初等数论中的几个重要定理高中数学竞赛

合集下载

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。

到三角形三顶点距离的平方和最小的点--重心。

三角形内到三边距离之积最大的点--重心。

4、几何不等式。

5、简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小。

6、几何中的运动:反射、平移、旋转。

7、复数方法、向量方法。

平面凸集、凸包及应用。

二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。

三倍角公式,三角形的一些简单的恒等式,三角不等式。

2、第二数学归纳法。

递归,一阶、二阶递归,特征方程法。

函数迭代,求n次迭代,简单的函数方程。

3、n个变元的平均不等式,柯西不等式,排序不等式及应用。

4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。

5、圆排列,有重复的排列与组合,简单的组合恒等式。

6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。

7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。

三、立体几何1、多面角,多面角的性质。

三面角、直三面角的基本性质。

2、正多面体,欧拉定理。

3、体积证法。

4、截面,会作截面、表面展开图。

四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。

2、二元一次不等式表示的区域。

3、三角形的面积公式。

4、圆锥曲线的切线和法线。

5、圆的幂和根轴。

五、其它抽屉原理。

容斤原理。

极端原理。

集合的划分。

必备速看!高联中最常用的146个重要定理、公式、概念!(赶紧转给你身边即将参加联赛的数竞党)

必备速看!高联中最常用的146个重要定理、公式、概念!(赶紧转给你身边即将参加联赛的数竞党)

必备速看!高联中最常用的146个重要定理、公式、概念!(赶紧转给你身边即将参加联赛的数竞党)在2008年之前,高中数学联赛第一试有选择题6道(占36分),填空题6道(占54分),解答题3道(占60分),第二试有3道解答题,各50分,其中一道为平面几何题,而从2009年起,其高联题型结构发生了较大的调整,其一试换成了8道填空题(每道8分,共64分)和3道解答题,分别为16分、20分、20分(共56分,满分120分),二试题量增加到了4道,涉及平面几何、代数、数论、组合四个方面,分值分别为40分、40分、50分、50分(满分180分),调整后的一试题量较少,难度向高考靠拢,二试题量增加,难度向国际竞赛靠拢,而高联的试题由各省(区、市)数学会提供,经精选出所需题量的2-3倍后,再由全国命题工作会议定稿,离今年联赛的时间越来越近,在最后这个阶段巩固基础、清理盲点、补漏重要定理、公式、概念是重中之重,而下方是联赛中最常用到的146个重要定理、公式、概念,其包含了代数中的集合、三角函数、不等式、数列、计数原理、复数、几何中的常用定理、面积与面积比、勾股定理与线段长度、共线点与共点线、圆、交比与调和点列、圆的幂和根轴、几何变换、几何不等式与极值、立体几何、三角法、解析几何、向量、复数几何,初等数论中的唯一分解定理、裴蜀恒等式、费马小定理、欧拉定理、中国剩余等定理以及组合中的抽屉原理、容斥原理、算两次、极端原理.曾有人说,高联是一场属于数竞党的高考,短短的半天,薄薄的两张试卷,却包含了数竞党坚持了无数个日日夜夜的努力,我们越过无数的坎坷荆棘,我们用一个个数学符号写下青春的诗性,我们走过无数的苦乐时光,我们用成堆的卷子、成箱的废笔让我们的数学梦想展开翅膀!—over如果需要这一份联赛中最常用到的146个重要定理、公式、概念的电子版,只要你答应小数君,能在9号狠狠地揍高联那家伙一顿的话,能把它揍的皮青脸肿的话,那就给小数君留下邮箱来吧!听说点赞的都能狠揍高联一顿☟。

数学竞赛25个定理

数学竞赛25个定理

数学竞赛25个定理1. 费马小定理:若p是一个质数,a是任意正整数,则a^p - a能够被p整除。

2. 柯西-施瓦茨不等式:对于任意的向量a和b,有|a·b| ≤|a|·|b|。

(其中的·是向量的内积)3. 柯西定理:对于任意的可导函数f(z),有∫γf(z)dz = 0,其中γ是任意封闭曲线。

4. 狄利克雷函数定理:对于任意的正整数a和n,同余方程ax≡ n(mod m)有解当且仅当gcd(a,m)|n。

5. 等比数列求和公式:对于一个公比为r的等比数列1,r,r^2,r^3,…,r^(n-1),其前n项和为(s_n = (1-r^n)/(1-r))。

6. 泰勒公式:对于一个在区间内的可导函数f(x),在x = a处的泰勒展开式为:f(x) = f(a) + f'(a)·(x-a) + f''(a)·(x-a)^2/(2!) + …… + f^(n)(a)·(x-a)^n/n!。

7. 正弦和余弦的和差公式:sin(a ± b) = sin(a) cos(b) ± cos(a) sin(b),cos(a ± b) = cos(a) cos(b) ∓ sin(a) sin(b)。

8. 斯特林公式:n! ≈ (n/e)^n·√(2πn),其中e≈2.71828是自然对数的底数,π≈3.14159是圆周率。

9. 美林底定理:对于任意的正整数n,有gcd(Φ(n), n) = 1,其中Φ(n)表示小于等于n的正整数中与n互质的数的个数。

10. 欧拉公式:对于任意的正整数n,有e^(iπ) + 1 = 0。

11. 矩阵行列式的定义:对于一个n阶矩阵A,其行列式的定义为:det(A) = Σ(^n)_(i=1) a_1iC_1i,其中C_1i表示以第一行为底,第i列为“孔”的余子式。

12. 柯西-列维定理(变量展开式):对于一个n元对称多项式f(x1, x2, …, xn),其可表示为f(x1, x2, …, xn) = Σpπa_π(x1, x2, …, xn),其中pπ为n元置换,a_π(x1, x2, …, xn)表示将xπ(1),xπ(2),…,xπ(n)代入f(x1, x2, …, xn)后留下来的项。

高中数学联赛中常见的几何定理

高中数学联赛中常见的几何定理

高中数学联赛中常见的几何定理第一篇:高中数学联赛中常见的几何定理梅涅劳斯定理:梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。

他指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1。

证明:过点A作AG‖BC交DF的延长线于GAF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。

利用这个逆定理,可以判断三点共线。

塞瓦定理:在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1证法简介(Ⅰ)本题可利用梅涅劳斯定理证明:∵△ADC被直线BOE所截,∴(CB/BD)*(DO/OA)*(AE/EC)=1 ①而由△ABD被直线COF所截,∴(BC/CD)*(DO/OA)*(AF/FB)=1②②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1(Ⅱ)也可以利用面积关系证明∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③同理CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤③×④×⑤得BD/DC*CE/EA*AF/FB=1利用塞瓦定理证明三角形三条高线必交于一点:设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]= 1,所以三条高CD、AE、BF交于一点。

