高分子物理考试资料整理

合集下载

高分子物理1-4资料整理

高分子物理1-4资料整理

第一章高分子的链结构一、名词解释1、高分子链结构:单个高分子的结构和形态。

高分子的聚集态结构:高分子凝聚在一起形成的高分子材料本体的内部结构。

2、近程结构:是构成高分子的最基本微观结构,包括其组成和构型。

远程结构:大分子链的构象,即空间结构,以及链的柔顺性等。

3、链段:高分子链可看作是由多个包含i个键的段落自由连接组成,这种段落称为链段。

链节:重复单元4、静态链柔性:高分子链处于热力学稳定状态时的蜷曲程度。

动态链柔性:高分子链从一种平衡构象状态转变到另一种平衡构象状态的难易程度。

5、均方末端距:线形高分子链的一端到另一端的直线距离,以h表示,h2即为均方末端距。

均方回转半径:旋转半径的平方值的平均。

(旋转半径——支化大分子链的质量中心到各个链段的质量中心的距离,是向量。

)6、自由结合链:键长l固定,键角Φ固定,内旋转自由的理想化的模型。

(键角不固定,同时不考虑内旋转位垒障碍)自由旋转链:假定链中每一个键都可以在键角所允许的方向自由转动,不考虑空间位阻对转动的影响。

(键角固定,同时不考虑内旋转位垒障碍)等效自由结合链:将真实大分子链中的链段等同于自由结合链中的化学键,这种由ne个链段组成的高分子链就是一个自由结合链。

高斯链:等效自由结合链的链段分布符合高斯分布函数的高分子链。

7、刚性因子(又称空间位阻参数,刚性比值):为实测的无扰均方末端距与自由旋转链的均方末端距比值的平方根。

分子无扰尺寸:在θ条件下测得的高分子尺寸称为无扰尺寸。

(单位分子量均方末端距的平方根)等效链段长度:以等效自由结合链描述分子尺寸。

特征比:无扰链与自由链接链均方末端距的比值。

二、名词解释1、P12、P33、LDPE是低密度聚乙烯,又叫高压聚乙烯,是高压状态下自由基聚合得到的。

HDPE是高密度聚乙烯,又叫低压聚乙烯。

相比LDPE,密度大,强度高,硬度好。

LLDPE是线性低密度聚乙烯,线性低密度聚乙烯在结构上不同于一般的低密度聚乙烯,因为不存在长支链。

高分子物理复习资料归纳

高分子物理复习资料归纳

高物第一章习题1.测量数均分子量,不可以选择以下哪种方法:(B)。

A.气相渗透法B.光散射法C.渗透压法D.端基滴定法2.对于三大合成材料来说,要恰当选择分子量,在满足加工要求的前提下,尽量( B )分子量。

A.降低B.提高C.保持D.调节3.凝胶色谱法(GPC)分离不同分子量的样品时,最先流出的是分子量(大)的部分,是依据(体积排除)机理进行分离的。

4.测量重均分子量可以选择以下哪种方法:(D)A.粘度法B.端基滴定法C.渗透压法D.光散射法5. 下列相同分子量的聚合物,在相同条件下用稀溶液粘度法测得的特性粘数最大的为( D )(A)高支化度聚合物(B)中支化度聚合物(C)低支化度聚合物(D)线性聚合物6. 内聚能密度:定义克服分子间作用力,1mol的凝聚体汽化时所需的能量为内聚能密度,表征分子间作用力的强弱。

7. 同样都是高分子材料,在具体用途分类中为什么有的是纤维,有的是塑料,有的是橡胶?同样是纯的塑料薄膜,为什么有的是全透明的,有的是半透明的?答:(1)塑料橡胶的分类主要是取决于使用温度和弹性大小。

塑料的使用温度要控制在玻璃化温度以下且比Tg室温低很多。

而橡胶的使用温度控制在玻璃化温度以上且Tg比室温高很多,否则的话,塑料就软化了,或者橡胶硬化变脆了,都无法正常使用。

玻璃化温度你可以理解为高分子材料由软变硬的一个临界温度。

塑料拉伸率很小,而有的橡胶可以拉伸10倍以上。

纤维是指长径比大于100以上的高分子材料,纤维常用PA(聚酰胺)等材料,这类材料有分子间和分子内氢键,结晶度大,所以模量和拉伸强度都很高,不容易拉断。

(2)结晶的高聚物常不透明,非结晶高聚物通常透明。

不同的塑料其结晶性是不同的。

加工条件不同对大分空间构型有影响,对结晶有影响,这些都能导致透明性不同。

大多数聚合物是晶区和非晶区并存的,因而是半透明的。

8. 在用凝胶渗透色谱方法测定聚合物分子量时,假如没有该聚合物的标样,但是有其它聚合物的标样,如何对所测聚合物的分子量进行普适标定?需要知道哪些参数?参考答案:可以用其它聚合物标样来标定所测聚合物的分子量。

高分子材料物理化学实验复习资料整理

高分子材料物理化学实验复习资料整理
C
Huggins式: sp K H C C
2

ln 2 Kramer式: K K C C
外推至 C→0, 两直线相交于一点此截距即为[]。 两条直线的斜率
4 / 11

{
图2
lg C
sp
ln 对 C和 对C 的关系图 C C
3 / 11
图 1 DSC 法测定结晶速率 (a)等温结晶 DSC 曲线 (b)结晶分数与时间关系
高材物化实验复习资料
4
放热峰。当曲线回到基线时,表明结晶过程已完成。记放热峰总面积为 A0,从结晶起始时刻(t0)到任一时 刻 t 的放热峰面积 At 与 A0 之比记为结晶分数 X(t): Avrami 指数 n=空间维数+时间维数(空间维数:球晶:1;片晶:2;针状:3;时间维数:均相成核:1, 异相成核:0; ) DSC: (纵坐标:放热峰朝下,吸热峰朝上) 图:Tg,冷结晶峰,熔融峰。 如何去除冷结晶峰? 升温一次,去除热历史。
二、声速法测定纤维的取向度和模量
测定取向度的方法有 X 射线衍射法、双折射法、二色性法和声速法等。其中,声速法是通过对声波在纤 维中传播速度的测定,来计算纤维的取向度。其原理是基于在纤维材料中因大分子链的取向而导致声波传播 的各向异性。 几个重要公式: ①传播速度 C=
L 10 3 (km / s) (TL t ) 10 6
N2。
注意:定要掌握三张图的含义。
五、粘度法测定高聚物分子量
1、测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法和粘度法等。 2、马克(Mark)公式: KM 。该式实用性很广,式中 K、值主要依赖于大分子在溶液中的形态。

