大。 无线电波正是依赖电离层的反射才有可能实 现远距离传播。
225- 0.39390 1.55 MHz MHz

微波技术基础课程学习知识要点

微波技术基础课程学习知识要点

微波技术基础课程学习知识要点《微波技术基础》课程学习知识要点第一章学习知识要点1.微波的定义― 把波长从1米到0.1毫米范围内的电磁波称为微波。

微波波段对应的频率范围为: 3×108Hz~3×1012Hz。

在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽*****倍。

一般情况下,微波又可划分为分米波、厘米波、毫米波和亚毫米波四个波段。

2.微波具有如下四个主要特点:1) 似光性、2) 频率高、3) 能穿透电离层、4) 量子特性。

3.微波技术的主要应用:1) 在雷达上的应用、2) 在通讯方面的应用、3) 在科学研究方面的应用、4) 在生物医学方面的应用、5) 微波能的应用。

4.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。

一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。

第二章学习知识要点1. 传输线可用来传输电磁信号能量和构成各种微波元器件。

微波传输线是一种分布参数电路,线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。

传输线方程是传输线理论中的基本方程。

2. 均匀无耗传输线方程为d2U z2dzd2I z 2U z 0dz其解为2 2I z 0U z A1e j z A2ej z1I z A1e j z A2ej zZ0对于均匀无耗传输线,已知终端电压U2和电流I2,则:U z U2cos z jI2Z0sin z I z I2cos z jU2sin z 0对于均匀无耗传输线,已知始端电压U1和电流I1,则:Z0 U z U1cos z jI1Z0sin z I z I1cos z jU1sin z 0 pr其参量为,,,3. 终端接的不同性质的负载,均匀无耗传输线有三种工作状态:(1) 当ZL Z0时,传输线工作于行波状态。

微波技术的基本原理

微波技术的基本原理

微波技术的基本原理以及在环境中的应用杨燕娜福州大学环境与资源学院一、微波的基本知识微波是一种电磁波,波长范围没有明确的界限,一般是指分米波、厘米波和毫米波三个波段,也就是波长从1mm到1m左右,频率范围从300 MHz到300 GHz,由于微波的频率很高,所以亦称为超高频电磁波。

微波与工业用电和无线电中波广播的频率与波长范围比较如表1所示。

表1 各系统所用频率与波长范围项目频率波长/m工业用电无线电中波广播微波50Hz或60Hz300~3000kHz300~300000MHz60000000或500000001000~1001~0.001因为微波的应用极为广泛,为了避免相互间的干扰,供工业、科学及医学使用的微波频段(如表2所示)是不同的。

目前只有915MHz和2450MHz被广泛使用,在较高的两个频率段还没有合适的大功率工业设备。

表2 常用微波频率范围频率范围/MHz 波段/m 中心波长/m 常用主频率/MHz 波长/m890~940 2400~2500 5725~5875 22000~22250 LSCK0.3300.1220.0520.01491524505800221250.3280.1220.0520.014微波是电磁波,它是具有电磁波的诸如反射、投射、干涉、衍射、偏振以及伴随着电磁波进行能量传输等波动特性,这就决定了微波的产生、传输、放大、辐射等问题都不同于普通的无线电、交流电。

