极坐标与参数方程高考题含答案

合集下载

极坐标与参数方程高考真题58题(学生) (1)

极坐标与参数方程高考真题58题(学生) (1)

极坐标与参数方程高考真题1、(2018北京理10)在极坐标系中,直线cos sin a ρθρθ+=(0a >)与圆2cos ρθ=相切,则_______a =.2、(2018江苏21C )在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.3、(2018新课标Ⅰ理22)在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.4、(2018新课标Ⅱ理22)在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x θy θ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos 2sin x t αy t α=+⎧⎨=+⎩(t 为参数). (1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.5、(2018新课标Ⅲ理22)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.6、(2018天津理12)已知圆2220x y x +-=的圆心为C ,直线1232x y t ⎧=-+⎪⎪⎨⎪=-⎪⎩(t 为参数)与该圆相交于A ,B 两点,则ABC ∆的面积为_______.7、(2017新课标Ⅰ理22)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到la .8、(2017新课标Ⅱ理22)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.9、(2017新课标Ⅲ理22)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cosθ+sinθ),M 为l 3与C 的交点,求M 的极径.10、(2017北京理11)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP|的最小值为___________.11、(2017江苏21C )在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t ty ⎧=-+⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为2x 2s ,y ⎧=⎪⎨⎪=⎩(s 为参数)。

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程 (含22年真题讲解)1.【2022年全国甲卷】在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s 6y =−√s(s 为参数).(1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标. 【答案】(1)y 2=6x −2(y ≥0);(2)C 3,C 1的交点坐标为(12,1),(1,2),C 3,C 2的交点坐标为(−12,−1),(−1,−2).【解析】 【分析】(1)消去t ,即可得到C 1的普通方程;(2)将曲线C 2,C 3的方程化成普通方程,联立求解即解出. (1) 因为x =2+t 6,y =√t ,所以x =2+y 26,即C 1的普通方程为y 2=6x −2(y ≥0).(2) 因为x =−2+s 6,y =−√s ,所以6x =−2−y 2,即C 2的普通方程为y 2=−6x −2(y ≤0),由2cosθ−sinθ=0⇒2ρcosθ−ρsinθ=0,即C 3的普通方程为2x −y =0. 联立{y 2=6x −2(y ≥0)2x −y =0 ,解得:{x =12y =1 或{x =1y =2 ,即交点坐标为(12,1),(1,2);联立{y 2=−6x −2(y ≤0)2x −y =0 ,解得:{x =−12y =−1 或{x =−1y =−2 ,即交点坐标为(−12,−1),(−1,−2). 2.【2022年全国乙卷】在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t y =2sint ,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围. 【答案】(1)√3x +y +2m =0 (2)−1912≤m ≤52 【解析】 【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可. (1)因为l :ρsin (θ+π3)+m =0,所以12ρ⋅sinθ+√32ρ⋅cosθ+m =0,又因为ρ⋅sinθ=y,ρ⋅cosθ=x ,所以化简为12y +√32x +m =0,整理得l 的直角坐标方程:√3x +y +2m =0 (2)联立l 与C 的方程,即将x =√3cos2t ,y =2sint 代入 √3x +y +2m =0中,可得3cos2t +2sint +2m =0, 所以3(1−2sin 2t)+2sint +2m =0, 化简为−6sin 2t +2sint +3+2m =0,要使l 与C 有公共点,则2m =6sin 2t −2sint −3有解,令sint =a ,则a ∈[−1,1],令f(a)=6a 2−2a −3,(−1≤a ≤1), 对称轴为a =16,开口向上,所以f(a)max =f(−1)=6+2−3=5, f(a)min =f(16)=16−26−3=−196,所以−196≤2m ≤5m 的取值范围为−1912≤m ≤52.1.(2022·宁夏·吴忠中学三模(文))在平面直角坐标系xOy 中,曲线1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)求曲线1C 与2C 的直角坐标方程;(2)已知直线l 的极坐标方程为πR 02θαρα⎛⎫ ⎪=∈⎝<<⎭,,直线l 与曲线1C ,2C 分别交于M ,N (均异于点O )两点,若4OMON=,求α. 【答案】(1)曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)π4α=【解析】 【分析】(1)1C 的参数方程消参可求出1C 的直角坐标方程;2C 的极坐标方程同乘ρ,把cos x ρθ=,222x y ρ=+代入2C 的极坐标方程可求出2C 的直角坐标方程.(2)设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,用极径的几何意义表示出4OMON=,即124ρρ=,解方程即可求出α. (1)解:1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),把2216y t =代入24x t =-中可得,24y x =-,所以曲线1C 的直角坐标方程为24y x =-,2C 的极坐标方程为2cos ρθ=,即22cos ρρθ=,所以曲线2C 的直角坐标方程为2220x y x +-=,综上所述:曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)由(1)知,1C 的极坐标方程为2sin 4cos ρθθ=-, 设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,则21sin 4cos ραα=-,22cos ρα=,由题意知02πα<<可得sin 0α≠,因为4OMON=,所以124ρρ=,所以24cos 42cos sin ααα-=⨯,故21sin 2α=,所以sin 2α=或sin 2α=(舍) 所以π4α=.2.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),曲线2C 的参数方程为2221x t t y t ⎧=-⎨=-⎩(t 为参数).已知曲线2C 与x ,y 正半轴分别相交于,A B 两点.(1)写出曲线1C 的极坐标方程,并求出,A B 两点的直角坐标;(2)若过原点O 且与直线AB 垂直的直线l 与曲线1C 交于P 点,与直线AB 交于Q 点,求线段PQ 的长度.【答案】(1)2cos ρθ=,A 点为()3,0,B 点为()0,3(2)2【解析】 【分析】(1)普通方程()2211x y -+=,即可得2cos ρθ=(2)求出直线AB 的方程为3y x =-+,然后求出直线l 的方程,然后可求出PQ 的长度 (1)曲线1C 的普通方程()2211x y -+=,极坐标方程()()22cos 1sin 1ρθρθ-+=,∴2cos ρθ=.在曲线2C 上,当0x =时,0=t 或2t =,此时3y =或1y =-(舍),所以B 点为()0,3. 当0y =时,1t =-或1t =,此时3x =或1x =-(舍),所以A 点为()3,0. (2)直线AB 的方程为3y x =-+,极坐标方程为sin cos 3ρθρθ=-+, ∴()sin cos 3ρθθ+=,过原点O 且与直线AB 垂直的直线l 的极坐标方程为4πθ=.4πθ=与2cos ρθ=联立,得1ρ 4πθ=与()sin cos 3ρθθ+=联立,得2ρ=∴21PQ ρρ=-=. 3.(2022·江西·南昌市八一中学三模(理))在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭.(1)求C 和l 的直角坐标方程;(2)设点Q的直角坐标为(,P 为C 上的动点,求PQ 中点R 的轨迹的极坐标方程. 【答案】(1)直线l 的普通方程为2x y +=,曲线C 的普通方程为()(2214x y ++=;(2)21ρ= 【解析】 【分析】(1)消去参数t ,即可得到直线l 的普通方程,再由两角和的正弦公式及222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,将曲线C 的极坐标方程化为直角坐标方程;(2)设(),R x y ,即可表示P 点坐标,再根据点P 在曲线C 上,代入C 的方程,即可得到点R 的轨迹方程,再将直角坐标方程化为极坐标方程即可;(1)解:因为直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 所以直线l 的普通方程为2x y +=,因为曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭,即4sin cos cos sin 66ππρθθ⎛⎫=-+ ⎪⎝⎭,即2cos ρθθ=--,所以2sin 2cos ρθρθ=--,又222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,所以222x y x +=--,即()(2214x y +++=,即曲线C 的普通方程为()(2214x y ++=;(2)解:设(),R x y,则(21,2P x y -,因为点P 在曲线C 上,所以()(2221124x y -++=,即221x y +=,所以PQ 中点R 的轨迹方程为221x y +=,即21ρ=4.(2022·黑龙江·哈尔滨三中模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2cos θsin θρ=+. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点()2,1P ,直线l 与曲线C 的交点为A ,B ,求PA PBPB PA+的值. 【答案】(1)10x y --=,22220x y x y +--= (2)4 【解析】 【分析】(1)直接消去参数,将直线l 的方程化为普通方程,利用互化公式将曲线C 的极坐标方程转化为直角坐标方程(2)将直线的参数方程代入曲线C的普通方程,得到210t -=,得到12121t t t t +==- ,化简()222121212122112122PA PBt t t t t t t t PB PA t t t t t t +-++=+==,代入韦达定理,即可得到答案 (1)直线l的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 消去参数t 可得l 的普通方程为10x y --=.曲线C 的极坐标方程为2(cos θsin θ)ρ=+,即22(cos θsin θ)ρρ=+,根据222cos θsin θx y x y ρρρ=⎧⎪=⎨⎪=+⎩,可得2222x y x y +=+.∴曲线C 的直角坐标方程为22220x y x y +--= (2)在直线l的参数方程21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)中,设点A ,B 对应的参数分别为1t ,2t , 将直线l的参数方程221x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入22220x y x y +--=,得210t +-=,∴12t t +=121t t =-.∴()2221212121221121224PA PBt t t t t t t t PB PA t t t t t t +-++=+=== 5.(2022·安徽淮南·二模(文))在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(其中α为参数,02πα≤<),以原点O 为极点,x 轴非负半轴为极轴,取相同的单位长度建立极坐标系,直线1l 的极坐标方程为(R)3πθρ=∈.(1)求曲线C 的极坐标方程与直线1l 的直角坐标方程;(2)设直线1l 与曲线C 交于点O ,A ,直线2l 与曲线C 交于点O ,B ,求AOB 面积的最大值. 【答案】(1)4sin ρθ=,y(2)【解析】【分析】(1)依据参数方程与普通方程的互化和极坐标方程与直角坐标方程的互化即可解决; (2)先求得AOB 面积的表达式,再对其求最大值即可. (1)曲线C 的直角坐标方程为22(2)4x y +-=,展开得2240x y y +-=, 则曲线C 的极坐标方程为4sin ρθ=. 直线1l的直角坐标方程为y (2)由(1)可知π||4sin3OA == 设直线2l 的极坐标方程为(R)θβρ=∈,根据条件知要使AOB 面积取最大值,则ππ3β<<,则||4sin OB β=,于是1ππsin sin 233OAB S OA OB βββ⎛⎫⎛⎫=⨯⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2π6sin cos cos 2)3sin 226ββββββ⎛⎫=-=--=+ ⎪⎝⎭,所以当π3π262β+=即2π3β=时,AOB的面积取最大值,最大值为6.(2022·内蒙古呼和浩特·二模(理))在直角坐标系xOy 中,曲线C的参数方程为))cos sin cos sin 2x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系取相同单位长度,直线l 的极坐标方程为2cos 3sin 100ρθρθ+-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 距离的最小值. 【答案】(1)2214x y +=,23100x y +-=;【解析】 【分析】(1)消去曲线C 的参数方程中的参数即可得解,利用极坐标与直角坐标互化得直线l 的直角坐标方程作答.(2)设出曲线C 上任意一点的坐标,利用点到直线距离公式及辅助角公式求解作答. (1)由))cos sin cos sin x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),消去参数得2214x y +=, 所以曲线C 的普通方程为2214x y +=,把cos sin x y ρθρθ=⎧⎨=⎩代入直线l 的极坐标方程2cos 3sin 100ρθρθ+-=得:23100x y +-=,所以直线l 的直角坐标方程为23100x y +-=. (2)由(1)知,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),设()2cos ,sin P αα为曲线C 上一点,P 到直线l 的距离为d ,则105sin d αϕ-+===ϕ由4tan 3ϕ=确定,因此,当()sin 1αϕ+=时,d所以曲线C 上的点到直线l 7.(2022·甘肃·武威第六中学模拟预测(文))在直角坐标系xOy 中,曲线C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐sin cos 0θρθ-.(1)求曲线C 的普通方程和直线l 的直角坐标方程: (2)若直线与曲线C 交于A ,B 两点,点P 的坐标为(0,1),求11||||PA PB +的值. 【答案】(1)224x y -=,0x+= (2)5【解析】【分析】(1)消去参数t 可得曲线C 的方程,利用公式法转化得到直线l 的直角坐标方程; (2)利用直线l 的参数方程中t 的几何意义求解. (1)∴11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),∴22222222112112x t t t t y t t t t ⎧⎛⎫=+=++⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-=+- ⎪⎪⎝⎭⎩,所以224x y -=, 所以曲线C 的方程为224x y -=又∴cos x ρθ=,sin y ρθ=,0x - 所以直线l的直角坐标方程为0x =; (2)∴()0,1P 在直线l 上,∴直线l的参数方程为112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)设A ,B 对应的参数分别为1t 与2t将直线l 的参数方程代入到224x y -=得22100t t --=. ∴2Δ(2)41(10)440=--⨯⨯-=>, ∴122t t +=,12100t t ⋅=-<, ∴1||PA t =,2||PB t =∴1212121111||||-+=+====t tPA PB t t t t,所以11||||+=PA PB 8.(2022·全国·赣州市第三中学模拟预测(理))在平面直角坐标系xOy 中,曲线1C 满足参数方程2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩(t 为参数且11t -≤≤).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点P 为曲线1C 上一动点,且极坐标为(),ρθ. (1)求曲线1C 的直角坐标方程; (2)求()cos 3sin ρθθ+的取值范围.【答案】(1)y =()2204y x y +=≥(2)⎡-⎣ 【解析】 【分析】(1)消去参数t 可得普通方程,由11t -≤≤,得到0y ≥,即可求出曲线1C 的直角坐标方程; (2)先判断出2ρ=利用三角函数出()cos 3sin ρθθ+的范围. (1)由2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩消去t 可得:224x y +=. 由于11t -≤≤,则212t +≤,即0y ≥.因此曲线1C的直角坐标方程为y ()2204y x y +=≥(2)曲线1C 为上半圆,点P 在1C 上,因此2ρ=,0,θπ⎡⎤∈⎣⎦ 由三角函数的性质知,在[]0,π上,1cos 3sin θθ-≤+≤因此()cos 3sin 2,ρθθ⎡+∈-⎣9.(2022·黑龙江·哈尔滨三中三模(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为22x y t ⎧=⎪⎨=-⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为22cos 4sin 10ρρθρθ---=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点P 的坐标为()2,2,求1PA PB-.【答案】(1)()()22126x y -+-=;【解析】 【分析】(1)将222x y ρ=+、cos x ρθ=、sin y ρθ=代入圆C 的极坐标方程即可求其直角坐标方程; (2)将直线l 的参数方程化为标准形式,代入圆C 的直角坐标方程得到关于参数t 的二次方程,根据韦达定理和直线参数方程参数的几何意义即可求出1PA PB-.(1)∴22cos 4sin 10ρρθρθ---=,∴222410x y x y +---=, 即()()22126x y -+-=; (2)直线l参数方程的标准形式为2122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入圆C直角坐标方程整理得250t -=, 设方程的两根为1t 、2t ,则A 、B 对应参数1t 、2t ,则121250t t t t ⋅=-<⎧⎪⎨+⎪⎩,∴1PA PB-121211t t t t ==+-10.(2022·河南·模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为222x m y m⎧=⎨=⎩(m 为参数),直线l 的参数方程为12x tcos y tsin αα⎧=+⎪⎨⎪=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=,直线l 与1C 交于点P ,Q ,与2C 交于点S ,T ,与x 轴交于点R .(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若()4PR QR SR TR -=-,求直线l 的倾斜角. 【答案】(1)22y x =,()2211x y -+= (2)2π或4π或34π【解析】 【分析】(1)消参求得曲线1C 的普通方程为22y x =.由2cos ρθ=同乘ρ得到2C 的直角坐标方程. (2)l 过定点1,02R ⎛⎫ ⎪⎝⎭.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,利用参数的几何含义化简求解. (1)曲线1C 的普通方程为22y x =.由2cos ρθ=得22cos ρρθ=.所以2C 的直角坐标方程为222x y x +=,即()2211x y -+=.(2)不妨设0απ<<,则sin 0α>.易知1,02R ⎛⎫ ⎪⎝⎭是l 过的定点.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,设P ,Q 对应的参数分别为P t ,Q t ,则22cos sin P Q PR QR t t αα-=+=.将直线l 的参数方程代入()222:11C x y -+=,得23cos 04t t α--=, 设S ,T 对应的参数分别为S t ,T t ,则cos S T SR TR t t α-=+=.由()4PR QR SR TR -=-得22cos 4cos sin ααα=,得cos 0α=或sin α=l 的倾斜角为2π或4π或34π. 11.(2022·河南洛阳·三模(理))在直角坐标系xOy 中,直线1l的参数方程为12x ty kt⎧=⎪⎨=⎪⎩(t 为参数),直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线1C .(1)求曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设曲线2C 的极坐标方程为2cos ρθ=,射线OM :()04πθρ=≥与1C ,2C 分别交于A ,B 两点,求线段AB 的长.【答案】(1)22163x y +=,()0y ≠(2)2【解析】 【分析】(1)消去参数得到直线1l 、2l 的普通方程,联立两方程消去k ,即可得到P 的轨迹; (2)首先将1C 的方程化为极坐标方程,再将()04πθρ=≥代入两极坐标方程即可求出OA ,OB ,即可得解;(1)解:因为直线1l的参数方程为12x ty kt⎧⎪⎨=⎪⎩(t 为参数), 消去参数t 得直线1l的普通方程为(12y k x =①, 直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数), 消去参数m 得直线2l的普通方程为(1y x k=-②, 设(),P x y ,由①②联立得((121y k x y x k ⎧=⎪⎪⎨⎪=-⎪⎩,消去k 得()22162y x =--即曲线1C 的普通方程为22163x y +=,()0y ≠;(2)解:设1OA ρ=,2OB ρ=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线1C 的极坐标方程为2261sin ρθ=+(02θπ<<,θπ≠),代入()04πθρ=≥得12OA ρ==,将()04πθρ=≥代入2cos ρθ=得2OB ρ==所以2AB OA OB =-= 即线段AB的长度为212.(2022·安徽省芜湖市教育局模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 3sin x y ββ=+⎧⎨=⎩(β为参数),将曲线1C 经过伸缩变换13x xy y =⎧''⎪⎨=⎪⎩得到曲线2C .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)已知射线():0l θαρ=≥与曲线2C 交于A 、B 两点,若3OB OA =,求tan α的值. 【答案】(1)24cos 30ρρθ-+= (2)0 【解析】 【分析】(1)求出曲线2C 的参数方程,化为普通方程,再利用极坐标方程与直角坐标方程之间的转换关系可得出曲线2C 的极坐标方程;(2)设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根,由已知可得213ρρ=,结合韦达定理可求得cos α的值,利用同角三角函数的基本关系可求得tan α的值. (1)解:由题可得2C 的参数方程为2cos sin x y ββ=+⎧⎨=⎩(β为参数),则2C 的直角方程为()2221x y -+=,即22430x y x +-+=, 因为cos x ρθ=,sin y ρθ=,所以24cos 30ρρθ-+=,所以曲线2C 的极坐标方程为24cos 30ρρθ-+=. (2)解:设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根, 2Δ16cos 120α=->,则124cos ρρα+=①,123ρρ=②, 因为3OB OA =,所以213ρρ=③,由①②③解得cos 1α=,则sin 0α=,tan 0α∴=,此时16120∆=->,合乎题意. 故tan 0α=.13.(2022·贵州遵义·三模(文))在极点为O 的极坐标系中,经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,且与极轴的交点为N . (1)当π2α=时,求l 的极坐标方程; (2)当ππ,43α⎡⎤∈⎢⎥⎣⎦时,求MON △面积的取值范围.【答案】(1)cos ρθ=(2)⋃⎣⎦⎣⎦【解析】 【分析】(1)先求得l 的直角坐标方程,再转化为极坐标方程.(2)对直线l 的倾斜角进行分类讨论,结合三角形的面积公式求得MON △面积的取值范围. (1)点π2,6M ⎛⎫ ⎪⎝⎭,则π2cos 6π2sin 16x y ⎧=⨯=⎪⎪⎨⎪=⨯=⎪⎩,所以M点的直角坐标为),当π2α=时,直线l的直角坐标方程为x =转化为极坐标方程为cos ρθ=.(2)在极坐标系下:经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,在直角坐标系下:经过点)M的直线l 的倾斜角为α或πα-.即直线l 的倾斜角是α或πα-. 当直线l 的倾斜角为α时,直线l 的方程为(1tan y x α-=,令0y =得1tan N x α-=ππ,43α⎡⎤∈⎢⎥⎣⎦,tan α⎡∈⎣,111,1,,tan tan tan N x ααα⎤⎡∈-∈-=-⎥⎢⎣⎦⎣⎦⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯-+⨯ ⎝11tan 2α⎛=-⨯∈ ⎝⎣⎦.当直线l 的倾斜角为πα-时,直线l 的方程为()((1tan πtan y x x αα-=-=-,令0y =得1tan N x α=11,1tan tan N x αα⎤⎤∈=⎥⎥⎣⎦⎣⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯⨯ ⎝11tan 2α⎛=⨯∈ ⎝⎣⎦.综上所述,MON △面积的取值范围是⋃⎣⎦⎣⎦. 14.(2022·江西·上饶市第一中学二模(文))在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的普通方程为:22(2)4x y -+=,曲线2C 的参数方程是2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),点2,2P π⎛⎫⎪⎝⎭.(1)求曲线1C 和2C 的极坐标方程; (2)设射线(0)3πθρ=>分别与曲线1C 和2C 相交于A ,B 两点,求PAB △的面积.【答案】(1)4cos ρθ=,22123sin ρθ=+(2)1 【解析】 【分析】(1)由公式法求极坐标方程(2)联立方程后分别求出A ,B 坐标,及P 到直线AB 距离后求面积 (1)曲线1C 的直角坐标方程为:2240x y x +-=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线1C 的极坐标方程为:4cos ρθ=. 曲线2C 的普通方程是:22143x y +=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线2C 的极坐标方程为:22123sin ρθ=+.(2)设12,,,33A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1||4cos23OA πρ===,22221216||53sin 3OB ρπ===+,所以||OB =,所以||||||2AB OA OB =-=-. 又(0,2)P到直线:AB y =的距离为:1d ==所以12112PABS⎛=⨯⨯= ⎝⎭ 15.(2022·全国·模拟预测(文))在直角坐标系xOy 中,曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 4ρθθ=. (1)求C 和l 的直角坐标方程;(2)若点M ,N 分别为曲线C 和直线l 上的动点,求MN 的最小值.【答案】(1)22163x y +=,40x -=2- 【解析】 【分析】(1)利用22cos sin 1θθ+=消去参数θ,可得曲线C 的普通方程,利用极坐标与直角坐标的互化公式可求出直线l 的直角坐标方程, (2)设曲线C上任意一点)Mθθ到直线l 的距离为d ,然后利用点到直线的距离公式表示出d ,再根据三角函数的性质可求出其最小值 (1)由曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)可知2222cos sin 1θθ+=+=,故曲线C 的直角坐标方程为22163x y +=.由直线l的极坐标方程为cos sin 4ρθθ=,结合cos x ρθ=,sin y ρθ=可知l的直角坐标方程为40x -=. (2)MN 的最小值即为曲线C 上任意一点到直线l 距离的最小值.设曲线C上任意一点)Mθθ到直线l 的距离为d ,则2cos 24d πθ⎛⎫==+≥ ⎪⎝⎭,故MN 2..。