高分子物理考试复习总结

高分子物理考试复习总结

高分子具有柔顺性的本质是什么?简要说明影响高分子链柔顺性的因素主要有哪些?答:高分子链具有柔顺性的原因在于它含有许多可以内旋转的键,根具热力学熵增原理,自然界中一切过程都自发地朝熵增增大的方向发展。

高分子链在无外力的作用下总是自发地取卷曲的形态,这就是高分子链柔性的实质。

影响因素主要有:主链的结构;2.取代基; 3.氢键; 4.交联。

6.以结构的观点讨论下列聚合物的结晶能力:聚乙烯、尼龙66、聚异丁烯答:高分子的结构不同造成结晶能力的不同,影响结晶能力的因素有:链的对称性越高结晶能力越强;链的规整性越好结晶能力越大;链的柔顺性越好结晶能力越好;交联、分子间力是影响高聚物的结晶能力;氢键有利于结晶结构的稳定。

聚乙烯对称性最好,最易结晶;尼龙66,对称性不如聚乙烯,但仍属对称结构,还由于分子间可以形成氢键,使结晶结构的稳定,可以结晶,聚异丁烯由于结构不对称,不易结晶。

2. 解释为什么尼龙6在室温下可溶解在某些溶剂中,而线性的聚乙烯在室温下却不能?答.尼龙和聚乙烯都是结晶性的聚合物,其溶解首先要使晶区熔融才能溶解。

而尼龙是极性的聚合物,如果置于极性溶剂之中,和极性的溶剂作用会放出热量从而使晶区熔融,继而溶解。

聚乙烯是非极性的聚合物,要使其晶区熔融只能升温至其熔点附近,然后溶于适当的溶剂中才能溶解。

所以聚乙烯在常温下不能溶解在溶剂之中。

4.影响高分子链柔性的因素有那些?如何影响?答案要点:分子结构的影响:(1)主链结构主链全为单键或含孤立双键时,分子链柔顺性较大,而含有芳杂环结构时,由于无法内旋转,柔顺性差。

(2)取代基极性取代基使柔顺性变差,非极性取代基体积大,位阻大,柔顺性变差。

(3)支化、交联若支链很长,阻碍链的内旋转时,柔顺性变差。

对于交联结构,交联程度不大时,对柔顺性影响不大,当交联程度达到一定程度时,大大影响链的柔顺性。

(4)分子链的长短一般分子链越长,构象数目越多,柔顺性越好。

(5)分子间作用力作用力大则柔性差。

高分子物理习题集及复习资料

高分子物理习题集及复习资料

第一章高分子链的结构一.解释名词、概念1.高分子的构型:高分子中由化学键固定了的原子或原子团在空间的排列方式2.全同立构高分子:由一种旋光异构单元键接形成的高分子3.间同立构高分子:由两种旋光异构单元键接形成的高分子4.等规度:聚合物中全同异构和间同异构的高分子占高分子总数的百分数5.高分子的构象:由于单键内旋转而产生的分子在空间的不同形态6.高分子的柔顺性:高分子能够呈现不同程度卷曲构象状态的性质7.链段:高分子中能做相对独立运动的段落8.静态柔顺性:由反式微构象和旁氏微构象构象能之差决定的柔顺性,是热力学平衡条件下的柔顺性9.动态柔顺性:高分子由一种平衡构象状态转变成另一种平衡构象状态所需时间长短决定的柔顺性10.等效自由连接链:在一般条件下,高分子链中只有部分单键可以内旋转,相邻的两个可以内旋转的单键间的一段链称为链段,这样可以把高分子链看作是由链段连接而成的,链段之间的链不受键角的限制,链段可以自由取向,这种高分子链的均方末段距以及末端距分布函数的表达式与自由连接链相同,只是把链数n转换成链段数n,把键长l换成链段长l,这种链称为等效自由链接链11.高斯链:末端距分布服从高斯分布的链12.高分子末端距分布函数:表征高分子呈现某种末端距占所有可能呈现末端剧的比例二.线型聚异戊二烯可能有哪些构型?答:1.4-加成有三种几何异构,1.2加成有三种旋光异构,3.4加成有三种旋光异构三.聚合物有哪些层次的结构?哪些属于化学结构?哪些属于物理结构?四.为什么说柔顺性是高分子材料独具的特性?答:这是由高分子的结构决定的,高分子分子量大,具有可以内旋转的单键多,可呈现的构象也多,一般高分子长径比很大,呈链状结构,可以在很大程度内改变其卷曲构想状态。

对于小分子,分子量小,可内旋转的单键少,可呈现的构象数也不多,且小分子一般呈球形对称,故不可能在很大的幅度范围内改变其构象状态五.通常情况下PS是一种刚性很好的塑料,而丁二烯与苯乙烯的无规共聚物(B:S=75:25)和三嵌段共聚物SBS(B:S=75:25)是相当好的橡胶材料,从结构上分析其原因。

高分子物理复习资料

高分子物理复习资料

高分子物理复习资料第一章高分子链的结构高分子结构的层次:●高分子链的结构:高分子的链结构又称一级结构,指的是单个分子的结构和形态,它研究的是单个分子链中原子或基团的几何排列情况。