初等数论在中学数学竞赛中的应用

初等数论在中学数学竞赛中的应用

初等数论在中学数学竞赛中的应用初等数论是数学中的一个分支,主要研究自然数的整数性质和整数之间的关系。

在中学数学竞赛中,初等数论占有极其重要的地位,这篇文章介绍了初等数论在中学数学竞赛中的应用。

1. 最大公约数与最小公倍数最大公约数和最小公倍数是初等数论中最基础的知识点,也是数学竞赛中常出现的题型。

掌握最大公约数与最小公倍数的计算方法,在竞赛中可以迅速求得答案,提高答题速度和准确率。

考查方式:计算最大公约数与最小公倍数的值,或通过最大公约数、最小公倍数的计算求解整数方程组,适合于初赛和复赛阶段。

2. 奇偶性奇偶性是初等数论中的一个重要概念,掌握奇偶性的计算方法可以很快地帮助解决竞赛题目。

在奇偶性的计算中,最常见的有两种算法:除以2法和末位数法。

考查方式:根据给定的奇偶性,判断某个数是否满足条件;或者根据某个数的奇偶性,推导出其它性质,适合于中等水平竞赛。

3. 同余同余是初等数论中的又一个重要概念,两个整数的同余关系是指它们被某个整数整除时,得出的余数相同。

同余关系具有传递性、对称性和反身性,可以用于求解余数。

除此之外,同余关系在模运算、线性同余方程中也有广泛应用。

考查方式:根据同余关系,推导出一系列整数的性质,或通过同余关系求解余数,适合于中等和难地水平竞赛。

4. 平方数平方数是自然数的平方,平方数的性质在数学竞赛中也有广泛应用。

掌握平方数的计算方法和性质,可以快速判断某一个数是否为平方数,或求解某个正整数的平方数。

5. 数字反转数字反转是数学中的一种基本运算,也是初等数论中常出现的题型。

掌握数字反转的方法,可以帮助我们快速计算整数反转后的结果。

此外,在数字反转的基础上,还可以进一步进行数字分离、数字组合等操作,应用于解题中。

总之,初等数论在中学数学竞赛中占有非常重要的地位,掌握初等数论的知识和技巧,可以极大地提高我们的解题速度和成功率。

在备战数学竞赛的过程中,我们应该加强初等数论的学习和练习,不断提高自己的能力水平。

高中数学竞赛公式定理大全

高中数学竞赛公式定理大全

高中数学竞赛公式定理大全包括但不限于:
1. 集合运算的分配律与反演律(摩根律)、容斥原理、有限等集的性质。

2. 直线与方程:克莱姆法则、二维对称点坐标公式、二维投影点坐标公式、直线的参数方程、交轨法、定比分点公式。

3. 圆锥曲线:阿波罗尼斯圆、圆的直径式方程、曲线系、圆幂定理、调和点列、椭圆和双曲线的第二定义、各种切割线方程、特殊类型的双曲线、抛物线的各种几何性质、阿基米德三角形、齐次化方法、双根式、仿射变换、隐函数、蒙日圆、等角定理、二次锥面形成圆锥曲线的过程、极点与极线。

4. 立体几何:祖暅原理、用行列式求平面的法向量、三维对称点坐标公式、三维投影点坐标公式、直角四面体勾股定理、四面体余弦定理、三射线定理、三余弦定理、三面角余弦定理、三正弦定理、平行六面体的性质、立体几何中的正余弦定理。

5. 导数与极限:夹逼定理、洛必达法则、极限运算法则、常用极限、对数求导法则、隐函数求导、多个极值判定法、抽象函数的构造、对数平均不等式、指数平均不等式。

6. 数列:等差数列中,S奇=na中,例如S13=13a7;等差数列中,S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q;数列的终
极利器,特征根方程等。

7. 其他公式和定理:三角形垂心爆强定理;维维安尼定理;爆强思路;常用结论;爆强公式;函数y=(lnx)/x在(0,e)上单调递增,在(e,+无穷)上单调递减等。

这些公式和定理是高中数学竞赛的重要知识点,需要学生熟练掌握和应用。

同时,学生还需要具备灵活运用知识的能力和创造性思维,才能取得优异的成绩。

初等数论在数学竞赛中的应用

初等数论在数学竞赛中的应用

初等数论在数学竞赛中的应用
初等数论是数学竞赛中的常见题型,尤其是在奥数竞赛中。

下面列举几个常见的例子:
1. 最大公约数和最小公倍数的应用:通过对给定的两个数分解质因数,求其最大公约数和最小公倍数。

2. 模运算的应用:模运算是解决很多问题的关键,比如余数、同余方程、解密等等。

3. 素数的应用:判断一个数是否为素数、找出素数的个数、进行素数分解等,都是初等数论中常见的问题。

4. 数列基本性质的应用:通过数列基本性质(通项公式、前n项和公式等)求解数列问题,如等差数列、等比数列、斐波那契数列等。

5. 奇偶性的应用:通过奇偶性进行分类讨论,求解一些数论问题,比如判断两个数的和是否为偶数,判断阶乘的末尾有几个0等。

初等数论虽然简单,但它是解决很多高阶数学问题的基础。

在数学竞赛中,初步掌握初等数论的方法和技巧,能有效提高解题的效率和准确性。

全国高中数学联赛竞赛大纲(修订稿)及部分定理内容

全国高中数学联赛竞赛大纲(修订稿)及部分定理内容

全国高中数学联赛竞赛大纲(修订稿)及部分定理内容全国高中数学联赛竞赛大纲命题要求:根据现行“高中数学竞赛大纲”的要求,“全国高中数学联赛(一试)”所涉及的知识范围不超过教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高.主要考查学生对基本知识和基本技能的掌握情况,以及综合运用和灵活运用的能力。

试卷包括6道选择题,6道填空题和3道解答题,全卷满分为150分。

“全国高中数学联赛加试(二试)”与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲以外的内容,试卷包括3道解答题,其中一道是平面几何题,全卷满分为150分。

一先行:全国高中数学联赛的一试竞赛大纲,全然按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即为中考所规定的科学知识范围和方法,在方法的建议上有所提升,其中概率和微积分初步不托福。