在微波系统中没有导线式电路,交、直流电的传输特性参数以及电容和电感等概念亦失去了其确切的意义。

在微波领域中,通常应用所谓“场”的概念来分析系统内电磁波的结构,并采用功率、频率、阻抗、驻波等作为微波测量的基本量。

具体说来有以下几点。

(1)在研究微波问题时,应使用电磁场的概念,许多高频交变电磁场的效益不能忽略。

例如微波的波长和电路的直径尺寸已是同一数量级,位相滞后现象已十分明显,这一点必须加以考虑。

(2)微波传播时是直线传播,遇到金属表面将发生反射,其反射方向符合光的反射规律。

微波毫米波技术的研究进展与应用

微波毫米波技术的研究进展与应用

微波毫米波技术的研究进展与应用随着科技不断突飞猛进,微波毫米波技术作为无线通信领域的重要研究方向,正逐渐得到人们的重视和关注。

本文将从微波毫米波技术的定义、研究进展和应用领域三个方面,全面介绍微波毫米波技术的相关知识。

一、微波毫米波技术的定义微波指的是频率30MHz至300GHz之间的电磁波,而毫米波则是指频率30GHz至300GHz之间的电磁波。

相比于传统的无线通信技术,微波毫米波技术有更高的频率和更短的波长,因此可以承载更大容量的数据传输和更快速的通信速度。

此外,微波毫米波技术具有直达能力强、抗干扰性能好等优点,因此在5G通信、无人驾驶、智能家居等领域具有广泛的应用前景。

二、微波毫米波技术的研究进展随着5G时代的到来,微波毫米波技术的研究也进入了一个新的阶段。

在微波毫米波技术的研究中,信号处理技术、调制解调技术和射频技术等方面得到了广泛的应用。

(一)信号处理技术信号处理技术是微波毫米波技术研究的重要领域。

近年来,跨层优化技术得到了广泛的应用,可以实现系统的资源分配和优化。

此外,正交频分复用技术,基于多输入多输出(MIMO)技术的空时编码技术,以及细胞间协作通信技术等,也成为了当前微波毫米波技术热门研究方向。

(二)调制解调技术调制解调技术已成为了微波毫米波通信系统的重要组成部分。

在微波毫米波领域内,传统的调制方式已经不能满足现有需求。

因此,正交振幅调制(QAM)、相位、序列调制(PSK)等高效的调制方式得到了广泛的应用。

(三)射频技术射频技术是微波毫米波技术中不可缺少的一部分,它关键性地影响了通信系统的性能。

目前,微波毫米波技术的研究重点主要在提高射频器件对高频段的覆盖范围和性能的同时实现低功耗,提高设备稳定性以及降低成本等多方面。

三、微波毫米波技术的应用领域(一) 5G通信微波毫米波技术是5G通信系采用的一种关键技术,它通过移动端和大型信号基础设施之间的短距离连接,实现快速的数据传输。

在支持大规模物联网和短程无线连接的方面,微波毫米波技术从本质上扩展了5G的应用范围。

【专业介绍】电磁场与微波技术专业介绍

【专业介绍】电磁场与微波技术专业介绍

【专业介绍】电磁场与微波技术专业介绍电磁场与微波技术专业介绍一、专业概述电子和信息领域内所有重大技术进展几乎都离不开电磁场与微波技术的突破。

在通信、雷达、激光和光纤、遥感、卫星、微电子、高能技术、生物和医疗等高新技术领域中,电磁场与微波技术都起着关键的作用,它的应用领域蕴含在国民经济、国防建设和人民生活的各个方面。

同时,电磁场和微波技术也随着当代物理、数学、技术学科的不断进步而得到日新月异的发展。

电磁场与微波技术专业了解二、培养目标电磁场与微波技术专业培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图像、语音、数据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人才。

电磁场与微波技术专业了解三、专业特色电磁场与微波技术专业主要从事微波在介质中的传输,电磁场目标识别、成像,微波波谱理论与技术研究和微波、光纤传感器,微波波谱仪、微波吸收材料的开发研制,微波、微波波谱、微波声及微波光等技术在军事、通讯、医学生物工程及石油探测等领域的应用研究,微波化学反应动力学过程、机理、化学反应器的研究,微波信号的传输、交换的理论与技术及其在通讯遥感领域的应用。

电磁场与微波技术专业了解四、自学方向多年来在多种军事和国民经济应用的推动下,本学科在天线理论与技术、电磁散射与逆散射、电磁隐身技术、微波毫米波理论与技术、光电子技术、电磁兼容、计算电磁学与电磁仿真技术、微波毫米波系统工程与集成应用等方面的研究形成了鲜明的特色,取得了显著成果。

其主要研究方向有:1.排序电磁学及其应用领域:设计、研究、研发高精度、高效率电磁排序算法;研究高效率准确电磁排序算法在目标特性、微波光学及遥感技术、电磁环境预测、天线分析和设计等方面的应用领域。

2.微波/毫米波电路设计理论与技术:研究有源元器件与电路模型、与微电子、微机械工艺相关的材料器件等模型的建立及参数提取;研究低相噪频率源技术,微波/毫米波单片集成电路设计,基于微机械(mems)的微波/毫米波开关、移相器和滤波器设计。

