层次分析法例题94055

合集下载

层次分析法例题

层次分析法例题

专题:层次剖析法一般情形下,物流体系的评价属于多目标.多判据的体系分解评价.假如仅仅依附评价者的定性剖析和逻辑断定,缺少定量剖析根据来评价体系计划的好坏,显然是十分艰苦的.尤其是物流体系的社会经济评价很难作出准确的定量剖析.层次剖析法(Analytical Hierarchy Process )由美国有名运筹学家萨蒂(T .L .Saaty )于1982年提出,它分解了人们主不雅断定,是一种简明.适用的定性剖析与定量剖析相联合的体系剖析与评价的办法.今朝,该办法在国内已得到普遍的推广运用,普遍运用于能源问题剖析.科技成果评选.地区经济成长计划比较,尤其是投入产出剖析.资本分派.计划选择及评选等方面.它既是一种体系剖析的好办法,也是一种新的.简练的.适用的决议计划办法.◆ 层次剖析法的基起源基础理人们在日常生涯中经常要从一堆同样大小的物品中遴选出最重的物品.这时,一般是运用两两比较的办法来达到目标.假设有n 个物品,其真实重量用w 1,w 2,…w n 暗示.要想知道w 1,w 2,…w n 的值,最简略的就是用秤称出它们的重量,但假如没有秤,可以将几个物品两两比较,得到它们的重量比矩阵A .假如用物品重量向量W =[w 1,w 2,…w n ]T右乘矩阵A ,则有:由上式可知,n 是A 的特点值,W 是A 的特点向量.根据矩阵理论,n 是矩阵A 的独一非零解,也是最大的特点值.这就提醒我们,可以运用求物品重量比断定矩阵的特点向量的办法来求得物品真实的重量向量W.从而肯定最重的物品.将上述n 个物品代表n 个指标(要素),物品的重量向量就暗示各指标(要素)的相对重要性向量,即权重向量;可以经由过程两两身分的比较,树立断定矩阵,再求出其特点向量就可肯定哪个身分最重要.依此类推,假如n 个物品代表n 个计划,按照这种办法,就可以肯定哪个计划最有价值.◆ 运用层次剖析法进行体系评价的重要步调如下:(1)将庞杂问题所涉及的身分分成若干层次,树立多级递阶的层次构造模子(目标层.断定层.计划层).(2)标度及描写.统一层次随意率性两身分进行重要性比较时,对它们的重要性之比做出断定,赐与量化.(3)对同属一层次的各要素以上一级的要素为准则进行两两比较,根据评价尺度肯定其相对重要度,据此构建断定矩阵A .(4)盘算断定矩阵的特点向量,以此肯定各层要素的相对重要度(权重).(5)最后经由过程分解重要度(权重)的盘算,按照最大权重原则,肯定最优计划.★例题:某物流企业须要倾销一台设备,在倾销设备时须要从功效.价钱与可保护性三个角度进行评价,斟酌运用层次剖析法对3个不合品牌的设备进行分解剖析评价和排序,从中选出能实现物流计划总目标的最优设备,效.解题步调:1.标度及描写人们定性区分事物的才能习习用5个属性来暗示,即同样重要.稍微重要.较强重要.强烈重要.绝对重要,当须要较高精度时,可以取两个相邻属性之间的值,如许就得到9个数值,即9个标度.为了便于将比较判断定量化,引入1~9比率标度办法,划定用1.3.5.7.9分离暗示根据经验断定,要素i与要素j比拟:同样重要.稍微重要.较强重要.强烈重要.绝对重要,而2.4.6.8暗示上述两断定级之间的调和值.标度界说(比较身分i与j)1 身分i与j同样重要3 身分i与j稍微重要5 身分i与j较强重要7 身分i与j强烈重要9 身分i与j绝对重要2.4.6.8 两个相邻断定身分的中央值倒数身分i与j比较得断定矩阵a ij,则身分j与i比拟的断定为a ji=1/a ij 注:aij暗示要素i与要素j相对重要度之比,且有下述关系:aij=1/aji ;aii=1; i,j=1,2,…,n显然,比值越大,则要素i的重要度就越高.2.构建断定矩阵A断定矩阵是层次剖析法的根本信息,也是进行权重盘算的重要根据.目标层断定层计划层图设备倾销层次构造图根据构造模子,将图中各身分两两进行断定与比较,构造断定矩阵:即相对于物流体系总目标,断定层各身分相对重要性比较)如表1所示;相对功效,各计划的相对重要性比较)如表2所示; 相对价钱,各计划的相对重要性比较)如表3所示; 相对可保护性,各计划的相对重要性比较)如表4所 示.一般来讲,在AHP 法中盘算断定矩阵的最大特点值与特点向量,必不须要较高的精度,用乞降法或求根法可以盘算特点值的近似值.●乞降法1)将断定矩阵A 按列归一化(即列元素之和为1):b ij = a ij /Σa ij ; 2)将归一化的矩阵按行乞降:c i =Σb ij (i=1,2,3….n );3)将c i 归一化:得到特点向量W =(w 1,w 2,…w n )T,w i =c i /Σc i , W 即为A 的特点向量的近似值;4)求特点向量W 对应的最大特点值: ●求根法1)盘算断定矩阵A每行元素乘积的n次方根i =1,2, …, n)2,=(w1,w2,…wn)T即为A的特点向量的近似值;3)求特点向量W对应的最大特点值:(1).特点向量与一致性磨练①.各行元素的乘积并求其方根,如,,相似地,②③一致性磨练.现实评价中评价者只能对A进行粗略断定,如许有时会犯不一致的错误.如,已断定C1比C2重要,C2比C3较重要,那么,C1应当比C3更重要.假如又断定C1比C3较重要或一致重要,这就犯了逻辑错误.这就须要进行一致性磨练.根据层次法道理,运用A的理论最大特点值λmax与n之差磨练一致性.查同阶平均随机可以接收,不然从新两两进行比较).表5平均随机一致性指标阶数 3 4 5 6 7 8 9 10 11 1213 14 RI(2).相似于第(1)步的盘算进程,.特点向量相似于第(1)步的盘算进程,可以得到矩阵刀:—C的特点根.特点向相似于第(1)步的盘算进程,.特点向量与获得统一层次各要素之间的相对重要度后,就可以自上而下地盘算各级要素对总体的分解重要度.设二级共有m 个要素c 1, c 2,…,c m ,它们对总值的重要度为w 1, w 2,…, w m ;她的下一层次三级有p 1, p 2,…,p n 共n 个要素,令要素p i 对c j 的重要度(权重)为v ij ,则三级要素p i 的分解重要度为:计划C 1 计划C 2的重要度(权重)=0.230×0.258+0.648×0.333+0.122×0.066=0.283计划C 3的重要度(权重)=0.230×0.637+0.648×0. 075+0.122×0.785=0.291根据各计划分解重要度的大小,可对计划进行排序.决议计划. 层次总排序如表6所示.由表5可以看出,3且品牌1显著优于其他两种品牌的设备.功课:某配送中间的设计中要对某类物流设备进行决议计划,现初步选定三种设备配套计划,运用层次剖析法对优先斟酌的计划进行排序.解:对设备计划的断定重要可以从设备的功效.成本.保护性三方面进行评价.当然,若何评价功效.保护性等,还会用更细一级的指标来权衡.这里为剖析的轻便,省略了更具体的指标.如许,可树立对设备计划进行比较的层次剖析构造图,如图:根据以往经验和相干查询拜访成果显示:相干指标两两比较的成果。