二先行:1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

几个重要定理:梅涅劳斯定理梅涅劳斯(menelaus)定理(缩写梅氏定理)就是由古希腊数学家梅涅劳斯首先证明的。

它表示:如果一条直线与△abc的三边ab、bc、ca或其延长线处设f、d、e点,那么(af/fb)×(bd/dc)×(ce/ea)=1。

或:设x、y、z分别在△abc的bc、ca、ab所在直线上,则x、y、z共线的充要条件就是(az/zb)*(bx/xc)*(cy/ya)=1。

、塞瓦定理、在△abc内任取一点o,直线ao、bo、co分别交对边于d、e、f,则(bd/dc)×(ce/ea)×(af/fb)=1。

托勒密定理、指圆内直奔圆锥四边形两对对边乘积的和等同于两条对角线的乘积。

西姆松定理。

西姆松定理是一个几何定理。

表述为:过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。

(此线常称为西姆松线)。

高中数学联赛内容简介

高中数学联赛内容简介

一、考试范围一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。

1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

几个重要的极值:到三角形三顶点距离之和最小的点--费马点。

到三角形三顶点距离的平方和最小的点--重心。

三角形内到三边距离之积最大的点--重心。

几何不等式。

简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小。

几何中的运动:反射、平移、旋转。

复数方法、向量方法。

平面凸集、凸包及应用。

2、代数在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。

三倍角公式,三角形的一些简单的恒等式,三角不等式。

第二数学归纳法。

递归,一阶、二阶递归,特征方程法。

函数迭代,求n次迭代,简单的函数方程。

n个变元的平均不等式,柯西不等式,排序不等式及应用。

复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。

圆排列,有重复的排列与组合,简单的组合恒等式。

一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。

简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。

3、立体几何多面角,多面角的性质。

三面角、直三面角的基本性质。

正多面体,欧拉定理。

体积证法。

截面,会作截面、表面展开图。

4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。

二元一次不等式表示的区域。

三角形的面积公式。

高中数学联赛常用定理

高中数学联赛常用定理

常用定理1、费马点(I)基本概念定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。

(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。

所以三角形的费马点也称为三角形的等角中心。

(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。

(II)证明我们要如何证明费马点呢:费马点证明图形(1)费马点对边的张角为120度。

△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B同理可得∠CBP=∠CA1P由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度同理,∠APB=120度,∠APC=120度(2)PA+PB+PC=AA1将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB 为等边三角形,所以∠BPD=60度又∠BPA=120度,因此A、P、D三点在同一直线上,又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。

(3)PA+PB+PC最短在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1<A1G+GM+MA=AM+BM+CM.所以费马点到三个顶点A、B、C的距离最短。

平面四边形费马点平面四边形中费马点证明相对于三角型中较为简易,也较容易研究。

(1)在凸四边形ABCD中,费马点为两对角线AC、BD交点P。

费马点(2)在凹四边形ABCD中,费马点为凹顶点D(P)。

经过上述的推导,我们即得出了三角形中费马点的找法:当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点。

高中数学竞赛常用定理

高中数学竞赛常用定理

高中数学竞赛常用定理在高中数学竞赛中,掌握一些常用的数学定理和公式是至关重要的。

这些定理和公式可以帮助学生在比赛中更快、更准确地解决问题,提高竞赛成绩。

下面我们就来介绍一些高中数学竞赛中常用的定理和公式。

1. 三角函数的基本关系:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sinC}=2R$,其中$a$、$b$、$c$分别为三角形$ABC$的三边长度,$A$、$B$、$C$为对应的内角,$R$为三角形$ABC$的外接圆半径。

- 余弦定理:$a^2=b^2+c^2-2bc\cos A$,$b^2=a^2+c^2-2ac\cos B$,$c^2=a^2+b^2-2ab\cos C$。

- 正弦函数和余弦函数的关系:$\sin(a \pm b)=\sin a \cos b \pm \cosa \sin b$,$\cos(a \pm b)=\cos a \cosb \mp \sin a \sin b$。

2. 相似三角形的性质:- 相似三角形的对应角相等,对应边成比例。

- 直角三角形中,正弦、余弦、正切函数的关系:$\sinA=\frac{a}{c}$,$\cos A=\frac{b}{c}$,$\tan A=\frac{a}{b}$。