包含一次结构和二次结构。

●高分子的一次结构:研究的范围为高分子的组成和构型,指的是单个高分子内一个或几个结构单元的化学结构和立体化学结构,故又称化学结构或近程结构。

●高分子的二次结构:研究的是整个分子的大小和在空间的形态(构象)。

例如:是伸直链、无规线团还是折叠链、螺旋链等。

这些形态随着条件和环境的变化而变化,故又称远程结构。

●高分子的聚集态结构:高分子的聚集态结构又称二级结构,是指具有一定构象的高分子链通过范德华力或氢键的作用,聚集成一定规则排列的高分子聚集体结构。

§1.1组成和构造1、结构单元的化学组成:按化学组成不同聚合物可分成下列几类:①碳链高分子(C)分子链全部由碳原子以共价键相连接而组成,多由加聚反应制得。

如:聚苯乙烯(PS)、聚氯乙烯(PVC)、聚丙烯(PP)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯PMMA。

②杂链高分子(C、O、N、S)分子主链上除碳原子以外,还含有氧、氮、硫等二种或二种以上的原子并以共价键相连接而成。

由缩聚反应和开环聚合反应制得。

如:聚酯、聚醚、聚酰胺、聚砜。

POM、PA66(工程塑料)PPS、PEEK。

③元素高分子(Si、P、Al等)主链不含碳原子,而由硅、磷、锗、铝、钛、砷、锑等元素以共价键结合而成的高分子。

侧基含有有机基团,称作有机元素高分子,如: 有机硅橡胶有机钛聚合物侧基不含有机基团的则称作无机高分子,例如:梯形和双螺旋型高分子,分子的主链不是一条单链而是像“梯子”和“双股螺线”那样的高分子链。

※表1-1,一些通用高分子的化学结构,俗称2、高分子的构型:构型(configurafiom):指分子中由化学键所固定的原子在空间的几何排列。

这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。

高分子物理复习资料

高分子物理复习资料

高分子物理复习资料1、高聚物无气态的原因。

高聚物由于分子链很长,因而分子间的总吸引力能很大,要是它们汽化,需要供给的能量太大,即需要很高的温度,它远远超过大分子链断裂的温度,所以高聚物不存在气态。

2、温度形变曲线对材料的成型的意义。

当常温介于Tb与Tg之间时,主要用作塑料;当常温介于Tg与Tf之间时,主要用做橡胶;当常温介于Tf与Td之间时,主要用作胶黏剂和油漆。

3、硬质的PVC电缆料套管在架空的情况下,会愈来愈弯曲,为什么?用什么方法来减少这一现象?因为在架空的情况下,PVC电缆料套管出现了蠕变现象。

方法:交联、取向、增强、引入芳杂环。

4、应力松弛。

未经硫化的橡胶赢了可松弛到零,而经硫化的橡胶不能松弛到零的原因。

应力松弛是指在恒定形变下,物体的应力随时间的增加而逐渐衰减的现象。

因为交联后的高聚物有交联键的存在,所以不能松弛到零。

5、法兰上的橡胶密封圈,时间用长了会失效的原因。

法兰上的橡胶在长期使用过程中,出现了老化现象。

6、高聚物的溶解过程。

线性高聚物:先溶胀,后溶解。

极性晶态高聚物:不需要加热即溶解于极性溶剂中。

非极性晶态高聚物:先熔融,再溶胀,后溶解。

7、不稳定流动与其影响因素。

克服方法。

高聚物熔体在挤出时,如果应力超过一定极限,熔体往往会出现不稳定流动,挤出物外表不再是光滑的。

影响因素:对于高分子熔体,黏度高,黏滞阻力大在较高的切变速率下,弹性形变的储能达到或超过克服黏滞阻力的流动能量时,导致不稳定流动的发生。

克服方法:减小模口,增加模口长度。

8、取向与解取向。

结晶高聚物与非结晶高聚物的取向的异同。

取向是在外力作用下,分子链沿外力方向择优排列。

解取向是高分子链有有序状态回归到无规蜷曲状态、。

结晶高聚物的取向过程:链段的取向、晶粒的变形、片晶的滑脱。

线形非晶态高聚物的取向过程:链段的取向、大分子链的取向。

9、温度对结晶的影响。

用结晶高聚物生产一般制品、拉伸制品和薄膜制品在工艺上控制结晶的方法。

高分子物理试题库(附答案)

高分子物理试题库(附答案)

高分子物理试题库(附答案)一、单选题(共70题,每题1分,共70分)1.聚乙烯无规线团的极限特征比为A、2B、1C、6.76正确答案:C2.高分子柔性愈小,其特性黏数受切变速的影响(A、愈小B、不确定C、没影响D、愈大正确答案:D3.下列聚合物中,不能结晶的是A、尼龙6B、乙丙橡胶C、聚三氟氯乙烯正确答案:B4.根据Flory-Krigbaum稀溶液理论,高分子在良溶剂中,高分子的排斥体积u为()。

A、u<0B、u>0C、不确定D、u=0正确答案:B5.在下列情况下,非极性交联聚合物(溶度参数为δ2)在溶剂(溶度参数为δ1)中的平衡溶胀比最大的是A、不确定B、δ1>δ2C、δ1=δ2D、δ1<δ2正确答案:C6.PE,PVC,PVDC结晶能力的强弱顺序是A、PE>PVC>PVDCB、PVDC>PE>PVCC、PE>PVDC>PVC正确答案:C7.下列条件中适于制备球晶的是A、熔体B、稀溶液C、高温高压正确答案:A8.理想溶液形成过程中体积变化△VM为()A、△VM<0B、△VM=0C、不确定D、△VM>0正确答案:B9.拉伸使聚合物的结晶度()。

A、减小B、增大C、不变正确答案:B10.橡胶在伸长的过程中会()。

A、无热量变化B、吸热C、放热正确答案:C11.聚乙烯可作为工程材料使用,是因为A、内聚能密度大B、分子链刚性大C、高结晶性正确答案:C12.下列三种高聚物中,玻璃化温度最低的是()。

