职高高二数学第一学期期末试卷
职高高二期末数学试题
高二期末数学试题一:选择题:本大题共有30个小题,请把选项填在第二卷的答题栏内1、过点(1,-3)且与向量n=(-4,3)垂直的直线方程是()A、4x-3y-13=0B、-4x+3y-13=0C、3x-4y-15=0D、-3x+4y-13=02、过点B(3,-2)且平行于直线x+3y+7=0的直线方程是()A、x+3y+3=0B、3x-y-11=0C、3x-2y+3=0D、3x-2y-11=03、直线3x+y+6=0的一个法向量是()A、(3,1)B、(3,-1)C、(-3,1)D、(-1,3)4、已知点A(-3,1)B、(1,-1)C、(x,0)是共线的三点,则x的值为()A、-3B、3C、1D、-15、直线3x-4y-12=0与两坐标轴围成的三角形的面积等于()A、(3,1)B、(3,-1)C、(-3,1)D、(-1,3)6、斜率的积等于-1是两条直线互相垂直的()条件A、充分B、必要C、充要D、既不充分也不必要7、点P(2,4)到直线3x-4y+m=0的距离是2,则m的值是()A、0B、20C、0或20D、-8或128、圆(x-1)2+y2=1的圆心和半径分别是()A、(1,0),1B、(-1,0),1C、(0,1),1D、(0,-1),19、圆x2+y2-6x=0的圆心到直线3x-4y+1=0的距离是()A、1B、2C、4D、510、若直线x-y+m=0与圆x2+y2=2相切,则m的值等于()A、1B、2C、-2D、±211、圆x2+y2-2x+4y+4=0上的点到直线3x-4y+9=0的最大距离是()A、3B、4C、5D、612、经过一条直线和一个点的平面()A、1个B、2个C、4个D、1个或无数个13、三条直线互相平行,则这三条直线确定平面的个数是()A、1个B、2个C、3个D、1个或3个14、直线在平面外,指的是()A、直线与平面没有公共点B、直线与平面不相交C、直线与平面至多有1个交点D、直线与平面垂直15、在一个平面内,和这个平面的斜线垂直的直线()A、只有一条B、有无数条C、不存在D、有相交的两条16、正方体ABCD-A1B1C1D1中,O1为A1C1的中点,则CO1垂直于A、ACB、B1D1C、A1DD、A1A17、下列命题中正确的个数是()⑴垂直于同一直线的两平面平行⑵平行于同一直线的两平面平行⑶垂直于同一平面的两直线平行⑷平行于同一平面的两直线平行A、1个B、2个C、3个D、4个18、在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A、300B、450C、600D、90019、3名同学报考5所高中,每人只报一所学校,有不同报法()A、8种B、15种C、35种D、53种20、一公园有四个门,有人从一门进从另一个门出,共有不同走法()A、4种B、8种C、12种D、16种21、从1,2,3,4,5,6 中,任取两个数字,恰有一个偶数的概率是()A、1B、0.8C、0.6D、0.222、袋中有3个红球,2个白球,取出两个球,恰好红白球各一个的概率是()A、0.4B、0.8C、0.6D、0.523、把一枚硬币抛掷两次,两次都正面向上的概率是()A、1/4B、1/3C、1/2D、124、抛掷两颗骰子,点数和为7的概率是()A、1/36B、1/6C、1/4D、1/225、三个人参加一次聚会,甲比乙先到的概率是()A、1/2B、1/3C、2/3D、126、有40件产品,编号从1至40,现在从中抽取4件检验,用系统抽样方法确定所抽的编号为( )A.5,10,15,20B.2,12,22,32C.2,14,26,38D.5,8,31,3627.分层抽样、系统抽样、简单随机抽样三种抽样中,为不放回抽样的有( )A.0个B.1个C.2个D.3个28.某学校有初一学生300人,初二200人,初三400人.现采用分层抽样的方法抽取容量为45的样本,那么各年级抽取的人数分别为( )A.15,5,25B.15,15,15C.10,5,30D.15,10,2029、某校有40个班,每班50人,每班派3人参加“学代会”,在这个问题中样本容量是A、40 B、50C、120D、15030..为了了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A、2 B、4C、5D、6高二期末考试数学试题班级姓名成绩二:填空题(每小题3分,共12分)31、要检查某种产品的合格率,检查人员从1000件产品中任意抽取了50件,则这种抽样方法是____________.36、求过点A(0,1)和B(2,1),半径等于5的圆的方程(8分)32、以点C(-1,4)为圆心,且与直线3x-4y-1=0相切的圆的方程是33、已知两点A(-5,2)、B(-3,6),则线段AB的垂直平分线方程是34、正方体ABCD-A1B1C1D1中,C1C与AB1所成的角是三:解答题35、正方体ABCD-A1B1C1D1中,AB=1,求:(1)AA1与平面DBB I D I的距离(2)A1B与平面DBB1D1所成的角(8分)37、长方体中,AB=BC=2,CC1=23,求两异面直线AA1和BC1所成的角(6分)38、求点P(2,3)关于直线L:x+y-3=0的对称点Q的坐标(6分)。
高二职高期末数学试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各数中,属于无理数的是()A. √4B. √9C. √16D. √252. 若函数f(x) = 2x + 1,则f(3)的值为()A. 7B. 8C. 9D. 103. 下列图形中,属于等边三角形的是()A. 图形1B. 图形2C. 图形3D. 图形44. 已知等差数列{an}的前三项分别为1,3,5,则该数列的公差为()A. 1B. 2C. 3D. 45. 若直线y = kx + b与圆x² + y² = 1相切,则k和b的关系为()A. k² + b² = 1B. k² - b² = 1C. k² + b² = 0D. k² - b² = 06. 下列各函数中,为奇函数的是()A. y = x²B. y = x³C. y = x⁴D. y = x⁵7. 若复数z满足|z - 2i| = 3,则复数z在复平面上的轨迹是()A. 一条射线B. 一个圆C. 一条直线D. 一条抛物线8. 下列各数中,属于正数的是()A. -3B. 0C. 1D. -19. 若a,b,c是等差数列,且a + b + c = 12,a² + b² + c² = 42,则ab + bc + ca的值为()A. 18B. 24C. 30D. 3610. 若sinα = 1/2,cosα = √3/2,则tanα的值为()A. 1B. √3C. -1D. -√3二、填空题(每题5分,共50分)1. 函数f(x) = x² - 4x + 3的图像与x轴的交点坐标为__________。
2. 若等比数列{an}的首项为a₁,公比为q,则a₃ = _________。
3. 圆的标准方程为(x - 2)² + (y + 3)² = 16,圆心坐标为__________。
江苏省连云港市职业中学高二数学理上学期期末试卷含解析
江苏省连云港市职业中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知数列{a n}的通项公式为(n∈N*),若前n项和为9,则项数n为 ( )A.99B.100C.101D.102参考答案:A2. 已知实数,实数,则复数在复平面内对应的点位于第一象限的概率为()A.B.C.D.参考答案:A3. 阅读如图所示的程序框图,该程序输出的结果是()A.95 B.94 C.93 D.92参考答案:C 【考点】程序框图.【专题】计算题;操作型;算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当a=1时,不满足退出循环的条件,执行循环体后,S=9,a=2;当a=2时,不满足退出循环的条件,执行循环体后,S=92,a=3;当a=3时,不满足退出循环的条件,执行循环体后,S=93,a=4;当a=4时,满足退出循环的条件,故输出的结果为:93,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4. 有下列四个命题,①若点P在椭圆=1上,左焦点为F,则|PF|长的取值范围为[1,5];②方程x=表示双曲线的一部分;③过点(0,2)的直线l与抛物线y2=4x有且只有一个公共点,则这样的直线l共有3条;④函数f(x)=x3﹣2x2+1在(﹣1,2)上有最小值,也有最大值.