3. 平面几何中的重要定理:- 圆的性质:圆内角的和为$180^\circ$,圆周角等于其对应圆心角的一半。

- 相交弦定理:相交弦乘积相等,即$AB \times CD=BC \timesDA$。

- 切线和半径的关系:切线和半径垂直,切线与半径的交点与圆心连线构成直角三角形。

- 内切圆和外切圆的性质:内切圆的切点和三角形的顶点共线,外切圆的切点和三角形的对边中点共线。

4. 数列和级数中的常用公式:- 等差数列前$n$项和公式:$S_n=\frac{n}{2}(a_1+a_n)$。

- 等比数列前$n$项和公式:$S_n=\frac{a_1(1-q^n)}{1-q}$。

数学竞赛25个定理

数学竞赛25个定理

数学竞赛25个定理1. 费马大定理:对于n>2时,方程a^n+b^n=c^n没有正整数解。

2. 勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

3. 柯西不等式:对于n维向量a和b,有|a·b|≤||a||·||b||,其中||a||和||b||分别表示向量a和b的模长。

4. 无理数的存在性:根号2是一个无理数,即不可表示为有理数的分数形式。

5. 威尔逊定理:如果p是质数,则(p-1)!+1能够被p整除。

6. 欧拉公式:对于任意实数x,有e^(ix)=cosx+isinx。

7. 线性规划:在一定条件下,线性规划问题可以通过线性规划算法有效地求解。

8. 奥托-康托定理:对于任意正整数n和正整数m,可以将1~n的全排列映射到1~m的m进制数中。

9. 科赫曲线:科赫曲线是一条典型的分形曲线,具有无限细节和自相似性质。

10. 柯西-黎曼方程:复函数必须满足柯西-黎曼方程,才能够进行解析运算。

11. 供求关系:供求关系是微观经济学中的一个基本概念,描述了在市场中商品的价格和数量之间的关系。

12. 投影定理:向量b在向量a的方向上的投影等于向量a与b的内积除以向量a的模长。

13. 黎曼假设:黎曼猜想认为,所有非平凡的自然数零点都在一条竖线上,即1/2+it,其中t为实数。

14. 矩阵行列式:矩阵的行列式可以表示为对角线上的乘积减去反对角线上的乘积。

15. 平均值不等式:对于正实数a和b,有(a+b)/2≥(ab)^(1/2)。

16. 裴蜀定理:对于整数a和b,存在整数x和y,使得ax+by=(a,b),其中(a,b)表示a和b的最大公约数。

17. 黑斯托夫定理:将一个整数的各位数字全部平方后求和所得到的数,如果最终能够得到1,则该数为幸福数;否则就会进入一个循环,永远无法得到1。

18. 莫比乌斯函数:莫比乌斯函数是数论中一种重要的函数,可以用于求解许多数论问题。

19. 皮克定理:计算凸多边形的面积需要知道其内部的点数和边上的点数,皮克定理给出了一种简单的求解方法。

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容之欧阳治创编

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容之欧阳治创编

全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。

到三角形三顶点距离的平方和最小的点--重心。

三角形内到三边距离之积最大的点--重心。

4、几何不等式。

5、简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小。

6、几何中的运动:反射、平移、旋转。

7、复数方法、向量方法。

平面凸集、凸包及应用。

二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。

三倍角公式,三角形的一些简单的恒等式,三角不等式。

2、第二数学归纳法。

递归,一阶、二阶递归,特征方程法。

函数迭代,求n次迭代,简单的函数方程。

3、n个变元的平均不等式,柯西不等式,排序不等式及应用。

4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。

5、圆排列,有重复的排列与组合,简单的组合恒等式。

6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。

7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。

三、立体几何1、多面角,多面角的性质。

三面角、直三面角的基本性质。

2、正多面体,欧拉定理。

3、体积证法。

4、截面,会作截面、表面展开图。

四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。

2、二元一次不等式表示的区域。

3、三角形的面积公式。

4、圆锥曲线的切线和法线。

5、圆的幂和根轴。

五、其它抽屉原理。

容斤原理。

极端原理。

集合的划分。

中学数学竞赛中常用的几个重要定理(1)

中学数学竞赛中常用的几个重要定理(1)

数学竞赛中几个重要定理1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F三点共线,则FBAFEA CE DC BD ••=12、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且满足FBAFEA CE DC BD ••=1,则D 、E 、F 三点共线.【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P. 证明:△MPQ ∽△ABCj MQGAC BXY P【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.【练习1】设凸四边形ABCD 的对角线AC 和BD 交于点M ,过M 作AD 的平行线分别交AB ,CD于点E ,F ,交BC 的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点. 求证:∠OPF=∠OEP【练习2】 在△ABC 中,∠A=900,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F. 若BE :ED=2AC :DC ,则∠ADB=∠FDCD塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M ,则1=••PACPNCBN MB AM塞瓦定理的逆定理: 设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=••PACP NCBN MB AM ,则AN 、BP 、CM 相交于一点.【例1】B E 是△ABC 的中线,G 在BE 上,分别延长AG ,CG 交BC ,AB 于点D ,F , 过D 作DN ∥CG 交BG 于N ,△DGL 及△FGM 是正三角形.求证:△LMN 为正三角形.GCLMEDFN【例2】在△ABC 中,D 是BC 上的点DC BD =31,E 是AC 中点.AD 与BE 交于O ,CO 交AB 于F 求四边形BDOF 的面积与△ABC 的面积的比【练习1】设P 为△ABC 内一点,使∠BPA=∠CPA ,G 是线段AP 上的一点,直线BG ,CG 分别交边AC ,AB 于E ,F.求证:∠BPF=∠CPE【练习2】 在△ABC 中,∠ABC 和∠ACB 均为锐角.D 是BC 边BC 上的内点,且AD 平分∠BAC ,过点D 作垂线DP ⊥AB 于P ,DQ ⊥AC 于Q ,CP 于BQ 相交于K. 求证:AK ⊥BCCCC托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD【例1】 已知在△ABC 中,AB >AC ,∠A 的一个外角的平分线交△ABC 的外接圆于点E ,过E 作EF ⊥AB ,垂足为F.求证:2AF=AB -AC【例2】经过∠XOY 的平分线上的一点A ,任作一直线与OX 及OY 分别相交于P ,Q.求证:OP 1+OQ1为定值HABCEFAXYPOQ【例3】 解方程42-x+12-x=x 7【练习1】 设AF 为⊙O1与⊙O2的公共弦,点B ,C 分别在⊙O1,⊙O2上,且AB=AC ,∠BAF ,∠CAF 的平分线交⊙O1,⊙O2于点D ,E. 求证:DE ⊥AF【练习2】⊙O 为正△ABC 的外接圆,AD 是⊙O 的直径,在弧BC 上任取一点P (与B ,C不重合).设E ,F 分别为△PAB ,△PAC 的内心.证明:PD=∣PE-PF ∣西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC ,PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线.【例1】过正△ABC 外接圆的弧AC 上点P 作P D ⊥直线AB 于D,作PE ⊥AC 于E,作PF ⊥BC 于F.求证:PF 1+PD 1=PE1【练习1】设P 为△ABC 外接圆周上任一点,P 点关于边BC ,AC 所在的直线的对称点分别为P 1,P 2.求证:直线P 1P 2经过△ABC 的垂心.CABPEFD HABP1P2CP三角形的五心内心【例1】设点M 是△ABC 的BC 边的中点,I 是其内心,AH 是BC 边上的高,E 为直线IM 与AH 的交点.求证:AE 等于内切圆半径r【例2】在△ABC 中,AB=4,AC=6,BC=5,∠A 的平分线AD 交△ABC的外接圆于K.O ,I 分别为△ABC 的外心,内心.求证:OI ⊥AK【练习】 在△ABC 中,∠BAC=300,∠ABC=700,M 为形内一点,∠MAB=∠MCA=200求∠MBA 的度数.B外心【例1】锐角△ABC的外心为O,线段OA,BC的中点为M,N,∠ABC=4∠OMN,∠ACB=6∠OMN.求∠OMN【例2】在等腰△ABC中,AB=BC,CD是它的角平分线,O是它的外心,过O作CD的垂线交BC于E,再过E作CD的平行线交AB于F,证明:BE=FD.【练习】1、⊙O 1与⊙O 2相交于P ,Q ,⊙O 1的弦PA 与⊙O 2相切,⊙O 2的弦PB 与⊙O 1相切.设△PAB 的外心为O ,求证:OQ ⊥PQ重心【例1】在△ABC 中,G 为重心,P 是形内一点,直线PG 交直线BC ,CA ,AB 于F ,E ,D.求证:FG FP +EG EP +DGDP=3【例2】已知△ABC 的重心G 和内心I 的连线GI ∥BC ,求证:AB+AC=2BCC【练习】1、设M 为△ABC 的重心,且AM=3,BM=4,CM=5,求△ABC 的面积.2、设O 是△ABC 的外心,AB=AC ,D 是AB 的中点,G 是△ACD 的重心,求证:OG ⊥CD垂心三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍.BCB【例1】△ABC 的外接圆为⊙O ,∠C=600,M 是弧AB 的中点,H 是△ABC 的垂心.求证:OM ⊥OH【例2】已知AD ,BE ,CF 是锐角△ABC 的三条高,过D 作EF 的平行线RQ ,RQ 分别交AB 和AC 于R ,Q ,P 为EF 与CB 的延长线的交点.证明:△PQR 的外接圆通过BC 的中点M.旁心【例1】在锐角∠XAY 内部取一点,使得∠ABC=∠XBD ,∠ACB=∠YCD.证明:△ABC 的外心在线段AD 上.CD【例2】AD是直角△ABC斜边BC上的高(AB<AC),I1,I2分别是△ABD,△ACD的内心,△A I1 I2的外接圆⊙O分别交AB,AC于E,F,直线FE与CB的延长线交于点M.证明:I1,I2分别是△ODM的内心与旁心.相交两圆的性质与应用【例1】证明:若凸五边形ABCDE中,∠ABC=∠ADE,∠AEC=∠ADB. 证明:∠BAC=∠DAEE【例2】已知⊙O1与⊙O2相交于A,B,直线MN垂直于AB且分别与⊙O1与⊙O2交于M,N,P 是线段MN的中点,Q1,Q2分别是⊙O1与⊙O2上的点,∠AO1Q1=∠AO2Q2求证:PQ1=PQ2【练习】梯形ABCD中,AB∥CD,AB>CD,K,M分别是腰AD,CB上的点,∠DAM=∠CBK,求证:∠DMA=∠CKBA其他的一些数学竞赛定理1、 广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和.推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c 则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+2、 三角形内、外角平分线定理:内角平分线定理:如图:如果∠1=∠2,则有ACABDC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D ,则有ACABDC BD =3、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P4、 正弦定理、在△ABC 中有R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理: a 、b 、c 为△ABC 的边,则有: a 2=b 2+c 2-2bc ·cosA;b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;5、欧拉定理:△ABC 的外接圆圆心为O ,半径为R ,内切圆圆心为I ,半径为r,记OI=d,则有:d 2=R 2-2Rr.6、巴斯加线定理:圆内接六边形ABCDEF (不论其六顶点排列次序如何),其三组对边AB 与DE 、BC 与EF 、CD 与FA 的交点P 、Q 、R 共线.。