A、聚二甲基硅氧烷B、聚乙烯C、聚甲醛正确答案:A13.在共轭二烯烃中,反式异构体的玻璃化温度比顺式()。

A、高B、低C、无差别正确答案:A14.下列条件中适于制备单晶的是()A、高温高压B、稀溶液C、熔体正确答案:B15.大多数的聚合物熔体属于()。

A、牛顿流体B、假塑性非牛顿流体C、宾汉流体D、胀塑性非牛顿流体正确答案:B16.同一聚合物的下列三种不同的黏度,最大的是()。

高分子物理试题库及答案

高分子物理试题库及答案

高分子物理试题库及答案一、选择题1. 下列哪一项不是高分子材料的特点?A. 高分子材料具有可塑性B. 高分子材料具有热塑性C. 高分子材料具有热固性D. 高分子材料具有导电性答案:D2. 高分子链的构象变化主要受哪些因素影响?A. 分子量B. 温度C. 溶剂D. 以上都是答案:D二、填空题1. 高分子材料的玻璃化转变温度是指材料从______状态到______状态的转变温度。

答案:玻璃态;高弹态2. 聚合物的分子量分布可以通过______曲线来表示。

答案:分子量分布三、简答题1. 简述高分子材料的力学性能特点。

答案:高分子材料的力学性能特点包括高弹性、高韧性、高抗冲击性、良好的耐磨性和良好的抗疲劳性等。

2. 解释什么是聚合物的分子量分布。

答案:聚合物的分子量分布是指聚合物中不同分子量的分子所占的比例。

由于聚合反应的不完全性,实际的聚合物中分子的分子量并不是单一的,而是呈一定范围分布的。

四、计算题1. 已知某聚合物的分子量为10000,求其分子量分布指数(Mw/Mn),假设Mn=5000。

答案:Mw/Mn = 10000 / 5000 = 22. 假设某聚合物的分子量分布指数为2,求其分子量Mw,已知Mn=5000。

答案:Mw = Mn * (分子量分布指数) = 5000 * 2 = 10000五、论述题1. 论述高分子材料在现代工业中的应用及其重要性。

答案:高分子材料因其独特的物理、化学和力学性能,在现代工业中应用广泛。

例如,在汽车工业中,高分子材料可用于制造轻质的车身部件以降低能耗;在电子工业中,高分子材料可用于制造绝缘材料和柔性电路板;在医疗领域,高分子材料可用于制造各种医疗器械和生物可降解的植入物。

高分子材料的轻质、耐腐蚀、可塑性强等特点使其在现代工业中具有不可替代的重要性。

高分子物理考试重点

高分子物理考试重点

高分子物理考试重点 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】高分子物理考试重点一、名词解释:等效自由连接链:若干个键组成的一链段算作一个独立的单元,称之为“链段”,链段间自由结合,无规取向,这种链的均方末端距与自由连接链的计算方式等效。

高分子θ溶液:Avrami 方程: 用数学方程描述聚合物等温结晶过程。

测定结晶度随时间的变化,这种方法测定的是结晶总速率(包括成核速率和生长速率)。

通常用膨胀计法,由于结晶时有序排列而体积收缩,若比容在时间为0,t 和∞时分别为V 0,V t 和V ∞,则结晶过程可用Avrami 方程描述:(V t -V ∞)/(V 0-V ∞)=()t n k W o W L -=exp 通过双对数作图,从斜率求n ,从截距求k ,n 称Avrami 指数,n=生长的空间维数+时间维数,异相成核的时间为0,均相成核为1,。

k 用来表征结晶速率,k 越大,结晶速率越快。

平衡熔点:熵弹性: 理想高弹性等温形变过程,只引起熵变,对内部保持不变,即只有熵的变化对理想高弹性的弹性有贡献,这种弹性称为熵弹性。

粘弹性:是材料对外界作用力的不同响应情况。

对于聚合物,其力学性质可同时兼有不可回复的永久形变和可回复的弹性形变,介于理想弹性体和理想粘性体之间,形变与时间有关,但不是线性关系。

此性质就是粘弹性。

力学损耗: 聚合物在应力作用下,形变的变化落后于应力的变化,发生滞后现象,每一个循环变化中就要消耗功,这个功就是力学损耗。

滞后现象: 一定温度与循环(交变)应力作用下,试样应变滞后于应力变化的现象。

Boltzmann叠加原理:对于聚合物材料的蠕变过程,形变是整个负荷历史的函数,每一次阶跃式加负荷对以后应变的贡献是独立的,最终形变等于各个所加负荷所贡献的形变的加和。

时温等效原理:升高温度和延长观察时间对分子运动是等效的,对于聚合物的粘弹性行为也是等效的。

高分子物理期末复习

高分子物理期末复习

分子量↑ ;分子量分布;支化
掌握 η ~ T 关系式
刚性链-柔性链
4、聚合物熔体的弹性效应
第7章 橡胶弹性理论 7.1 聚合物的高弹态和高弹性 7.2 橡胶弹性的热力学理论 7.3 橡胶弹性的统计理论 7.4 交联聚合物的溶胀
第7章 橡胶弹性理论
1、高弹态的特点 1)形变量很大,弹性模量随温度升高而增大。 2)形变需要时间——滞后形变 3)形变时有热效应,拉伸放热,回缩吸热 2、交联橡胶的使用温度范围:Tg~Td 3、橡胶热力学方程式:
牛顿流体、假塑性流体;胀塑性流体;宾汉流体;触变 性流体;流凝性流体
牛顿粘性流动定律 σ s = ηγ 幂律公式 σ s = Kγn
零剪切粘度;表观粘度;极限粘度
高分子熔体——假塑性流体——“剪切变稀”
2、聚合物熔体的流动曲线(“链缠结”理论解释)
3、影响聚合物熔体粘度和流动性的因素
温度↓ ;剪切速率↓ ;剪切应力↓ ; 温敏性-切敏性
Tg < T < Tg + 100℃
依据WLF方程:
log aT
=
−C1(T − TS )
C2 + (T − TS )
Ts = Tg
⎛τ
log
⎜ ⎝
τ
s
⎞ ⎟ ⎠
=
log
⎛ ⎜⎝
ωs ω
⎞ ⎟⎠
=
⎛η
log
⎜ ⎝
η
s
⎞ ⎟ ⎠
=