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总(附详细答案)本文介绍了高考极坐标与参数方程大题题型,并给出了三个例子进行解答。

例1:在直角坐标系xoy中,圆C的参数方程为(x-1)^2+y^2=1,求圆C的极坐标方程。

解析:将x和y用极坐标表示,得到ρ=2cosθ。

例2:已知直线l的参数方程为x=-4t+a,y=3t-1,在直角坐标系xoy中,以O点为极轴建立极坐标系,设圆M的方程为ρ^2-6ρsinθ=-8.求圆M的直角坐标方程和实数a的值。

解析:将ρ和θ用x和y表示,得到x+(y-3)=1,然后将直线l的参数方程化为普通方程,得到3x+4y-3a+4=0.根据圆心到直线的距离和直线截圆所得弦长的关系,解得a=12或a=22/3.例3:已知曲线C的参数方程为x=2+5cosα,y=1+5sinα,以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。

求曲线C的极坐标方程和直线l被曲线C截得的弦长。

解析:将x和y用极坐标表示,得到ρ=5.将直线l的极坐标方程化为普通方程,得到ρ(sinθ+cosθ)=1.由于曲线C是一个圆,因此直线l与曲线C的交点分别为A(7π/4.3+2√2)和B(3π/4.3-2√2),弦AB的长度为4√2.1) 曲线C的参数方程为:x=9\cos^3\theta,\ y=3\sin^3\theta$,直线$l$的直角坐标方程为$x+y-1=0$。

2) 设$P(9\cos^3\alpha,3\sin^3\alpha)$,则$P$到直线$l$的距离为$d=\frac{|9\cos^3\alpha+3\sin^3\alpha-1|}{\sqrt{2}}$。

为求$d$的最大值,我们可以将$d$表示为$10\cos(\alpha+\theta)+\frac{1}{\sqrt{2}}$的形式,其中$\theta$为一个与$\alpha$无关的常数,且$\tan\theta=\frac{1}{3}$。

高中数学极坐标与参数方程大题(详解)

高中数学极坐标与参数方程大题(详解)

参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.解答:解:(1)∵直线l的极坐标方程为:,∴ρ(sinθ﹣cosθ)=,∴,∴x﹣y+1=0.(2)根据曲线C的参数方程为:(α为参数).得(x﹣2)2+y2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C上的点到直线l的距离的最大值=.3.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.解答:解:(1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C1的参数方程得:P(﹣4,4),把直线C3:(t为参数)化为普通方程得:x﹣2y﹣7=0,设Q的坐标为Q(8cosθ,3sinθ),故M(﹣2+4cosθ,2+sinθ)所以M到直线的距离d==,(其中sinα=,cosα=)从而当cosθ=,sinθ=﹣时,d取得最小值.4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.解答:解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)点到直线的距离(6分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)6.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M(,),则x+y==sin(),由于θ∈R,则x+y的最大值为1.7.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.解解(1)∵P点的极坐标为,答:∴=3,=.∴点P的直角坐标把ρ2=x2+y2,y=ρsinθ代入可得,即∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l的普通方程为x﹣2y﹣7=0设,则线段PQ的中点.那么点M到直线l的距离.,∴点M到直线l的最小距离为.8.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.解答:解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.9.在直角坐标系xoy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.解答:解:(1)由曲线C1:,可得,两式两边平方相加得:,即曲线C1的普通方程为:.由曲线C2:得:,即ρsinθ+ρcosθ=8,所以x+y﹣8=0,即曲线C2的直角坐标方程为:x+y﹣8=0.(2)由(1)知椭圆C1与直线C2无公共点,椭圆上的点到直线x+y﹣8=0的距离为,∴当时,d的最小值为,此时点P的坐标为.10.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.解答:解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)11.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.解答:解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].12.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos ()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.解答:解:(I)圆C1,直线C2的直角坐标方程分别为x2+(y﹣2)2=4,x+y﹣4=0,解得或,∴C1与C2交点的极坐标为(4,).(2,).(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),故直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,∴,解得a=﹣1,b=2.13.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.解答:解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.14.在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.解答:解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心C的极坐标;(Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为3.解答:解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0.由得C:圆心(﹣,﹣).∴圆心C的极坐标(1,).(2)在圆C:的圆心到直线l的距离为:∵圆C上的点到直线l的最大距离为3,∴.r=2﹣∴当r=2﹣时,圆C上的点到直线l的最大距离为3.17.选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C1,C2的公共弦的参数方程为.。

极坐标与参数方程-习题及答案

极坐标与参数方程-习题及答案

金材教育 极坐标与参数方程未命名1.在直角坐标系xOy 中,曲线C 1的参数方程为{x =cosαy =1+sinα (α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2√2.(1(写出C 1的普通方程和C 2的直角坐标方程((2)直线y =x 与C 1交于异于原点的A ,与C 2交于点B ,求线段AB 的长. 【答案】(1)x 2+(y −1)2=1;C 2:x +y =4. (2)|AB |=√2.【解析】分析:(1)利用sin 2α+cos 2α=1,将曲线C 1的参数方程化为普通方程,由{x =ρcosθy =ρsinθ 求出C 2的直角坐标方程;(2)由直线的参数方程的意义,求出线段AB 的长。

详解:(1)C 1:{x =cosαy =1+sinα (α为参数)的普通方程是x 2+(y −1)2=1.∵ρsin (θ+π4)=2√2,整理得√22ρsinθ+√22ρcosθ=2√2,∴C 2的直角坐标方程为x +y =4; 故C 1:x 2+(y −1)2=1;C 2:x +y =4.(2)直线y =x 的极坐标方程为θ=π4,C 1的极坐标方程为ρ=2sinθ, ∴点A (√2,π4),B (2√2,π4),即ρA =√2,ρB =2√2, 于是|AB |=ρB −ρA =√2.点睛:本题主要考查曲线的普通方程、直角坐标方程的求法等,属于基础题。

考查了推理论证能力,运算求解能力。

2.(本题满分10分)选修4-4:坐标系与参数方程选讲在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的普通方程与曲线的直角坐标方程;(2)设点,曲线与曲线交于,求的值.【答案】(1);(2)85。

【解析】试题分析:(1)根据曲线的参数方程,两式相加消去参数,即可得到普通方程;由曲线的极坐标方程得ρ2=41+3sin2θ⇒ρ2+3ρ2sin2θ=4,可化为直角坐标方程;(2)将,代入直角坐标方程,整理后,利用=t1t2即可求解.试题解析:(1)两式相加消去参数t可得曲线的普通方程,由曲线的极坐标方程得ρ2=41+3sin2θ⇒ρ2+3ρ2sin2θ=4,整理可得曲线的直角坐标方程.(2)将代人直角坐标方程得利用韦达定理可得,所以|MA||MB|=考点:简单曲线的极坐标方程;直线的参数方程.3.选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为:{x=√55ty=9+2√55t(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=8sinθ.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)若曲线C 1与C 2交于A ,B 两点,点P 的坐标为(0,9),求1|PA |+1|PB |. 【答案】(1)x 2+(y −4)2=16;2x −y +9=0. (2)4√59. 【解析】分析:(1)消元法解出直线C 1的普通方程,利用直角坐标和极坐标的互化公式解出圆C 2的直角坐标方程(2)将直线C 1的参数方程为代入圆C 2的直角坐标方程并化简整理关于t 的一元二次方程。