微波毫米波芯片

微波毫米波芯片

微波毫米波芯片
微波毫米波芯片是一种专门用于高频通信和雷达系统中的集成电路芯片。

它能够实现高速、高精度的信号处理和传输,广泛应用于5G通信、汽车雷达、无人机导航等领域。

微波毫米波芯片的工作频率通常在1GHz至100GHz之间,比传统的
射频芯片更高。

它采用了半导体材料如GaAs和InP等,具有较高的
截止频率和噪声系数,能够实现更快速、更精确的信号处理。

与传统射频芯片相比,微波毫米波芯片具有以下优点:
1. 高速:微波毫米波芯片能够实现更快速的信号处理和传输,适合于
高速数据传输应用。

2. 高精度:由于工作频率较高,微波毫米波芯片能够实现更精确的信
号处理和控制。

3. 小型化:微波毫米波芯片采用了集成电路技术,可以将多个功能模
块集成到一个小型化的芯片上,从而节省空间和成本。

4. 低功耗:由于采用半导体材料,微波毫米波芯片具有较低的功耗和
热损耗,能够实现更高效的能源利用。

目前,微波毫米波芯片已经广泛应用于5G通信、汽车雷达、无人机导航等领域。

随着技术的不断进步,微波毫米波芯片将会越来越小型化、高速化和智能化,为人们的生活带来更多便利和创新。

毫米波通信技术及应用

毫米波通信技术及应用

毫米波通信技术及应用随着移动通信、无线电检测和雷达等应用的发展,毫米波通信技术正在成为一个热门话题。

毫米波通信是指使用毫米波频段进行通信的无线通信技术,频段被定义为30 GHz到300 GHz,处于无线电频谱中的高频段。

随着5G的发展,毫米波通信技术被视为实现高速、高容量、低时延的关键技术之一,并得到了越来越广泛的关注。

一、毫米波通信技术的发展历程毫米波通信技术的发展历程可以追溯到上世纪60年代初期,当时,毫米波被用于雷达测距和声呐会话中。

在20世纪80年代,日本开始研究高速无线通信技术,随后兴起的移动互联网技术使得毫米波通信技术成为了无线通信的重要分支之一。

同时,随着5G技术的逐渐成熟,毫米波通信技术正成为实现超高速率、低时延、大连接、高可靠性的关键技术。

毫米波通信技术的应用场景包括固定无线接入、室内移动通信、城区微波通信、智能移动终端、车联网等。

因为毫米波通信技术传输的距离较短,可以广泛应用于超高速数据传输、行业物联网和智能家居等应用。

二、毫米波通信技术的特点毫米波通信技术具有以下特点,可以为5G通信及其它无线通信提供技术支持:1. 高速率:毫米波通信可以提供更高的速率,通常可以达到几十Gbps的速率,相比于传统的通信技术要快得多。

2. 低时延:毫米波通信技术的时延很低,这意味着数据可以更快地传输。

3. 发射功率低:毫米波通信需要的发射功率相对较低,因此可以减少对电池的消耗,延长设备的电量使用时间。

4. 穿透能力低:毫米波通信技术传输的距离较短,同时具有较低的穿透能力,因此在室内应用和近距离通信等场景中表现更好。

5. 频谱资源丰富:毫米波通信技术利用的频谱资源广泛而丰富,因此可以更好地适应市场需求。

三、毫米波通信技术的应用毫米波通信技术因为其高速度、低时延、低发射功率等优点,在很多领域都有广泛应用。

以下是几个毫米波通信技术的典型应用:1. 车联网:毫米波通信技术可以应用于车联网中,以实现载频段的快速传输。

微波遥感——精选推荐

微波遥感——精选推荐

微波遥感微波遥感⼀、微波遥感概述1、微波微波是指波长1mm——1m(即频率300MHz——300GHz)的电磁波,包括毫⽶波、厘⽶波、分⽶波,它⽐可见光-红外(0.38——15µm)波长要⼤的多。

最长的微波波长可以是最短的光学波长的250万倍。

常⽤的微波波长范围为0. 8~30厘⽶。

其中⼜细分为K、Ku、X、G、C、S、Ls、L等波段。

微波遥感⽤的是⽆线电技术。

微波遥感:是传感器的⼯作波长在微波波谱区的遥感技术,是利⽤某种传感器接受地理各种地物发射或者反射的微波信号,藉以识别、分析地物,提取地物所需的信息。

微波遥感系统有主动和被动之分。

所谓主动微波遥感系统,指遥感器⾃⾝发射能源。

“雷达”是⼀种主动微波遥感仪器。

雷达是⽤⽆线电波探测物体并测定物体距离的,这⼀过程中需要它主动发射某⼀频率的微波信号,再接收这些信号与地⾯相互作⽤后的回波反射信号,并对这两种信号的探测频率和极化位移等进⾏⽐较,⽣成地表的数字图像或者模拟图像。