高中数学联赛数论专题

高中数学联赛数论专题

高中数学联赛数论专题数论是数学中的一个重要分支,涉及整数的性质和关系。

在高中数学联赛中,数论作为一个专题常常被提及,并且在竞赛题目中占据一定比例。

本文将从数论的基本概念、典型问题和解题思路等方面进行探讨。

一、数论的基本概念数论是研究整数的性质和关系的数学领域,其中核心概念包括因数、倍数、质数、互质等。

因数指的是能够整除某个整数的所有正整数,而倍数则是某个整数所能够整除的所有整数。

质数是只能被1和自身整除的整数,而互质则是两个数的最大公因数为1。

二、典型问题在高中数学联赛的数论专题中,常常会出现以下典型问题:1. 质因数分解:给定一个整数,要求将其分解为质因数的乘积。

质因数分解不仅是数论中的重要知识点,还是其他数学学科的基础。

2. 同余定理:同余定理是数论中的重要理论,涉及到整数之间的模运算。

常见的同余定理包括欧拉定理、费马小定理等。

3. 素数判定:判断一个数是否为素数是数论中的常见问题。

除了常规的试除法,还可以运用费马检验、米勒-拉宾素性测试等方法进行判定。

4. 数列问题:数论与数列密切相关,常常会涉及到数列的性质和规律。

例如斐波那契数列、约瑟夫环等经典问题。

5. 不定方程:不定方程指的是关于整数解的方程,解决不定方程需要灵活运用数论知识和技巧。

典型的不定方程问题包括费马方程、佩尔方程等。

三、解题思路在高中数学联赛中,解决数论问题的关键在于运用合适的方法和技巧。

下面给出几点解题思路供参考:1. 寻找规律:数论问题常常有一定的规律性,通过观察和归纳找出规律是解题的关键。

可以通过列数表、找数列规律等方法进行推断。

2. 利用等式性质:利用等式的性质可以化简或者变形给定的数论问题,将其转化为更容易解决的形式。

例如利用同余关系化简方程、利用性质求解方程等。

3. 利用定理和公式:数论中有很多重要的定理和公式,熟练掌握并恰当运用可以大大提高解题效率。

例如欧拉定理、费马小定理等。

4. 分类讨论:针对不同情况进行分类讨论,找出不同情况下的共同性质和规律。

高中数学联赛常用定理

高中数学联赛常用定理

常用定理1、费马点(I)基本概念定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。

(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。

所以三角形的费马点也称为三角形的等角中心。

(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。

(II)证明我们要如何证明费马点呢:费马点证明图形(1)费马点对边的张角为120度。

△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B同理可得∠CBP=∠CA1P由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度同理,∠APB=120度,∠APC=120度(2)PA+PB+PC=AA1将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB 为等边三角形,所以∠BPD=60度又∠BPA=120度,因此A、P、D三点在同一直线上,又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。

(3)PA+PB+PC最短在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1<A1G+GM+MA=AM+BM+CM.所以费马点到三个顶点A、B、C的距离最短。

平面四边形费马点平面四边形中费马点证明相对于三角型中较为简易,也较容易研究。

(1)在凸四边形ABCD中,费马点为两对角线AC、BD交点P。

费马点(2)在凹四边形ABCD中,费马点为凹顶点D(P)。

经过上述的推导,我们即得出了三角形中费马点的找法:当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点。

数论的几个重要定理(精选、)

数论的几个重要定理(精选、)