17.44(T − Ts ) 51.6 + (T − Ts )
Ts = Tg + 50℃左右
f = ⎜⎛ ∂U ⎟⎞ + T ⎛⎜ ∂f ⎟⎞ ⎝ ∂l ⎠T ,V ⎝ ∂T ⎠l,V

高分子物理历年考题归纳

高分子物理历年考题归纳

三、解释名词或术语1.构型——构型是指分子中(1分)由化学键所固定的原子在(1分)空间的排列。

(1分)这种排列是稳定的,(1分)要改变构型,必须经过化学键的断裂和重组。

2.构象——构象是指由于(2分)单键的内旋转而(2分)产生的分子中原子在空间不同排列方式叫做构象(Conformation)或围绕单键内旋转而产生的原子在空间的不同排列方式就称构象。

3.串晶结构特点——是一种(0.5分)伸展链和(0.5分)折叠链的组合结构。

其中(0.5分)中心脊纤维按伸展链方式先结晶,(0.5分)旁侧的附晶则按折叠方式后结晶,(1分)一根中心脊纤维把许多折叠链附晶串在一起。

(1分)反映了晶体内部质点结构规整。

4.取向态结构特征——(0.5分)在某些外场作用下,(0.5分)高分子链、(0.5分)链段或微晶可以(0.5分)沿着外力场方向(1分)有序排列为取向,形成一种(1分)新的聚集态结构。

5.特性粘数——特性粘数[η]是(1分)浓度趋于0的溶液的(1分)比浓粘度称之为特性粘数,这是由于(0.5分)在非常稀的溶液中(C→0)分子间作用力可以忽略,同时,(0.5分)高分子伸展得很好,大分子链段之间作用力也可忽略。

(1分)此时比浓粘度是一个常数。

6. 松弛过程——(1分)松弛过程是聚合物分子运动的时间依赖性,(1分)整个分子链、链段、链节等运动单元的运动均需要(1分)克服内摩擦阻力,(1分)是不可能瞬时完成的,总是需要时间的,这种现象称为聚合物分子运动的时间依赖性,即松弛过程。

7. 玻璃化温度——(1分)从玻璃态向高弹态转变的温度,是(1分)属于聚集态的转变温度。

(1分)升温时,链段开始运动的温度;降温时,链段被“冻结”的温度;(1分)是高聚物性质的指标。

8.时温等效原理——同一力学行为既可以(1分)在较高的温度下较短的时间观察到,(1分)也可以在较低的温度下较长的时间观察到,(1分)即同一力学现象升高温度和延长观察时间是等效的。

高分子物理复习

高分子物理复习

高分子物理复习一.名词解释1.玻璃化转变:是分子链段获得了足够的能量,以协同方式开始运动,不断改变构象,所导致的一系列物理性质如形变,模量,比体积,比热,密度,粘度,折光指数,介电常数等发生突变或不连续变化的过程。

2.构型:是指分子中由化学键所固定的原子在空间的排列,这种排列是稳定的.要改变构型,必须经过化学键的断裂和重组。

3.熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。

4.应力集中:如果材料存在缺陷,受力时材料内部的应力平均分布状态将发生变化,使缺陷附近局部范围内的应力急剧地增加,远远超过应力平均值,这种现象称为应力集中.5.θ温度:在给定溶剂中,使高分子溶液呈θ态的温度,又称Flory温度。

6.等规度:指有规异构体占全部高分子的百分数。

7.溶解度参数:内聚能密度的平方根称为溶解度参数。

溶质和溶剂的溶解度越接近,两者越能相互溶解。

8.内聚能密度:是在零压力下单位体积的液体变成气体的气化能。

二、问答题1.何谓结晶度?试述具有高结晶度材料的分子链结构特点。

结晶度:结晶高聚物中结晶部分含量的量度,通常以重量百分数或体积百分数来表示,高结晶度高分子材料的结构特点:链的对称性好;链的规整性好;柔顺性好;分子间能形成氢键。

2.什么是溶胀?什么是溶解?试从分子运动的观点说明线型聚合物和交联聚合物溶胀的最终状态的区别。

答:溶剂分子渗入高聚物内部,使高聚物体积膨胀称为溶胀。

溶解是溶质分子和溶剂分子相互混合的过程。

线型高分子分子溶胀后由于能分散于溶剂中而溶解,而交联高分子因其化学键束缚,不能进一步使交联的分子拆散,只能溶胀,不能溶解。

3.如何判别高分子的相容性?答:(1)观察共混体系的透光率,相容的均相体系是透明的;非均相体系呈现浑浊。

但如两种聚合物的折光率相同或微区尺寸远小于可见光波长,即使是不相容的分相体系,表现上却仍然为透明的。

高分子物理大题整理

高分子物理大题整理

高化试卷中会有60分左右的原题(包括大题、小题)从平时作业中选出,请大家重视,另外,比较题会以综合的形式出现。

1)比较◆柔顺性(P21)Tg(P145)(第一、五章)◆Tm(P161)、结晶能力(P152) (第五章)◆耐热性高低(Tm,Tg),耐寒性(Tg,Tb)(第一、五、十章)◆拉伸强度(P 244) 、冲击强度(P255) (第八章)◆耐溶剂(油、水)性(第四章)◆抗蠕变性(P192)(第七章)2)画图、解释•画图,标出特征点或区域,解释第五章:ε-T曲线(画图,不同条件时的曲线变化)(三)用实线画出下表条件1下,给材料施加定应力缓慢升温时的形变-温度(要标示特征温度的具体值)曲线,然后在同一图中用虚线画出条件改变时曲线的变化。

1 23 45 67 87 8第八章:σ-ε曲线(画图,特征点,条件变化时曲线的变化)(2,3)★2.在一张图上画出天然橡胶、无规立构聚苯乙烯、聚碳酸酯、全同立构聚丙烯、HDPE 、聚氯乙烯在室温和中等拉伸速率下的应力-应变曲线示意图。