其中真命题的个数是()A.1 B.2 C.3 D.4参考答案:C【考点】命题的真假判断与应用.【分析】根据椭圆的性质,可判断①;根据双曲线的标准方程,可判断②;根据直线与抛物线的位置关系,可判断③;分析函数的最值,可判断④.【解答】解:椭圆=1的a=3.c=2,若点P在椭圆=1上,左焦点为F,|PF|长的最小值为a﹣c=1,最大值为a+c=5,则|PF|长的取值范围为[1,5],故①正确;②方程x=可化为:x2﹣y2=1,x≥0,表示双曲线的一部分,故②正确;③过点(0,2)的直线l与抛物线y2=4x有且只有一个公共点,则直线与抛物线相切,或与对称轴平行,则这样的直线l共有3条,故③正确;④函数f(x)=x3﹣2x2+1的导数f′(x)=3x2﹣4x2,令f′(x)=0,则x=0,或x=,由f(﹣1)=﹣2,f()=; f(0)=1,f(2)=1,故在(﹣1,2)上无最小值,有最大值.故④错误;故选:C5. 某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两个节目插入原节目单中,则不同的插法总数为()A.42B.36C.30D.12参考答案:A6. 所在平面内点、,满足,,则点的轨迹一定经过的()A.重心B.垂心C.内心D.外心参考答案:A7. 用数学归纳法证明命题:1+2+3+…+n2=时,则从n=k到n=k+1左边需增加的项数为()A.2n﹣1 B.2n C.2n+1 D.n2﹣n+1参考答案:C【考点】数学归纳法.【分析】根据等式1+2+3+…+n2=时,考虑n=k和n=k+1时,等式左边的项,再把n=k+1时等式的左端减去n=k时等式的左端,即可得到答案.【解答】解:当n=k时,等式左端=1+2++k2,当n=k+1时,等式左端=1+2++k2+(k2+1)+(k2+2)+(k2+3)+…+(k+1)2,所以增加的项数为:(k+1)2﹣(k2+1)+1=2k+1即增加了2k+1项.故选:C8. 设复数z满足,则()A. B. C. D.参考答案:C【分析】根据复数的运算,化简求得,再由共轭复数的概念,即可求解,得到答案.【详解】由题意,复数满足,即,所以,故选C.【点睛】本题主要考查了复数的运算,以及共轭复数的概念,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9. 已知函数有两个零点,则( ▲ )A.B.C.D.参考答案:d略10. 某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是()A.6,12,18 B.7,11,19 C.6,13,17 D.7,12,17参考答案:A【考点】分层抽样方法.【专题】概率与统计.【分析】利用分层抽样的性质求解.【解答】解:由题意知:老年人应抽取人数为:28×≈6,中年人应抽取人数为:54×≈12,青年人应抽取人数为:81×≈18.故选:A.【点评】本题考查样本中老年人、中年人、青年人分别各抽取的人数的求法,是基础题,解题时要认真审题,注意分层抽样性质的合理运用.二、填空题:本大题共7小题,每小题4分,共28分11. 某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人,现采用分层抽样(层内采用不放回简单随机抽样)从甲、乙两组中共抽取4名工人进行技术考核.则抽取的4名工人中恰有两名男工人的概率为▲;参考答案:本题考查分层抽样,简单随机抽样,古典概率.中档题.计算得.略12. 一项“过关游戏”的规则规定:在第n关要抛一颗骰子n次,如果这n次抛掷所出现的点数之和大于,则算过关。
职教中心高二数学试卷期末
考试时间:120分钟满分:100分一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列函数中,在定义域内是增函数的是:A. \( f(x) = -x^2 + 2x \)B. \( f(x) = x^3 - 3x \)C. \( f(x) = \sqrt{x} \)D. \( f(x) = e^{-x} \)2. 若 \( a^2 + b^2 = 1 \),则 \( a + b \) 的取值范围是:A. \( (-\sqrt{2}, \sqrt{2}) \)B. \( (-1, 1) \)C. \( [-\sqrt{2}, \sqrt{2}] \)D. \( [1, \sqrt{2}] \)3. 已知 \( \sin A = \frac{3}{5} \),\( \cos B = \frac{4}{5} \),且 \( A \) 和 \( B \) 均为锐角,则 \( \sin(A + B) \) 的值为:A. \( \frac{7}{25} \)B. \( \frac{24}{25} \)C. \( \frac{17}{25} \)D. \( \frac{13}{25} \)4. 下列命题中,正确的是:A. 若 \( f(x) \) 是奇函数,则 \( f(x) \) 的图像关于原点对称B. 若 \( f(x) \) 是偶函数,则 \( f(x) \) 的图像关于 \( y \) 轴对称C. 若 \( f(x) \) 是周期函数,则 \( f(x) \) 的图像是一条封闭曲线D. 若 \( f(x) \) 是单调函数,则 \( f(x) \) 的图像是一条直线5. 若 \( \frac{1}{a} + \frac{1}{b} = 1 \),则 \( ab \) 的最大值为:A. 2B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{4} \)6. 下列数列中,不是等比数列的是:A. \( 2, 4, 8, 16, \ldots \)B. \( 1, 3, 9, 27, \ldots \)C. \( 1, -1, 1, -1, \ldots \)D. \( 1, 2, 4, 8, \ldots \)7. 若 \( \triangle ABC \) 中,\( a = 3 \),\( b = 4 \),\( c = 5 \),则\( \sin A \) 的值为:A. \( \frac{3}{5} \)B. \( \frac{4}{5} \)C. \( \frac{5}{3} \)D. \( \frac{3}{4} \)8. 下列方程中,解集为空集的是:A. \( x^2 - 2x + 1 = 0 \)B. \( x^2 - 4 = 0 \)C. \( x^2 + 1 = 0 \)D. \( x^2 - 3x + 2 = 0 \)9. 若 \( \log_2 x + \log_4 x = 3 \),则 \( x \) 的值为:A. 8B. 16C. 32D. 6410. 下列函数中,是双曲函数的是:A. \( y = \sinh x \)B. \( y = \cosh x \)C. \( y = \tanh x \)D. \( y = \coth x \)二、填空题(本大题共5小题,每小题5分,共25分。
职业中学高二上期末试题
职业中学高二数学期末试题班级___________ 姓名__________一、 选择题:(每题3分,共42分)1、已知数列{}n a 的通项公式为35n a n =-,那么2n a =( )A .65n - B. 35n - C. 310n - D. 610n - 2、在等比数列{}n a 中,已知2582,6,a a a ===则( )A . 10 B. 12 C. 18 D.243、设n s 为数列{}n a 的前n 项和,且232n s n n =+,则数列{}n a 为() A .等差数列且公差为3 B. 等比数列C. 等差数列且公差为6D.既不是等差数列,又不是等比数列4、下列向量中,共线的是( )A 、)2,3(),3,2(-==b aB 、)6,4(),3,2(-==b aC 、)3,3(),3,1(==D 、)4,7(),7,4(==5、下列各对向量中互相垂直的是( )A 、)5,3(),2,4(-==B 、)3,4(),4,3(=-=C 、)5,2(),2,5(--==D 、)2,3(),3,2(-=-=6、设点A (21,a a )及点B (21,b b )则AB 的坐标是( )A 、(),2211b a b a --B 、(),2121b b a a --C 、(),2211a b a b --D 、(),1212b b a a --7、设)3,3(),1,3(-==则>=<,( )A .6πB .65πC .3πD .32π8、已知A (-1,2),B (1,-2)则下列各式中错误的是( )A .BO OA =B =C .