微波辐射计是⼀种被动微波遥感仪器,记录的是在⾃然状况下,地⾯发射、反射的微弱的微波能量。

2、微波遥感的历史微波遥感的发展可以追溯到20世纪50年代早期,由于军事侦察的需求,美国军⽅发展了侧视机载雷达。

之后,侧视机载雷达SLAR 逐步⽤于⾮军事领域,成为获取⾃然资源与环境数据的有⼒⼯具。

1978年美国发射的Seasat海洋卫星以及随后发射的航天飞机成像雷达计划、苏联发射的Cosmos1870,标志着航天雷达遥感的开始。

20世纪90年代以来各国相继发射了⼀系列的星载雷达,单波段单极化雷达遥感得到了很⼤的发展。

进⼊21世纪以来另有⼀系列先进的雷达遥感计划得以实施,使得多波段多极化雷达遥感得到了很⼤的发展。

这⼀系列计划的实施⼤⼤地推动了极化雷达和⼲涉雷达等新型雷达的发展,使卫星雷达遥感进⼊了⼀个新时代。

我国的微波遥感事业起步于上世纪70年代。

在国家历次科技攻关中,遥感技术都作为重要项⽬列⼊。

微波技术原理及其发展与应用

微波技术原理及其发展与应用

微波技术原理及其发展与应用微波技术在短短的几十年内已渗透到各行各业,对社会发展和人们的生活产生了深远影响。

文章在微波发展的基础上,详细介绍了微波加热和微波灭菌两种技术的作用机理,并对微波加热的条件、特点等作出说明,另外,还包括微波技术在各个领域的广泛应用,同时对微波技术目前存在的问题作了分析,并对微波技术的发展前景作了展望。

标签:微波技术;微波加热;微波灭菌;原理;应用;前景1 引言微波是一种波长很短的电磁波,其波长范围在0.1mm~1m之间,由于其最长波长值比超短波最小波长值还要短,故称其为微波。

微波具有极高的频率,其范围在300MHz~3000GHz之间,故微波亦称作“超高频电磁波”。

微波整体范围介于红外线与超短波之间,根据微波波长范围的不同,又可将微波分为分米波、厘米波、毫米波以及亚毫米波。

微波在整个电磁波频谱中所处的位置简图如图1所示[1]。

随着科学的发展,微波技术得到了广泛的应用,尤其是在通信行业,如微波卫星通信、微波散射通信、模拟微波通信和数字微波通信等。

为避免微波通信频率与工业、医学、科学等的频率相互干扰,故将微波通信频率与其他用途的微波频率分开使用。

目前,工业、医学、科学常用的微波频率有433MHz、915MHz、2450MHz、5800MHz、22125MHz,其中915MHz和2450MHz在我国常用于工业加热。

2 微波技术的发展历程微波技术的发展主要取决于微波器件的应用和发展。

早在20世纪初,就有研究人员开始了对微波理论的探索,并进行了相关的实验研究。

但由于当时信号发生器功率较小,加之信号接收器灵敏度较差,使得实验未能取得实质性的进展[2]。

1936年,波导技术的进一步发展为微波技术的研究提供了可靠的理论及实将波导用作宽带传输线并申验条件。

美国电话电报公司的George C. Southworth.请了专利,同时,美国麻省理工学院的M.L.Barrow完成了空管传输电磁波的实验,这些工作为规则波导奠定了理论基础,推动了微波技术进一步向前发展[3]。

微波及毫米波技术基本知识

微波及毫米波技术基本知识

用求和 表示积分:
电磁场和电路定律
克希霍夫电压定律(电磁感应定律)
克希霍夫电流定律(电荷守恒定律)
电磁频谱
通常将电磁频谱分为长波、中波、短波、超短波、微波、毫米波、亚毫米波、红外和光波,其对应的 频率如表1所示。 不同频段的电磁波传播特性不同,它们的用途也不同。
常用频段称呼
射频 (RF):1MHz-1GHz (广义射频指无线电频率) 微波:1GHz-30GHz 毫米波:30GHz-300GHz 亚毫米波:300-3000GHz(1000GHz=1THz) 红外:300-416000GHz(1000THz=1pHz) 可见光:0.76-0.4µm
麦克斯韦预言
(3)不均匀变化的磁场产生变化的电场,不均匀变化的电场产生变化的磁场; (4)周期性变化(振荡)的磁场产生同频率的振荡电场,周期性变化(振荡)的电场产生同频率的 振荡磁场; (5)变化的电场和变化的磁场总是相互联系着,形成一个不可分离的统一体,这就是电磁场,它们 向周围空间传播就是电磁波。
无线电系统组成 发射机(信号产生、放大) 发射终端(信息产生)
接收机(信号放大、变换) 接收终端(信息处理)
发射天线(辐射能量) 接收天线(搜集能量)
概述
本讲座介绍无线系统的射频部分相关知识,包括天线、发射机、接收机以及电磁波的基本知识,微波 部件和子系统参数测量的基本原理和方法,使学员建立电磁场与微波技术的基本概念,奠定设计、调 试微波部件和子系统的技术基础。
名称 频率
长波
表1 无线电频段划分
中波
短波
超短波 (VHF)
微波和毫米波
15-100kHz
100-1500kHz 1.5-30MHz
30-300MHz

微波光子学的基础理论与实验研究

微波光子学的基础理论与实验研究

微波光子学的基础理论与实验研究一、微波光子学的概述微波光子学是研究微波与光之间相互转换的一门学科,其基础理论主要涉及光学、电磁场理论、半导体和微波技术等多个学科。