11 数论的几个重要定理欧拉定理、费马小定理、威尔逊定理及中国剩余定理是数论的四大定理,它们是解决数论问题的重要工具。

下面介绍这几个定理在竞赛数学中的应用方法。

1. 基本原理定理1(欧拉定理) 设m 为大于1的整数,(,)1a m =,()m ϕ为欧拉函数,则()1(mod )m a m ϕ≡.证 设{}12(),,,m r r r ϕ…为模m 的一个简化剩余系,因为(,)1a m =,所以 {}12(),,,m ar ar ar ϕ…也是模m 的一个简化剩余系,从而有 12()12()()()()(mod )m m ar ar ar r r r m ϕϕ≡……,即 ()12()12()()(mod )m m m a rr r rr r m ϕϕϕ≡ (1)因为12()(,)1m r r r m ϕ=… ,所以由(1)得 ()1(mod )m a m ϕ≡.定理2(费马小定理) 设p 是素数,(,)1a p =,则11(mod )p a p -≡.证 因为p 是素数,所以()1p p ϕ=-,由欧拉定理知()1(mod )p a p ϕ≡,∴ 11(mod )p a p -≡.推论 设p 为素数,a 为整数,则(mod )p a a p ≡ (2)证 当p a 时,(2)式显然成立.当p 不能整除a 时,因为p 为素数,所以(,)1a p =.由定理2得 11(mod )p ap -≡, ∴ (mod )p a a p ≡.定理3(威尔逊定理) 若p 为素数,则(1)!1(mod )p p -≡-.证 {}2,3,,2a p ∀∈-…,因为(,)1a p =,所以{},2,,(1)a a p a -…也是模p 的简化剩余系,故存在唯一的{}1,2,,1b p ∈-…,使得1(mod )ba p ≡ (1)∵ {}2,3,,2a p ∈-…,∴ 1b ≠,1b p ≠-.若b a =,则21(mod )a p ≡∴ (1)(1)0(mod )a a p -+≡.∴ 11(mod )a p ≡-或,这与{}2,3,,2a p ∈-…矛盾.综上即知{}2,3,,2b p ∈-…且b a ≠.将{}2,3,,2p -…中的数按(1)式两两配对,得234(2)1(mod )p p ⨯⨯⨯⨯-≡…,∴ (1)!1(mod )p p -≡-.定理4(中国剩余定理) 设12,,,k m m m …是k 个两两互质的正整数,12k m m m m =…,i im M m =,1,2,,i k =…,则同余式组 1122(mod )(mod )(mod )kk x a m x a m x a m ≡⎧⎪≡⎪⎨⎪⎪≡⎩…… (1)有唯一解 111222(mod )k k k x M M a M M a M M a m '''=+++ (2)其中1(mod )i i i M M m '≡,1,2,,i k =….证 容易验证(2)是(1)的解.又若x ',x ''均是(1)的解,则对于1,2,,i k =…,有(mod )i i x a m '≡(mod )i i x a m ''≡,从而有 0(mod )i x x m '''-≡,又因为12,,,k m m m …两两互质,从而有0(mod )x x m '''-≡,即 (mod )x x m '''≡,所以x '与x ''是同余式组(1)的相同解.设1m >,(,)1a m =,则由欧拉定理知()1(mod )m a m ϕ≡,我们把满足条件1(mod )r a m ≡的最小正整数r 称为a 对模m 的阶,或称为a 对模m 的指数.关于a 对模m 的阶,我们有如下结论.定理5 设1m >,(,)1a m =,a 对模m 的阶为0n ,n 为正整数.若1(mod )na m ≡,则0n n .证 由带余除法知,存在非负整数q 及r ,使得 0n qn r =+,00r n ≤<.所以 001()(mod )qn r n n q r r a a a a a m +===≡,由于0r n <,由0n 的最小性知0r =,所以0n n .2. 方法解读用上述定理解题,除应掌握数论解题的基本方法外,还应对这几个定理的用途有一定的 认识.一般说来,欧拉定理与费马小定理提供了降幂与归1的工具.威尔逊定理提供了处理连续整数的积的方法.中国剩余定理提供了某些存在性问题的构造方法.定理5提供了由方幂的指数导出整除关系的途径.例1 求使21n -为7的倍数的所有正整数n ..解 ∵ 122(mod 7)≡,224(mod 7)≡,321(mod 7)≡,所以2对模7的阶为3.又因为21(mod 7)n ≡,所以由定理5知 3n ,即3()n k k N +=∈.例2 设整数a ,b ,c 满足0a b c ++=,记201120112011d ab c =++,求证d 不是素 数.证 ∵ 2(mod 2)a a ≡,∴ 2011(mod 2)aa ≡ 同理知 2011(mod 2)b b ≡,2011(mod 2)c c ≡, ∴ 2011201120110(mod 2)a b c a b c ++≡++≡, ∴ 2d .又由费马小定理知,3(mod 3)a a ≡,word. ∴ 201120103670670669232232()a a a a a a a a a a a ⨯≡≡≡≡≡223222478262793(mod 3)a a a a a a a a a a a a ≡≡≡≡≡≡≡≡,同理可证 2011(mod 3)bb ≡,2011(mod 3)c c ≡, ∴ 2011201120110(mod3)a b c a b c ++≡++≡,∴ 3d . 又∵ (2,3)1=,∴ 6d ,所以d 不是素数.例3 证明:数列1,19,119,1119,11119,…中有无穷多个合数.证 因为19是素数,(10,19)1=,由费马小定理知 18101(mod19)≡,所以对于任 意的正整数n ,有 18101(mod19)n ≡,∴ 181010(mod19)n -≡,∴ 18191110(mod19)n ⨯≡个…,∵ (199)1=,, ∴ 18119111n 个…,∴ 1811911119n 个…,即 1811911119n 个….由于正整数n 有无穷多个,所以数列中有无穷多项被19整除,故数列中有无穷多项为合数.例4(第47界IMO 预选题) 已知(0,1)x ∈,令(0,1)y ∈,且y 的小数点后第n 位数字是x 的小数点后第2n 位数字.证明:若x 为有理数,则y 也为有理数.证 设120.n x x x x =……, 120.n y y y y =……,则对于1,2,n =…,有2n n y x =.因为x 为有理数,所以数列{}n x 从某项开始为周期数列,为了说话方便,不妨设{}n x 为周期数列,d 为它的一个周期,02nd v =,其中0n 为非负整数,v 为大于1的奇数(这是可以办到的,因为若T 为数列的周期,则3T 也为周期).现令()v ωϕ=,由欧拉定理知,()221(mod )v v ωϕ=≡,从而有00022(mod(2))n n n v ω+≡⋅, 即 0022(mod )n n d ω+≡,所以对于任意的正整数0n n >,有 00002222(mod )n n n n n n d ω+--⋅≡, 即 22(mod )n n d ω+≡.∵ d 是{}n x 的周期,从而有 22n n x x ω+=, 即n n y y ω+=.