(完整版)选修4-4坐标系与参数方程-高考题及答案

(完整版)选修4-4坐标系与参数方程-高考题及答案

x t 3,1、已知在直角坐标系xOy中,直线I的参数方程为_ (t为参数),在极坐标系(与y v3t直角坐标系xOy取相同的长度单位,且以原点0为极点,以x轴正半轴为极轴)中,曲线C 的极坐标方程为2 4 cos 3 0.①求直线I普通方程和曲线C的直角坐标方程;②设点P是曲线C上的一个动点,求它到直线I的距离的取值范围.x = 2cos 0 , 一2、已知曲线C的参数方程是(0为参数),以坐标原点为极点,x轴的正半轴y = 3sin 0 ,为极轴建立极坐标系,曲线C2的极坐标方程是p = 2,正方形ABCD勺顶点都在C2上,且AnB C、D依逆时针次序排列,点A的极坐标为(2 ,—).3(I )求点A B C、D的直角坐标;(n )设P为C上任意一点,求|PA2+ |PB2+ |PC2+ |PD2的取值范围.. . 2 2 . - 2 23、在直角坐标系xOy中,圆C :x + y = 4,圆C2:(x—2) + y = 4.(I )在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C i, C2的极坐标方程, 并求出圆C,C2的交点坐标(用极坐标表示);(n)求圆C与C2的公共弦的参数方程.4、在直角坐标系xOy中,直线I的方程为x —y + 4 = 0,曲线C的参数方程为x= :::]3cos a ,(a为参数).y= sin a(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以xn轴正半轴为极轴)中,点P的极坐标为(4 ,―),判断点P与直线I的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线I的距离的最小值.X = 2C0S a ,5、在直角坐标系xOy 中,曲线G 的参数方程为( a 为参数).M 是C i 上的y = 2+ 2sin a .动点,P 点满足0F= 20M P 点的轨迹为曲线 C 2.(1)求C 2的方程;(2)在以0为极点,x 轴的正半轴为极轴的极坐标系中,射线 交点为A ,与C 2的异于极点的交点为 B,求|AE |.x = cos e6、已知P 为半圆C:( e 为参数,o w e wn )上的点,点 A 的坐标为(1,0) , Oy = sin en 为坐标原点,点 M 在射线OP 上,线段OM 与C 的弧AP 的长度均为—.(1) 以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点 M 的极坐标;(2) 求直线AM 的参数方程.ne =g 与C 的异于极点的n n .* j 3 7、在极坐标系中,已知圆C经过点P .2,~4,圆心为直线P sin 9—3 =一与极轴的交点,求圆C的极坐标方程.8、在平面直角坐标系中,以坐标原点0为极点,x轴的正半轴为极轴建立极坐标系.已知直线I上两点M, N的极坐标分别为(2,0), 穿,-2,圆C的参数方程为x= 2+ 2cos 9 ,厂(9为参数).y=—3+ 2sin 9(1) 设P为线段MN的中点,求直线OP的平面直角坐标方程;(2) 判断直线l与圆C的位置关系.1、【答案】①直线I 的普通方程为:,3x y 3、、3 0. n n n n nn_nnA (2cos —, 2sin —), B (2cos(-3 + R , 2sin( — + —)) , q2cos( — +n ), 2sin( — +n 3 n n 3 nn )) , D (2cos( — + 〒),2sin( — + 亍)),即 A (1 , 3) , B ( — 3 , 1), Q — 1, — 3) , D ( 3 , — 1). (n )设 P (2cos 0 , 3sin 0 ),令 S =|PA 2+ |PB 2+ |PC 2+ |PD 2 ,则2 2S = 16cos 0 + 36sin 0 + 162=32 + 20sin 0 .因为0W sin 20W 1,所以S 的取值范围是[32 , 52].3、解:(I )圆C 的极坐标方程为p = 2 , 圆G 的极坐标方程p = 4cos 0 .2 解卩,得卩=2, 0=±石,p _ 4cos 03从而p_占.n(1)把极坐标系的点P (4 ,-)化为直角坐标,得 R0,4),满足直线l 的方程x — y + 4_ 0,所以点P 在直线l 上. 故可设点Q 的坐标为曲线C 的直角坐标方程为:x 2y 2②曲线C 的标准方程为(x 2)2 y 2•••圆心C(2,0)到直线I 的距离为:d所以点P 到直线I 的距离的取值范围是2、解:(I )由已知可得2 24x 3 0【或(x 2)2 y 21]1,圆心C(2,0),半径为1;|2、一 3 0 3.3| 5,32 2故圆C 与圆C 2交点的坐标为(2 ,,(2,—勺.注:极坐标系下点的表示不唯一.x _ p cos 0 ,得圆 y _ p sin 0 (n )法一:由故圆C 与G 的公共弦的参数方程为x_ t 1,-3w t w 3.x _ 1(或参数方程写成 , —..3 < y w 3)法二:将x = 1代入 cos 0得 p sin 0p cos 0 = 1,于是圆 C 与G 的公共弦的参数方程为x _ 1 y _ tan 0 '4、因为点P 的直角坐标(0,4)⑵因为点Q 在曲线C 上,(.3cos a , sin a ),C 与C 2交点的直角坐标分别为从而点Q 到直线I 的距离=;'2cos( a+ -Q )+ 2 2nl由此得,当cos( a + —) =— 1时,d 取得最小值,且最小值为:2.x y5、⑴设Rx , y ),则由条件知 M ^ 2 .由于M 点在C 上,x=2cos a , 2X = 4cos a ,所以即yy = 4+ 4sin a .2= 2+ 2sin a ,X = 4cos a ,从而C 2的参数方程为(a 为参数)y = 4 + 4sin a .(2)曲线C 的极坐标方程为 p = 4sin 0,曲线C 2的极坐标方程为 p = 8sin 0 .n n射线0 =三与C 的交点A 的极径为 p 1= 4sin —,3 3nn射线0 = y 与G 的交点B 的极径为p 2= 8sin —. 所以 | AB = | p 2— p 1| = 2 '3.nn6、 (1)由已知,M 点的极角为y ,且M 点的极径等于 J ,n n故点M 的极坐标为 ~~ .⑵M 点的直角坐标为n ,二空,A (1,0),故直线AM 的参数方程为6 6nx=1 + 6 — 1t ,(t 为参数).| 3cos a — sina + 4|2cos7t6所以圆C 的圆心坐标为(1,0) 因为圆C经过点P .'2, n,所以圆C的半径PC= 2+ 12—2X 1 x J2cos■—= 1,¥ 4于是圆C 过极点,所以圆 C 的极坐标方程为p = 2cos e .0, ¥8、解:(1)由题意知,M N 的平面直角坐标分别为所以直线l 的平面直角坐标方程为 3x + 3y — 2 3= 0.又圆C 的圆心坐标为(2 , — ,;3),半径r = 2, 圆心到直线I 的距离d =, : — ■' =-<r ,故直线l 与圆C 相交.yJ 3 + 9 2又P 为线段MN 勺中点,从而点 P 的平面直角坐标为1,,故直线OP 的平面直角坐标方程为 ⑵因为直线l 上两点M N 的平面直角坐标分别为 (2,0)(2,0)。

高考极坐标参数方程含答案(经典39题)(1)_看图王

高考极坐标参数方程含答案(经典39题)(1)_看图王
(2)若把 C1,C2 上各点的纵坐标都拉伸为原来的两倍,分别得到曲线 C1,C2 .写出 C1,C2 的参数
方程. C1 与 C2 公共点的个数和 C 1 与C2 公共点的个数是否相同?说明你的理由.
29.在平面直角坐标系
xoy
中,圆
C
的参数方程为
x
y
4 cos 4 sin

为参数),直线
l
(2)求证直线 l 和曲线 C 相交于两点 A 、 B ,并求 | MA | | MB | 的值.
(2, )
6.在极坐标系中,O 为极点,已知圆 C 的圆心为 3 ,半径 r=1,P 在圆 C 上运动。 (I)求圆 C 的极坐标方程;(II)在直角坐标系(与极坐标系取相同的长度单位,且以极点 O 为原点, 以极轴为 x 轴正半轴)中,若 Q 为线段 OP 的中点,求点 Q 轨迹的直角坐标方程。
程是
4 cos
,直线 l
的参数方程是
x
3 y1 2
3 2 t.
t
,
(t
为参数)。求极点在直线 l
上的射影点
P

极坐标;若 M 、 N 分别为曲线 C 、直线 l 上的动点,求 MN 的最小值。
x 4 cos
8.平面直角坐标系中,将曲线
y
sin
( 为参数)上的每一点纵坐标不变,横坐标变为原来的

t
2
,Q

C
2
上的动点,求
PQ
中点
M
到直线
C3
:
2x
y
7
0
(t
为参数)距离的最大值。
第 13页 共 16页

第 14页 共 16页

2023年高考数学真题分训练 极坐标系与参数方程(含答案含解析)

2023年高考数学真题分训练   极坐标系与参数方程(含答案含解析)