并说明可从曲线上可得到哪些有用的物理量(模量和伸长率大小参看表8-2)★3已知聚甲基丙烯酸甲酯的应力松弛模量E(t)-T 曲线如右图所示,指出图中▲标注的温度下材料处于什么力学状态,分别画出四个状态下的应力-应变曲线(其它测试条件同)。

10 8 LgE3)解释现象和简答第三四章:三1.丁腈橡胶的耐油(机油)性好极性的丁腈橡胶与非极性的机油不相容2.顺丁橡胶生产的球鞋长期与机油接触会胀大变形顺丁橡胶在极性相近的机油中会发生溶胀3.尼龙66室温下可溶于浓硫酸,而等规聚丙烯却要在130℃左右才能溶于十氢萘。

40%硫酸在常温下是极性结晶尼龙的溶剂4.聚乙烯醇可溶于热水聚乙烯醇与水都是极性的且含有相似基团,热水加速溶解5.为什么聚四氟乙烯(Tm=327℃)难以找到合适的溶剂溶解聚四氟乙烯(Tm=327℃)为非极性结晶聚合物,需要加热到熔点附近才能溶解,很难找到如此高沸点的溶剂。

高分子物理复习要点

高分子物理复习要点
• 对任何高聚物,玻璃化温度就是自由体积达 到某一临界值的温度,在这临界值以下,已 经没有足够的空间进行分子链构象的调整了。 因而高聚物的玻璃态可视为等自由体积状态。
影响玻璃化温度的因素
玻璃化温度是高分子链段从冻结到运动(或 反之)的一个转变温度,而链段运动是通过 主链的单键内旋转来实现的,因此,凡是能 影响高分子链柔性的因素,都对Tg有影响 。
PMMA:
CH3
C
CH2 n
O C OCH3
。 68


10
20
。 20

15
Tg


87


106
。 104
。 120
2.取代基团的空间位阻和侧链的柔性 (2) 刚性侧基的体积越大,分子链的柔顺性 越差,Tg越高
2.取代基团的空间位阻和侧链的柔性
(3) 柔性侧链越长,分子链柔顺性越好,Tg 越低
△HM>0,所以只有在 | △HM | <T |△SM | 时,才 能满足△FM <0 。
• 如何选择溶剂?
高分子溶液与理想溶液的偏差
• ①高分子间、溶剂分子间、高分子与溶剂分子 间的作用力不可能相等,因此溶解时,有热量 变化 。
• ②由于高分子由聚集态→溶剂中去,混乱度变 大,每个分子有许多构象,则高分子溶液的混 合熵比理想溶液要大得多。
ABS树脂是丙烯腈、丁二烯和苯乙烯的三元共聚物。共聚 方式是无规共聚与接枝共聚相结合,结构复杂:可以是以 丁苯橡胶为主链,将苯乙烯丙烯腈接在支链上;也可以是 以丁腈橡胶为主链,将苯乙烯接在支链上;当然还可以苯 乙烯—丙烯腈的共聚物为主链,将丁二烯和丙烯腈接在支 链上等等,这类接枝共聚物都称为ABS。 因为分子结构不同,材料的性能也有差别。总的来说, ABS三元接枝共聚物兼有三种组分的持性。其中丙烯腈有 CN基,能使聚合物耐化学腐蚀,提高制品的抗张强度和 硬度;丁二烯使聚合物呈现橡胶状韧性,这是制品抗冲强 度增高的主要因素;苯乙烯的高温流动性能好,便于加工 成型,且可改善制品的表面光洁度。因此ABS是一类性能 优良的热塑性塑料。

高分子物理复习

高分子物理复习

高分子物理总复习一、名词解释1. 近程结构:一个或几个结构单元的化学组成、空间结构及其与近程邻近基团间的键接关系。

2. 结构单元:高分子链中单体的残基。

3. 键接方式(构造异构):结构单元在链中的连接方式和顺序。

4. 支化度:支化点密度,或两相邻支化点间链的平均分子量。

5. 交联度:交联点密度,或两相邻交联点间链的平均分子量。

6. 构型:分子中由化学键所固定的原子(团)在空间的排列。

7. 旋光异构:含不对称碳的结构单元具有互为镜象的一对对映体,互称旋光异构( 单元) 。

8. 几何异构(顺反异构):由内双键上基团在双键两侧排列方式不同而形成的异构体(单元)。

9. 等规度:聚合物中由两种异构单元规整连接(全同和间同立构)的链所占的百分数。

10. 远程结构:相距较远的原子(团)间在空间的形态及其相互作用。

11. 内旋转:由σ单键绕对称轴的旋转。

12. 构象:由于单键内旋转而形成的分子在空间的不同的形态。

13. 构象(内旋转)异构体:由单键内旋转而形成的相对稳定的不同构象间的互称。

14. 无轨线团:具有不规则蜷曲构象的高分子链。

15. 均方末端距:线型高分子链两端点间距离平方的平均值。

16. 均方旋转半径:从高分子链重心到各个链单元间距离平方的平均值。

17. 高斯链:高分子链段分布符合高斯分布函数的高分子链(等效自由结合链)。

18. 等效自由结合链:以若干个键所组成的链段间自由结合、且无规取向的高分子长链。

19. 链段:高分子链段中由若干个键所组成的能够独立运动的最小的分子片段(单元)。

20. 刚性因子(空间位阻参数):由实测高分子的无扰根均方末端距与自由旋转链的根均方末端距之比。

21. 分子无扰尺寸:由实测高分子的无扰均方末端距与分子量之比的平方根。

22. 无扰尺寸:在θ条件下测得的高分子链的尺寸应与高分子本体尺寸一致,称无扰尺寸。

23. 柔顺性:高分子链能够改变其构象的性质。

24. 聚集态结构(超分子结构):高分子材料中分子链与链间的排列与堆砌结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 高分子的链结构1.1 高分子结构的特点和内容高聚物结构的特点:1. 是由多价原子彼此以主价键结合而成的长链状分子,相对分子质量大,相对分子质量往往存着分布。