()4,2-=D 10=9、下列直线中通过点M (1,3)的为( )A .012=+-y xB .012=+-y xC .012=--y xD .013=-+y x10、直线012=++y x 与012=-+y x 的位置关系的是( )A .垂直B .相交但不垂直C .平行D .重合11、以点A (1,3)B (-5,1)为端点的线段垂直平分线的方程为() A .083=+-y x B .062=--y xC .043=++y xD .0212=++y x12、直线x y 3-=且与圆4)4(22=+-y x 的位置关系是( )A .相切B .相离C .相交且过圆心D .相交不过圆心13、半径为3且与y 轴相切于原点的圆的方程为( )A .9)3(22=+-y xB .9)3(22=++y xC .9)3(22=++y xD .9)3(22=+-y x 或9)3(22=++y x14、如果两条不重合直线21,l l 的斜率都不存在,那么( )A .21l l ⊥B .21,l l 相交但不垂直C .21//l lD .无法判定二、填空题(每题2分,共18分)1、数列0,1,4,9,16,25……的一个通项公式为___________2、三个连续整数的和为45,则这三个整数为_____________3、=--BC AC AB _______________4、已知A (-3,6),B (3,-6)则=________5、设)5,6(),3,2(-=--=则•=____________6、直线062=+-y x 在x 轴y 轴上的截距分别是_______,________7、点(2,1)到直线0743=+-y x 的距离为_____________8、圆心在坐标原点,半径为5的圆的标准方程为_______________9、若点P (3,4)是线段AB 的中点,点A 的坐标为(-1,2)则点B 的坐标为___________三、解答题(共40分)1、在等比数列{}n a 中,已知75,21,43S q a 求-==(7分)2、已知向量)4,3(),1,2(-=-=且)()(m -+与垂直,求实数m (6分)3、求平行于直线0234=++y x ,并且和它的距离等于2的直线方程(6分)4、求圆心为(1,3),且与直线0-y-x相切的圆的方程(7分)743=5、求经过直线02=-x的交点,圆心为C(4,3)的圆1+y2=1x与直线0++y的方程(7分)6.已经点A(2,-3)、B(-4,7),求以线段AB为直径的圆的方程。
高二中职期末考试数学试题
松滋市言程中学2016--2017学年度第二学期期末考试高二中职数学试卷本试卷共3大题, 23小题, 考试时长120分钟, 满分150分。
1、一、选择题(本大题共12小题, 每小题5分共60分)2、 在每小题给出的4个备选项中, 只有一项是符合题目要求的, 将其选出来, 不选错选多选均不得分。
3、数列22221111,31415161----,,,的一个通项公式为( ) A ()2111n a n =+- B 1(2)n a n n =+ C 21(2)1n a n =+- D 211n a n =- 4、等差数列753222----,,,,的第1n +项为( ) A ()172n - B ()142n - C 42n - D 72n - 在等差数列中, 若( )A 12B 28C 24D 30等比数列中, 若( )A 2B 4C 8D 165、化简AB AC BD CD -+-=( )A 2ADB 2CBC 0D 06、下列说法中不正确的是( )A 零向量和任何向量平行B 平面上任意三点,,,A BC 一定有AB BC AC +=C 若, 则7、D 若, 当时若, 则( )A 00B 090C 0120D 0180设且, 则( )A 12B 12-C 12±D 8直线过两点, 则该直线的倾斜角是( )A 060B 090C 00D 0180 直线与直线互相垂直, 则等于( )A 1B 2-C 23-D 13-8、以点()()1,3,5,1A B -为端点的线段的垂直平分线的方程为( ) A 380x y -+= B 260x y --=C 340x y ++=D 1220x y ++=半径为3, 且与轴相切于原点的圆的方程为( )A ()2239x y -+=B ()2239x y ++=C ()2239x y ++=D ()()22223939x y x y -+=++=或二、填空题(本大题共6小题, 每小题5分共30分) 将答案填在相应题号的答题卡上。
职业高中高二上学期期末数学试题卷(含答案)
职业高中高二上学期期末考试数学试题卷一、选择题(每小题3分,共30分。
每小题中只有一个选项是正确的)1.已知B(-2,5),且()3,3=,则点A 的坐标为 ( ) A.(-5,2) B.(5,2-) C.(1,8) D.(1,2)2.已知||=5,()3,-=k ,则k 的值是 ( ) A.4- B.4 C. 4± D.2-3.已知BC AD 31=,则四边形是 ( )A.平行四边形B.矩形C.梯形D.对边不平行的四边形4.在边长为2的等边△ABC 中,∙= ( ) A.4 B.-4 C.2 D.2-5.已知+=0的 ( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分又不必要条件6.直线0133=-+y x 的倾斜角是 ( )A.030B.0150C.060D.01207.直线0643=+-y x 与圆()()43222=-+-y x 的位置关系是 ( )A.过圆心 B.相切 C.相离 D.相交且不过圆心8.正方体棱长为a ,则其对角线长为 ( ) A.a 3 B.a 3 C.a 2 D.2a9.空间中垂直于同一直线的两条直线的位置关系是 ( ) A.平行 B.相交 C.异面 D.以上均有可能10. 如果二面角的一个面上的点到棱的距离是它到另一个面的距离的3倍,那么这个二面角的平面角θ应该满足 ( )A .030=θB . 060=θ C . 33sin =θ D . 33cos =θ 二、填空题(每小题3分,共24分)1.已知向量与反向==6,则= 2.在菱形ABCD 中,()()=-∙+ 3.已知=(2,1),=(3,m ),且∥,则实数m =4.若直线的斜率为2,且过点()2,1-,则直线的方程为5.已知点A ()5,2-和B ()5,6-,以AB 为直径的圆的标准方程为6. 直线4=+y ax 与014=-+ay x 互相垂直,则=a7.如果直线m ⊥n ,且m ⊥平面α,则n 与平面α的关系为 8.将正方形ABCD 沿AC 折成直二面角后=∠DAB 三、计算题(每小题6分,共24分)1.已知()m ,5=,()1,3-=,且-3与+互相垂直,求m 的值。
中等职业学校高二上学期期末数学测试卷及答案
中等职业学校公共基础课水平测试数学测试试卷(满分:100分;时间:90分钟)1.用列举法表示不等式+27x≤的所有正奇数的解集是{1,3}. ()2.设全集U={2,1,16,1,0}-,A={1,2,16}-,则={1,0}UAð. ()3.不等式||x≤1的解集为(1,1)-. ()4.区间(5,0]-可用集合表示为{|50}x x-<<. ()5.若53,x+<-则8x>-. ()6.已知()f x=(4)3f=. ()7.3()1f x x=-在R上是减函数. ()8.函数21()+1f xx=的定义域为R. ()9.2logy x=的图像过点(1,0). ( )10.把对数式ln3x=写成指数式是3x e=. ()11.22231log+log384=. ()12.函数xy=是指数函数. ()13.指数函数都是非奇非偶函数. ()14.=303π︒. ()15.30060︒︒与是终边相同的角. ()16.96-︒是第二象限角. ()17.角α的终边与单位圆的交点坐标为34(,)55-,则角α的余弦值为35-. ()18.已知1cos2α=-,且α是第二象限角,则tanα的值是. ()19.cos1080︒>. ()20.sin0︒的值等于1. ()21.当sinα时,=45α︒. ()22.sin360︒的值等于1. ()23.1是等比数列{3}n的项. ()24.数列1,2,3,4----与数列4,3,2,1----是相同的数列. ()25.数列1,1,1,1,1,,---的通项公式为1(1)nna+=-. ()26.等差数列1,2,3,4,的前7项和为28. ()27.等比数列1,3,9,27--,的前5项和为60. ()28.