专题34 极坐标系与参数方程2⎩2 2考点 116 平面直角坐标系中的伸缩变换 考点 117 极坐标和直角坐标的互化⎧x = t + 1,⎪x = 4cos 2θ, 1.(2023 全国Ⅱ文理 21)已知曲线C 1 , C 2 的参数方程分别为C 1 : ⎨ (θ为参数),C : ⎪ t ( t 为 ⎩ y = 4sin 2θ⎪ y = t - 1参数).(1) 将C 1 , C 2 的参数方程化为一般方程;⎪ t(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系.设C 1 , C 2 的交点为 P ,求圆心在极轴上,且经过极点和 P 的圆的极坐标方程.(解析)(1)由cos 2 θ+ sin 2 θ= 1得C 1 的一般方程为: x + y = 4 ,⎧x = t + 1 ⎧x 2= t 2 + 1 + 2 ⎪ t ⎪ t 2 C 2 2由⎨ 1 得: ⎨1 ,两式作差可得2 的一般方程为: x - y = 4 . ⎪ y = t - ⎪ y 2 = t 2 + - 2 ⎪ t ⎪ t 2⎧x = 5 ⎧x + y = 4 ⎪ (2)由 得: 2 ,即 P ⎛ 5 , 3 ⎫. ⎨x 2 - y 2= 4 ⎨ ⎪ y = 3 ⎩ 2 ⎪ ⎝ ⎭⎛ 5 ⎫2⎛3 ⎫217设所求圆圆心的直角坐标为(a , 0),其中 a > 0 ,则 a - ⎪ + 0 - ⎪ = a 2 ,解得:a = ,⎝2 ⎭⎝2 ⎭10∴ 17 ∴⎛ 17 ⎫2⎛ 17 ⎫222 2 17 所求圆的半径 r = , 10 所求圆的直角坐标方程为: x - 10 ⎪ + y = 10 ⎪ ,即 x + y = x ,5 ∴所求圆的极坐标方程为ρ= 17cos θ.5⎝ ⎭ ⎝ ⎭103⎩⎪x = 2 - t - t 2, 2.(2023 全国Ⅲ文理 22)在直角坐标系 xOy 中,曲线C 的参数方程为⎪ y = 2 - 3t + t 2( t 为参数且t ≠ 1),C与坐标轴交于 A , B 两点.(1) 求 AB ;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,求直线 AB 的极坐标方程.(解析)(1)令 x = 0 ,则t 2 + t - 2 = 0 ,解得t = -2 或t =1(舍),则 y = 2 + 6 + 4 = 12 ,即 A (0,12) . 令 y = 0 ,则t 2 - 3t + 2 = 0 ,解得t = 2 或t =1(舍),则 x = 2 - 2 - 4 = -4 ,即 B (-4, 0) .∴ AB == 4 .(2)由(1)可知 k AB =12 - 00 - (-4)= 3 ,则直线 AB 的方程为 y = 3(x + 4) ,即3x - y +12 = 0 .由 x = ρcos θ, y = ρsin θ可得,直线 AB 的极坐标方程为3ρcos θ- ρsin θ+12 = 0 .3.(2023 江苏 22)在极坐标系中,已知点 A (ρ, π) 在直线l : ρcos θ= 2 上,点 B (ρ , π) 在圆C : ρ= 4 sin θ上1 32 6(其中ρ≥ 0 , 0 ≤θ< 2π).(1)求ρ1 , ρ2 的值(2)求出直线l 与圆C 的公共点的极坐标.(解析)(1) Q ρ cos π = 2∴ρ = 4; Q ρ = 4 s inπ2 .131 26 ∴ρ2 = (2) Q ρcos θ= 2, ρ= 4 sin θ∴ 4 sin θcos θ= 2,∴sin 2θ= 1 Q θ∈0, 2π)∴θ= π, 5π,4 4当θ= π时ρ= 2 4;当θ= 5π 时ρ= -2 4 < 0 (舍);即所求交点坐标为当π (2 2, ) . 4 4.(2023 全国 II 文理 22)在极坐标系中,O 为极点,点 M (ρ0 ,θ0 )(ρ0 > 0)在曲线C : ρ= 4 s in θ上,直线 l 过点 A (4, 0) 且与OM 垂直,垂足为 P . (1)当θ = π时,求ρ 及 l 的极坐标方程;3(2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.(解析)(1)因为 M (ρ,θ ) 在C 上,当θ = π 时,ρ = 4 s in π= 2 .0 0 0 3 03由已知得| OP |=| OA | cos π= 2 .322333⎢⎥⎢⎥设Q (ρ,θ) 为l 上除P 的任意一点.在Rt △OPQ 中ρcos⎛θ-π ⎫=| OP |= 2 , 3 ⎪ ⎝ ⎭π ⎛ π ⎫经检验,点P (2, ) 在曲线ρcos θ- ⎪ = 2 上. ⎝ ⎭所以,l 的极坐标方程为ρcos ⎛θ- π ⎫= 2 .3 ⎪ ⎝ ⎭(2)设 P (ρ,θ) ,在Rt △OAP 中, | OP |=| OA | cos θ= 4 cos θ,即 ρ= 4 cos θ..因为P 在线段OM 上,且 AP ⊥ OM ,故θ的取值范围是⎡π , π⎤. ⎣ 4 2 ⎦所以,P 点轨迹的极坐标方程为ρ= 4 cos θ,θ∈ ⎡π , π⎤ .⎣4 2 ⎦5.(2023 全国 III 文理 22)如图,在极坐标系 Ox 中, A (2, 0) , B ( 2, π) ,C ( 2, 3π) , D (2, π) ,弧 AB ,4 4 A , A 所在圆的圆心分别是(1, 0) ,π, (1, π) ,曲线 M 是弧 A ,曲线 M 是弧 A ,曲线 M 是BC CD(1, ) 21 AB2 BC3 弧C D .(1) 分别写出 M 1 , M 2 , M 3 的极坐标方程;(2) 曲线 M 由 M 1 , M 2 , M 3 构成,假设点 P 在 M 上,且| OP |= ,求P 的极坐标.(解析)(1)由题设可得,弧 AB , B C ,C D 所在圆的极坐标方程分别为ρ= 2 cos θ,ρ= 2 s in θ,ρ= -2 cos θ,所以 M 的极坐标方程为ρ= 2 cos θ⎛0 θ π ⎫ , M 的极坐标方程为 1 4⎪ 2⎝⎭ρ= 2 sin θ⎛ π θ3π ⎫ , M 的极坐标方程为ρ= -2 cos θ⎛ 3πθ π ⎫ . 4 4 ⎪ 34 ⎪ ⎝ ⎭ ⎝ ⎭(2)设 P (ρ,θ) ,由题设及(1)知3332⎩⎩⎩⎩⎩θ假设0 θπ,则 2 cos θ=,解得θ=π;4 6假设 π θ 3π ,则 2 sin θ= ,解得θ= π 或θ= 2π ; 4 4 3 3 假设 3π θ π ,则-2 cos θ= ,解得θ= 5π .4 ⎛ 综上,P 的极坐标为3, π ⎫ 或⎛3, π ⎫ 或⎛63,2π ⎫ 或⎛3, 5π ⎫ .6⎪ 3⎪ 3 ⎪ 6 ⎪ ⎝⎭ ⎝⎭ ⎝⎭ ⎝ ⎭考点 118 参数方程与一般方程的互化6.(2023 上海 14)已知直线方程3x + 4 y +1 = 0 的一个参数方程可以是()⎧x = 1+ 3t A . ⎨ y = -1+ 4t ⎧x = 1- 4tB . ⎨y = -1- 3t⎧x = 1- 3tC . ⎨y = -1+ 4t ⎧x = 1+ 4t D . ⎨y = -1- 3t(答案)D(解析)A .参数方程可化简为 4x - 3y - 7 = 0 ,故 A 不正确;B .参数方程可化简为3x - 4 y - 7 = 0 ,故B 不正确;C .参数方程可化简为 4x + 3y -1 = 0 ,故 C 不正确;D .参数方程可化简为3x + 4 y +1 = 0 , 故 D 正确.应选 D .7.(2023 全国Ⅲ)选修 4—4:坐标系与参数方程](10 分)在平面直角坐标系 xOy 中, A O 的参数方程为⎧x = cos θ(θ为参数),过点(0, -2) 且倾斜角为α的直线l 与A O 交于 A , B 两点.(1) 求α的取值范围;(2) 求 AB 中点 P 的轨迹的参数方程.⎨ y = sin ,(解析)(1) A O 的直角坐标方程为 x 2 + y 2 = 1. 当α= π时, l 与A O 交于两点.2当α≠ π时,记 tan α= k ,则l 的方程为 y = kx -.l 与A O 交于两点当且仅当< 1 ,解得 k < -1 或2α∈π ππ 3πk > 1,即( , ) 或α∈ ( , ) .4 2 2 4α π 3π 综上,的取值范围是( , ) . 4 4222222⎨(2) l 的参数方程为⎪x = t cos α, (t 为参数, π < α< 3π) . ⎨⎩ y = - + t sin α 4 4 设 A , B , P 对应的参数分别为 t , t , t ,则t =t A + t B,且t , t 满足t 2 - 2 2t sin α+ 1 = 0 .ABPP2A B于是t A + t B= 2 2 sin α, t P =2 sin α.又点 P 的坐标(x , y ) 满足 ⎪x = t P cos α,y = - + t sin α.⎧ ⎪x =2sin 2α, 2 ⎩P π 3π 所以点 P 的轨迹的参数方程是⎨ ⎪ y = - 2 - 2 cos 2α (α为参数, < α< ) . 4 4 ⎪ 2 2考点 119 极坐标方程与参数方程的综合应用8.(2023 北京文理)在极坐标系中,直线ρcos θ+ ρsin θ= a (a > 0) 与圆ρ=2 cos θ相切,则 a =.(答案)1+ (解析)利用 x = ρcos θ, y = ρsin θ,可得直线的方程为 x + y - a = 0 ,圆的方程为(x -1)2 + y 2 = 1 ,所以圆心(1, 0) ,半径 r = 1,由于直线与圆相切,故圆心到直线的距离等于半径,即|1- a |= 1 ,∴ a = 1+ 或1- ,又 a > 0 ,∴ a = 1+ .9.(2023 北京文理)在极坐标系中,点 A 在圆ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 上,点 P 的坐标为(1, 0) ),则| AP | 的最小值为.(答案)1(解析)圆的一般方程为 x 2 + y 2 - 2x - 4y + 4 = 0 ,即(x -1)2 + ( y - 2)2 = 1 .设圆心为C (1, 2) ,所以| AP |min =| PC | -r = 2 -1 = 1 .10.(2023 天津文理)在极坐标系中,直线4ρcos(θ- π) +1 = 0 与圆ρ= 2 s in θ的公共点的个数为.6(答案)2(解析)直线的一般方程为 2 3x + 2 y +1 = 0 ,圆的一般方程为 x 2 + ( y -1)2= 1 ,因为圆心到直 3线的距离 d = < 1 4,所以有两个交点.11.(2023 北京文理)在极坐标系中,直线ρcos θ- | AB |= .3ρsin θ-1 = 0 与圆ρ= 2 cos θ交于 A , B 两点,则(答案)2(解析)将ρcos θ-3ρsin θ-1 = 0 化为直角坐标方程为 x - 3y -1 = 0 ,将ρ=2cos θ化为直角坐标方程为(x -1)2+ y 2= 1 ,圆心坐标为(1,0),半径 r=1,又(1,0)在直线 x - 3y -1 = 0 上,所以|AB|=2r=2.222234y x ⎩⎩⎩)⎩12.(2023 广东文理)已知直线l 的极坐标方程为 2ρsin(θ- π= 47πA (2 2,) ,则点 Α 到直线l 的距离为 .42 ,点 Α 的极坐标为(答案)(解析)由 2ρsin(θ- 2π ) = 得2ρ´ 4 2 7π(sin θ- cos θ) = ,所以 y - x = 1, 故直线l 的直角坐标方程为 x - y +1 = 0 ,而点 A (2 2, ) 对应的直角坐标为4 A (2,-2) ,所以点 A (2,-2) 到直线l : x - y +1 = 0 的距离为| 2 + 2 +1| = 5 2. 213.(2023 安徽文理)在极坐标系中,圆ρ= 8sin θ上的点到直线θ=是.π(ρ∈ R ) 距离的最大值 3(答案)6(解析)圆ρ= 8sin θ即ρ2= 8ρsin θ,化为直角坐标方程为 x 2+ ( y - 4)2= 16 ,π直线θ=,则tan θ=,化为直角坐标方程为 3x - y = 0 ,圆心(0, 4) 到直线3的距离为| -4 |= 2 ,所以圆上的点到直线距离的最大值为 6.14.(2023 全国Ⅰ文理 21)⎧x = cos k t ,在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = sin k t(t 为参数) .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 2 的极坐标方程为 4ρcos θ-16ρsin θ+ 3 = 0 .(1) 当 k = 1时, C 1 是什么曲线?(2) 当 k = 4 时,求C 1 与C 2 的公共点的直角坐标.(解析)(1)当 k = 1时,曲线C 的参数方程为⎧x = cos t ,( t 为参数),两式平方相加得 x 2 + y 2 = 1 ,1⎨y = sin t∴曲线C 1 表示以坐标原点为圆心,半径为 1 的圆.⎧x = cos 4 t ,(2)当 k = 4 时,曲线C 1 的参数方程为⎨ y = sin 4t ( t 为参数),∴ x ≥ 0, y ≥ 0 ,曲线C 1 的参数方程化为⎧ x = cos 2 t ⎨ y = sin 2t(t 为参数),两式相加得曲线C 1 方程为 + = 1,得 = 1 - ,平方得 5 22x yx 77⎩2y = x - 2 + 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 ,曲线C 2 的极坐标方程为4ρcos θ-16ρsin θ+ 3 = 0 ,曲线C 2 直角坐标方程为4x -16 y + 3 = 0 ,联立C , C 方程⎪ y = x - 2 +1 , ,整理得12 x - 32 + 13 = 0 ,解得 x = 1 或 = 13(舍去),1 2⎨ ⎩4x -16 y + 3 = 02 6 ∴ x = 1 , y = 1 ,∴C ,C 1 1 公共点的直角坐标为( , ) .4 4 1 24 4⎧ 1- t 2 ⎪x =1+ t 215.(2023 全国 1 文理 22)在直角坐标系 xOy 中,曲线 C 的参数方程为⎨ ⎪ y = ⎩ 4t 1+ t 2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2ρcos θ+ 3ρsin θ+11 = 0 .(1) 求 C 和 l 的直角坐标方程;(2) 求 C 上的点到 l 距离的最小值.1- t 2⎛ y ⎫2⎛ 1- t 2 ⎫24t 2 (解析)(1)因为-1 < ≤ 1 ,且 x 2 + ⎪ = ⎪ + = 1,所以C 的直角坐标方程为2y 2 1+ t 2⎝ 2 ⎭ ⎝1 + t 2 ⎭ (1+ t 2 )2x += 1(x ≠ -1) .4l 的直角坐标方程为 2x + 3y +11 = 0 .⎧x = cos α, (2)由(1)可设C 的参数方程为 (α为参数, -π <α< π ).⎨y = 2sin α4 cos ⎛α- π ⎫ +113 ⎪ C 上的点到l 的距离为 = ⎝ ⎭.当α= - 2π 时, 4 c os ⎛α- π ⎫+11 取得最小值7,故C 上的点到l 距离的最小值为 . 3 3 ⎪ ⎝ ⎭16.(2023 全国Ⅰ文理) 在直角坐标系 xOy 中,曲线C 1 的方程为 y = k |x | + 2 .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2+ 2ρcos θ- 3 = 0 . (1) 求C 2 的直角坐标方程;x x x | 2 c os α+ 2 3 sin α+11|7⎨y = 4 s in θ,⎩(2) 假设C 1 与C 2 有且仅有三个公共点,求C 1 的方程.(解析)(1)由 x = ρcos θ, y = ρsin θ得C 2 的直角坐标方程为(x +1)2 + y 2 = 4 .(2)由(1)知C 2 是圆心为 A (-1, 0) ,半径为 2 的圆.由题设知,C 1 是过点 B (0, 2) 且关于 y 轴对称的两条射线.记 y 轴右边的射线为l 1 ,y 轴左边的射线为l 2 .由于 B 在圆C 2 的外面,故C 1 与C 2 有且仅有三个公共点等价于l 1 与C 2 只有一个公共点且l 2 与C 2 有两个公共点,或l 2 与C 2 只有一个公共点且l 1 与C 2 有两个公共点.当l 与C 只有一个公共点时, A 到l 所在直线的距离为 2 ,所以| -k + 2 |= 2 ,故 k = - 4 或 k = 0 .1213经检验,当k = 0 时, l 与C 没有公共点;当 k = - 4时, l 与C 只有一个公共点, l 与C 有两个公共点.1231 2 2 2| k + 2 | 当l 与C 只有一个公共点时, A 到l 所在直线的距离为2 ,所以= 2 ,故 k = 0 或 k = 4 .2 2 23经检验,当k = 0 时, l 与C 没有公共点;当 k = 4时, l 与C 没有公共点.1 2 32 2综上,所求C 的方程为 y = - 4| x | +2 .1317.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎧x = 2 cos θ,( θ 为参数),直线l 的参数⎩⎧x = 1+ t cos α 方程为⎨ y = 2 + t sin α ( t 为参数).(1) 求C 和l 的直角坐标方程;(2) 假设曲线C 截直线l 所得线段的中点坐标为(1, 2) ,求l 的斜率.x 2 + y 2 =(解析)(1)曲线C 的直角坐标方程为 1. 4 16当cos α≠ 0 时, l 的直角坐标方程为 y = tan α⋅ x + 2 - tan α; 当cos α= 0 时, l 的直角坐标方程为 x = 1 .(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+ 3cos 2 α)t 2 + 4(2 cos α+ sin α)t - 8 = 0 .①3317⎩⎨ y = 1- ty 因为曲线C 截直线l 所得线段的中点(1, 2) 在C 内,所以①有两个解,设为t 1 , t 2 ,则t 1 + t 2 = 0 .4(2 cos α+ sin α)又由①得t 1 + t 2 = -1+ 3cos 2α,故 2 cos α+ sin α= 0 ,于是直线l 的斜率 k = tan α= -2 .18.(2023 江苏)在极坐标系中,直线l 的方程为ρsin( π-θ) = 2 ,曲线C 的方程为ρ= 4 cos θ,求直线l 被曲6 线C 截得的弦长.(解析)因为曲线C 的极坐标方程为ρ=4 cos θ,所以曲线C 的圆心为(2, 0) ,直径为 4 的圆.因为直线l 的极坐标方程为ρsin( π -θ) = 2 ,则直线l 过 A (4, 0) ,倾斜角为 π,所以 A 为直线l 与圆C 的一6 6 个交点.设另一个交点为 B ,则∠OAB= π ,连结 OB ,因为 OA 为直径,从而∠OBA= π ,所以 AB = 4 c os π= 2 .6 因此,直线l 被曲线C 截得的弦长为 2 .2 6⎧x = 3cos θ19.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎨ y = sin θ ,(θ为参数),直线l 的参数方程为⎧x = a + 4t( t 为参数).⎩ (1) 假设 a = -1,求C 与l 的交点坐标;(2) 假设C 上的点到l 距离的最大值为 ,求 a .(解析)(1)曲线C 的一般方程为 x 2 + 29= 1.当a = -1时,直线l 的一般方程为 x + 4 y - 3 = 0 .⎧x + 4 y - 3 = 0⎧x = - 21 ⎪ ⎧x = 3 ⎪25 21 24由⎨ x 2 2解得⎨ y = 0 或⎨ ,从而C 与l 的交点坐标为(3, 0) , (- 24 , ) . ⎩ 9+ y = 1 ⎩⎪ y = ⎩ 25 25 25171717171733342⎩(2)直线l 的一般方程为 x + 4 y - a - 4 = 0 ,故C 上的点(3cos θ, sin θ) 到l 的距离为| 3cos θ+ 4 sin θ- a - 4 |d =.当a ≥-4 时, d 的最大值为a + 9.由题设得a + 9= ,所以a = 8 ;当a < -4 时, d 的最大值为 -a + 1 .由题设得 -a + 1= ,所以 a = -16 . 综上, a = 8 或 a = -16 .20.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线C 1 的极坐标方程为ρcos θ= 4 .(1) M 为曲线C 1 上的动点,点 P 在线段OM 上,且满足| OM | ⋅ | OP |= 16 ,求点 P 的轨迹C 2 的直角坐标方程;π(2) 设点 A 的极坐标为(2, 3) ,点 B 在曲线C 2 上,求∆OAB 面积的最大值. (解析)(1)设 P 的极坐标为(ρ,θ) (ρ> 0) , M 的极坐标为(ρ1 ,θ) (ρ1 > 0) .由椭圆知| OP |= ρ, | OM |= ρ1 =cos θ.由| OM | ⋅ | OP |= 16 得C 2 的极坐标方程ρ= 4 cos θ(ρ> 0) , 因此C 的直角坐标方程为(x - 2)2 + y 2= 4(x ≠ 0) .(2)设点 B 的极坐标为(ρB ,α) (ρB > 0) .由题设知| OA |= 2 , ρB = 4cos α,于是∆OAB 面积1 π π 3S = 2 | OA | ⋅ρB ⋅sin ∠AOB = 4cos α| sin(α- 3 ) | = 2 | sin(2α- 3 ) - | ≤ 2 + . 2 当α= - π时, S 取得最大值 2 + ,所以∆OAB 面积的最大值为 2 + .1221.(2023 全国Ⅲ文理)在直角坐标系 xOy 中,直线l 的参数方程为⎧x = 2 + t( t 为参数),直线l 的参数方⎧x = -2 + m⎪1 ⎨ y = kt 2程为⎨ ⎩ y = m k( m 为参数).设l 1 与l 2 的交点为 P ,当 k 变化时, P 的轨迹为曲线C .(1) 写出C 的一般方程;17175224 5⎨t⎩(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l3 :ρ(cosθ+ sinθ) -交点,求M 的极径.= 0 ,M 为l3与C 的(解析)(1)消去参数t 得l 的一般方程l : y =k (x -2),消去参数m 得l 的一般方程l : y =1 (x+2).11⎧y =k (x-2)22k⎪设P(x, y) ,由题设得⎨⎩y=1 (x+2)k,消去k 得x2-y2=4 (y ≠0),所以C 的一般方程为x2-y2=4 (y ≠0).⎪ρ2(cos2θ-sin2θ)=4(2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),联立⎨得⎩ρ(cosθ+sinθ)-2=0cosθ- sinθ=2 (cosθ+sinθ),故tanθ=-1,从而cos2θ=9,sin2θ=1,代入ρ2(cos2θ-sin2θ)=4得3ρ2=5,所以交点M的极径为.10 10⎧x =-8 +t22.(2023 江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为⎪y = ( t 为参数),曲线C 的参数方⎧x=2s2⎪2程为⎨⎩y=22s( s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.(解析)直线l 的一般方程为x - 2 y + 8 = 0 .因为点P 在曲线C 上,设P(2s2 , 2 2s) ,从而点P 到直线l 的的距离4 5d == ,当s =时,dmin=5.因此当点P 的坐标为(4, 4) 时,曲线C 上点P 到直线l 的距离取到最小值.5⎧x =a cos t23.(2023 全国I 文理)在直角坐标系xOy 中,曲线C1 的参数方程为⎨y = 1+a sin t(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2 :ρ= 4 cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=a0 ,其中a0 满足tan a0 =2 ,假设曲线C1 与C2 的公共点都在C3上,求a.22(s -2)2 +4510 10 ⎫2152⎩1123⎩⎨⎩=⎧x = a cos t (解析)(1) ⎨ y = 1 + a sin t( t 均为参数),∴x 2 + ( y - 1)2= a 2 ①∴ C 为以(0 ,1) 为圆心, a 为半径的圆.方程为 x 2 + y 2 - 2 y +1 - a 2 = 0 .∵ x 2 + y 2 = ρ2 ,y = ρsin θ,∴ ρ2- 2ρsin θ+ 1 - a 2 = 0 ,即为C 的极坐标方程.(2) C :ρ= 4cos θ,两边同乘ρ得ρ2 = 4ρcos θ ρ2= x 2 + y 2 ,ρcos θ= x ,∴ x 2 + y 2 = 4x ,即( x - 2)2+ y 2 = 4 ②C 3 :化为一般方程为 y = 2x ,由题意: C 1 和C 2 的公共方程所在直线即为C 3 ,①—②得: 4x - 2 y + 1 - a 2 = 0 ,即为C ,∴1 - a 2 = 0 ,∴ a = 1 .24.(2023 全国 II 文理)在直角坐标系 xOy 中,圆 C 的方程为( x + 6)2+ y 2 = 25 .(I) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;⎧x = t cos α(II)直线 l 的参数方程是⎨ y = t sin α(t 为参数),l 与 C 交于 A 、B 两点, AB = ,求 l 的斜率.⎧ρ2 = x 2 + y 2 (解析)(Ⅰ)整理圆的方程得 x 2 + y 2 + 12 + 11 = 0 ,由⎪ρcos θ= x ⎪ρsin θ= y 可知圆C 的极坐标方程为ρ2 + 12ρcos θ+ 11 = 0 .(Ⅱ)记直线的斜率为 k ,则直线的方程为 kx - y = 0 ,由垂径定理及点到直线距离公式知:= 36k 2 290 ,整理得 k 2 = 5 ,则 k = ± . 1 + k 4 3 3⎪x =3 cos α25.(2023 全国 III 文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ ⎩ y = sin α(α为参数),以坐标原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin(θ+ π) = 2.24(Ⅰ)写出C 1 的一般方程和C 2 的直角坐标方程;(Ⅱ)设点 P 在C 1 上,点 Q 在C 2 上,求| PQ |的最小值及此时 P 的直角坐标.x 2 2(解析)(Ⅰ) C 1 的一般方程为 3+ y = 1, C 2 的直角坐标方程为 x + y - 4 = 0 .(Ⅱ)由题意,可设点 P 的直角坐标为( 3 cos α, sin α) ,因为C 2 是直线,所以| PQ | 的最小值,即为 P 到C 2| 3 cos α+sin α- 4 |2222⎨⎩⎪=1⎩的距离d (α) 的最小值, d (α) ==π2 | sin(α+ π ) - 2 | .3 3 1当且仅当α= 2k π+(k ∈ Z ) 时, d (α) 取得最小值,最小值为 6,此时 P 的直角坐标为( , ) . 2 2 ⎧x = 1 + 1t , 26.(2023 江苏)在平面直角坐标系 xOy 中,已知直线l 的参数方程为⎪ ⎪ y = ⎩ 2 3 t , 2(t 为参数) ,椭圆C 的参数⎧x = cos θ,方程为⎨ y = 2sin θ, (θ为参数) ,设直线l 与椭圆C 相交于 A , B 两点,求线段 AB 的长.⎧x = 1+ 1t(解析)椭圆C 的一般方程为 x 2 + y 4 = 1,将直线l 的参数方程⎨ ⎪ y = ⎩2 3 t2 ,代入 x 2 + y 4 = 1,得(1+ 1 t )2 + 3 t )22 = 1,即7t 2 +16t = 0 ,解得t = 0 , t = - 16 ,所以 AB =| t - t | 16 .2 4 1 2 71 2727.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,直线C : x = -2 ,圆C :(x -1)2 + ( y - 2)2= 1 ,以坐标原12点为极点, x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求C 1 , C 2 的极坐标方程;(Ⅱ)假设直线C 3 的极坐标方程为θ=(ρ∈ R ) ,设C 2 与C 3 的交点为 M , N ,求∆C 2MN 的面积.4(解析)(Ⅰ)因为 x = ρcos θ, y = ρsin θ,∴ C 的极坐标方程为ρcos θ= -2 , C 的极坐标方程为ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 .12(Ⅱ)将θ= π代入ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 ,得ρ2- 3 2ρ+ 4 = 0 ,解得ρ = 2, ρ = , 4|MN|= ρ - ρ = ,因为C 的半径为 1,则A C MN 的面积 ⨯ 122 ⨯1⨯sin 45o = 1 . 1 2 22 2 2 ⎧x = t cos α,28.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 1 : ⎨ y = t sin α, ( t 为参数,t ≠0)其中0 ≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2 : ρ= 2 sin θ, C 3 : ρ= 2 3 cos θ. (Ⅰ)求C 2 与C 3 交点的直角坐标;(Ⅱ)假设C 1 与C 2 相交于点 A , C 1 与C 3 相交于点 B ,求| AB | 的最大值.222(π3623)( x -1+ y +1= )()⎨(解析)(Ⅰ)曲线C 的直角坐标方程为 x 2 + y 2 - 2 y = 0 ,曲线C 的直角坐标方程为 x 2 + y 2- 2 3x = 0 .联⎪x 2+ y 2- 2 y = 0,⎧x = 0, ⎧ 3 ⎪x = 2 , 立⎨x 2 + y 2 - 2 3x = 0,解得⎨ y = 0, 或⎨ 3 ⎪ ⎩ ⎪ y = ,⎩ 23所以C 2 与C 1 交点的直角坐标为(0, 0) 和( , ) .2 2(Ⅱ)曲线C 1 的极坐标方程为θ= α(ρ∈ R , ρ≠ 0) ,其中0 ≤α<π. 因此 A 得到极坐标为(2 sin α,α) , B 的极坐标为(2 3 cos α,α) . π5π所以 AB = 2 sin α- 2 3 cos α = 4 s in(α-) ,当α= 时, AB 取得最大值,最大值为 4 . 3 629.(2023 江苏) 已知圆 C 的极坐标方程为ρ2+ 2 2ρsin(θ- π- 4 = 0 ,求圆 C 的半径.4(解析) 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为 x 轴的正半轴,建立直角坐标系 xoy .圆C 的极坐标方程为ρ2 + 2⎛ 2 sin θ- 2cos ⎫4 = 0 ,化简,得ρ2 + 2ρsin θ- 2ρcos θ- 4 = 0 . ρ 22 θ⎪⎪ - ⎝ ⎭则圆C 的直角坐标方程为 x 2 + y 2 - 2x + 2 y - 4 = 0 ,即2 2,所以圆C 的半径为 . ⎧x = 3 + 1 t 30.(2023 陕西文理)在直角坐标系 xOy 中,直线l 的参数方程为⎪2⎪ y = 3 t ⎩ 2 轴正半轴为极轴建立极坐标系,⊙ C 的极坐标方程为ρ= 2 3 sin θ. (Ⅰ)写出⊙ C 的直角坐标方程;( t 为参数).以原点为极点, x(Ⅱ) P 为直线l 上一动点,当 P 到圆心C 的距离最小时,求 P 的直角坐标.(解析)(Ⅰ) 由ρ= 2 3 sin θ, 得ρ2= 2 3ρsin θ,从而有 x 2+y 2= 2 3y , 所以x 2+ (y -3 )2= 3 .(Ⅱ)设P (3 += ,故当t =0 时,| PC |取最小值,此时 P 点的直角坐标为(3, 0) .21t,3t), 又C(0, 3) ,则| PC |=3222 3 ⎪55⎨y = 2 - 2t⎩⎩31.(2023 全国Ⅰ文理)已知曲线C : x 4 + y 29 = 1,直线l : ⎧x = 2 + t ( t 为参数). ⎩(Ⅰ)写出曲线C 的参数方程,直线l 的一般方程;(Ⅱ)过曲线C 上任一点 P 作与l 夹角为30o的直线,交l 于点 A ,求| PA |的最大值与最小值.⎧x = 2 cos θ.(解析)〔I 〕曲线C 的参数方程为⎨ y = 3sin θ. (θ为参数).直线l 的一般方程为2x + y - 6 = 0. ……5 分(Ⅱ)曲线C 上任意一点P(2cos θ.3sin θ)到l 的距离为d =4 cos θ+ 3sin θ- 6 .则 PA =d = sin 30︒ 5sin(θ+α) - 6 , 其中α为锐角,且tan α= 4 . 3当sin (θ+α)=-1时,PA 取得最大值,最大值为22 5 .5当sin(θ+α) = 1时,PA 取得最小值,最小值为2 5 .532.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆 C 的极坐标方程为ρ= 2 cos θ,θ∈ ⎡0,π⎤ .(Ⅰ)求 C 的参数方程;⎣⎢ 2 ⎥⎦(Ⅱ)设点 D 在 C 上,C 在 D 处的切线与直线l : y = 3x + 2 垂直,依据(Ⅰ)中你得到的参数方程,确定 D 的坐标.(解析)(I)C 的一般方程为(x -1)0 ≤ t ≤ x ).2 + y 2⎧x = 1+ cos t , = 1(0 ≤ y ≤ 1) ,可得 C 的参数方程为⎨ y = sin t ,(t 为参数,(Ⅱ)设 D (1+ cos t , sin t ) .由(I)知 C 是以 G(1,0)为圆心,1 为半径的上半圆. π因为 C 在点D 处的切线与 t 垂直,所以直线 GD 与 t 的斜率相同, tan t = 3, t =.32 5523⎩⎩⎩1⎩⎩ππ 3故D 的直角坐标为(1+ cos , s in ) ,即( , ) .3 3 2 233.(2023 全国Ⅰ文理)已知曲线C 的参数方程为⎧x = 4 + 5 cos t( t 为参数),以坐标原点为极点,x 轴的正1 ⎨y = 5 + 5sin t半轴为极轴建立极坐标系,曲线C2 的极坐标方程为ρ= 2 s inθ.(Ⅰ)把C1 的参数方程化为极坐标方程;(Ⅱ)求C1 与C2 交点的极坐标( ρ≥0 ,0 ≤θ≤2π).⎧x = 4 + 5 c os t2 2(解析)将⎨y = 5 + 5sin t消去参数t ,化为一般方程(x - 4) + ( y -5) = 25 ,即C1 :x 2 +y2⎧x =ρcosθ-8x -10 y+16 = 0 ,将⎨y =ρsinθ代入x 2 +y2- 8x -10 y + 16 = 0 得,ρ2 - 8ρcosθ-10ρsinθ+16 = 0 ,∴C 的极坐标方程为ρ2 - 8ρcosθ-10ρsinθ+16 = 0 .⎪x2+y2-8x-10y+16=0(Ⅱ) C 的一般方程为x2 +y2 - 2 y = 0 ,由⎨⎧x =1解得⎨⎧x = 0或⎨,2∴C1 与C2 的交点的极坐标分别为(⎩x2+y2-2y=0π),(2, ) .4 2⎩y =1 ⎩y = 2 34.(2023 全国Ⅱ文理)已知动点P ,Q 都在曲线C与β= 2α( 0 <α< 2π) M 为PQ 的中点.⎧x = 2 c os β:⎨y = 2 s in β(β为参数)上,对应参数分别为β=α(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并推断M 的轨迹是否过坐标原点.(解析)(Ⅰ)由题意有P(2c osα,2sinα),Q(2c os2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α),⎧x = cosα+ cos 2α,M 的轨迹的参数方程为⎨y = sinα+ sin 2α, (0 <α< 2π).(Ⅱ)M 点到坐标原点的距离d ==0 <α< 2π),当α=π时,d = 0 ,故M 的轨迹过坐标原点.2,π3⎩100⎩135.(2023 全国文理)已知曲线C 的参数方程是⎧x = 2 cos ϕϕ为参数),以坐标原点为极点, x 轴的正半轴1⎨y = 3sin ϕ(为极轴建立极坐标系,曲线C 2 的极坐标方程是ρ= 2 .正方形 ABCD 的顶点都在C 2 上,且 A 、 B 、C 、πD 依逆时针次序排列,点 A 的极坐标为(2, ) . 3(Ⅰ)求点 A 、 B 、C 、 D 的直角坐标;(Ⅱ)设 P 为C 上任意一点,求| PA |2 + | PB |2 + | PC |2 + | PD |2 的取值范围.π5π 4π 11π(解析)(1)点 A , B , C , D 的极坐标为(2, ), (2, ), (2, ), (2, ) ,3 6 3 6点 A , B , C , D 的直角坐标为(1, 3),(-⎧x 0 = 2cos ϕ3,1), (-1, - 3),( 3, -1) .(2)设 P (x 0 , y 0 ) ;则⎨ y = 3sin (ϕ为参数) , ⎩ 0ϕt = PA 2+ PB 2+ PC 2+ PD 2= 4x 2 + 4 y 2 +16 = 32 + 20 sin 2ϕ∈32, 52.⎧x = 2 c os α 36.(2011 全国文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = 2 + 2 s in(α为参数),M 是C 上 α的动点, P 点满足OP = 2OM , P 点的轨迹为曲线C 2(Ⅰ)求C 2 的方程(Ⅱ)在以 O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ= π与C 的异于极点的交点为 A ,与C 的异于极点的交点为 B ,求 AB .31 2(解析)(I)设 P (x , y ) ,则由条件知 M( x , y).由于 M 点在C 上,⎧ x = 2 cos α ⎪ 2 2 2⎧ x = 4 cos α 1⎧ x = 4 cos α 所以⎨ y ,即⎨y = 4 + 4 s in ,从而C 2 的参数方程为⎨y = 4 + 4 s in (α为参数), ⎪ = 2 + 2 s in α ⎩ α ⎩ α⎩ 2(Ⅱ)曲线C 1 的极坐标方程为ρ= 4sin θ,曲线C 2 的极坐标方程为ρ= 8sin θ.射线θ= π与C 的交点 A 的极径为ρ = 4sin π,射线θ= π与C 的交点 B 的极径为ρ = 8sin π.3 1 1 3 32 23所以| AB |=| ρ2 - ρ1 |= 2 .。