2. 一般高分子主链都有一定的内旋转自由度,可以使主链弯曲而具有柔性。

3.晶态有序性较差,但非晶态却具有一定的有序性。

4.要使高聚物加工成有用的材料,往往需要在其中加入填料,各种助剂,色料等.。

5. 凝聚态结构的复杂性: 结构单元间的相互作用对其聚集态结构和物理性能有着十分重要的影响。

1.2 高分子的近程结构链结构:指单个分子的结构和形态.链段:指由高分子链中划出来的可以任意取向的最小链单元.近程结构:指链结构单元的化学组成,键接方式,空间方式,空间立构,支化和交联,序列结构等问题.1.3 高分子的远程结构构造: 是指链中原子的种类和排列,取代基和端基的种类,单体单元的排列顺序,支链的类型和长度等.构象:由于单键内旋转而产生的分子在空间的不同形态称为~构型: 是指某一原子的取代基在空间的排列.聚集态结构:是指高分子材料整体的内部结构,包括晶态结构,非晶态结构,取向态结构,液晶态结构以及织态结构.末端距:指线型高分子链的一端至另一端的直线距离,用h 表示.均方末端距:求平均末端距或末端距的平方的平增色值.22h nl =(n 为键数)远程相互作用:指沿柔性链相距较远的原子或原子基团由于主链单键的内旋转而接近到小于范德华半径距离时所产生的推斥力.1.4 高分子链的柔顺性柔顺性:高分子链能够改变其构象的性质称为~.高分子链的柔顺性主要取决于以下因素:1. 主链中含有共轭双键、芳杂环结构的高分子链的柔顺性较差.2. 侧基的极性越强,相互间的作用力越大,其~越差.侧基体积越大,空间位阻越大,对链的内旋转愈不利,使链的刚性增加.3. 分子链越长,~越大.平衡态柔性:又称热力学柔性)指在热力学平衡条件下的柔性.动态柔性:指在外界条件的影响下从一种平衡态构象向另一种平衡态构象转变的难易程度.第二章 高分子的聚集态结构2.1 高聚物的非晶态内聚能:定义为克服分子间的作用力,把一摩尔液体或固体分子移到其分子间的引力范围这外所需要的能量. V E H RT ∆=∆-内聚能密度(CED):是单位体积的内聚能.2.2 高聚物的晶态单晶:通常只有在特殊的条件下得到,一般是在极稀的溶液中(浓度约0.01%~0.1%)缓慢结晶时生成的.球晶:是高聚物结晶中的一种最常见的特征形式. 其呈现特有的黑十字消光图像—是高聚物球晶的双折射性质和对称性的反映. 分子链总是与球晶的半径相垂直的. 其生成的共同条件是含有杂质的粘稠体系.串晶:高聚物通常情况下不管从溶液还是从熔体冷却结晶,都倾向于生成具有折叠链片晶结构的晶体,但在应力作用下结晶,则往往生成一长串像串珠式的晶体,称为高聚物串晶.高分子结晶能力:高分子结晶能力差别的根本原因是不同高分子具有不同的结构特征,这些结构特征中能不能和容易不容易规整排列形成高度有序的晶格是关键:1. 高分子链的结构对称性越高,越容易结晶;2.高分子链的规整性越高,越容易结晶;3.无规共聚、支化通常会破坏链的对称性和规整性,从而使结晶能力降低;4. 链的柔顺性不好,将在一定程度上降低高聚物的结晶能力; 5.交联大大限制了链的活动性,使结晶能力降低.均相成核:是由熔体中的高分子链段靠热运动形成有序排列的链束为晶核.有时间依赖性.异相成核:是以外来的杂质、未完全熔融的残余结晶聚合物、分散的小颗粒固体或容器的壁为中心,吸附熔体中的高分子链作有序排列而形成晶核.与时间无关.结晶速度:高聚物本体结晶速度-温度曲线都呈单峰形,结晶温度范围都在其Tg与熔点之间,在某一适当温度下,结晶速度将出现极大值,这是因为在熔点以上晶体将被熔融,而在玻璃化温度以下,链段将被冻结.分子结构的差别是决定不同高聚物结晶速度快慢的根本原因.链的结构愈简单,对称性愈高,链的立构规整性愈好,取代基的空间位阻越小,链的柔顺性越大,则结晶速度越大.一般在相同结晶条件下,分子量低时,结晶速度大.结晶度结晶对高聚物性能的影响: 1.力学性能结晶一般使塑料变脆(冲击强度下降),但使橡胶的抗张强度提高.在Tg以下,结晶度对脆性的影响较大,当结晶度增加,分子链排列趋紧密,孔隙率下降,材料受到冲击后,分子链段没有活动的余地,冲击强度降低,在Tg以上,结晶度的增加使分子间的作用力增加,因而抗张强度提高,但断裂伸长减小,在Tg以下,高聚物随结晶度增加而变得很脆,抗张强度下降,另外,微晶体可以起物理交联作用,使链的滑移减小,因而纬度度增加可以使蠕变和应力松弛降低. 2.随着结晶度的增加,高聚物的密度增大,3.光学性能:当结晶度减小时,高聚物的透明度增加,因为晶区与非晶区的界面会发生光散射. 4.热性能:结晶使塑料的使用温度从Tg提高到Tm. 5.结晶使高聚物的耐溶剂性、渗透性等得到提高,因为结晶分子排列紧密.2.3 高聚物的取向结构高聚物取向结构:是指在某种外力作用下,分子链或其它结构单元沿着外力作用方向择优排列的结构.取向:由于结构上悬殊的不对称性,使高聚物在某些情况下很容易沿某特定方向作占优势的平等排列.这就是~.取向态是一维或二维在一定程度上的有序,而结晶态则是三维有序的.取向后,材料的抗张强度和挠曲疲劳强度在取向方向上显著地增加,而与取向相垂直的方向上则降低。