层次分析法现代汉语例题

层次分析法现代汉语例题

层次分析法是一种决策分析方法,通常用于多个方案或因素之间进行比较和排序。

以下是一个使用层次分析法的现代汉语例题:
假设你是一名公司的采购主管,你需要从三个供应商(A、B、C)中选择一家供应商品质最好、价格最优、售后服务最好的供应商。

你将使用层次分析法来进行决策。

解题步骤:
制定目标层次:选择最优供应商
确定判断准则:商品质量、价格、售后服务
构建层次结构模型:将目标层次下的判断准则放在下一层,形成层次结构模型
刻画判断矩阵:采用1~9的比较尺度,对每两个判断准则进行比较,得到判断矩阵
求出权重向量:对判断矩阵进行归一化处理,计算出每个判断准则的权重
计算一致性指标:检查矩阵的一致性程度,得出一致性指标
计算最终权重:根据层次结构模型和权重向量,计算出每个供应商的最终权重
进行灵敏度分析:分析每个判断准则的变化对结果的影响程度
得出决策结果:综合考虑判断准则的权重和灵敏度分析的结果,得出选择最优供应商的决策结果
以上是一个基本的层次分析法的应用例题,具体细节需要根据实际情况进行调整和处理。

层次分析法例题详解

层次分析法例题详解

层次分析法例题详解
例题:假设一家公司想要改善客户满意度,以下是几项建议:
A. 增加客户服务
B. 提高产品质量
C. 提高客户服务质量
层次分析法:
1.首先,将上述三项建议放入一个表格中,比较它们之间的关系。

建议 | 增加客户服务 | 提高产品质量 | 提高客户服务质量
------|-----------------|------------------|------------------------
关系 | 相关 | 相关 | 直接相关
2.然后,根据上表的关系,将建议分类:
A. 增加客户服务和提高客户服务质量:这两项建议直接相关,可以归为一类,即增加客户服务和提高客户服务质量。

B. 提高产品质量:这一项建议与其他两项建议相关,但不属
于同一类别,可以独立归类。

3.最后,根据分类的结果,提出有效的解决方案:
A. 增加客户服务和提高客户服务质量:可以采取措施增加客
户服务人员的数量,同时提高客户服务质量,如培训客服人员,
提升服务水平。

B. 提高产品质量:可以采取措施改善产品质量,如改进生产流程,提高材料质量,以及实施质量控制等。

层次分析法例题(3)

层次分析法例题(3)