这是一门富有活力的研究领域,特别是在通信、医疗、测量和安全等领域,有着广泛的应用。

同时,微波光子学在量子计算和量子信息处理方面也具有非常重要的应用价值。

二、微波和光的相互作用微波和光之间可以通过电光效应相互转换。

电光效应源于晶体结构中的对称性,可以引起光线的折射或损耗,产生相位差。

在微波和光的相互作用中,把微波和光耦合在一起,然后通过电光、光电和非线性光学效应实现脉冲延迟、解调和调制等操作。

在此过程中,一些光电器件(如光纤、微波毫米波器件、微波光纤和光探测器)被广泛应用,这些器件不仅提供了光电互转接口,同时也增强了微波和光的耦合效率。

三、微波光子学的基础理论微波光子学的基础理论包括电光效应和光电效应两个方面。

电光效应是指光的电场与结构中的电场相互作用,出现折射率的变化;光电效应是指电子在光场中的受激发射和吸收过程。

1、电光效应电光效应主要包括三种:Kerr效应、Pockels效应和 Mach-Zehnder 消光器。

Kerr效应是指当介质中的电场受到光场作用时,折射率也随之改变,这种效应在光纤通信中常用于实现脉冲调制和光源调制。

而 Pockels效应是指当介质中的电场恒定时,光的折射率随之变化,广泛应用于大气光学、光通信、雷达和激光交叉测量等领域。

Mach-Zehnder 消光器则是一种基于电光现象的调制器件,其优点是带宽宽、驱动电压低,被广泛应用于光通信、光纤陀螺仪和高精度光学测量等领域。

2、光电效应光电效应包括弗朗霍夫效应、光伏效应、压电效应和反常霍尔效应。

其中,光伏效应是将光能转化成电能的一种光电效应,在太阳能及电池中得到广泛应用;压电效应是指晶体在外电场作用下的扭曲和变形;反常霍尔效应是指在半导体材料中,在磁场的作用下,出现横向电场,产生反常电导现象。

微波和毫米波雷达的研究及其应用

微波和毫米波雷达的研究及其应用

微波和毫米波雷达的研究及其应用雷达技术作为一种探测和识别目标的技术,已经广泛应用于人类社会的各个领域,包括军事、民用、科学研究等。

其中,微波和毫米波雷达是当前最为先进的雷达技术之一,被广泛应用于军事和民用领域。

本文就微波和毫米波雷达的研究及其应用问题进行了阐述和探讨。

一、微波和毫米波雷达技术的原理及分类微波是一种波长在1mm以上至30cm以下的电磁波,它的频率范围在1GHz和300GHz之间。

毫米波是在微波和红外线之间的一种电磁波,其波长在1mm以下至0.1mm之间,频率在300GHz和30THz之间。

微波和毫米波雷达是通过发射微波或毫米波来扫描目标并接收它们的回波信号,从而实现目标探测和识别。

它们具有探测距离远、探测精度高、信号处理能力强等优点。

现代雷达技术中,微波和毫米波雷达种类很多,常见的微波雷达主要包括:主动相控阵雷达、被动相控阵雷达、脉冲雷达、连续波雷达、多普勒雷达、合成孔径雷达等。

毫米波雷达常见的几种类型有:毫米波成像雷达、毫米波和太赫兹波探伤雷达、副本雷达(双波段雷达)等。

二、微波和毫米波雷达的应用1、军事应用微波和毫米波雷达在军事领域的应用十分广泛。

它们可以用于目标探测、目标定位、目标追踪、制导武器等多个方面。

主动相控阵雷达是目前最为先进的雷达技术之一,可以用于飞机、舰艇和导弹等多种平台上,实现目标探测和识别。

同时,它还可以进行干扰抵抗和反制等任务,提高军事作战力量的实战能力。

2、民用应用微波和毫米波雷达在民用领域中的应用也十分广泛。

例如,它们可以用于汽车安全,实现雷达测距和自动驾驶等任务。

在航空航天领域,微波和毫米波雷达可以用于飞机避免障碍物、控制高度、高速命中等任务。

在电子商务和智能物流方面,它们可以实现快递物流的追踪和监控等功能。

此外,微波和毫米波雷达还可以用于环保、地质勘探、人体生命体征监测等多个领域。

三、微波和毫米波雷达技术的发展趋势随着雷达技术的不断发展,微波和毫米波雷达在功能和性能方面也在不断提高。

微波传输特性的基础知识

微波传输特性的基础知识

微波传输特性的基础知识“微波”通常是指波长在m 1—mm 1的电磁波,对应的频率范围为:MHz300—GHz 300,它介于无线电波和红外线之间,又可分为分米波、厘米波、毫米波、亚毫米波。