取向高分子材料上发生了光的双折射现象。

取向通常还使材料的Tg升高,对结晶性高聚物,则密度和结晶度也会升高,因而提高了高分子材料的使用温度.非晶态高聚物有两类取向. 1.链段取向可以通过单键的内旋转造成的链段运动来完成,这种取向过程在高弹态下就可以进行;2.整个分子的取向需要高分子各链段的协同运动才能实现,这就只有当高聚物处于粘流态下才能进行.一般,在外力的作用下,先发生链段的取向,然后才是整个分子的取向.取向的应用:1.迁维的牵伸和热处理(一维材料):牵伸使分子取向,大幅度提高纤维强度,热定型(或热处理)使部分链段解取向,使纤维获得弹性. 2.薄膜的单轴或双轴取向(二维取向):单轴拉伸极大提高了一个方向的强度,常用作包装带,双轴拉伸使薄膜平面上两个方向的强度均提高. 3. 塑料成型中的取向效应(三维材料):取向虽然提高了制品强度,但取向结构的冻结形成的残存内应力是有害的,故对塑料制品,不要求有高的取向度,而是要求有良好的取向能力.取向度的测定方法:1.热传导法,测定的是晶区中的小结构单元的取向;2.双折射法,测定的是晶区与非晶区中链段的取向;3.X射线衍射法,测定的是晶区晶胞的取向;4.声速法,测定的是晶区与非晶区中分子的取向.2.4 高分子液晶及高分子合金液晶态:某些物质的结晶受热熔融或被溶剂溶解之后,虽然失去固态物质的刚性,而获得液态物质的流动性,却仍然部分地保存着晶态物质分子的有序排列,从而在物理性质上呈现各向异性,形成一种兼有晶体和液体的部分性质的过渡状态,这种中间状态称为~.处在此状态下的物质称为液晶.靠升高温度,在某一温度范围内形成液晶态的物质,称为热致型液晶.靠溶剂溶解分散,在一定浓度范围成为液晶态的物质称为溶致型液晶.刚性高分子形成溶致性溶晶体系的一般规律:在低浓度范围内,粘度随浓度增大急剧上升,出现一个粘度极大值,随后粘度随浓度增大反而降低.当浓度增大到使溶液为均一的各向异性状态时,粘度又随浓度的变化形式是~.高分子合金:不同的高聚物共混以后,也可以使材料得到单一的高聚物所不具有的性能.通过共混可以改性某种高分子材料,也可以使材料具有优良的综合性能,这类高聚物共混体系就是~.互穿聚合物网(IPN):用化学方法将两种或两种以上的聚合物互穿成交织网络.第三章高分子溶液高分子溶液:高聚物以分子状态在溶剂中所形成的均相混合物称为~高分子溶液的热力学性质包括溶解过程中体系中体系的焓、熵、体积的变化,高分子溶液的渗透压,高分子在溶液中的分子形态与尺寸,高分子与溶剂的相互作用,高分子溶液的相分离等;高分子溶液的粘度、高分子在溶液中的扩散和沉降等称为流体力学性质. 高分子溶液性质的特点:1.高聚物的溶解过程比小分子物质的溶解过程要缓慢得多. 2. 柔性高分子溶液的粘度比小分子纯溶剂的粘度要大得多. 3.高分子溶液是处于热力学平衡状态的真溶液. 4.高分子溶液的行为与理想溶液的行为相比有很大偏离.偏离的原因是高分子溶液的混合熵比小分子理想溶液的混合熵大很多. 5.高分子溶液的性质存在着分子量依赖性,而高聚物又具有分子量多分散性的特点.溶解:是指溶质分子通过扩散与溶剂分子均匀混合成分子分散的均相体系.分子量大的溶解度小,晶态高聚物的溶比非晶态高聚物要困难的多.溶胀:溶剂分子渗入高聚物内部,使高聚物体积膨胀.增塑:高聚物因加入高沸点、低挥发性并能与高聚物混溶的小分子,而改变其力学性质的行为,称之为~.增塑剂:添加到线型高聚物中使其塑性增大的物质(高沸点、低挥发性)称为~.增塑剂的选择须考虑以下因素:1它与高聚物的混溶性要好,2.有效性:要求增塑剂能在制品中长期保存,在贮藏和使用过程中损失越少越好,3.耐久性.莱坞4.价廉易得.内增塑:在高分子链上引入其它取代基或短的链段,使高聚物结晶破坏,分子链变柔,易于活动,这种方法称为~.凝胶:是高分子链之间以化学键形成的交联结构的溶胀体,加热不能溶解也不能熔融.冻胶:是由范德会力交联形成的,加热可以拆散范德华交联,使冻胶溶解.溶胀:交联高聚物的溶胀过程实际上是两种相反趋势的平衡过程:溶剂渗入高聚物内使体积膨胀,从而引起三维分子网的伸展,交联点之间分子链的伸展降低了它的构象熵值,引起了分子网的弹性收缩力,使分子网收缩,当这两种相反的作用相互抵消时,就达到了溶胀平衡.扩散:高分子在溶液中由于局部浓度或温度的不同,引起高分子向某一方向的迁移,这种现象称为~.结晶聚合物的先熔融,其过程需要吸热。

线形聚合物,先溶涨,后溶解;结晶聚合物,先熔融,后溶解;交联聚合物,只溶涨,不溶解理想溶液:溶液中溶质分子间,溶剂分子间,溶质和溶剂分子间的相互作用是相等的,溶解过程中没有体积变化,也无热量变化。

非晶态聚合物作塑料使用时,其使用上限温度是T g。

对某些塑料,为了增加韧性,采取增塑的办法,如PVC塑料。

但增塑却使T g下降,使塑料的使用温度降低;若增塑剂太多时得到的塑料甚至在室温时已失去刚性,只能作软塑料用。

相容性观察方法总结:直接观察共混物的透光性,透明:相容性好,浑浊:相容性差;测量共混物的Tg - 玻璃化转变温度。

增塑剂的选择:互溶性——一般要求增塑剂是高聚物的良溶剂。

有效性——由于增塑剂的加入,一方面提高了产品的弹性、耐寒性和抗冲击性,另一方面却降低了它的硬度、耐热性和抗张强度。

相关文档
最新文档