二、AHP 求解层次分析法(Analytic Hierarchy Process )是一种定量与定性相结合的多目标决策分析法, 将决策者的经验给予量化,这在对目标(因素)结构复杂且缺乏必要数据的情况下较为实用。

(一)、建立递阶层次结构目标层:最优生鲜农产品流通模式。

准则层:方案的影响因素有:c 1自然属性、c 2经济价值、C 3基础设施、c 5政府政策。

方案层:设三个方案分别为:A i 农产品产地一产地批发市场一销地批发市场一消费者、A 2农产品产地一产地批发市场一销地批发市场一农贸市场一消费者、A 3农业合作社一第三方物流企业一超市一消费者(本文假设农产品的生产地和销地不在同一个地区 )。

A 3图3— 1递阶层次结构(二)、构造判断(成对比较)矩阵所谓判断矩阵是以矩阵的形式来表述每一层次中各要素相对其上层要素的相对重要程度。

为目标层:G :最优生鲜农产品流通模式准则层:自然属性经济价值基础设施政府政策方案层:了使各因素之间进行两两比较得到量化的判断矩阵,弓I入1〜9的标度,见表3—1.为了构造判断矩阵,作者对6个专家进行了咨询,根据专家和作者的经验,四个准则下的两两比较矩阵分别为:(三)、层次单排序及其一致性检验层次单排序就是把本层所有要素针对上一层某一要素,排出评比的次序,这种次序以相对的数值大小来表示。

对应于判断矩阵最大特征根入max的特征向量,经归一化(使向量中各元素之和等于1)后记为W。

W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。

能否确认层次单排序,需要进行一致性检验,所谓一致性检验是指对A确定不一致的允许范围。

由于入连续的依赖于a ij,则入比n大的越多,A 的不一致性越严重。

用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。

因而可以用入一n数值的大小来衡量A的不一致程度。

用一致性指标进行检验:CImax nCRCI RI用一致性指标进行检验:CI 工 n。

层次分析法例题

层次分析法例题

某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示;以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性;1C ,2C ,3C 表示备选的3种品牌的设备;解题步骤:1、标度及描述人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度;为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重ij a ij =1/a ji ;a ii =1; i,j=1,2,…,n目标层判断层 方案层 图 设备采购层次结构图显然,比值越大,则要素i 的重要度就越高;2、构建判断矩阵A判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据; 根据结构模型,将图中各因素两两进行判断与比较,构造判断矩阵:●判断矩阵B A -即相对于物流系统总目标,判断层各因素相对重要性比较如表1所示;●判断矩阵C B -1相对功能,各方案的相对重要性比较如表2所示; ●判断矩阵C B -2相对价格,各方案的相对重要性比较如表3所示; ●判断矩阵C B -3相对可维护性,各方案的相对重要性比较如表4所 示;B A -C B -1C B -3一般来讲,在AHP 法中计算判断矩阵的最大特征值与特征向量,必不需要较高的精度,用求和法或求根法可以计算特征值的近似值;●求和法1将判断矩阵A 按列归一化即列元素之和为1:b ij = a ij /Σa ij ; 2将归一化的矩阵按行求和:c i =Σb ij i=1,2,3….n ; 3将c i 归一化:得到特征向量W =w 1,w 2,…w n T ,w i =c i /Σc i ,W 即为A 的特征向量的近似值; 4求特征向量W 对应的最大特征值: ●求根法1计算判断矩阵A 每行元素乘积的n 次方根;nnj iji aw ∏==1i =1, 2, …,n2将i w 归一化,得到∑==ni iii ww w 1;W =w 1,w 2,…w n T 即为A 的特征向量的近似值;3求特征向量W 对应的最大特征值:1判断矩阵B A -的特征根、特征向量与一致性检验 ①计算矩阵B A -的特征向量;计算判断矩阵B A -各行元素的乘积i M ,并求其n 次方根,如3223111=⨯⨯=M ,874.0311==M W ,类似地有,466.2322==M W ,464.0333==M W ;对向量Tn W W W W ],,,[21 =规范化,有类似地有684.02=W ,122.03=W ;所求得的特征向量即为: ②计算矩阵B A -的特征根类似地可以得到948.12=AW ,3666.03=AW ; 按照公式计算判断矩阵最大特征根: ③一致性检验;实际评价中评价者只能对A 进行粗略判断,这样有时会犯不一致的错误;如,已判断C 1比C 2重要,C 2比C 3较重要,那么,C 1应该比C 3更重要;如果又判断C 1比C 3较重要或同等重要,这就犯了逻辑错误;这就需要进行一致性检验;根据层次法原理,利用A 的理论最大特征值λmax 与n 之差检验一致性; 一致性指标:计算002.0133004.31max =--=--=n nCI λ<,1.0003.0<==RI CI CR ,查同阶平均随机一致性指标表5所示知58.0=RI ,一般认为CI<、 CR<时,判断矩阵的一致性可以接受,否则重新两两进行比较;1类似于第1步的计算过程,可以得到矩阵C B -1的特征根、特征向量与一致性检验如下:T W ]637.0,258.0,105.0[=,039.3max =λ,1.0033.0<=CR3判断矩阵C B -2的特征根、特征向量与一致性检验类似于第1步的计算过程,可以得到矩阵刀:—C 的特征根、特征向量与一致性检验如下:T W ]075.0,333.0,592.0[=,014.3max =λ,1.0012.0<=CR 4判断矩阵C B -3的特征根、特征向量与一致性检验类似于第1步的计算过程,可以得到矩阵C B -3的特征根、特征向量与一致性检验如下:T W ]785.0,066.0,149.0[=,08.3max =λ,1.0069.0<=CR 4、层次总排序获得同一层次各要素之间的相对重要度后,就可以自上而下地计算各级要素对总体的综合重要度;设二级共有m 个要素c 1, c 2,…,c m ,它们对总值的重要度为w 1, w 2,…, w m ;她的下一层次三级有p 1, p 2,…,p n 共n 个要素,令要素p i 对c j 的重要度权重为v ij ,则三级要素p i 的综合重要度为:方案C 1的重要度权重=×+×+×= 方案C 2的重要度权重=×+×+×=方案C 3的重要度权重=×+×0. 075+×=依据各方案综合重要度的大小,可对方案进行排序、决策; 层次总排序如表6所示;由表5可以看出,3种品牌设备的优劣顺序为:1C ,3C ,2C ,且品牌1明显优于其他两种品牌的设备;。