微波与低频电磁波一样,具有电磁波的一切特性,但由于微波的波长较短、频率高因此又具有许多独特的性质,主要表现在:1、 描述方法:由于电磁波的波长极短,与使用的元件和设备的尺寸可以相比拟,在低频段由于能量集中其传播性质用“路”的概念来描述,使用的元件称为集中参数元件(电阻、电容、电感等);而微波的传播应利用“场”的概念来处理,使用的元件为分布参数元件(波导管、谐振腔等)。

因此低频电路的电流、电压、电阻等不再适用,而是采用等效方法处理;微波测量则以功率、波长、阻抗取代了电流、电压、电阻等。

2 、产生方法:微波的周期在910-—s 1210-与电子管内电子的渡越时间(约为s 910-)相近,因此微波的产生和放大不能再使用普通的电子器件,取而代之的是结构和原理完全不同的微电子元件——速调管、磁控管、行波管及微波固态器件。

3、 光似性:由于微波介于无线电波和红外线之间,因此不仅具有无线电波的性质同时具有光波的性质:以光速直线传播、反射、折射、干涉、衍射等。

4、 能量强:由于微波的频率高,故可用频带宽、信息容量大,且能穿透大气层因此可广泛用于卫星通讯、卫星广播电视、宇宙通讯和射天天文学的研究。

由于微波的这些特性,使微波在通信、雷达、导航、遥感、天文、气象、工业、农业、医疗、以及医学等方面得到广泛应用。

一、 微波元件简介1. 固态振荡器(固态信号源)微波振荡器(信号源)是产生微波信号的装置,常见的有磁控管振荡器、速调管振荡器和固态振荡器几种。

磁控管振荡器功率大体积大,常用来提供大功率信号;速调管振荡器结构简单、使用方便,但效率低一般只有0.5%—2.5%,输出功率小一般在,因此比较适合实验室使用。

固态振荡器则是一种较新型的信号源,可分为微波晶体管振荡器、体效应管振荡器、雪崩二极管振荡器等。

浅谈毫米波技术在5G网络中的应用

浅谈毫米波技术在5G网络中的应用

浅谈毫米波技术在5G网络中的应用摘要:随着互联网的发展,移动通信技术也在不断进步。

5G网络具有超高速、低时延、大容量等优势。

5G网络将成为今后发展的主流,为人们能提供更高的网络速度和更好的服务质量。

在5G网络中,毫米波技术已经广泛应用,也是未来发展的重要方向。

毫米波技术可以提高通信效率,提高网络容量,提高通信效率和传输速度,增强传输距离,今后将更好地应用于5G网络。

本文主要介绍了毫米波技术和毫米波技术在5G网络中的应用情况,为5G网络的发展提供了参考。

关键词:毫米波;5G;网络;应用1、毫米波技术介绍一般把30~300千兆赫兹(波长为1~10毫米)的频带(波长为1~10毫米)的电磁波称为毫米波,它位于微波和远红外线波交叉的波长范围内,具有两种波谱的特点。