(0,2),(0,3)a b==-,a与b是共线向量. ()29.+0AB BD DA+=. ()30.直线3y x=+与直线23y x=+的交点坐标为(0,3). ()31.直线5y x=-+与直线+3=0x y-的位置关系为平行. ()32.直线30x y--=的斜截式方程是+3y x=-. ()一、判断题(每题1分,共40 分)学校______________________姓名:______________学籍号:_________________年级:______________专业:_____________…….…………………………….密…………………………………封…………………………………线……………………………………第1 页共8页第2 页共8页第4 页共8页33.斜率不存在为的直线的倾斜角为90︒. ()34.平行于同一条直线的两直线互相平行. ()35.垂直于同一个平面的两直线平行. ()36.圆柱的母线平行且相等,且等于圆柱的高. ()37.底面是正方形的四棱锥一定是正四棱锥. ()38.从1,2,3,45,这五个数中任取一个,得到奇数的概率是35. ()39.由12,3,4,可组成24个可以重复数字的四位数. ()40.抛掷两次骰子,则两次都出现偶数点的概率是14. ()1.设{}{}2,1,1,1,1,2A B=-=-,则A B=()A. {}1,1,2- B. {}1- C. {}1 D. {}22.指出条件p是结论q的什么条件?条件:20p x+=,结论:(2)(5)0q x x++=.()A. 必要条件B. 充分条件C. 充分且必要条件D. 不确定3.不等式10x->的解集为()A. []1,1- B. (1,1)- C. (,1)(1,)-∞-+∞ D. (,1][1,)-∞-+∞4.不等式(2)(3)0x x--<的解集为()A. (,2)(3,)-∞-+∞ B. (,2)(3,)-∞+∞ C. (2,3)- D. (2,3)5.已知()tanf x x=,则()4fπ的值为()A.3B.2C. 1D.6.函数()f x=的定义域为()A. (,1]-∞ B. (,0]-∞ C. (,0)(0,)-∞+∞ D. R7.函数()f x x=是().A.奇函数B. 偶函数C. 非奇非偶函数D. 既奇又偶函数8.函数()43f x x=+在R上是(.)A. 减函数B. 增函数C. 先增后减D. 先减后增9.函数1yx=的图像不过()A. 原点B. (1,1)C. (1,1)-- D. 无法确定10.如果21log log32a a>,则a的取值范围是()A. )1,0(B. )0,(-∞ C. ),0(+∞ D. ),1(+∞11.把指数式124x⎛⎫=⎪⎝⎭化为对数式为()A.1log24x= B.21log4x= C.14log2x= D.14log2x=12.函数3y x=的图像关于()对称. ()A. x轴B. y轴C. (0,0)D. 直线y x=13.把指数幂23a化成根式的形式是()A. aB.C.D.14.计算63a a÷=()A. 9aB. 6aC. 3aD. 2a二、单选题:(每题1分,共40分)专业:_____________………………………第3 页共8页第5 页 共8页 第6 页 共8页15.下列函数属于指数函数的是 ( )A. 0.3xy =- B. 0.3xy = C. 0.3y x = D. 22y x -=16.53π是 ( ) A. 第一象限角 B.第二象限角 C.第三象限角 D. 第四象限角17. 在0~360之间,与60-终边相同的角是 ( ) A. 660 B.320 C.390 D. 30018. 1的弧度数是 ( ) A. 1 B.2π C. 3πD. 180π19.函数2cos21y x =-+的最小值是 ( ) A. 2 B. 2- C. 1- D. 320. 已知角α的终边经过点(3,0),则角α的正弦值为 ( ) A.31B. 0C. 3D. 1 21. tan(315)-= ( )A. 3B. 1C. 1-D. 2122. 108的各三角函数值的符号为 ( ) A. sin 0α> B. 0cos >α C. 0tan <α D. 以上都不对23. sin 270等于 ( ) A. 0 B. 1- C. 1 D.1224. 数列 ,8,6,4,2的第8项是 ( ) A. 16 B. 17 C. 18 D. 1925. 24是数列 ,15,12,9,6,3的第几项? ( )A. 8B. 9C. 10D. 11 26. 等差数列2,6,10,14,的通项公式是 ( )A. 42n a n =+B. 46n a n =-C. 42n a n =-D. 24n a n =- 27. 等比数列1111,,,,392781的通项公式是 ( )A. n n a 31=B. n n a 31-=C. 21+-=n a nD. na n +-=3128. (1,2),(3,1),a b =-=-则a b ⋅= ( )A. 5B. 5-C. 1-D. 129. 下列等式错误的是 ( ) A. a b b a +=+ B. 00a a +=+ C. ()0a a +-= D. ()=0+-a a 30. 点(2,1)P -到直线230x y -=的距离为 ( )A.B.C.D. 31. 关于直线1x =与直线7y =说法正确的是 ( ) A. 垂直 B. 平行 C. 重合 D. 无法确定32. 直线1y =与直线1=x 的交点坐标为 ( ) A. )1,1(- B. )1,2( C. )2,1( D. (1,1)33. 若点(1,2)A 与点B 关于点(2,5)P 对称,则点B 的坐标为 ( ) A. (3,8) B. (1,8)- C. (1,1)- D. (0,1)-34. 圆224x y +=的圆心为 ( ) A. (1,0) B. (0,0) C. (0,1) D. (0,2)35. 方程2226100x y x y ++-+=表示 ( )第7 页 共8页 第8 页 共8页A.圆B. 不表示任何图形C. 点D. 无法确定 36. 平面的斜线与平面所成角的范围是( )A. (0,90)B. (0,90]C. (0,180)D. ]90,0[37.过两条平行直线中的一条,可做多少个平面平行于另一条直线? ( ) A. 一个 B. 两个 C. 三个 D. 无数个38. 某学校高一年级共有7个班,高二年级6个班,从中选一个班级担任学校星期一早晨升旗任务,共有( )种安排方法.A. 14B. 13C. 12D. 4239. 在随机试验中,对于不可能事件φ,则()P φ= ( ) A. 等于1 B. 等于0 C. 大于0 D. 大于等于0且小于等于1 40. 抛掷一颗骰子,“出现偶数点”的事件是 ( ) A. 必然事件 B. 不可能事件 C. 基本事件 D. 随机事件1.表示所有大于7的整数组成的集合是 ( ) A.{}Z x x x ∈>,7 B.{} ,10,9,8 C.{}Q x x x ∈>,7 D.{}7>x 2.已知集合{}{}60,52≤≤=<<-=x x B x x A ,则=⋂B A ( ) A.[0,5) B.(2,6]- C. {}05x x ≤< D. {}26x x -<≤ 3. 下列函数定义域为(),0-∞的是 ( ) A.y =B.2log ()y x =-C. y =D. y =4.下列对数值大于零的是 ( ) A.ln e B. ln 5 C. 1ln 2D .ln 0.6 5. 已知4sin 5∂=,则∂tan 的值可能是 ( ) A .35- B. 35 C.34 D.34-6.以下哪些数是数列{(1)n +- 的项 ( )A.1B.2C.3D.47.5a →=,且(,4)a k →=- ,则=k ( ) A.3 B. -3 C.4 D.-48.圆心在原点,的圆的标准方程错误的是 ( ) A .224x y += B.224x y -= C. 222x y += D. 222x y -= 9.两个平面可以把空间分成 ( )A.两部分B.三部分C.四部分D.五部分10.从甲、乙、丙、丁四人中挑选1人去参加职业技能大赛。
2024年浙江省中职数学高二期末测试卷(模拟卷)测试