层次分析法例题

层次分析法例题

二、AHP 求解 层次分析法(Analytic Hierarchy Process )是一种定量与定性相结合的多目标决策分析法,将决策者的经验给予量化,这在对目标(因素)结构复杂且缺乏必要数据的情况下较为实用。

(一)、建立递阶层次结构目标层:最优生鲜农产品流通模式。

准则层:方案的影响因素有:1c 自然属性、2c 经济价值、3c 基础设施、5c 政府政策。

方案层:设三个方案分别为:1A 农产品产地一产地批发市场一销地批发市场一消费者、2A 农产品产地一产地批发市场一销地批发市场一农贸市场一消费者、3A 农业合作社一第三方物流企业一超市一消费者(本文假设农产品的生产地和销地不在同一个地区)。

图3—1 递阶层次结构(二)、构造判断(成对比较)矩阵所谓判断矩阵昰以矩阵的形式来表述每一层次中各要素相对其上层要素的相对重要程度。

为了使各因素之间进行两两比较得到量化的判断矩阵,引入1~9的标度,见表3—1.目标层:准则层:方案层:表3—1 标度值为了构造判断矩阵,作者对6个专家进行了咨询,根据专家和作者的经验,四个准则下的两两比较矩阵分别为:(三)、层次单排序及其一致性检验层次单排序就是把本层所有要素针对上一层某一要素,排出评比的次序,这种次序以相对的数值大小来表示。

对应于判断矩阵最大特征根λmax的特征向量,经归一化(使向量中各元素之和等于1)后记为W。

W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。

能否确认层次单排序,需要进行一致性检验,所谓一致性检验是指对A确定不一致的允许范围。

a,则λ比n 大的越多,A 的不一致性越严重。

用最大特征值对由于λ连续的依赖于ij应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。

因而可以用λ―n数值的大小来衡量 A 的不一致程度。

用一致性指标进行检验:max 1nCI n λ-=-。

层次分析法练习参考标准答案

层次分析法练习参考标准答案

层次分析法练习参考答案————————————————————————————————作者:————————————————————————————————日期:2page3层次分析法练习练习一、市政工程项目建设决策问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,试运用层次分析法建模解决。

1、建立递阶层次结构在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。

但问题绝不这么简单。

通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。

根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。

代表不同层次,同一层次从左到右用1、2、3、4。

代表不同因素。

这样构成的递阶层次结构如下图。

目标层A准则层B准则层C合理建设市政工程,经济效社会效环境效直接经济效益 (C1)间接带动效益(C2)方便日常出行(C3)方便假日出行(C4)减少环境污染(C5)改善城市面貌(C6)page4措施层D图1 递阶层次结构示意图2、构造判断矩阵并请专家填写征求专家意见,填写后的判断矩阵如下:表2 判断矩阵表A B1 B2 B3 B1 C1 C2 B2 C3 C4 B3 C5 C6 B1 1 1/3 1/3C1 1 1 C3 1 3 C5 1 3 B2 1 1 C2 1 C4 1 C6 1 B3 1 C1 D1 D2 C2 D1 D2 C3 D1 D2 C4 D1 D2D1 1 5 D1 1 3 D1 1 1/5 D1 1 7 D2 1 D2 1 D2 1 D2 1 C5 D1 D2 C6 D1 D2D1 1 1/5 D1 1 1/3 D21D213、计算权向量及检验计算所得的权向量及检验结果见下:表4 层次计算权向量及检验结果表A 单(总)排序权值B1 单排序权值 B2 单排序权值 B3 单排序权值 B1 0.1429 C1 0.5000 C3 0.7500 C5 0.7500 B2 0.4286 C2 0.5000 C4 0.2500 C6 0.2500 B3 0.4286 CR 0.0000CR 0.0000CR 0.0000CR0.0000建高速建地铁page5C1 单排序权值 C2 单排序权值 C3 单排序权值 C4 单排序权值 D1 0.8333 D1 0.7500 D1 0.1667 D1 0.8750 D2 0.1667 D2 0.2500 D2 0.8333 D2 0.1250 CR 0.0000CR 0.0000CR 0.0000CR 0.0000C5 单排序权值 C6 单排序权值 D1 0.1667 D1 0.2500 D2 0.8333 D2 0.7500 CR 0.0000CR0.0000可以看出,所有单排序的C.R.<0.1,认为每个判断矩阵的一致性都是可以接受的。