极坐标与参数方程

极坐标与参数方程

选修4-4 极坐标与参数方程一、极坐标1.(1)极坐标系 (2)极坐标2.极坐标与直角坐标的互化 3.简单曲线的极坐标方程二.参数方程 1.概念2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).直线参数方程的标准形式的应用过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.若M 1,M 2是l 上的两点,其对应参数分别为t 1,t 2,则①|M 1M 2|=|t 1-t 2|.②若线段M 1M 2的中点M 所对应的参数为t ,则t =t 1+t 22,中点M 到定点M 0的距离|MM 0|=|t |=⎪⎪⎪⎪t 1+t 22.③若M 0为线段M 1M 2的中点,则t 1+t 2=0. ④|M 0M 1||M 0M 2|=|t 1t 2|.(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).1. (3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ (φ为参数)一、极坐标方程与直角坐标方程互化及判断曲线类型【例1】化下列极坐标方程为直角坐标方程,并说明它是什么曲线。

(1) 2540ρρ-+=; (2) 53cos 4sin ρθθ=+;(3) 523cos ρθ=-; (4)242ππρθθρ-+=, 其中R ρ∈【解析】(1)方程变形为(1)(4)0ρρ--=,∴1ρ=或4ρ=,即221x y +=或2216x y +=, 故原方程表示圆心在原点半径分别为1和4的两个圆。

(2) 变形得3cos 4sin 5ρθρθ+=,即3450x y +-=,故原方程表示直线3450x y +-=。

新课标极坐标参数方程高考题汇总

新课标极坐标参数方程高考题汇总

极坐标参数方程训练题1、(2014·福建高考理科·T21)已知直线l 的参数方程为2()4x a tt y t =-⎧⎨=-⎩为参数,圆C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩(θ为参数). (1)求直线l 和圆C 的普通方程; (2)若直线l 与圆C 有公共点,求实数a 的取值范围. 2..(2014·辽宁高考)将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C 的参数方程; (Ⅱ)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.3..(2014·新课标全国卷Ⅱ高考·T23) (2014·新课标全国卷Ⅱ高考理科数学·T23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈0,2π⎡⎤⎢⎥⎣⎦. (1)求C 的参数方程. (2)设点D 在C 上,C 在D 处的切线与直线l:y=3x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标.4.(15年新课标1)在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积.5.(2015新课标(II ))直角坐标系xoy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:23cos C ρθ=.(Ⅰ).求2C 与1C 交点的直角坐标;(Ⅱ).若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB的最大值.6.(2013·辽宁高考)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系。

高考专题训练-极坐标与参数方程(含解析)

高考专题训练-极坐标与参数方程(含解析)

精品题库试题理数1. (2014天津蓟县邦均中学高三第一次模拟考试,4) 圆为参数)的圆心到直线(t为参数)的距离是()A 1BC D 3[解析] 1. 圆的普通方程为, 圆心为(1, -2).直线的普通方程为, 所以点(1, -2) 到直线的距离为.2.(2014重庆一中高三下学期第一次月考,15)在直角坐标系中,以为极点,轴非负半轴为极轴建立极坐标系。

已知点,若极坐标方程为的曲线与直线(为参数)相交于、两点,则。

[解析] 2. 曲线的直角坐标系方程为,圆心在(3,-3),半径为;直线的普通方程为,该直线过圆心,且|OP|=5,所以过点P 且垂直于直线的直线被圆截得的弦长为,根据相交弦定理可得. 3. (2014天津蓟县第二中学高三第一次模拟考试,13) 圆心在,半径为3的圆的极坐标方程是 [解析] 3. 圆心在直角坐标系内的坐标为(-3,0),由此可得在直角坐标系内圆的方程为,即,根据及可得该圆的极坐标方程是. 4. (2014安徽合肥高三第二次质量检测,12) 在平面直角坐标系中,曲线的参数方程为(为参数). 以为极点,射线为极轴的极坐标系中,曲线的方程为,曲线与交于两点,则线段的长度为___________.[解析] 4.因为曲线的参数方程为(为参数),化为普通方程为, 又因为曲线的极坐标方成为,所以, 所以普通方程为,即, 所以圆心到直线的距离为,弦长.5. (2014重庆杨家坪中学高三下学期第一次月考,15) 直线(为参数)被曲线所截的弦长为_______________.[解析] 5. 由消去得,由整理得, 所以,即, 因为圆心到直线的距离为, 所以所求的弦长为.6. (2014湖北黄冈高三4月模拟考试,16) (选修4-4:坐标系与参数方程)已知曲线的极坐标方程为,则曲线上点到直线(为参数)距离的最大值为 . [解析] 6. 因为,所以,所以,即,其参数方程为(为参数),又因为,所以, 所以点到直线的距离为,(为参数), 故曲线上点到直线(为参数)距离的最大值为.7. (2014广东汕头普通高考模拟考试试题,14)在直角坐标系中,曲线的参数方程为(为参数);在极坐标系(与直角坐标系取相同的长度单位,且原点为极点,以轴正半轴为极轴)中,曲线的方程为,则与交点个数为___________.[解析] 7. 曲线,,由圆心到直线的距离,故与的交点个数为2.8. (2014广东广州高三调研测试,15) (坐标系与参数方程选讲选做题) 若点在曲线(为参数,)上,则的取值范围是______________.[解析] 8. 由已知P 点所在轨迹方程为,表示与原点连线的斜率。