浙江省中职数学高二期末测试卷(模拟测试)本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.一、单项选择题(本大题共20小题,1—10小题,每小题2分,11—20小题,每小题3分,共50分)在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均无分.1. 已知集合{1,0,1}A =-,{|3,N}B x x x =<∈,则A B = ( )A. {1,0,1,2}-B.{1,1,2}- C. {0,1,2} D. {0,1} 2. 设命题甲:240x -=,命题乙:20x +=,则命题甲是命题乙的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. a b >,则下列不等式成立的是( ) A. 11a b< B. ||||a b > C. c a c b -<- D. 22ac bc >4. 不等式20m m +>的解集是( )A. (,0)-∞B. ()(),10,-∞-⋃+∞C. (,1)-∞D.(0,1)- 5. 函数1y x =-+,[2,0)x ∈-的值域是( )A. (1,3]B.[3,1] C. (3,1) D. (1,3) 6. 函数22y x x =+(22x -≤≤)的值域是( )A. (,8]-∞B.[]1,8- C. [0,8] D. (,1]-∞- 7. 如果[]22log log (2)1x =,那么12x =( )A. 2B. 4C.D. 1 8. 在等差数列{}n a 中,24a =,48a =,则该数列前10项之和等于( )A. 120B. 121C. 101D. 1109. 已知角α终边上一点(0,)M a ,0a <,则sin α=( )A. 0B. 1C. 1-D. 不确定 10. 求值:()cos 120︒-=( ) A. 12- B. 12 C. 2 D. 2 11. 若cos 1x a =-,则a 取值范围为( )A. []0,2B.[1,3] C. [1,2] D. [0,3] 12. 在x 轴上的截距为5-,倾斜角为3π4的直线方程为( ) A. 50x y --= B.50x y -+= C. 50x y +-= D.50x y ++= 13. 已知圆的方程式2225x y +=,则过点(3,4)P 的圆的切线方程为( )A. 34250x y ++=B.34250x y +-= C. 43250x y ++= D.43250x y +-= 14. 已知椭圆2218x y +=的左、右焦点分别是1F ,2F ,点P 在椭圆上,则12PF PF ⋅的最大值是( )A. 8B. C. 1015. 根据曲线方程22cos 1x y β+=,3π,π2β⎛⎫∈ ⎪⎝⎭,可确定该曲线是( ) A. 焦点在x 轴上的椭圆 B. 焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D. 焦点在y 轴上的双曲线16. 由1,2,3,4四个数字构成没有重复数字的自然数个数为( )A 12个 B. 24个 C. 48个 D. 64个17. 在空间中,α,β表示平面,m ,n 表示直线,则下列说法正确的是( )A. 若//m n ,n α⊥,则m α⊥B. 若αβ⊥,m α⊂,则m β⊥的.C. 若m 上有无数个点不α内,则//m αD. 若//m α,则m 与α平面内的任何直线平行18. 4()a x +展开式中不含x 的项为1,则=a ( )A. 1B. 1-C.1-或1 D. 0 19. 已知函数()()22(0)10x x f x x x -<⎧=⎨+≥⎩,若()3f a =,则=a ( ) A. 32-,2- B. 32-,2C. 32-, D. 2,2- 20. 矩形ABCD 中,1AB =,2AD =,M 是CD 中点,点P 在矩形边上沿A →B →C →M 作匀速运动,APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是( )A. B.C. D.二、填空题(本大题共7小题,每小题4分,共28分)21. 不等式2213x ≤-<的解集为____________.22. 已知lg(2)lg(1)x x +<-,则x 的取值范围是____________.23. 已知10cos(π)5α+=-,π,02α⎛⎫∈- ⎪⎝⎭,则tan(π)α-=____________. 24. 已知函数()3sin 3f x x x =,则π12f ⎛⎫= ⎪⎝⎭____________. 在25. 若圆柱轴截面是边长为4cm 的正方形,则圆柱的表面积是_________.26. 抛物线216y x =上一点M 到焦点的距离为10,则点M 的坐标为____________.27. 把一枚骰子连续抛两次,那么两次的点数之和大于8的概率为____________.三、解答题(本大题共8小题,共72分)解答应写出必要的文字说明及演算步骤.28. 已知集合{|13,}A x x x =-≤<∈N .(1)用列举法表示集合A ;(2)写出集合A 的所有真子集.29. 已知角α的终边在直线2y x =(0x ≥)上.求:(1)sin α,tan α的值;(2)sin 2α,cos 2α的值.30. 如图所示,在棱长为a 的正方体1111ABCD A B C D -中,点M 是棱11A B 的中点.(1)求直线MC 与侧面11BCC B 所成角的正切值.(2)连接1MC ,1CB 得到一个三棱锥11C MC B -,求此三棱锥的体积.31.已知二项式n x ⎛ ⎝的展开式中只有第七项的二项式系数最大,求展开式的常数项.32.已知2()2sin cos 2cos 1f x x x x =-++.(1)求π4f ⎛⎫ ⎪⎝⎭的值; (2)当x 为何值时,()f x 有最大值,这个最大值多少?并求其最小正周期.33. 已知双曲线22145x y -=,右焦点为F . (1)求以F 为焦点,以双曲线中心为顶点的抛物线方程;(2)若直线2y x m =+被抛物线所截得的弦长||AB =m 的值.34. 在ABC中,已知a =,2b =,60A =︒.求:(1)边c 的长.(2)ABC 的面积.是35. 某林场有荒山3250亩,从1996年开始,每年春季在荒山上植树造林,第一年植100亩,计划以后每一年比上一年多植树50亩.(1)需几年可将此荒山全部绿化;(2)已知新植树苗每亩木材量为2立方米,树木每年的自然增长率为10%,设荒山全部绿化后的年底木材总量为T ,求T 约为多少万立方米?(精确到0.1)(可能用到的数据:21.1 1.21=,31.1 1.331=,41.1 1.461=,51.1 1.611=,61.1 1.772=,71.1 1.949=,81.1 2.144=,91.1 2.358=,101.1 2.594=,111.1 2.853=)浙江省中职数学高二期末测试卷本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.一、单项选择题(本大题共20小题,1—10小题,每小题2分,11—20小题,每小题3分,共50分)在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均无分.DBCBABCDCAADBADDACBB二、填空题(本大题共7小题,每小题4分,共28分) 【答案】131,,222⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭ 【答案】122x x ⎧⎫-<<-⎨⎬⎩⎭【答案】2【答案】224πcm【答案】(6,或(6,- 【答案】518三、解答题(本大题共8小题,共72分)解答应写出必要的文字说明及演算步骤.【28题答案】【答案】(1){0,1,2}(2)∅,{0},{1},{2},{0,1},{0,2},{1,2}【29题答案】【答案】(1)sin 5α=,tan 2α= (2)4sin 25α=,3cos25α=- 【30题答案】【答案】(1)4.(2)312a . 【31题答案】【答案】126720.【32题答案】【答案】(1)π14f ⎛⎫=+⎪⎝⎭; (2)3ππ8x k =+(Z k ∈)时,()f x,πT =. 【33题答案】【答案】(1)212y x =;(2)43m =-. 【34题答案】【答案】(1)3c =(2)2. 【35题答案】【答案】(1)10年 (2)1.0万立方米.。
中等职业学校数学高二年级第一学期期末考试复习一