毫米波的理论和技术分别是微波向高频的延伸和光波向低频的发展。

毫米波的特点是光波相比毫米派大气窗口(毫米波和毫米派在大气中传播时,气体分子的共振吸收因部分由极少量崩溃的频率)通过传播时的崩溃,自然光和热辐射影响少的。

毫米波在传输过程中可以提高信号的传输效率。

毫米波在无线频带中具有很高的传输效率,可以增加频谱的幅度,增加信号传输距离。

但由于毫米波的传送距离较短,要想在空间上满足一定频率的要求,就必须用一定的技术手段增加传送容量。

多用户多输入多输出(mimo)技术是目前毫米波通信系统最常用的技术手段之一。

mimo是在同一时间内通过天线收发信息,增加无线通信容量的技术。

通过天线处理收发的信息后,将其结果能输出到天线的方式,可以大幅增加通信容量。

2、毫米波技术与5G网络的关系5G网络强大的数据传输能力、很强的稳定性以及大范围的覆盖率为大数据时代带来了很多利益。

一些建设良好地区的用户可以体验10M/S以上的传输速度,通过网络为社会发展和人们提供保障。

相关事实表明,4G覆盖范围不大的问题可以通过5G进行大规模覆盖范围。

因此,5G技术正在向小型化以及集成化的趋势发展。

微波和毫米波技术在物联网中的应用

微波和毫米波技术在物联网中的应用

微波和毫米波技术在物联网中的应用随着技术的不断发展和进步,物联网的概念也逐渐从理论走向了现实。

而微波和毫米波技术则成为了物联网中非常重要和必要的一部分。

一、微波和毫米波技术的定义和特点微波技术是指波长在1毫米至1米之间,频率在1GHz至300GHz之间的电磁波所构成的工程技术。

它具有波长短、频率高、穿透力强、采用方便、无噪声等优点。

在无线通讯、遥感控制、雷达测距、仪器与测量、能量转换以及高速传输等领域中,都有着广泛的应用。

毫米波技术则是指波长在1毫米至10毫米之间,频率在30GHz至300GHz之间的电磁波。

与微波技术相比,毫米波技术的频率更高、功率更小、穿透力更弱,但它在视距范围内会有更高的信号传输速度和较低的信号衰减。

在车道测速、安防监控、无人驾驶、医疗影像、天气预测、移动通讯等方面的应用也越来越广泛。

二、微波和毫米波技术在物联网中的应用1. 无线通讯:无线通讯是物联网的基础,而微波和毫米波技术则是无线通讯的关键。

它们可以实现高速、远距离、低功耗、稳定的数据传输,因此在物联网中有着广泛的应用。

无线传感器网络、智能家居、智慧城市、智能交通、工业自动化等领域都需要无线通讯技术的支持,而微波和毫米波技术的高速传输能力正好可以满足这一需要。

2. 雷达测距:雷达是一种使用微波或毫米波来探测、测量、成像的电子设备。

在物联网中,雷达测距技术可以实现对物体位置、距离、速度、方向等参数的实时监测和控制,对于交通管理、物流运输、环境监测、智能安防等方面的需求都尤为重要。

3. 医疗影像:微波和毫米波技术也被广泛应用于医疗领域。

因为它们的穿透能力强,所以可以用来进行非侵入性的人体成像,还可以用于脑磁图、心电图等医学研究。

此外,微波和毫米波技术还可以用于医疗器械的通信、控制和监测等方面。

4. 安防监控:微波和毫米波技术的高速传输和穿透力,使得它们在安防监控领域的应用非常广泛。

如借助微波和毫米波技术可以帮助高速公路进行车速的实时测量,起到了对交通流量监测和路况疏导的作用。

微波毫米波技术基本知识

微波毫米波技术基本知识

LTCC-MCM
LTCC-MCM
LTCC工艺流程
LTCC实例-LMDS发射模块
计算电磁学及其应用
★微波电路的小型化,特别是三维电路的发展 不仅以先进的电路制造工艺为基础,而且依赖 计算电磁学和商用电磁仿真软件的迅速发展。
★随着射频集成电路(RFIC)、单片集成电路 (MMIC)和超大规模集成电路(VLSI)技术 的迅速发展,低成本、高性能的高速数字、射 频、微波和毫米波集成电路和系统的互连和封 装成为重要的理论和工艺技术课题。
微波电路技术的发展历程
微波电路或系统的革新体现在元、器件物理 结构和电磁关系两方面。 这种革新来源于对电磁场理论的灵活运用和 商用电磁仿真软件的快速发展; 其成功实现有赖于新材料、新工艺,特别是 半导体和微加工技术的成就。 微波和毫米波集成电路技术和工艺的不断推 陈出新集中体现了微波领域日新月异的技术 进步。
毫米波器件-电真空器件
行波管 反波管 速调管 磁控管 回旋管 自由电子激光管
毫米波器件-半导体器件
两端器件: 雪崩二极管-Impatt 耿氏管或体效验管-Gunn,TED 混频、检波二极管,变容二极管,隧道二极管 三端器件: 双极管-BJT 场效应管-FET 异质结双极管-HBT 高速电子迁移三极管-HEMT 膺配高速电子迁移三极管-PHEMT
– MCM-D:采用其它新绝缘材料的薄膜布线基 板,D表示电介质淀积薄膜工艺;
– MCM-Si:采用硅工艺的薄膜布线基板,层间 绝缘膜是SiO2、Si;
– MCM-C/D:在共烧陶瓷上形成薄膜布线的基 板。
MCM的主要特点
集芯片IC和无源元件于一体,避免了元器件 级组装,简化了系统级的组装层次。 高密度互连基板,导线和线间距细化(通常 小于0.1mm); 高密度多层互连线短,布线密度高,布线密 度每平方英寸250-500根; 能将数字电路、模拟电路、光电器件、微波 器件合理组装在一个封装体内,形成多功能 组件、子系统和系统。