层次分析法例题

层次分析法例题

专题:层次分析法一般情况下,物流系统的评价属于多目标、多判据的系统综合评价。

如 果仅仅依靠评价者的定性分析和逻辑判断,缺乏定量分析依据来评价系统 方案的优劣,显然是十分困难的。

尤其是物流系统的社会经济评价很难作 出精确的定量分析。

层次分析法(Analytical Hierarchy Process)由美国著名运筹学家萨 蒂(T.L. Saaty )于1982年提出,它综合了人们主观判断,是一种简明、 实用的定性分析与定量分析相结合的系统分析与评价的方法。

目前,该方 法在国内已得到广泛的推广应用,广泛应用于能源问题分析、科技成果评 匕地区经济发展方案比较,尤其是投入产出分析、资源分配、方案选择 及评比等方面。

它既是一种系统分析的好方法,也是一种新的、简洁的、 实用的决策方法。

♦层次分析法的基本原理人们在日常生活中经常要从一堆同样大小的物品中挑选出最重的物品。

这时,一般是利用两两比较的方法来达到目的。

假设有 量用w, W 2, 它们的重量, 比矩阵A 。

由上式可知,n 是A 的特征值,阵A 的唯一非零解,也是最大的特征值。

这就提示我们,可以利用求物品重 量比判断矩阵的特征向量的方法来求得物品真实的重量向量 W 从而确定最 重的物品。

将上述n 个物品代表n 个指标(要素),物品的重量向量就表示各指标(要Z Wj …iVj /7门勺AW^1忙2 / "i HS / US …啊2 /・■* ・・■ ■■・I ■-叫—/JUS/ US …Hl/W"■ ■如果用物品重量向量W[W|,n 个物品,其真实重 …W n 表示。

要想知道W|, W,…Wn 的值,最简单的就是用秤称出 但如果没有秤,可以将几个物品两两比较,得到它们的重量 /叭…Wn ]T右乘矩阵A,则有:w , V 是A 的特征向量。

根据矩阵理论,n 是矩素)的相对重要性向量,即权重向量;可以通过两两因素的比较,建立判 断矩阵,再求出其特征向量就可确定哪个因素最重要。

层次分析法例题

层次分析法例题

二、AHP 求解层次分析法(Analytic Hierarchy Process )是一种定量与定性相结合的多目标决策分析法,将决策者的经验给予量化,这在对目标(因素)结构复杂且缺乏必要数据的情况下较为实用。

(一)、建立递阶层次结构目标层:最优生鲜农产品流通模式。

准则层:方案的影响因素有:1c 自然属性、2c 经济价值、3c 基础设施、5c 政府政策。

方案层:设三个方案分别为:1A 农产品产地一产地批发市场一销地批发市场一消费者、2A 农产品产地一产地批发市场一销地批发市场一农贸市场一消费者、3A 农业合作社一第三方物流企业一超市一消费者(本文假设农产品的生产地和销地不在同一个地区)。

图3—1 递阶层次结构(二)、构造判断(成对比较)矩阵所谓判断矩阵昰以矩阵的形式来表述每一层次中各要素相对其上层要素的相对重要程度。

为了使各因素之间进行两两比较得到量化的判断矩阵,引入1~9的标度,见表3—1.目标层:准则层:方案层:表3—1 标度值为了构造判断矩阵,作者对6个专家进行了咨询,根据专家和作者的经验,四个准则下的两两比较矩阵分别为:(三)、层次单排序及其一致性检验层次单排序就是把本层所有要素针对上一层某一要素,排出评比的次序,这种次序以相对的数值大小来表示。