中等职业学校数学高二年级第一学期期末考试复习一一、选择题1. sin 330︒等于 ( )A .32-B .12-C .12D .322、2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数3.若sin 0α<且tan 0α>是,则α是 ( )A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角4.函数x x x f cos sin )(-=的最大值为 ( )A .1B . 2C .3D .25.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,观测得∠ABC =120°,则AC 两地的距离为 ( )A .10km B.3km C .105km D .107km 6、下列不等式成立的是 ( )A .⎪⎭⎫ ⎝⎛-<⎪⎭⎫ ⎝⎛-10sin 18sin ππB .2sin 3sin >C .⎪⎭⎫ ⎝⎛-<⎪⎭⎫ ⎝⎛-417cos 533cos ππ D .516cos 57cos ππ< 7、 15cos 75cos 15cos 75cos 22⋅++的值是 ( )A .45B .26C .23D .431+ 8、已知sin α+cos α= 13,则sin2α= ( ) A .89 B .-89 C .±89 D .3229、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有 ( )A .96种B .180种C .240种D .280种10、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )A .32B .1C .-1D .-3211. 某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有 ( )A.()2142610C A 个 B.242610A A 个 C.()2142610C 个 D.242610A 个12.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 ( )A .311C 种B .38A 种C .39C 种 D .38C 种13.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于 ( )A .4 2B .4 3C .4 6 D.32314.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为 ( ) A.32 B.34 C.32或 3 D.34或3215.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于 ( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定16.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于 ( )A .60°B .45°C .120°D .150°二、填空题1、若角α的终边经过点(12)P -,,则tan 2α的值为 .2.若3sin()25πθ+=,则cos 2θ=_________。
职高高二数学第一学期期末试卷
职高高二第一学期数学期末考试试卷班级 姓名 学号 得分一、选择题(共12小题,每小题3分,共36分。
在每小题列出的四个选项中,只有一项是符合题目要求...........的.) 1、圆0222=+++y x y x 的圆心坐标和半径分别是( ) .A 45),1,21( .B 45),1,21(-- .C 25),1,21( .D 25),1,21(-- 2、设线段AB 的中点为M,且A ( -4 , 0 ) , B (7 , -2 ) ,则点M 的坐标为 ( ).A 、)1,211(-B 、)1,23(-C 、)1,211(-D 、)1,23(- 3、设直线m ∥平面a ,直线n 在a 内,则 ( ).A .m ∥nB .m 与n 相交C .m 与n 异面D .m 与n 平行或异面4、平行于x 轴,且过点(3,2)的直线方程为( ).A.3=xB.2=yC.x y 23=D.x y 32= 5、如果 a 、b 是异面直线,那么与 a 、b 都平行的平面( )A .有且只有一个B .有两个C .有无数个D .不一定存在6、过空间一点,与已知直线平行的平面有( )A .1个B .2个C .3个D 无数个7、半径为3且与y 轴相切于原点的圆的方程为( ).A 、()93-22=+y xB 、()9322=++y x C 、()9322=++y x D 、()93-22=+y x 或()9322=++y x 8、点(5,7)到直线01-34=-y x 的距离=( ).A 、252B 、58C 、8D 、52 9、都与第三个平面垂直的两个平面( )A.互相垂直B.互相平行C.相交D.如果相交,那么交线垂直于第三个平面10、已知直线L 1:13+=x y 与直线L 2:01=++y ax ,若L 1⊥L 2,则a=( ).A 、31- B 、31 C 、3- D 、3 11、空间中垂直于同一条直线的两条直线( )A.互相平行B.互相垂直C.异面或相交D.平行或异面或相交12、直线x y 3-=与圆()44-22=+y x 的位置关系是( ). A 、相切 B 、相离 C 、相交且过圆心 D 、相交不过圆心第14题 二、填空题(每空格3分,共18分。
职业高中高二期末考试数学试卷
高二数学期末考试试卷出题人:冯亚如一.选择题( 分)由数列 ,……猜测该数列的第⏹项是(∙∙) ✌⏹∙∙∙∙⏹∙ ∙⏹∙∙∙ ∙⏹空间中垂直于同一条直线的两条直线( )✌互相平行 互相垂直异面或相交 平行或相交或异面在正方体1111D C B A ABCD 中与直线1AC 异面的棱有( )✌条 条 条条某中职学校一年级二年级各有 名女排运动员,要从中选出 人调查学习负担情况,调查应采取的抽样方法是( )✌随机抽样 分层抽样 系统抽样 无法确定已知点✌☎, ✆, ☎, ✆则直线✌的倾斜角为( )✌ 已知 件同类产品中,有 件是正品, 件是次品,从中任意抽取 件的必然事件是 ☎ ✆✌. 件都是正品 至少有一件是正品 件都是次品 至少有一件是次品 判断直线☹ ⌧⍓与☹ ⌧⍓的位置关系( )✌平行 相交但不垂直 重合垂直在 张奖券中,有 张中奖卷,从中任取 张,中奖的概率是( ) ✌201 101 251 301 侧棱长时 的正三棱锥,其底面边长是 ,则棱锥的高是 ( ) ✌ 311 313 339 333直线 ⌧⍓与圆(⌧) (⍓) 的位置关系是( )✌相离 相交 相切 直线过圆心二.填空题( 分)直线⌧⍓在✠、✡轴截距分别为♉♉♉♉♉♉♉、♉♉♉♉♉♉♉♉;圆⌧ ⍓ ⌧⍓的圆心为♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉;一条直线l与平面α平行,直线❍在面α内,则l与❍的位置关系是♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉;3♍❍,则此棱锥的体 正三棱锥的底面边长是 ♍❍,高是3积为♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉;已知球的半径❒,则球的表面积和体积分别为♉♉♉♉♉♉♉♉♉、♉♉♉ ♉♉。
高二中职生期末数学试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共20分)1. 若函数f(x) = 2x - 3的图象向右平移a个单位后,得到的函数图象对应的解析式为:A. f(x - a) = 2x - 3 - aB. f(x + a) = 2x - 3 + aC. f(x - a) = 2x - 3 + aD. f(x + a) = 2x - 3 - a2. 已知等差数列{an}的首项为2,公差为3,则第10项an等于:A. 29B. 31C. 33D. 353. 在直角坐标系中,点P(2, -1)关于直线y = x的对称点为:A. (1, 2)B. (2, 1)C. (-1, 2)D. (-2, 1)4. 若复数z满足|z - 1| = 2,则复数z的实部取值范围是:A. [-1, 3]B. [-3, 1]C. [-1, 1]D. [-3, 3]5. 下列函数中,在定义域内单调递减的是:A. f(x) = x^2 - 4x + 3B. f(x) = 2x + 1C. f(x) = 3x^2 - 6x + 5D. f(x) = 2x^3 - 3x^2 + 2x - 1二、填空题(每题5分,共20分)6. 已知等比数列{an}的首项为3,公比为2,则第5项a5等于______。