微波毫米波的波长

微波毫米波的波长

微波毫米波的波长微波和毫米波都属于电磁波谱中的一部分,它们在波长上相对较长,但频率较高。

本文将分别介绍微波和毫米波的波长范围、特点和应用。

微波波长范围在1毫米到1米之间,对应的频率在300兆赫兹到300千赫兹之间。

微波具有穿透力强、辐射能量大和传输距离远的特点。

由于其波长适中,能够与物体发生较强的相互作用,因此在通信、雷达、无线电和微波炉等领域得到广泛应用。

微波通信是指利用微波进行信息传输的技术。

相比于其他频段的通信方式,微波通信具有传输速度快、信号稳定、抗干扰能力强等优势。

由于微波的穿透力较强,可以在大气层中传播,因此在地面通信、卫星通信和移动通信等领域被广泛应用。

雷达是利用微波进行目标探测和测距的技术。

雷达系统通过发射微波信号,利用目标物体反射回来的信号进行探测和测量。

微波波长的特点使得雷达具有较高的分辨率和穿透力,可以在不同天气条件下进行探测和跟踪。

无线电是利用微波进行广播和接收的技术。

微波具有较高的频率和较大的带宽,可以实现多路复用和高质量音频传输。

微波的穿透力较强,可以穿透墙壁和建筑物,因此在室内无线电通信和卫星广播中得到广泛应用。

微波炉是利用微波的热效应进行加热和烹饪的设备。

微波通过与食物中的水分子相互作用,产生摩擦热,使食物迅速加热。

微波炉具有加热速度快、效率高和食物保持营养的优势,因此在家庭和商业厨房中得到广泛应用。

毫米波波长范围在1毫米到10毫米之间,对应的频率在30千兆赫兹到300千赫兹之间。

毫米波具有穿透力弱、传输距离短和易受大气吸收的特点。

由于其波长较短,能够实现更高的数据传输速率和更精确的测量。

毫米波通信是指利用毫米波进行高速数据传输的技术。

由于毫米波的高频率和大带宽特性,可以实现更高的数据传输速率,因此在无线宽带接入、高清视频传输和智能车联网等领域被广泛应用。

毫米波雷达是利用毫米波进行高精度目标探测和成像的技术。

毫米波具有较短的波长和较高的频率,可以实现更高的分辨率和精确度,因此在安全检测、无人驾驶和气象观测等领域得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培养方案——电磁场与微波技术(学科代码:080904)
一、培养目标
本学科培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图象、语音、数 据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人 才。

学位获得者应能承担高等院校、科研院所及高科技企业的教学、科研及开发管理等工作。

二、研究方向
1.微波毫米波及光波理论、2.微波毫米波技术及应用、3.光纤光电子技术及应用、4.微波、光通信与雷达信号处理技术、5.计算电磁学及应用、6.微波电路与系统、7.雷达技术与雷达信息处理
三、学制及学分
1. 对于按硕—博一体化课程体系培养的研究生,获得硕士学位一般需要3年。

研究生在申请硕士学位前,必须取得总学分不低于35分(含开题报告2学分)。

获得博 士学位一般需要5年,最长学习年限不超过7年。

研究生在申请博士学位前,必须取得总学分不低于45分(含开题报告2学分、专业综合知识答辩2学分;博士层 次课程不低于8学分)。

2. 对于通过我校博士生入学考试的普通博士生,获得博士学位一般需要3年,最长学习年限不超过6年。

研究生在申请博士学位前,
必须取得总学分不低于10分(含开题报告2学 分;博士层次课程不低于8学分)。

四、课程设置
英语、政治等公共必修课和必修环节按研究生院统一要求。

学科基础课和专业课如下所列。

基础课:
ES45201 高等电磁场理论(3) ES45202 介质导波结构及应用(3.5)
ES45203 电磁场数值解法(3.5) ES45204 微波系统与工程(3)
专业课:
ES44201 微波电路原理与设计(3) ES44202 天线技术基础(3)
ES44203 光电子学(2) ES45211 固态电子学基础(3)
ES45213 光波导技术(2) ES45215 毫米波通信技术(2)
ES45221 现代微波测量(2) ES45222 耦合模理论(2)
ES45223 现代天线设计(2) ES45224 电波接收技术(3)
ES14202 快电子学(3) IN05102 数字信号处理(II)(3)
IN05121 移动通信工程(3) CN05112 实变与泛函▲(4)
ES46201 电磁场与微波技术专题(2)
备注:
1. 带▲号课程为博士层次必修课,硕士层次选修课。

对于硕博连读生,该课程只能按博士层次必修课记录学分;
2. 博士研究生或硕博连读研究生除必修编号为CN05112的课程外,还必须至少选修编号为ES46201的课程或一门经学科点认可的其它博士层次课程。

电磁 场与微波技术专题可以由导师指定某专题的参考书(资料),由研究生作读书报告,并提交书面报告。

五、科研能力要求
按照研究生院有关规定。

六、学位论文要求
按照研究生院有关规定。

相关文档
最新文档