极坐标与参数方程经典题型(附含详细解答)

极坐标与参数方程经典题型(附含详细解答)

专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。

高考数学十年真题专题解析—极坐标系与参数方程

高考数学十年真题专题解析—极坐标系与参数方程

极坐标系与参数方程考点116平面直角坐标系中的伸缩变换考点117极坐标和直角坐标的互化1.(2020全国Ⅱ文理21)已知曲线12,C C 的参数方程分别为2124cos ,:4sin x C y θθ⎧=⎪⎨=⎪⎩(θ为参数),21,:1x t tC y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将12,C C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设12,C C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解析】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=,由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭.设所求圆圆心的直角坐标为(),0a ,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=.2.(2020全国Ⅲ文理22)在直角坐标系xOy 中,曲线C 的参数方程为222,23x t t y t t⎧=--⎪⎨=-+⎪⎩(t 为参数且1t ≠),C 与坐标轴交于,A B 两点.(1)求AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【解析】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==.(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.3.(2020江苏22)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.【解析】(1)1122cos24;4sin 236ππρρρρ=∴==∴=Q Q .(2)5cos 2,4sin 4sin cos 2,sin 21[0,2),44ππρθρθθθθθπθ==∴=∴=∈∴=Q Q ,当4πθ=时ρ=;当54πθ=时0ρ=-<(舍);即所求交点坐标为当)4π.4.(2019全国II 文理22)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==由已知得||||cos23OP OA π==.设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭,经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上.所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ==即 4cos ρθ=..因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.5.(2019全国III 文理22)如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧 CD.(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【解析】(1)由题设可得,弧 ,,AB BCCD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-,所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫= ⎪⎝⎭ ,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫= ⎪⎝⎭ ,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=- ⎪⎝⎭.(2)设(,)P ρθ,由题设及(1)知若π04θ,则2cos θ=,解得π6θ=;若π3π44θ ,则2sin θ=π3θ=或2π3θ=;若3ππ4θ ,则2cos θ-=,解得5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.考点118参数方程与普通方程的互化6.(2020上海14)已知直线方程3410x y ++=的一个参数方程可以是()A .1314x ty t=+⎧⎨=-+⎩B .1413x t y t=-⎧⎨=--⎩C .1314x t y t=-⎧⎨=-+⎩D .1413x t y t=+⎧⎨=--⎩【答案】D【解析】A .参数方程可化简为4370x y --=,故A 不正确;B .参数方程可化简为3470x y --=,故B 不正确;C .参数方程可化简为4310x y +-=,故C 不正确;D .参数方程可化简为3410x y ++=,故D 正确.故选D .7.(2018全国Ⅲ)[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.【解析】(1)O 的直角坐标方程为221x y +=.当2απ=时,l 与O 交于两点.当2απ≠时,记tan k α=,则l 的方程为y kx =-.l 与O 交于两点当且仅当1<,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈.综上,α的取值范围是(,44π3π.(2)l的参数方程为cos ,(sin x t t y t αα=⎧⎪⎨=+⎪⎩为参数,44απ3π<<).设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A BP t t t +=,且A t ,B t满足2sin 10t α-+=.于是A B t t α+=,P t α=.又点P 的坐标(,)x y满足cos ,sin .P P x t y t αα=⎧⎪⎨=+⎪⎩所以点P的轨迹的参数方程是22,2cos 222x y αα⎧=⎪⎪⎨⎪=-⎪⎩(α为参数,44απ3π<<).考点119极坐标方程与参数方程的综合应用8.(2018北京文理)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =___.【答案】1【解析】利用cos x ρθ=,sin y ρθ=,可得直线的方程为0x y a +-=,圆的方程为22(1)1x y -+=,所以圆心(1,0),半径1r =,由于直线与圆相切,故圆心到直线的距离等于半径,即1=,∴1a =或1,又0a >,∴1a =+.9.(2017北京文理)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0)),则||AP 的最小值为___________.【答案】1【解析】圆的普通方程为222440x y x y +--+=,即22(1)(2)1x y -+-=.设圆心为(1,2)C ,所以min ||||211AP PC r =-=-=.10.(2017天津文理)在极坐标系中,直线4cos(106ρθπ-+=与圆2sin ρθ=的公共点的个数为_____.【答案】2【解析】直线的普通方程为210y ++=,圆的普通方程为22(1)1x y +-=,因为圆心到直线的距离314d =<,所以有两个交点.11.(2016北京文理)在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,A B 两点,则||AB =.【答案】2【解析】将cos sin 10ρθθ-=化为直角坐标方程为10x --=,将ρ=2cos θ化为直角坐标方程为22(1)1x y -+=,圆心坐标为(1,0),半径r=1,又(1,0)在直线10x -=上,所以|AB|=2r=2.12.(2015广东文理)已知直线l 的极坐标方程为2sin()24πρθ-=,点Α的极坐标为722,)4πA (,则点Α到直线l 的距离为.【答案】522【解析】由2sin()24πρθ-=得22(sin cos )22ρθθ´-=,所以1y x -=,故直线l 的直角坐标方程为10x y -+=,而点7(22,)4A π对应的直角坐标为(2,2)A -,所以点(2,2)A -到直线l :10x y -+=的距离为|221|5222++=.13.(2015安徽文理)在极坐标系中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是.【答案】6【解析】圆8sin ρθ=即28sin ρρθ=,化为直角坐标方程为22(4)16x y +-=,直线3πθ=,则tan 3θ=,化为直角坐标方程为30x y -=,圆心(0,4)到直线的距离为|4|24-=,所以圆上的点到直线距离的最大值为6.14.(2020全国Ⅰ文理21)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=.(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.【解析】(1)当1k =时,曲线1C 的参数方程为cos ,sin x t y t=⎧⎨=⎩(t 为参数),两式平方相加得221x y +=,∴曲线1C 表示以坐标原点为圆心,半径为1的圆.(2)当4k =时,曲线1C 的参数方程为44cos ,sin x t y t⎧=⎨=⎩(t 为参数),∴0,0x y ≥≥,曲线1C 的参数方程化为22cos (sin x tt y t==为参数),两式相加得曲线1C 方程为1x y +=,得1y x =-,平方得1,01,01y x x y=-+≤≤≤≤,曲线2C的极坐标方程为4cos16sin30ρθρθ-+=,曲线2C直角坐标方程为41630x y-+=,联立12,C C方程1,41630y xx y⎧=-+⎪⎨-+=⎪⎩,整理得12130x-=12=136=(舍去),11,44x y∴==,12,C C∴公共点的直角坐标为11(,)44.15.(2019全国1文理22)在直角坐标系xOy中,曲线C的参数方程为2221141txttyt⎧-=⎪⎪+⎨⎪=⎪+⎩,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin110ρθθ+=.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.【解析】(1)因为221111tt--<≤+,且()22222222141211y t txt t⎛⎫-⎛⎫+=+=⎪⎪+⎝⎭⎝⎭+,所以C的直角坐标方程为221(1)4yx x+=≠-.l的直角坐标方程为2110x++=.(2)由(1)可设C的参数方程为cos,2sinxyαα=⎧⎨=⎩(α为参数,ππα-<<).C上的点到lπ4cos113α⎛⎫-+⎪=.当2π3α=-时,π4cos113α⎛⎫-+⎪⎝⎭取得最小值7,故C上的点到l.16.(2018全国Ⅰ文理)在直角坐标系xOy中,曲线1C的方程为||2y k x=+.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线2C的极坐标方程为22cos30ρρθ+-=.(1)求2C的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.【解析】(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为22=,故0k =或43k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点.综上,所求1C 的方程为4||23y x =-+.17.(2018全国Ⅱ文理)在直角坐标系xOy 中,曲线C 的参数方程为2cos ,4sin ,=⎧⎨=⎩x θy θ(θ为参数),直线l 的参数方程为1cos 2sin =+⎧⎨=+⎩x t αy t α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.【解析】(1)曲线C 的直角坐标方程为221416+=x y .当cos 0α≠时,l 的直角坐标方程为tan 2tan αα=⋅+-y x ;当cos 0α=时,l 的直角坐标方程为1=x .(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos sin )80ααα+++-=t t .①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120+=t t .又由①得1224(2cos sin )13cos ααα++=-+t t ,故2cos sin 0αα+=,于是直线l 的斜率tan 2α==-k .18.(2018江苏)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.【解析】因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过(4,0)A ,倾斜角为π6,所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB=π6,连结OB ,因为OA 为直径,从而∠OBA=π2,所以π4cos 6AB ==.因此,直线l 被曲线C截得的弦长为.19.(2017全国Ⅰ文理)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l,求a .【解析】(1)曲线C 的普通方程为2219x y +=.当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩,从而C 与l 的交点坐标为(3,0),2124(,2525-.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l的距离为d =.当4a -≥时,d=,所以8a =;当4a <-时,d=16a =-.综上,8a =或16a =-.20.(2017全国Ⅱ文理)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,3π,点B 在曲线2C 上,求OAB ∆面积的最大值.【解析】(1)设P 的极坐标为(,)ρθ(0)ρ>,M 的极坐标为1(,)ρθ1(0)ρ>.由椭圆知||OP ρ=,14||cos OM ρθ==.由||||16OM OP ⋅=得2C 的极坐标方程4cos ρθ=(0)ρ>,因此2C 的直角坐标方程为22(2)4(0)x y x -+=≠.(2)设点B 的极坐标为(,)B ρα(0)B ρ>.由题设知||2OA =,4cos B ρα=,于是OAB ∆面积1||sin 2B S OA AOB ρ=⋅⋅∠4cos |sin()|3παα=-32|sin(2|32πα=--2+≤当12πα=-时,S取得最大值2+OAB ∆面积的最大值为2+.21.(2017全国Ⅲ文理)在直角坐标系xOy 中,直线1l 的参数方程为2x ty kt =+⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x mm y k =-+⎧⎪⎨=⎪⎩(m 为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l :(cos sin )ρθθ+-0=,M 为3l 与C 的交点,求M 的极径.【解析】(1)消去参数t 得1l 的普通方程():l y k x =-12,消去参数m 得2l 的普通方程():l y x k=+212.设(,)P x y ,由题设得()()y k x y x k ⎧=-⎪⎨=+⎪⎩212,消去k 得()x y y -=≠2240,所以C 的普通方程为()x y y -=≠2240.(2)C 的极坐标方程为()cos sin ρθθ-=2224(),θπθπ≠0<<2,联立()()cos sin cos sin ρθθρθθ⎧-=⎪⎨⎪⎩2224+得()cos sin cos sin θθθθ-=2+,故tan θ=-13,从而cos sin θθ2291=,=1010,代入()cos sin ρθθ222-=4得ρ2=5,所以交点M22.(2017江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为82x tty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【解析】直线l 的普通方程为280x y -+=.因为点P 在曲线C上,设2(2,)P s ,从而点P 到直线l的的距离22d ==s =min 455d =.因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l的距离取到最小值5.23.(2016全国I 文理)在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :4cos ρθ=.(I)说明1C 是哪种曲线,并将1C 的方程化为极坐标方程;(II)直线3C 的极坐标方程为0=a θ,其中0a 满足0tan =2a ,若曲线1C 与2C 的公共点都在3C 上,求a .【解析】(1)cos 1sin x a t y a t=⎧⎨=+⎩(t 均为参数),∴()2221x y a +-=①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-=.∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-=,即为1C 的极坐标方程.(2)24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+= ,,224x y x ∴+=,即()2224x y -+=②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C ,①—②得:24210x y a -+-=,即为3C ,∴210a -=,∴1a =.24.(2016全国II 文理)在直角坐标系xOy 中,圆C 的方程为()22625x y ++=.(I)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B 两点,10AB =,求l 的斜率.【解析】(Ⅰ)整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.(Ⅱ)记直线的斜率为k ,则直线的方程为0kx y -=,由垂径定理及点到直线距离公式知:226102521kk ⎛⎫-=- ⎪ ⎪+⎝⎭,即22369014k k =+,整理得253k =,则153k =±.25.(2016全国III 文理)在直角坐标系xOy 中,曲线1C 的参数方程为3cos sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+=.(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.【解析】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=.(Ⅱ)由题意,可设点P 的直角坐标为3,sin )αα,因为2C 是直线,所以||PQ 的最小值,即为P 到2C的距离()d α的最小值,|3cos sin 4|()2|sin()2|32d ααπαα+-==+-.当且仅当2()6k k Z παπ=+∈时,()d α2,此时P 的直角坐标为31(,)22.26.(2016江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为()11,23,2x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长.【解析】椭圆C 的普通方程为2214y x +=,将直线l 的参数方程11232x t y t⎧=+⎪⎪⎨⎪=⎪⎩,代入2214y x +=,得223()12(1)124t ++=,即27160t t +=,解得10t =,2167t =-,所以1216||7AB t t =-=.27.(2015全国Ⅰ文理)在直角坐标系xOy 中,直线1C :2x =-,圆2C :22(1)(2)1x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.【解析】(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=222ρ2,|MN|=1ρ-2ρ2,因为2C 的半径为1,则2C MN 的面积o121sin 452⨯=12.28.(2015全国Ⅱ文理)在直角坐标系xOy 中,曲线1C :cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数,t ≠0)其中0απ<≤,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :2sin ρθ=,3C :23ρθ=.(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 的最大值.【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C的直角坐标方程为220x y +-=.联立222220,0,x y y x y ⎧+-=⎪⎨+-=⎪⎩解得0,0,x y =⎧⎨=⎩或3,23,2x y ⎧=⎪⎪⎨⎪=⎪⎩所以2C 与1C 交点的直角坐标为(0,0)和33,22.(Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B的极坐标为,)αα.所以2sin AB αα=-4in(3s πα=-,当56πα=时,AB 取得最大值,最大值为4.29.(2015江苏)已知圆C的极坐标方程为2sin(404πρθ+--=,求圆C 的半径.【解析】以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xoy .圆C的极坐标方程为2sin cos 4022ρθθ⎛⎫+--= ⎪ ⎪⎝⎭,化简,得22sin 2cos 40ρρθρθ+--=.则圆C 的直角坐标方程为222240x y x y +-+-=,即()()22116x y -++=,所以圆C.30.(2015陕西文理)在直角坐标系xOy 中,直线l 的参数方程为13232x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρθ=.(Ⅰ)写出⊙C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.【解析】(Ⅰ)由2,sin ρθρθ==得,从而有(2222+,+3x y x y =-=所以.(Ⅱ)设13(3t,t),22P +又,则|PC |==,故当t =0时,|PC |取最小值,此时P 点的直角坐标为(3,0).31.(2014全国Ⅰ文理)已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.【解析】2cos .().3sin .x y θθθ=⎧⎨=⎩(I)曲线C的参数方程为为参数60.l x y +-=直线的普通方程为2……5分(Ⅱ)cos sin l θθ曲线C上任意一点P(2.3)到的距离为3sin 6.d θθ=+-4)6,tan .sin 303d PA θααα==+-=︒则其中为锐角,且sin 5PA θα当(+)=-1时,取得最大值,最大值为25sin()1.5PA θα+=当时,取得最小值,最小值为32.(2014全国Ⅱ文理)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.【解析】(I)C 的普通方程为22(1)1(01)x y y -+=≤≤,可得C 的参数方程为1cos ,sin ,x t y t =+⎧⎨=⎩(t 为参数,0t x ≤≤).(Ⅱ)设D (1cos ,sin )t t +.由(I)知C 是以G(1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与t 垂直,所以直线GD 与t 的斜率相同,tan 3t t π==.故D 的直角坐标为(1cos,sin 33ππ+,即33(,22.33.(2013全国Ⅰ文理)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.(Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤≤).【解析】将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为4π),(2,2π.34.(2013全国Ⅱ文理)已知动点P ,Q 都在曲线C :()2cos 2sin x y βββ=⎧⎨=⎩为参数上,对应参数分别为βα=与2βα=(02απ<<)M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【解析】(Ⅰ)由题意有()()2cos ,2sin ,2cos 2,2sin 2,P Q αααα因此()cos cos 2,sin sin 2M αααα++,M 的轨迹的参数方程为cos cos 2,sin sin 2,x y αααα=+⎧⎨=+⎩(02απ<<).(Ⅱ)M 点到坐标原点的距离d ==(02απ<<),当απ=时,0d =,故M 的轨迹过坐标原点.35.(2012全国文理)已知曲线1C 的参数方程是⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,且A 、B 、C 、D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PD PC PB P A +++的取值范围.【解析】(1)点,,,A B C D 的极坐标为5411(2,),(2,),(2,),(2,)3636ππππ,点,,,A B C D 的直角坐标为(1,3),(3,1),(1,3),(3,1)----.(2)设00(,)P x y ;则002cos ()3sin x y ϕϕϕ=⎧⎨=⎩为参数,222222004416t PA PB PC PD x y =+++=++23220sin [32,52]ϕ=+∈.36.(2011全国文理)在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足2OP OM =uuu v uuuv,P 点的轨迹为曲线2C (Ⅰ)求2C 的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .【解析】(I)设(,)P x y ,则由条件知M(,22x y).由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩,从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数),(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=.射线3πθ=与1C 的交点A 的极径为14sin 3πρ=,射线3πθ=与2C 的交点B 的极径为28sin 3πρ=.所以21||||23AB ρρ-==。