7. 函数f(x) = x^3 - 3x在区间[0, 3]上的极值点为______。
8. 直线y = 2x - 1与圆x^2 + y^2 = 4的交点坐标为______。
9. 复数z = 3 + 4i的模长为______。
10. 已知三角形的三边长分别为3、4、5,则该三角形的面积为______。
三、解答题(每题20分,共80分)11. (本题共20分)已知函数f(x) = x^2 - 4x + 3,求:(1)函数f(x)的图象的顶点坐标;(2)函数f(x)在区间[0, 4]上的最大值和最小值。
12. (本题共20分)已知数列{an}是等差数列,且a1 = 2,d = 3,求:(1)数列{an}的通项公式;(2)数列{an}的前10项和。
职业高中高二期末考试数学试卷
高二数学期末考试试卷出题人:冯亚如一.选择题(40分)1。
由数列1,10,100,1000,……猜测该数列的第n 项是( ) A 。
10n+1 B 。
10n C 。
10n —1 D 。
10n 2.空间中垂直于同一条直线的两条直线( ) A 。
互相平行 B 。
互相垂直 C.异面或相交 D 。
平行或相交或异面3。
在正方体1111D C B A ABCD 中与直线1AC 异面的棱有( ) A 。
4条 B.6条 C 。
8条 D 。
10条4。
某中职学校一年级二年级各有12名女排运动员,要从中选出6人调查学习负担情况,调查应采取的抽样方法是( ) A 。
随机抽样 B 。
分层抽样 C.系统抽样 D.无法确定 5。
已知点A (-3,—2),B(2,3)则直线AB 的倾斜角为( ) A 。
450 B.600 C.900 D 。
1350 6.已知12件同类产品中,有10件是正品,2件是次品,从中任意抽取3件的必然事件是 ( )A .3件都是正品B 。
至少有一件是正品C 。
3件都是次品 D.至少有一件是次品7。
判断直线L 1:x+3y —4=0与L 2:3x-y+1=0的位置关系( ) A.平行 B 。
相交但不垂直 C 。
重合 D.垂直8。
在100张奖券中,有4张中奖卷,从中任取1张,中奖的概率是( ) A 。
201 B. 101 C. 251 D 。
301 9.侧棱长时2的正三棱锥,其底面边长是1,则棱锥的高是 ( )A 。
311 B. 313C 。
339D 。
33310.直线5x+12y-8=0与圆(x-1)2+(y+3)2=9的位置关系是( ) A.相离 B.相交 C 。
相切 D.直线过圆心二.填空题(20分)11.直线x-3y+6=0在X 、Y 轴截距分别为_______、________; 12.圆x 2+y 2+4x-2y+1=0的圆心为_______________;13。
一条直线与平面平行,直线m 在面内,则与m 的位置关系是_______________;14.正三棱锥的底面边长是4cm ,高是33cm ,则此棱锥的体积为________________;15。
职高高二上册期末数学试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共30分)1. 下列各数中,无理数是()。
A. √9B. √16C. √25D. √272. 已知a=2,b=-3,则a² - b²的值为()。
A. -5B. 5C. -1D. 13. 如果一个等腰三角形的底边长为8cm,腰长为6cm,那么这个三角形的面积是()。
A. 16cm²B. 24cm²C. 30cm²D. 32cm²4. 下列函数中,y是x的一次函数的是()。
A. y = 2x + 3B. y = 3x² + 2C. y = 4x³ + 5D. y = 2x + 3x5. 在直角坐标系中,点A(-2,3)关于y轴的对称点B的坐标是()。
A.(-2,-3)B.(2,-3)C.(2,3)D.(-2,3)二、填空题(每题5分,共20分)6. 已知sinθ = 0.5,那么cosθ的值是__________。
7. 二项式(a+b)⁵的展开式中,x³y²的系数是__________。
8. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是__________。
9. 已知等差数列{an}的首项a₁=3,公差d=2,则第10项a₁₀=__________。
10. 圆的半径为r,则其周长的平方是__________。
三、解答题(每题20分,共60分)11. 解下列方程:(1)2x² - 5x + 3 = 0(2)3x - 2√x - 5 = 012. 已知函数f(x) = x² - 4x + 3,求f(x)在x=2时的函数值。
13. 在平面直角坐标系中,点P(2,3)和点Q(-3,2)关于原点对称的点分别是哪些?14. 已知等腰三角形ABC中,AB=AC,AD是BC边上的高,且AD=6cm,AB=8cm,求BC的长度。
云南省昆明市呈贡县职业高级中学高二数学理上学期期末试卷含解析
云南省昆明市呈贡县职业高级中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知直线,,则直线在轴上的截距大于1的概率是()A. B. C. D.参考答案:B略2. 函数的最大值是( )(A)1 (B)(C)(D)2参考答案:B略3. 方程表示的曲线是()A.圆 B.椭圆 C.双曲线 D.抛物线参考答案:D4. 如图,某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N)为二次函数关系,若使营运的年平均利润最大,则每辆客车应营运()A.3年B.4年C.6年D.5年参考答案:D略5. 已知,则()A.22014B. 32013C.1 D. -1参考答案:C6. θ是第三象限角,方程x2+y2sinθ=cosθ表示的曲线是A. 焦点在x轴上的椭圆B. 焦点在y轴上的椭圆C. 焦点在x轴上的双曲线D. 焦点在y轴上的双曲线参考答案:D7. 已知点是椭圆上一点,分别为椭圆的左、右焦点,为的内心,若成立,则的值为()A. B. C. D.参考答案:A8. 函数的一段图象为参考答案:B略9. 已知复数z=,则z的共轭复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限参考答案:A【考点】复数代数形式的乘除运算.【专题】计算题;对应思想;数系的扩充和复数.【分析】利用虚数单位i得性质及复数代数形式的乘除运算化简求得z,进一步求出得答案.【解答】解:∵z====,∴,∴z的共轭复数在复平面内对应的点的坐标为(),位于第一象限.故选:A.【点评】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.10. 已知圆O在平面α内,PO⊥平面α,A在圆O上,如果圆O的周长与PA长之比为π,那么AP与平面α所成角()A. B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 用数学归纳法证明:()时,从“”时,左边应增添的代数式_______________;参考答案:当n=k(k∈N*)时,左式=(k+1)(k+2)……(k+k);当n=k+1时,左式=(k+1+1)?(k+1+2)??(k+1+k-1)?(k+1+k)?(k+1+k+1),所以左边应增乘的式子是。
云南省昆明市高级职业中学2022年高二数学理上学期期末试卷含解析