对应于判断矩阵最大特征根λmax的特征向量,经归一化(使向量中各元素之和等于1)后记为W。

W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。

能否确认层次单排序,需要进行一致性检验,所谓一致性检验是指对A确定不一致的允许范围。

a,则λ比n 大的越多,A 的不一致性越严重。

用最大特征值对由于λ连续的依赖于ij应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。

因而可以用λ―n数值的大小来衡量 A 的不一致程度。

用一致性指标进行检验:max 1nCI n λ-=-。

其中max λ是比较矩阵的最大特征值,n 是比较矩阵的阶数。

(完整版)层次分析法模板例题

(完整版)层次分析法模板例题

CR=CI/RI
3.0536 0.026810788 0.052068882
一致性检验 Awi/Wi 3.1356 CI=(λ-n)/(n-1) 3.1356 3.1356 3.1356 0.067805422
CR=CI/RI 0.131684027
总排序
Σaibin
0.069712 0.096671 0.016757
0.274628908 0.253415711 0.471955382
CR=CI/RI 0.118696 0.118696
总权重
=A14 按行相乘 开n次方 权重Wi
Awi
6
3.0000 1.4422 0.3806
1.1936
4
8.0000 2.0000 0.5279
1.6551
1
0.0417 0.3467 0.0915
0.2869
3.7889
层次总排序计算
四准则ai
经济效益 社会效益 生态效益 技术要求
三方案bin
0.4821 0.1170 0.2178 0.1831
Awi
1/7 0.2857 0.6586 0.1570
0.4988
1/4 0.1250 0.5000 0.1192
0.3786
1
28.0000 3.0366 0.7238
2.2995
4.1952
=A12 1 2 5
=A13 1/2 1 3
准则层对于目标层的判断矩阵及单排序和一致性检验
=A14 按行相乘 开n次方 权重Wi
CIi Rii(与n有关的常
数) CRi
层次总排序一致性检验
0.0884641 0.001847 0.026811 0.067805

(完整版)层次分析法例题

(完整版)层次分析法例题

实验目的:熟悉有关层次分析法模型的建立与计算,熟悉Matlab 的相关命令。

实验准备:1. 在开始本实验之前,请回顾教科书的相关内容;2. 需要一台准备安装Windows XP Professional 操作系统和装有Matlab 的计算机。

实验内容及要求试用层次分析法解决一个实际问题。

问题可参考教材P296第4大题。

实验过程:某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示。

以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性。

1C ,2C ,3C 表示备选的3种品牌的设备。

解题步骤:1、标度及描述人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。

为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。

5 因素i 与j 较强重要 7 因素i 与j 强烈重要 9 因素i 与j 绝对重要 2、4、6、8 两个相邻判断因素的中间值倒数 因素i 与j 比较得判断矩阵a ij ,则因素j 与i 相比的判断为a ji =1/a ij设备采购层次结构图注:a ij 表示要素i 与要素j 相对重要度之比,且有下述关系:a ij =1/a ji ;a ii =1; i ,j=1,2,…,n显然,比值越大,则要素i 的重要度就越高。

2、构建判断矩阵A判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据。

根据结构模型,将图中各因素两两进行判断与比较,构造判断矩阵:●判断矩阵B A -(即相对于物流系统总目标,判断层各因素相对重要性比较)如表1所示;●判断矩阵C B -1(相对功能,各方案的相对重要性比较)如表2所示; ●判断矩阵C B -2(相对价格,各方案的相对重要性比较)如表3所示; ●判断矩阵C B -3(相对可维护性,各方案的相对重要性比较)如表4所 示。

层次分析法例题

层次分析法例题

二、求解层次分析法()是一种定量与定性相结合的多目标决策分析法,将决策者的经验给予量化,这在对目标(因素)结构复杂且缺乏必要数据的情况下较为实用。

(一)、建立递阶层次结构目标层:最优生鲜农产品流通模式。

准则层:方案的影响因素有:c自然属性、2c经济价值、3c基础1设施、c政府政策。

5方案层:设三个方案分别为:A农产品产地一产地批发市场一销1地批发市场一消费者、A农产品产地一产地批发市场一销地批发2市场一农贸市场一消费者、A农业合作社一第三方物流企业一超3市一消费者(本文假设农产品的生产地和销地不在同一个地区)。

图3—1 递阶层次结构(二)、构造判断(成对比较)矩阵所谓判断矩阵昰以矩阵的形式来表述每一层次中各要素相对其上层要素的相对重要程度。

为了使各因素之间进行两两比较得到量化的判断矩阵,引入1~9的标度,见表3—1.表3—1 标度值目标准则方案为了构造判断矩阵,作者对6个专家进行了咨询,根据专家和作者的经验,四个准则下的两两比较矩阵分别为:(三)、层次单排序及其一致性检验层次单排序就是把本层所有要素针对上一层某一要素,排出评比的次序,这种次序以相对的数值大小来表示。

对应于判断矩阵最大特征根λ的特征向量,经归一化(使向量中各元素之和等于1)后记为W 。

W 的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。

能否确认层次单排序,需要进行一致性检验,所谓一致性检验是指对A 确定不一致的允许范围。

由于λ 连续的依赖于ij a ,则λ 比n 大的越多,A 的不一致性越严重。

用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。

因而可以用 λ―n 数值的大小来衡量 A 的不一致程度。

用一致性指标进行检验:max 1nCI n λ-=-。

其中max λ是比较矩阵的最大特征值,n 是比较矩阵的阶数。

CI 的值越小,判断矩阵越接近于完全一致。

层次分析法例题

层次分析法例题

某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示。

以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性。

1C ,2C ,3C 表示备选的3种品牌的设备。

解题步骤:1、标度及描述人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。

为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。

注:a ij 表示要素i 与要素j 相对重要度之比,且有下述关系:a ij =1/a ji ;a ii =1; i ,j=1,2,…,n显然,比值越大,则要素i 的重要度就越高。