极坐标与参数方程 练习题及解析

 极坐标与参数方程 练习题及解析

极坐标与参数方程练习题及解析1.平面直角坐标系中的伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换,(0):,(0)x xy yλλϕμμ''=⋅>⎧⎨=⋅>⎩的作用下,点P(x,y)对应到点P′(x′,y′),称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.点M的极坐标:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的∠xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记为M(ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任何实数.注:极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一个点.极点O的坐标为(0,θ)(θ∈R).若ρ<0,则−ρ>0,规定点(−ρ,θ)与点(ρ,θ)关于极点对称,即(−ρ,θ)与(ρ,π+θ)表示同一点.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示(即一一对应的关系);同时,极坐标(ρ,θ)表示的点也是唯一确定的.极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应唯一点P(ρ,θ),但平面内任一个点P的极坐标不唯一.一个点可以有无数个坐标,这些坐标又有规律可循的,P(ρ,θ)(极点除外)的全部坐标为(ρ,θ+2kπ)或(−ρ,θ+(2k+1)π),(k∈Z).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制,则除极点外,平面上点的极坐标就唯一了,如限定ρ>0,0≤θ<2π或ρ< 0,−π<θ≤π等.极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的,即一个点的极坐标是不唯一的.3.极坐标与直角坐标的互化设M是平面内任意一点,它的直角坐标是(x,y),极坐标是(ρ,θ),从图中可以得出:x =ρcos θ , y =ρsin θ , ρ2=x 2+y 2 , ()tan 0yx xθ=≠. 4.常见曲线的极坐标方程5在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数()()x f t y g t =⎧⎪⎨=⎪⎩,并且对于t 的每一个允许值,由这个方程所确定的点M(x ,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.6.常见曲线的参数方程(1)经过定点()00,P x y ,倾斜角为2παα⎛⎫≠⎪⎝⎭的直线的参数方程00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数).设P 是直线上的任意一点,则t 表示有向线段P 0P ⃗⃗⃗⃗⃗⃗⃗ 的数量.参数的几何意义是有向线段P 0P ⃗⃗⃗⃗⃗⃗⃗ 的数量. (2)圆(x −a)2+(y −b)2=r 2的参数方程为cos sin x a r y b r θθ=+⎧⎨=+⎩(θ为参数).(3)椭圆22221(0)x y a b a b +=>>的参数方程为cos sin x a y b ϕϕ=⎧⎨=⎩(φ为参数);椭圆22221(0)y x a b a b +=>>的参数方程为cos sin x b y a ϕϕ=⎧⎨=⎩(φ为参数).(4)抛物线y 2=2px 参数方程22(2x pt t y pt⎧=⎨=⎩为参数,1tan t α=).参数t 的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数. 7.参数方程与普通方程之间的互化在建立曲线的参数方程时,要注明参数及参数的取值范围.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.参数方程化为普通方程的关键是消参数,并且要保证等价性.若不可避免地破坏了同解变形, 则一定要通过.根据t 的取值范围导出的取值范围.)(),(t g y t f x ==y x ,一、解答题.1.直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y αα=⎧⎨=⎩(α为参数),直线l 的参数方程为13x ty t =-⎧⎨=+⎩(t 为参数).(1)求直线l 的普通方程,说明C 是哪一种曲线; (2)设M ,N 分别为l 和C 上的动点,求|MN|的最小值.【答案】(1)l:x +y =4,曲线C 是焦点在x 轴上的椭圆;(2)2√2−√5.【解析】(1)由题得直线l:x +y =4,曲线22:13x C y ⎛⎫+= ⎪⎝⎭,即2219x y +=, 所以曲线C 是焦点在x 轴上的椭圆.(2)设N(3cos α,sin α),则|MN|就是点N 到直线l 的距离,MN ==(φ的终边在第一象限且tan φ=3),当sin(α+φ)=1时,min ||MN ==. 【点评】参数方程里求直线上的点到曲线上的点的最值,一般先利用曲线的参数方程设点,再利用点到直线的距离求出距离的函数表达式,再利用三角函数的图象和性质求解.2.已知在平面直角坐标系xOy 中,直线l 过点M (0,1),倾斜角为α,以O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,圆C 的极坐标方程为ρ=4sin θ. (1)把圆C 的极坐标方程化为直角坐标方程,并求直线l 的参数方程; (2)若直线l 被圆C 截得的弦长为√13,求直线l 的倾斜角α. 【答案】(1)C :x 2+y 2−4y =0,cos :1sin x t l y t αα=⎧⎨=+⎩(t 为参数);(2)6πα=或56π.【解析】(1)ρ=4sin θ⇒ρ2=4ρsin θ, 所以圆C 的直角坐标方程为x 2+y 2−4y =0,① 直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数).②(2)将②代入①⇒t 2−2sin α⋅t −3=0⇒t 1+t 2=2sin α,123t t ⋅=-,l 被C 截得弦长121sin 2d t t α=-====, ∴6πα=或56π. 【点评】本题考查了极坐标方程与普通方程的互换,直线参数方程中,参数的几何意义,属于中档题. 3.在极坐标系中,圆C 的极坐标方程为ρ2=4ρ(cos θ+sin θ)−3,若以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求圆C 的一个参数方程;(2)在平面直角坐标系中,P (x ,y)是圆C 上的动点,试求x +2y 的最大值,并求出此时点P 的直角坐标.【答案】(1)2(2x y ϕϕϕ⎧=⎪⎨=+⎪⎩是参数);(2)最大值为11,P(3,4).【解析】(1)因为ρ2=4ρ(cos θ+sin θ)−3,所以x 2+y 2−4x −4y +3=0, 即(x −2)2+(y −2)2=5为圆C 的直角坐标方程,所以圆C的一个参数方程为2(2x y ϕϕϕ⎧=⎪⎨=⎪⎩为参数).(2)由(1)可知点P 的坐标可设为(2+√5cos φ,2+√5sin φ),则x +2y =2+√5cos φ+4+2√5sin φ=2√5sin φ+√5cos φ+6=5sin(φ+α)+6,其中cos α=,sin α=, 当x +2y 取最大值时,sin(φ+α)=1,2,2k k πϕαπ+=+∈Z ,此时cos cos()sin 2πϕαα=-==,sin sin()cos 2πϕαα=-== 所以x +2y 的最大值为11,此时点P 的直角坐标为(3,4).【点评】本题考查了极坐标与直角坐标的互化公式,同角三角函数的基本关系式、圆的参数方程及其应用、三角函数单调性与值域,属于中档题.4.在平面直角坐标系xOy 中,直线l 过定点P (3,0),倾斜角为02παα⎛⎫<<⎪⎝⎭,曲线C 的参数方程为1122x t tt y t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数);以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.(2)已知直线l 交曲线C 于M ,N 两点,且103PM PN ⋅=,求l 的参数方程. 【答案】(1)2222cos 4sin 4ρθρθ-=;(2)322x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).【解析】(1)由1122x t t t y t ⎧=+⎪⎪⎨⎪=-⎪⎩,得112x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩,∵2222221111224t t t t t t t t ⎛⎫⎛⎫+--=++-+-= ⎪ ⎪⎝⎭⎝⎭,∴x 2−(2y )2=4,即x 2−4y 2=4,又cos sin x y ρθρθ=⎧⎨=⎩,∴2222cos 4sin 4ρθρθ-=, 即曲线C 的极坐标方程为2222cos 4sin 4ρθρθ-=. (2)设l 的参数方程为3cos sin x t y t αα=+⎧⎨=⎩(t 为参数),代入x 2−4y 2=4,整理得()222cos 4sin 6cos 50t t ααα-++=, 设方程的两根分别为t 1,t 2,则12225cos 4sin t t αα=-, 则1222510cos 4sin 3PM PN t t αα⋅===-,解得cos 2α=±, ∵02πα<<,∴4πα=,故l的参数方程为322x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).【点评】在利用参数的几何意义时,一定要将参数方程化为标准方程.5.在平面直角坐标系xOy 中,曲线C 1是圆心在(0,2),半径为2的圆,曲线C 2的参数方程为4x ty t π⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩(t 为参数且02t π≤≤),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(2)若曲线C 2与坐标轴交于A 、B 两点,点P 为线段AB 上任意一点,直线OP 与曲线C 1交于点M (异于原点),求OM OP的最大值.【答案】(1)ρ=4sin θ;(2)√2+1.【解析】(1)曲线C 1的直角坐标方程为x 2+(y −2)2=4,即x 2+y 2−4y =0, 所以曲线C 1的极坐标方程为24sin ρρθ=,即ρ=4sin θ.(2)曲线C 2的参数方程为4x ty t π⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩,因为曲线C 2与两坐标轴相交,所以曲线C 2交x 轴于点A (2,0)、交y 轴于点B (0,2), 所以,线段AB 的方程为x +y −2=0(0≤x ≤2), 则线段AB 的极坐标方程为cos sin 2002πρθρθθ⎛⎫+-=≤≤ ⎪⎝⎭, 设点P 、Q 的极坐标分别为P (ρ1,θ)、Q (ρ2,θ),点P 在线段AB 上,可得ρ1cos θ+ρ1sin θ=2,可得12sin cos OP ρθθ==+,点Q 在曲线C 1上,则|OM |=ρ2=4sin θ,2sin cos 4sin 2sin 2sin cos sin 2cos 212OM OP θθθθθθθθ+=⨯=+=-+214πθ⎛⎫=-+ ⎪⎝⎭,02πθ≤≤,可得32444πππθ-≤-≤, 当242ππθ-=时,即当38πθ=时,OM OP取得最大值√2+1.【点评】在已知直角坐标方程求曲线的交点、距离、线段长度等几何问题时,如果不能直接用直角坐标解决,或用直角坐标解决较为麻烦,可将直角坐标方程转化为极坐标方程解决.6.在直角坐标系xOy 中,直线cos :sin x t l y t αα⎧=⎪⎨=⎪⎩(t 为参数)与曲线22:2x m C y m ⎧=⎨=⎩(m 为参数)相交于不同的两点A ,B . (1)当4πα=时,求直线l 与曲线C 的普通方程;(2)若|MA ||MB |=2||MA |−|MB ||,其中M (√3,0),求直线l 的倾斜角. 【答案】(1)l :y =x −√3,C :y 2=2x ;(2)6π或56π.【解析】(1)当4πα=时,直线l 的普通方程为y =x −√3,曲线C 的普通方程为y 2=2x .(2)将直线cos :sin x t l y t αα⎧=⎪⎨=⎪⎩,代入y 2=2x ,得 sin 2α⋅t 2−2cos α⋅t −2√3=0,224cos 0Δαα=+>,1222cos sin t t αα+=,12t t =121222cos ||||2||22sin MA MB MA MB t t t t αα=-⇒=+⇒=‖‖,|cos |2α∴=, 所以直线l 的倾斜角为6π或56π.【点评】本题考查参数方程化普通方程,考查直线方程中此时t 的几何意义的应用,是中档题. 7.在直角坐标系xOy 中,曲线C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)设A ,B 为曲线C 上不同两点(均不与O 重合),且满足4AOB π∠=,求OAB △的最大面积.【答案】(1)ρ=4sin θ;(2)2√2+2.【解析】(1)设曲线C 上任意点的极坐标为(ρ,θ),由题意,曲线C 的普通方程为x 2+(y −2)2=4,即x 2+y 2−4y =0, 则24sin ρρθ=,故曲线C 的极坐标方程为ρ=4sin θ. (2)设A(ρ1,θ),则2,4B πρθ⎛⎫+⎪⎝⎭,故30,4πθ⎛⎫∈ ⎪⎝⎭,因为点A ,B 在曲线C 上,则ρ1=4sin θ,24sin()4πρθ=+,故1sin sin()24AOB S OA OB AOB πθθ=∠=+△24(sin sin cos )2sin 22cos 22)24πθθθθθθ=+=-+=-+,30,4πθ⎛⎫∈ ⎪⎝⎭,故38πθ=时,OAB △取到最大面积为2√2+2. 【点评】本题考查参数方程、普通方程以及极坐标方程的转化,其中普通方程与极坐标方程转化的公式为222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,考查两线段积的取值范围的求法,涉及三角函数的辅助角公式以及三角函数的值域,考查学生转化与化归的思想以及运算求解的能力,属于中档题.一、解答题.1.在平面直角坐标系xOy 中,已知曲线C 1的参数方程为2cos 22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4cos θ. (1)求曲线C 1与曲线C 2两交点所在直线的极坐标方程; (2)若直线l 1过点P (1,2)且与直线:2sin 16l πρθ⎛⎫+= ⎪⎝⎭平行,直线l 1与曲线C 1相交于A ,B 两点, 求11PA PB+的值. 【答案】(1)4πθ=(ρ∈R );(2)3. 【解析】(1)由2cos 22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),消去参数ϕ,得曲线C 1的普通方程为x 2+(y −2)2=4, 由4cos ρθ=,得24cos ρρθ=,得曲线C 2的直角坐标方程为x 2+y 2=4x ,即(x −2)2+y 2=4. 所以两方程相减可得交线为y =x , 所以直线的极坐标方程为4πθ=(ρ∈R ).(2)由:2sin 16l πρθ⎛⎫+= ⎪⎝⎭,得√3ρsin θ+ρcos θ=1, ∴直线l 的直角坐标方程x +√3y =1, 直线l 的斜率为33-,所以直线l 1的斜率为33-,倾斜角为56π, 所以直线l 1的参数方程为312122x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数), 将直线l 1的参数方程代入曲线C 1,x 2+(y −2)2=4中,得2330t t --=. 设A ,B 两点的参数为t 1,t 2,∴123t t +=,t 1t 2=−3,则t 1,t 2异号.∴()21212121212124111115333t t t t t t t t PA PB t t t t +-+-+=+====. 【点评】将参数方程化为普通方程消参的3种方法: (1)利用解方程的技巧求出参数的表达式,然后代入消参; (2)利用三角恒等式消去参数;(3)根据参数方程本身的结构特征,灵活选用一些方法从整体上消去参数.一、解答题.1.已知曲线C 1的参数方程为21(23x t t y t =+⎧⎨=-⎩为参数),以原点为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C 2:ρ=2a cos θ(a >0)关于C 1对称. (1)求C 1的极坐标方程,C 2的直角坐标方程;(2)已知曲线223:143x y C a a+=与两坐标轴正半轴交于A 、B 两点,P 为3C 上任一点,求△ABP 的面积的最大值.【答案】(1)1sin 220:4C πρθ⎛⎫-+= ⎪⎝⎭;C 2:(x −4)2+y 2=16;(2)4643+. 【解析】(1)121:23x t C y t =+⎧⎨=-⎩,消去t ,得x −y =4.精准预测题又cos sin x y ρθρθ=⎧⎨=⎩,代入x −y =4,得cos sin 40ρθρθ--=,∴cos sin 40sin 404πρθρθθ⎛⎫--=⇒-+= ⎪⎝⎭,所以C 1的极坐标方程为sin 04πρθ⎛⎫-+= ⎪⎝⎭;C 2:ρ=2a cos θ(a >0)化为(x −a )2+y 2=a 2(a >0), 又C 2关于C 1:x −y =4对称,∴(a ,0)∈C 1,∴a =4, ∴C 2:(x −4)2+y 2=16.(2)由(1)知a =4,∴223:11612x y C +=,∴A (4,0),B (0,2√3), ∴|AB |=2√7,易得l AB :√3x +2y −4√3=0,设P (4cos θ,2√3sin θ)到l AB 的距离为d .则1d ==≤当sin 14πθ⎛⎫+=- ⎪⎝⎭时,d1.∴()max11122ABP S AB d ==⨯=△. 【点评】本题关键在于准确运用x =ρcos θ,y =ρsin θ进行由极坐标方程向直角坐标方程转化,以及利用椭圆的参数方程求点到直线的最值.2.在直角坐标系xOy 中,直线l 过点P(0,2),倾斜角为2παα⎛⎫≠⎪⎝⎭.以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos 2θ−2sin θ=0. (1)求直线l 的参数方程与曲线C 的直角坐标方程;(2)若直线l 交曲线C 于A ,B 两点,M 为AB 中点,且满足|PA|,|PM|,|PB|成等比数列,求直线l 的斜率.【答案】(1)l 的参数方程为cos 2sin x t y t αα=⎧⎨=+⎩(t 为参数),C 的直角坐标方程为x 2=2y ;(2)斜率为±2.【解析】(1)因为直线l 过点P(0,2),倾斜角为2παα⎛⎫≠⎪⎝⎭, 所以直线l 的参数方程为cos 2sin x t y t αα=⎧⎨=+⎩(t 为参数) .因为ρcos 2θ=2sin θ,所以ρ2cos 2θ=2ρsin θ, 所以曲线C 的直角坐标方程为x 2=2y . (2)将直线l 的参数方程为cos 2sin x t y t αα=⎧⎨=+⎩(t 为参数),代入x 2=2y 可得: cos 2αt 2−2t sin α−4=0, 设A ,B 所对应的参数为t 1,t 2,所以1222sin cos t t αα+=,1224cos t t α-⋅=, 因为|PA|,|PM|,|PB|成等比数列,所以212122t t t t +⎛⎫= ⎪⎝⎭,即242sin cos os 4c ααα=, 解得tan 2α=4,tan α=±2,故直线l 的斜率为±2.【点评】解题的关键是熟练掌握极坐标与普通方程、参数方程与普通方程的互化;在利用t 的几何意义时,要将直线参数方程的标准形式代入到曲线的直角坐标方程里,方可进行求解,考查计算化简的能力,属基础题.3.在直角坐标系xOy 中,已知点M(2,0),曲线C 1的参数方程为cos sin x ty t =⎧⎨=⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为θ=θ0(ρ>0),点Q 是C 1与C 2的公共点. (1)当03πθ=时,求直线MQ 的极坐标方程;(2)当023πθ=时,记直线MQ 与曲线C 1的另一个公共点为P ,求|MP|⋅|MQ|的值. 【答案】(1)ρcos θ+√3ρsin θ−2=0;(2)3. 【解析】(1)曲线C 1的普通方程是x 2+y 2=1,当03πθ=时,点Q 的坐标为12⎛ ⎝⎭, 直线MQ 的普通方程为x +√3y −2=0,所以直线MQ 的极坐标方程为ρcos θ+√3ρsin θ−2=0.(2)当023πθ=时,点Q 的坐标为1,22⎛- ⎝⎭,所以MQ 的斜率为5k =-,所以直线MQ的参数方程为214x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 代入x 2+y 2=1并化简得230t -+=, 设它的两根为t 1,t 2,则|MP|⋅|MQ|=|t 1t 2|=3.【点评】本题考查极坐标方程与普通方程的互化,直线参数方程的几何意义.其中第二问解题的关键在于根据题意写出直线MQ的参数方程为214x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),进而利用直线参数方程几何意义求解. 4.在平面直角坐标系xOy 中,曲线C 1的参数方程为2cos sin x t y t αα=+⎧⎨=⎩(t 为参数,t ,α∈R ),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin 2cos 0ρθθ-=. (1)将C 1,C 2的方程化为普通方程,并说明它们分别表示什么曲线; (2)设曲线C 1与C 2的交点分别为A ,B ,求△OAB 的面积的最小值.【答案】(1)C 1:x sin α−y cos α−2sin α=0,曲线C 1表示过点()2,0的直线;C 2:y 2=2x ,曲线C 2表示抛物线;(2)4. 【解析】(1)由12cos :sin x t C y t αα=+⎧⎨=⎩(t 为参数),消去t 得C 1:y cos α=(x −2)sin α,即x sin α−y cos α−2sin α=0,曲线C 1表示过点(2,0)的直线. 由C 2:ρsin 2θ−2cos θ=0,得22sin 2cos 0ρθρθ-=.将x =ρcos θ,y =ρsin θ代入C 2的方程得y 2=2x ,曲线C 2表示抛物线. (2)由于直线C 1过定点(2,0),由题意可设C 1:x =my +2.联立222x my y x=+⎧⎨=⎩,消去x 得y 2−2my −4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2m ,y 1y 2=−4,且C 1与x 轴的交点为(2,0), 所以12122OAB S y y =⨯-==△,所以当m =0时,S △OAB 取得最小值4.【点评】本题考查直线的参数方程,极坐标方程与平面直角坐标方程的互化,以及直线与抛物线的位置关系,三角形面积的最值问题,属于中档题.5.数学中有许多寓意美好的曲线,在极坐标系中,曲线C :ρ=sin 3θ(ρ∈R ,[)0,2θπ∈)被称为“三叶玫瑰线”(如图所示).(1)求以极点为圆心的单位圆与三叶玫瑰线交点的极坐标; (2)射线l 1,l 2的极坐标方程分别为θ=θ0,02πθθ=+([)00,2θπ∈,ρ>0),l 1,l 2分别交曲线C 于点M ,N 两点,求2211OMON+的最小值.【答案】(1)1,6A π⎛⎫ ⎪⎝⎭,51,6B π⎛⎫ ⎪⎝⎭,31,2C π⎛⎫⎪⎝⎭;(2)4. 【解析】(1)将单位圆与三叶玫瑰线联立sin31ρθρ=⎧⎨=⎩,解得sin 3θ=1,所以()322k k πθπ=+∈Z ,()263k k ππθ=+∈Z ,因为[)0,2θπ∈,所以取k =0,1,2,得6πθ=,56π,32π,从而得到单位圆与三叶玫瑰线交点的极坐标为1,6A π⎛⎫ ⎪⎝⎭,51,6B π⎛⎫ ⎪⎝⎭,31,2C π⎛⎫⎪⎝⎭. (2)将θ=θ0,02πθθ=+代入C :[)()sin3,0,2ρθρθπ=∈∈R ,点M ,N 所对应的极径分别为ρ1,ρ2,所以ρ1=sin 3θ0,ρ2=−cos 3θ0, 即220sin 3OMθ=,|ON |2=cos 23θ0,()22002222220000111111sin 3cos 3||||sin 3cos 3sin 3cos 3OM ON θθθθθθ⎛⎫+=+=++ ⎪⎝⎭22002200sin 3cos 324cos 3sin 3θθθθ=++≥, 当且仅当 tan 23θ0=1时,取得最小值4.【点评】本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,极径的应用,三角函数关系式的转换,主要考查学生的运算能力和转换能力及思维能力,属于基础题.。