综上知,对于任意的0n n >,都有n n y y ω+=,所以{}n y 从第01n +项开始为周期数列,因此y 为有理数.例5设1000(5x =+,求[]x 的末三位数.解 令1000(5y =-.∵ 10000(51<-<,∴ 01y <<.又因为 10001000(5(5x y +=++-100099839963224100010002(55(23)5(23)C C =+⋅⋅⋅+⋅⋅⋅ 23449350099810005(23)(23))C ++⋅⋅⋅+⋅…(1) 所以 []1x x y =+-.由(1)式知10003500252(23)(mod1000)x y +≡⨯+⋅⋅(2) ∵ 3100058=⨯,1000350(mod 5)≡ (3)10005005005(25)11(mod8)=≡= (4)由(3)得 1000355t =,代入(4)得351(mod8)t ≡,即 51(mod8)t ≡,∴ 5(mod8)t ≡.85t k ≡+,所以 100033555(85)625(mod1000)t k ==+≡,∴ 1000252625250(mod1000)⨯≡⨯≡.又∵ 15ϕ(125)=125(1-)=100,由欧拉定理知 3100(23)1(mod125)⋅≡,∴ 3500(23)1(mod125)⋅≡ (5)又 3500(23)0(mod8)⋅≡ (6)由(5)得 3500(23)1251t ⋅≡+,代入(6)得12510(mod8)t +≡,即 510(mod8)t +≡,∴ 3(mod8)t ≡.∴ 83t k =+,代入得 3500(23)125(83)1376(mod1000)k ⋅=++≡, ∴ 35002(23)2376752(mod1000)⋅⋅≡⨯=.综上知,10003500252(23)2507522(mod1000)x y +≡⋅+⋅⋅≡+≡,所以 11(mod1000)x y +-≡,故[]x 的末三位数为001.例6求具有如下性质的素数p 的最大值:存在1,2,,p …的两个排列(这两个排列可 以相同)1212,,,,,,p p a a a b b b …与…,使得1122,,,p p a b a b a b …被p 除所得的余数互不相同.解 不妨设 121,2,,p a a a p ===….若p b p ≠,则存在 {}1,2,,1i p ∈-…,使得 i b p =,从而有 0(mod )i i a b p ≡,0(mod )p p a b p ≡,从而有 (mod )i i p p a b a b p ≡,这与题设矛盾,因此有 p b p =.因为 0(mod )p p a b p ≡,又1122,,,p p a b a b a b …被p 除所得的余数互不相同,所以 112211,,,p p a b a b a b --…被p 除的余数构成的集合为{}1,2,,1p -…,由有威尔逊定理,得112211()()()123(1)(1)!1(mod )p p a b a b a b p p p --≡⋅⋅-=-≡-…….又 112211()()()p p a b a b a b --…121121()()p p a a a b b b --=……(1)!(1)!(1)(1)1(mod )p p p =--≡--=,∴ 11(mod )p -≡,∴ 20(mod )p ≡,∴ 2p .由于p 为素数,所以2p =.容易验证2p =满足要求.故所求的最大值为2.例7设整数n ,q 满足5n ≥,2q n ≤≤且q 不为某个质数的平方,试证:(1)!(1)n q q ⎡⎤--⎢⎥⎣⎦(1) 这里[]x 表示x 的这个数部分.证 若q 为合数,因为q 不为质数的平方,所以存在大于1的整数a ,b ,a b ≠,使得q ab =.因为q n ≤,所以1a n ≤-,1b n ≤-,从而有(1)!q n -,因此(1)!(1)!n n q q ⎡⎤--=⎢⎥⎣⎦. ∵ (1)(1)!q n --,(1)!q n -,(1,)1q q -=,∴ (1)(1)!q q n --,∴ (1)!(1)!(1)n n q q q ⎡⎤---=⎢⎥⎣⎦,故结论成立. 若q 为质数,当q n <,易知(1)!q n -,从而有(1)!(1)!n n q q ⎡⎤--=⎢⎥⎣⎦. 又因为 (1)(1)!q n --,(1,)1q q -=,所以 (1)(1)!q q n --,∴ (1)!(1)!(1)n n q q q ⎡⎤---=⎢⎥⎣⎦,结论成立. 当q n =时,因为q 为质数,由威尔逊定理知 (1)!(1)!1(mod )n q q -=-≡-,所以(1)!10(mod )n q -+≡,∴ (1)!1q n -+,所以 (1)!(1)!1(1)!(1)1n n n q q q q ⎡⎤--+---=-=⎢⎥⎣⎦. 又因为 (1)(1)!(1)q n q ----,(1,)1q q -=,所以 ()(1)(1)!(1)q q n q ----, ∴ (1)!(1)(1)!1n q n q q q ⎡⎤-----=⎢⎥⎣⎦(),故结论成立. 例8 若一个正整数的标准分解式中,每个素约数的幂次都大于1,则称这个数为幂数. 证明:对于任意的正整数n (2)n ≥,存在n 个连续的正整数,其中每一个数都不是幂数.证 选取n 个互不相同的素数12,,,n p p p ….由中国剩余定理知,同余式组2112222(mod )1(mod )(1)(mod )n n x p p x p p x n p p ⎧≡⎪≡-+⎪⎨⎪⎪≡--+⎩…………(1)有解.设222012(mod )n x x p p p ≡… 0(0)x >是(1)的唯一解,则对于0,1,2,,1i n =-…,有2i p 不整除0x i +且0i p x i +,故 0x i +不是幂数.因此,n 个连续正整数0000,1,2,,(1)x x x x n +++-…满足要求.例9 设1n >,21n n +,证明3n .证 设p 是n 的最小素因子,2对模p 的阶为r .∵ 21n n +, ∴ 21n p +,∴ 210(mod )n p +≡,∴ 21(mod )n p ≡-,221(mod )n p ≡ (1) 又因为p 为奇素数,所以 (2,)1p =.由费马小定理知121(mod )p p -= (2)由(1),(2)及定理5知,2r n ,1r p -,故1(2,1)2(,)2p r n p n --=.设1(,)2p d n -=,则 d n ,12p d -.因为n 为奇数,所以d 为奇数.又112p d p p -≤<-<,从而由p 的最小性知1d =,所以 (2,1)2n p -=,从而有 2r .又显然有1r >,所以2r =,即2对模p 的阶为2,从而知3p =,即3n .习 题111.已知 17x =,当1n >时,17n x n x -=,求n x 的末两位数.2.证明数列37,337,3337,33337,……中有无穷多个合数.3.证明有无穷多个正整数n ,使得2100(2)n n +.最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初等数论中的几个重要定理
基础知识
定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的,且对于任意的,若=1,则有且仅有一个是对模
的剩余,即。