目标层判断层方案层 图 设备采购层次结构图2、构建判断矩阵A判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据。

根据结构模型,将图中各因素两两进行判断与比较,构造判断矩阵:●判断矩阵B A -(即相对于物流系统总目标,判断层各因素相对重要性比较)如表1所示;●判断矩阵C B -1(相对功能,各方案的相对重要性比较)如表2所示; ●判断矩阵C B -2(相对价格,各方案的相对重要性比较)如表3所示; ●判断矩阵C B -3(相对可维护性,各方案的相对重要性比较)如表4所 示。

1B A -C B -14C B -33、计算各判断矩阵的特征值、特征向量及一致性检验指标一般来讲,在AHP 法中计算判断矩阵的最大特征值与特征向量,必不需要较高的精度,用求和法或求根法可以计算特征值的近似值。

层次分析法详解以及例题

层次分析法详解以及例题

构建风险层次结构通过选取的指标可以看出这是一个多目标的且问题涉及到许多因素,各种因素 的作用相互,情况复杂。

依据层次分析法处理这类复杂的问题就需要对所涉及的因 素指标进行分析:哪些是需相互比较的;哪些是需相互影响的。

把那些需相互比较 的因素归成同一类,构造出一个各因素类之间相互联结的层次结构模型。

各因素类 的层次级别由其与目标的关系而定:第一层是目标层,也就是国家风险的评价排序第二层是准则层,这一层中是国家风险排序所涉及的国家风险类型,即政治风险、经济风险、社会风险。

第三层是子准则层,这一层是评价衡量准则层中各要素的影响因素及评价指标, 即政权凝聚力、腐败状况、相关法律政策、国际关系、官僚主义、经济政策、汇率 稳定性、金融环境、内部冲突、外部冲突、民族差异等。

第四层也就是我们要选择的方案即所要选择的并购方案国家。

图5.1风险层次结构模型Fig.5.1 The hierarchical structure model of country risk社会环境C1外部冲突C10内部冲突9金融环境0汇率稳定性C7经济环境0官僚主支05与我国的关系2与并购相关法律政策3腐败状况c2政权凝聚力c1目标层 风险的评价排序A经济风险B2 社会风险B3政治风险B1 子准则层国家D3国家D2 国家D1 方案层 准则层为了方便计算以及模型的理解,层次结构中各层次均用字母代替,目标层为A, 准则层为B,子准则层为C,方案层为D。

5.2.2重要性程度描述为了将上述复杂的多因素综合比较问题转化为简单的两因素相对比较问题。

首先找出所有两两比较的结果,并且把它们定量化;然后再运用适当的数学方法从所有两两相对比较的结果之中求出多因素综合比较的结果。

进行定性的成对比较时,我们将比较结果分为5种等级:相同、稍强、强、明显强、绝对强并将我们所做出的比较结果应用1~9个数字尺度来进行定量化,比较具体含义及相应数字对应如下表:表5.2 AHP重要程度描述表Table 5.2 Described table of AHP important degree 定性比较结果数字定量因素1相较于因素2具有相同的重要性因素1与因素2相比,前者重要性稍强因素1与因素2相比,前者重要性强因素1与因素2相比,前者重要性明显强因素1与因素2相比,前者重要性绝对强因素1与因素2相比,相对重要性处于上述等级之间135792、4、6、8(续表5.2)定性比较结果数字定量因素1与因素2相比,后者的重要性要稍强、强、明显强、1/3、1/5、1/7、绝对强于前者 1/9例如:在准则层中有三个因素政治风险B1、经济风险B2以及社会风险B3,假设如果政治风险B1相较于经济风险B2在风险中的重要性稍强那么就是B1:B2=3:1 也就是3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。







班级:高分子材料与工程
姓名:林志许、朱金波、任宇龙。

学号:1211020115、1211020126、1211020134
层次分析法
某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示。

以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性。

1C ,2C ,3C 表示备选的3种品牌的设备。

解题步骤:
1、标度及描述
人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。

为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。

目标层
判断层
方案层 图 设备采购层次结构图
注:a
ij
表示要素i与要素j相对重要度之比,且有下述关系:
a ij =1/a
ji ;
a
ii
=1; i,j=1,2,…,n
显然,比值越大,则要素i的重要度就越高。

2、构建判断矩阵A
判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据。

根据结构模型,将图中各因素两两进行判断与比较,构造判断矩阵:
●判断矩阵B
A-(即相对于物流系统总目标,判断层各因素相对重要性比较)如表1所示;
●判断矩阵C
B-
1(相对功能,各方案的相对重要性比较)如表2所示;
●判断矩阵C
B-
2(相对价格,各方案的相对重要性比较)如表3所示;
●判断矩阵C
B-
3(相对可维护性,各方案的相对重要性比较)如表4所示。