云南省昆明市高级职业中学2021-2022学年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm参考答案:B【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至肚脐的长为x cm,肚脐至腿根的长为y cm,则,得.又其腿长为105cm,头顶至脖子下端的长度为26cm,所以其身高约为42.07+5.15+105+26=178.22,接近175cm.故选B.【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.2. 已知双曲线C:﹣=1(a>0,b>0)的左焦点为F(﹣c,0),M、N在双曲线C上,O是坐标原点,若四边形OFMN为平行四边形,且四边形OFMN的面积为cb,则双曲线C的离心率为()A.B.2 C.2D.2参考答案:D【考点】KC:双曲线的简单性质.【分析】设M(x0,y0),y0>0,由四边形OFMN为平行四边形,四边形OFMN的面积为cb,由x0=﹣,丨y0丨=b,代入双曲线方程,由离心率公式,即可求得双曲线C的离心率.【解答】解:双曲线C:﹣=1(a>0,b>0)焦点在x轴上,设M(x0,y0),y0>0,由四边形OFMN为平行四边形,∴x0=﹣,四边形OFMN的面积为cb,∴丨y0丨c=cb,即丨y0丨=b,∴M(﹣, b),代入双曲线可得:﹣=1,整理得:,由e=,∴e2=12,由e>1,解得:e=2,故选D.3. 已知函数在(-,2)上单调递减,则的取值范围是()A.[0,4]B.[0,]C.D.(0,]参考答案:B4. 5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A、10种B、20种C、25种D、32种参考答案:D5. 不等式的解集为()A. B.C. D.参考答案:A6. 过点(2,3)且与圆x2+y2=4相切的直线有几条()A.0条B.1条C.2 条D.不确定参考答案:C【考点】直线与圆的位置关系.【分析】切线的斜率存在时设过点P的圆的切线斜率为k,写出点斜式方程再化为一般式.根据圆心到切线的距离等于圆的半径这一性质,由点到直线的距离公式列出含k的方程,由方程解得k,然后代回所设切线方程即可.切线斜率不存在时,直线方程验证即可.【解答】解:将点P(2,3)代入圆的方程得22+32=13>4,∴点P在圆外,当过点P的切线斜率存在时,设所求切线的斜率为k,由点斜式可得切线方程为y﹣3=k(x﹣2),即kx﹣y﹣2k+3=0,∴=2,解得k=.故所求切线方程为y﹣3=(x﹣2),即5x﹣12y+26=0.当过点P的切线斜率不存在时,方程为x=2,也满足条件.故所求圆的切线方程为5x﹣12y+26=0或x=2.故选:C7. 等差数列中,,则 ( )A. B. C. 0D.参考答案:B根据等差中项的性质可知,等差数列中,,而对于故可知选B.8. 如图,ABCD-A1B1C1D1为正方体,异面直线AD与CB1所成的角是()A. 30°B. 45°C. 60°D. 90°参考答案:B【分析】由AD∥BC,知∠BCB1是异面直线AD与CB1所成的角,由此能求出异面直线AD与CB1所成的角的大小.【详解】解:ABCD-A1B1C1D1为正方体中,∵AD∥BC,∴∠BCB1是异面直线AD与CB1所成的角,∵∠BCB1=45°,∴异面直线AD与CB1所成的角为45°.故选B.【点睛】本题考查异面直线所成角,考查空间想象能力,属基础题.9. 已知变量x、y满足约束条件,则可行域的面积为 ( )A.20B.25C.40D.50参考答案:B10. 下列有关命题的说法正确的是()A.“x2=1”是“x=1”的充分不必要条件B.“x=2时,x2﹣3x+2=0”的否命题为真命题C.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题参考答案:D【考点】命题的真假判断与应用.【分析】A,“x2=1”是“x=1”的必要条件;B,“由x=1时,x2﹣3x+2=0可判定;C,“<0”的否定是:“≥0”;D,判定原命题真假,由命题的逆否命题与原命题同真假即可判定;【解答】解:对于A,“x2=1”是“x=1”的必要条件,故错;对于B,“x=2时,x2﹣3x+2=0”的否命题为“x≠2时,x2﹣3x+2≠0”,∵x=1时,x2﹣3x+2=0,故错;对于C,命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1≥0”,故错;对于D,命题“若x=y,则sinx=siny”为真命题,故其逆否命题为真命题,故正确;故选:D二、填空题:本大题共7小题,每小题4分,共28分11. 在的二项展开式中,常数项等于.参考答案:略12. 在复平面内有两点,且点坐标为,,则点所对应的复数为参考答案:略13. 函数y=lg(2x﹣x2)的定义域是.参考答案:(0,2)考点:对数函数的定义域.专题:函数的性质及应用.分析:直接由对数式的真数大于0,然后求解二次不等式得答案.解答:解:由2x﹣x2>0,得x2﹣2x<0,解得0<x<2,∴函数y=lg(2x﹣x2)的定义域是(0,2).故答案为:(0,2).点评:本题考查了对数型函数的定义域的求法,考查了二次不等式的解法,是基础题.14. 已知等差数列{a n}中,有,则在等比数列{b n}中,类似的结论为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职高高二第一学期数学期末考试试卷
班级 姓名 学号 得分
一、选择题(共12小题,每小题3分,共36分。
在每小题列出的四个选项中,只有一项是.....符合题目要求的.......
) 1、圆022
2=+++y x y x 的圆心坐标和半径分别是( ) .A 45),1,21( .B 4
5),1,21(-- .C 25),1,21( .D 25),1,21(-- 2、设线段AB 的中点为M,且A ( -4 , 0 ) , B (7 , -2 ) ,则点M 的坐标为 ( ).
A 、)1,211(-
B 、)1,23(-
C 、)1,211(-
D 、)1,2
3(- 3、设直线m ∥平面a ,直线n 在a 内,则 ( ).
A .m ∥n
B .m 与n 相交
C .m 与n 异面
D .m 与n 平行或异面
4、平行于x 轴,且过点(3,2)的直线方程为( ).
A.3=x
B.2=y
C.x y 23=
D.x y 3
2= 5、如果 a 、b 是异面直线,那么与 a 、b 都平行的平面( )
A .有且只有一个
B .有两个
C .有无数个
D .不一定存在
6、过空间一点,与已知直线平行的平面有( )
A .1个
B .2个
C .3个
D 无数个
7、半径为3且与y 轴相切于原点的圆的方程为( ).
A 、()93-22=+y x
B 、()9322
=++y x C 、()9322=++y x D 、()93-22=+y x 或()9322
=++y x 8、点(5,7)到直线01-34=-y x 的距离=( ).
A 、252
B 、58
C 、8
D 、5
2 9、都与第三个平面垂直的两个平面( )
A.互相垂直
B.互相平行
C.相交
D.如果相交,那么交线垂直于第三个平面
10、已知直线L 1:13+=x y 与直线L 2:01=++y ax ,若L 1⊥L 2,则a=( ).
A 、3
1- B 、31 C 、3- D 、3 11、空间中垂直于同一条直线的两条直线( )
A.互相平行
B.互相垂直
C.异面或相交
D.平行或异面或相交
12、直线x y 3-=与圆()44-22
=+y x 的位置关系是( ).
A 、相切
B 、相离
C 、相交且过圆心
D 、相交不过圆心
二、填空题(每空格3分,共18分。
把答案填在相应的横线上或按题目要求作答)
13、在一点条件下,可能出现不同的结果,这类现象叫做________.
14、如图所示,正方体1111D C B A ABCD -中,C B 1与1AD 所成的角的度数为 ;
15、过点A (1-,m ),B (m ,6)的直线与直线012-=+y x 垂直,则m=________________;
16、如果直线21//l l ,//2l 平面α,那么1l 与平面α的位置关系是________________;
17、直线062=+y -x 在x 轴与y 轴上的截距分别是________________;
18、如图所示,在长方体ABCD —A 1B 1C 1D 1,底面边长AB=3cm,BC=4m ,高BB 1=5m ,则对角线DB 1与平面ABCD 所成的角________________.
三、解答题(共46分,其中第19题6分,第20、21、22、23、24各8分,解答时请写出必要的文字说明、方程式和重要的演算步骤)
19、求圆心在点(0,2)且与直线012=+-y x 相切的圆的方程.
20、设点P 到直线064-3=+y x 的距离为6,且点P 在x 轴上,求点P 的坐标.
21、如图所示,在正方体AC 1中,求平面ABC 1D 1与平面ABCD 所成的二面角的大小。
D 1 C 1 A 1 A B 1 B C D 第18题B 1
C 1
D 1 A 1 A B C
D
22、已知过点A (1-,n ),B (n ,6)的直线与直线012=+y -x 平行,求n 的值.
23、一个圆锥的母线长是12cm ,母线和轴的夹角是︒30,求这个圆锥的侧面积和全面积。
24、直线13-=x y 且与直线02=++ay x 垂直,求实数a 的值.
25.学校一年级50各学生第二学期数学期末考试成绩中,有8人不及格,试求该校一年级学生第二学期数学期末考试的及格率。