并定义中和互质的数的个数,
称为欧拉(Euler)函数。

这是数论中的非常重要的一个函数,显然,而对于,就是1,2,…,中与互素的数的个数,比如说是素数,则有。

引理:;可用容斥定理来证(证明略)。

定理1:(欧拉(Euler)定理)设=1,则。

分析与解答:要证,我们得设法找出个相乘,由个数我们想到中与互质的的个数:,由于=1,从而
也是与互质的个数,且两两余数不一样,故
(),而()=1,故。

证明:取模的一个既约剩余系,考虑,由于与互质,故仍与互质,且有,于是对每个都能找到唯一的一个,使得,这种对应关系
是一一的,从而,。

,,故。

证毕。

这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。

定理2:(费尔马(Fermat)小定理)对于质数及任意整数有。

设为质数,若是的倍数,则。

若不是的倍数,则
由引理及欧拉定理得,,由此即得。

定理推论:设为质数,是与互质的任一整数,则。

定理3:(威尔逊(Wilson)定理)设为质数,则。

分析与解答:受欧拉定理的影响,我们也找个数,然后来对应乘法。

证明:对于,在中,必然有一个数除以余1,这是因为则好是的一个剩余系去0。

从而对,使得;
若,,则,,故对于,有。

即对于不同的对应于不同的,即中数可两两配对,其积除以余1,然后有,使,即与它自己配对,这时,,或,或。

除外,别的数可两两配对,积除以余1。

故。

定义:设为整系数多项式(),我们把含有的一组同余式
()称为同余方组程。

特别地,,当均为的一次整系数多项式时,该同余方程组称为一次同余方程组.若整数同时满足:
,则剩余类(其中)称为同余方程组的一个解,写作
定理4:(中国剩余定理)设是两两互素的正整数,那么对于任意整数,一次同余方程组,必有解,且解可以写为:
这里,,以及满足,(即为对模的逆)。

中国定理的作用在于它能断言所说的同余式组当模两两互素时一定有解,而对于解的形式并不重要。

定理5:(拉格郎日定理)设是质数,是非负整数,多项式
是一个模为次的整系数多项式(即),则同余方程至多有个解(在模有意义的情况下)。

定理6:若为对模的阶,为某一正整数,满足,则必为的倍数。

以上介绍的只是一些系统的知识、方法,经常在解决数论问题中起着突破难点的作用。

另外还有一些小的技巧则是在解决、思考问题中起着排除情况、辅助分析等作用,有时也会起到
意想不到的作用,如:,。

这里我们只介绍几个较为直接的应用这些定理的例子。

典例分析
例1.设,求证:。

证明:因为,故由知,从而,但是
,故由欧拉定理得:,,从而;同理,。

于是,,即。

注明:现考虑整数的幂所成的数列:若有正整数使,则有,其中;
因而关于,数列的项依次同余于这个数列相继的项成一段,各段是完全相同的,因而是周期数列。

如下例:
例2.试求不大于100,且使成立的自然数的和。

解:通过逐次计算,可求出关于的最小非负剩余(即为被11除所得的余数)为:
因而通项为的数列的项的最小非负剩余构成周期为5的周期数列:
3,9,5,4,1,3,9,5,4,1,………
类似地,经过计算可得的数列的项的最小非负剩余构成周期为10的周期数列:
7,5,2,3,10,4,6,9,8,1,………
于是由上两式可知通项为的数列的项的最小非负剩余,构成周期为10(即上两式周期的最小公倍数)的周期数列:
3,7,0,0,4,0,8,7,5,6,………
这就表明,当时,当且仅当时,,即;又由于数列的周期性,故当时,满足要求的只有三个,即
从而当时,满足要求的的和为:
.
下面我们着重对Fetmat小定理及其应用来举例:
例3.求证:对于任意整数,是一个整数。

证明:令,则只需证是15的倍数即可。

由3,5是素数及Fetmat小定理得,,则

而(3,5)=1,故,即是15的倍数。

所以是整数。

例4.求证:(为任意整数)。

证明:令,则;
所以含有因式
由Fetmat小定理,知13|7|
又13,7,5,3,2两两互素,所以2730=能整除。

例5.设是直角三角形的三边长。

如果是整数,求证:可以被30整除。

证明:不妨设是直角三角形的斜边长,则。

若2 ,2 ,2 c,则,又因为矛盾!
所以2|.
若3 ,3 ,3 c,因为,则
,又,矛盾!从而3|.
若5 ,5 ,5 c,因为,,所以或0(mod5)与矛盾!
从而5|.
又(2,3,5)=1,所以30|.
下面讲述中国剩余定理的应用
例6.证明:对于任意给定的正整数,均有连续个正整数,其中每一个都有大于1的平方因子。

证明:由于素数有无穷多个,故我们可以取个互不相同的素数,而考虑同余组①
因为显然是两两互素的,故由中国剩余定理知,上述同余组有正整数解。

于是,连续个数分别被平方数整除。

注:(1)本题的解法体现了中国剩余定理的一个基本功效,它常常能将“找连续个正整数具有某种性质”的问题转化为“找个两两互素的数具有某种性质”,而后者往往是比较容易解决的。

(2)本题若不直接使用素数,也中以采用下面的变异方法:由费尔马数
两两互素,故将①中的转化为后,相应的同余式也有解,同样可以导出证明。

例7.证明:对于任意给定的正整数,均有连续个正整数,其中每一个都不是幂数。

分析:我们来证明,存在连续个正整数,其中每一个数都至少有一个素因子,在这个数的标准分解中仅出现一次,从而这个数不是幂数。

证明:取个互不相同的素数,考虑同余组
因为显然是两两互素的,故由中国剩余定理知,上述同余组有正整数解。

对于因为,故,但由①式可知,即在的标准分解中恰好出现一次,故都不是幂数。

例8.设是给定的偶数,且是偶数。

证明:存在整数使得,且。

证明:我们先证明,当为素数幂时结论成立。

实际上,能够证明,存在使
且:
若,则条件表明为偶数,此时可取;
若,则与中有一对满足要求。

一般情形下,设是的一个标准分解,上面已经证明,对每个存在整数使得且,而由中国剩余定理,
同余式①有解,
同余式②有解。

现不难验证解符合问题中的要求:因,故,
于是,又由①②知,
故。

注:此题的论证表现了中国剩余定理最为基本的作用:将一个关于任意正整数的问题,化为为素数幂的问题,而后者往往是比较好处理的。

相关文档
最新文档