极坐标与参数方程精选习题

极坐标与参数方程精选习题

极坐标与参数方程【重要知识】一、极坐标:(极坐标与直角坐标系的互相转化)1、极坐标→直角坐标系:(1)222y x +=ρ;(2)θρsin =y ;(3)θρcos =x2、直角坐标系→极坐标:(1)222y x +=ρ;(2)θ可以利用直角坐标系观察得出 二、参数方程:1、利用平方关系1cos sin 22=+θθ进行消参 2、利用t 相等进行消参【重要题型】1、已知曲线C 1与C 2的极坐标方向分别为cos 3ρθ=,4cos ρθ=(ρ≥0,0≤θ<2π),则曲线C 1与C 2交点的极坐标为________.2、在极坐标系(,)ρθ (02)θπ≤<中,曲线(cos sin )1ρθθ+=与(sin cos )1ρθθ-=的交点的极坐标为 .3、在极坐标系中,点)3,2(πM 到直线22)4sin(:=+πθρl 的距离为 4、在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧-=+=t y t x 33(参数R t ∈),圆C 的参数方程为⎩⎨⎧+==2sin 2cos 2θθy x (参数]2,0[πθ∈),则圆C 的圆心坐标为 ,圆心到直线l 的距离为 5、若直线1223x ty t =-⎧⎨=+⎩(t 为参数)与直线41x ky +=垂直,则常数k = .6、已知两曲线参数方程分别为sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x t y t⎧=⎪⎨⎪=⎩(t ∈)R ,它们的交点坐标为___________.7、已知直线l 的参数方程为⎩⎨⎧+==ty tx 412(t 为参数),圆C 的极坐标方程为θρsin 22=,则直线l 与圆C 的位置关系为8、直线0743=-+y x 截曲线⎩⎨⎧+==ααsin 1cos y x (α为参数)的弦长为9、已知圆C 的极坐标方程为2cos ρθ=,则圆C 上点到直线:l cos 2sin 40ρθρθ-+=的最短距离为10、在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s=+⎧⎨=-⎩(s 为参数)和C :22,x t y t=+⎧⎨=⎩(t 为参数),若l 与C 相交于A 、B 两点,则AB = .【参考答案】1、【答案】)6,32(π【解析】由cos 3ρθ=得,3=x ;由4cos ρθ=得,θρρc o s 42=,即x y x 422=+,即4)2(22=+-y x0≤θ<2π,0,0>≥∴y x 由⎩⎨⎧=+-=4)2(322y x x 解得,⎩⎨⎧±==33y x ,即⎩⎨⎧==33y x 利用直角坐标系可以看出,交点的极坐标为)6,32(π2、【答案】(1,)2π【解析】由(cos sin )1ρθθ+=得,1sin cos =+θρθρ,即1x y +=由(sin cos )1ρθθ-=得,1cos sin =-θρθρ,即1y x -=由⎩⎨⎧=+-=+11y x y x 解得,⎩⎨⎧==10y x由直角坐标系可以看出,点(0,1)对应的极坐标(1,)2π. 3、【答案】26【解析】点)3,2(πM 在直角坐标系中为点)3,1(直线l 方程化为22)4sin cos 4cos(sin =+πθπθρ,即01=-+y x 因此,距离26232131==-+=d 4、【答案】22);2,0( 【解析】由⎩⎨⎧-=+=t y t x 33得,⎩⎨⎧-=-=y t x t 33,即直线l 的方程化为y x -=-33,即06=-+y x由⎩⎨⎧+==2sin 2cos 2θθy x 得,⎪⎪⎩⎪⎪⎨⎧-==22sin 2cos y x θθ,即圆C 的方程化为14)2(422=-+y x , 即4)2(22=-+y x ,因此圆心坐标为)2,0(, 圆心到直线l 的距离22242620==-+=d 5、【答案】6-【解析】将1223x t y t=-⎧⎨=+⎩化为普通方程为3722y x =-+,斜率132k =-,当0k ≠时,直线41x ky +=的斜率24k k =-,由123412k k k ⎛⎫⎛⎫=-⨯-=- ⎪ ⎪⎝⎭⎝⎭得6k =-; 6、【答案】.【解析】sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(01)x y <≤≤, 254x t y t⎧=⎪⎨⎪=⎩表示抛物线245y x =由22221(01)5450145x y x y x x x y x ⎧+=<≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩或5x =-(舍去),又因为πθ<≤0,所以它们的交点坐标为(1,57、【答案】相交【解析】直线l 的方程化为012=+-y x圆C 的方程化为2)2(22=-+y x ,所以圆心为)2,0(,半径为2圆心到直线的距离r d =<-=+-⨯=251251202,∴直线l 与圆C 相交 8、【答案】58 【解析】曲线方程化为1)1(22=-+y x ,所以圆心为1),1,0(=r圆心到直线的距离53571403=-⨯+⨯=d 因此,弦长为582516225912222==-=-dr 9、1【解析】由题意圆C 的直角坐标方程为22(1)1x y -+=,直线:l 240x y -+=所以圆C 上点到直线:l1 10、【解析】直线02:=-+y x l ,曲线2)2(:-=x y C ,联立方程组消y ,得0232=+-x x ,2,32121==+x x x x ,21212=-+=x x k AB(注:也可直接解出2,121==x x ,得到21212=-+=x x k AB )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标与参数方程高考
题含答案
文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
极坐标与参数方程高考题
1.在直角坐标系xOy 中,直线1:2C x =-,圆()()2
2
2:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()π
R 4
θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积.
解:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.
(Ⅱ)将=
4
π
θ代入2
2cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得
1ρ=,2ρ,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN 的面积
o 11sin 452⨯=1
2
. 2.已知曲线194:22=+y x C ,直线⎩⎨
⎧-=+=t y t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程;
(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.
解:(1)曲线C 的参数方程为(θ为参数).直线l 的普通方程为2x+y-6=0. (2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为
|4cos θ+3sin θ-6|, 则|PA|==|5sin(θ+α)-6|,其中α为锐角,且tan α=43
.
当sin(θ+α)=-1时,|PA|取得最大值,.当sin(θ+α)=1时,|PA|取得最小
值,.
3.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极
坐标方程为ρ=2cos θ02πθ⎡⎤
∈⎢⎥⎣⎦
,,
(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标.
解:(1)C 的普通方程为(x-1)2+y 2=1(0≤y ≤1).可得C 的参数方程为: x 1cos sin y θ
θ=+⎧⎨=⎩ (0≤
θ≤π).
(2)设D(1+cos θ,sin θ).由(1)知C 是以G(1,0)为圆心,1为半径的上半圆.
因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan θ=θ=
3
π
.故D 的
直角坐标为32(. 4.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;
(2)设直线l:2x+y-2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.
解:(1)设(x 1,y 1)为圆上的点,经变换为C 上点(x,y),由2
2
x y +=1得x 2
+2
2y ⎪⎭

⎝⎛=1,即曲线
C 的方程为4x 2+2y =4.故C 的参数方程为⎩⎨⎧==θ
θ
sin 2cos x y (θ为参数).
(2)由解得或不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为1
2
(,1),所求直线斜率为k=12,于是所求直线方程为y-1=12(x-1
2
),化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=θ
θsin 4cos 23
--.
5.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系.曲线C 的极坐标方程为ρ
cos ⎝ ⎛⎭
⎪⎫θ-π3=1,M 、N 分别为C 与x 轴,y 轴的交点.
(1)写出C 的直角坐标方程,并求M 、N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2,当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫
233,π2.
(2)M 点的直角坐标为(2,0).N 点的直角坐标为(0,233).所以P 点的直角坐标为⎝ ⎛
⎭⎪⎫1,33,
则P 点的极坐标为⎝
⎛⎭⎪⎫
233
,π6,所以直线OP 的极坐标方程为θ=π6,ρ∈(-∞,+∞).
6.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin (θ-π4)=2
2

(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解:(1)圆O :ρ=cos θ+sin θ,即ρ2
=ρcos θ+ρsin θ,圆O 的直角坐标方程为x 2
+y 2
=x +y ,即x 2
+y 2
-x -y =0.直线l :ρsin(θ-π4)=2
2
,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.
(2)由⎩⎪⎨
⎪⎧
x 2
+y 2
-x -y =0,
x -y +1=0
得⎩⎪⎨
⎪⎧
x =0,y =1.
故直线l 与圆O 公共点的一个极坐标为(1,π
2
).
7.在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨


x =5cos φ,y =3sin φ
(φ为参数)的右焦点,且与直线
⎩⎪⎨⎪

x =4-2t ,y =3-t
(t 为参数)平行的直线的普通方程.
解:由题设知,椭圆的长半轴长a =5,短半轴长b =3,从而c =a 2
-b 2
=4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程:x -2y +2=0. 故所求直线的斜率为12,因此其方程为y =1
2(x -4),即x -2y -4=0.
8.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨
⎪⎧
x =3-2
2
t ,y =5+2
2
t (t 为参数).在极坐标系(与直
角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.
(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |.
解:(1)ρ=25sin θ,得x 2
+y 2
-25y =0,即x 2
+(y -5)2
=5.(4分)
(2)将l 的参数方程代入圆C 的直角坐标方程,得(3-
22t )2+(2
2
t )2=5,即t 2-32t +4=0.由于Δ=(32)2
-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨

t 1+t 2=32,
t 1·t 2=4.
又直线l 过点P (3,5),故由上式及t 的几何意义得|PA |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.
9.在直角坐标版权法xOy 吕,直线l
的参数方程为132(x t t y ⎧=+⎪⎪

⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C
的极坐标方程为ρθ=.
(I)写出C 的直角坐标方程;(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标.
解:(I)
由ρθ=
,得2sin ρθ=
,从而有22x y +=
,所以
(2
23x y +-=
(II)
设132P t ⎛⎫+ ⎪⎝

,又C
,则PC == 故当0t =时,PC 取得最小值,此时P 点的坐标为(3,0).。

相关文档
最新文档