B
A-
C
B-
1
C
B-
3
3、计算各判断矩阵的特征值、特征向量及一致性检验指标
一般来讲,在AHP法中计算判断矩阵的最大特征值与特征向量,必不需
要较高的精度,用求和法或求根法可以计算特征值的近似值。

●求和法
1)将判断矩阵A 按列归一化(即列元素之和为1):b ij = a ij /Σa ij ; 2)将归一化的矩阵按行求和:c i =Σb ij (i=1,2,3….n );
3)将c i 归一化:得到特征向量W =(w 1,w 2,…w n )T ,w i =c i /Σc i , W 即为A 的特征向量的近似值;
4)求特征向量W 对应的最大特征值:
●求根法
1)计算判断矩阵A 每行元素乘积的n 次方根;n
n
j ij
i a
w ∏==1
(i =1,
2, …, n )
2)将i w 归一化,得到∑==
n
i i
i
i w
w w 1
;W =(w 1,w 2,…w n )T 即为A 的特征
向量的近似值;
3)求特征向量W 对应的最大特征值:
(1)判断矩阵B A -的特征根、特征向量与一致性检验 ①计算矩阵B A -的特征向量。

计算判断矩阵B A -各行元素的乘积i M ,并求其n 次方根,如
3
2
23111=⨯⨯=M ,874.0311==M W ,类似地有,466.2322==M W ,
464.0333==M W 。

对向量T n W W W W ],,,[21 =规范化,有
230
.0464.0466.2874.0874
.01
1
1=++=
=
∑=n
i i
W
W W
类似地有684.02=W ,122.03=W 。

所求得的特征向量即为:
T W ]122.0,648.0,230.0[=
②计算矩阵B A -的特征根
T
AW ]122.0,648.0,230.0[15/12/151323/11⎥⎥
⎥⎦

⎢⎢⎢⎣⎡= 69.0122.02648.03
1
230.011=⨯+⨯+⨯=AW
类似地可以得到948.12=AW ,3666.03=AW 。

按照公式计算判断矩阵最大特征根:
004.3122.033666
.0648.03948.1230.0369.0)(1
max =⨯+⨯+⨯==∑=n
i i i nW AW λ
③一致性检验。

实际评价中评价者只能对A 进行粗略判断,这样有时会犯不一致的错误。

如,已判断C 1比C 2重要,C 2比C 3较重要,那么,C 1应该比C 3更重要。

如果又判断C 1比C 3较重要或同等重要,这就犯了逻辑错误。

这就需要进行一致性检验。

根据层次法原理,利用A 的理论最大特征值λmax 与n 之差检验一致性。

一致性指标:
计算002.01
33
004.31max =--=
--=
n n
CI λ<0.1,1.0003.0<==RI CI CR ,查同阶平均随机一致性指标(表5所示)知58.0=RI ,(一般认为CI<0.1、 CR<0.1时,
判断矩阵的一致性可以接受,否则重新两两进行比较)。

(2)判断矩阵C B -1的特征根、特征向量与一致性检验
类似于第(1)步的计算过程,可以得到矩阵C B -1的特征根、特征向量与一致性检验如下:
T W ]637.0,258.0,105.0[=,039.3max =λ,1.0033.0<=CR (3)判断矩阵C B -2的特征根、特征向量与一致性检验
类似于第(1)步的计算过程,可以得到矩阵刀:—C 的特征根、特征向量与一致性检验如下:
T W ]075.0,333.0,592.0[=,014.3max =λ,1.0012.0<=CR (4)判断矩阵C B -3
的特征根、特征向量与一致性检验
类似于第(1)步的计算过程,可以得到矩阵C B -3
的特征根、特征向量与一致性检验如下:
T W ]785.0,066.0,149.0[=,08.3max =λ,1.0069.0<=CR 4、层次总排序
获得同一层次各要素之间的相对重要度后,就可以自上而下地计算各级要素对总体的综合重要度。

设二级共有m 个要素c 1, c 2,…,c m ,它们对总值的重要度为w 1, w 2,…, w m ;她的下一层次三级有p 1, p 2,…,p n 共n 个要素,令要素p i 对c j 的重要度(权重)为v ij ,则三级要素p i 的综合重要度为:
方案C 1的重要度(权重)=0.230×0.105+0.648×0.529+0.122×0.149=0.426
方案C 2的重要度(权重)=0.230×0.258+0.648×0.333+0.122×0.066=0.283
方案C 3的重要度(权重)=0.230×0.637+0.648×0. 075+0.122×0.785=0.291
依据各方案综合重要度的大小,可对方案进行排序、决策。

层次总排序如表6所示。

表6 层次总排序
5、结论
由表5可以看出,3种品牌设备的优劣顺序为:1C ,3C ,2C ,且品牌1明显优于其他两种品牌的设备。

Welcome 欢迎您的下载,资料仅供参考!。

相关文档
最新文档