2020年高考教育部考试中心·考试说明·高考样卷12套·数学(文)2
2020年高考教育部考试中心·考试说明·高考样卷12套·数学(文)10
\
刻∏回归效果的相关指数R2=0.6’则下列说法正确的是 A.这些女学生的体重和身高具有非线性相关关系 B。这些女学生的体重差异有60%是由身高引起的 C.身高为170cm的女学生的体重_定为59.5kg D.这些女学生的身高每增加0.85cm’其体重约增加1kg
l2巳知函数/(堑)在吐鄙存在导瞬数/(堑)’对于任意的实数都有先子」-e鲤’当塑<0时’′(堑)+/(塑)>0’若e./(鳖"
趾
23. (本小题满分10分)[选修4—5:不等式选讲] 已知函数/(工)=|2工+1|+|工—1 | . (1)解不等式/(工)≥3;
(2)记函数/(塑)的最小值为′",若…均为正实数,且÷座+b+2c≡″′,求翻z+bz+‘2的最小值
烯
文科数学样卷(十)
)
B壶
C六
n昔
10°已知函数/(工)=(sin工+cos工)sin工,则下列说法不正确的为 A.函数/(工)的最小正周期为冗
E′(醚)在[普,粤]上单调递减
c/(工)的图象关于直线Z=—昔对称
u将/(墅)的图象向右平移昔个单位长度,再向下平移÷个单位长度后会得到一个奇函数的图象
11.从某高中女学生中选取10名学生’根据其身高(cm)、体重(kg)数据’得到体重关于身高的回归方程夕=0.85工—85’用来
18. (本小题满分12分) 如图’在三棱锥PABC中’PA上平面ABC’AC」_AB’PA=AD=2DC=2’AE=AB=侗. (1)求证:DE上平面PAE. (2)求三棱锥D—PBE的体积.
P
B C
第18题图
D
文科数学样卷(十)
19. (本小题满分12分)
第七届世界军人运动会于2019年10月18日至27日(共10天)在武汉召开’人们
2020高考数学全国卷123(LaTeX版 14页)
.
D(P )
A
B
C E(P )
F (P )
三、解答题:共 70 分,第 17∼21 题为必考题,第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。
经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为 1 . 2
(1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.
12. 若 2a + log2 a = 4b + 2 log4 b,则
A. a > 2b
B. a < 2b
C. a > b2
D. a < b2
二、填空题:本题共 4 个小题,每小题 5 分,共 20 分
2x + y − 2 ⩽ 0,
13.
若
x,
y
满足约束条件x y
− +
y 1
− ⩾
1⩾ 0,
0,
则 z = x + 7y 的最大值为
100%
80%
60%
发芽率
40%
20%
0% 0
10
20
30
40 温度/◦C
A. y = a + bx
B. y = a + bx2
C. y = a + bex
D. y = a + b ln x
6. 函数 f (x) = x4 − 2x3 的图像在点 1, f (1) 处的切线方程为
A. y = −2x − 1
x
A. 5
B. 10
C. 15
y
O
D. 20
πx
9. 已知 α ∈ (0, π),且 3 cos 2α − 8 cos α = 5,则 sin α =
2020年高考教育部考试中心·考试说明·高考样卷12套·数学(文)11
文科数学样卷(十一)
注意:本试卷满分150分,考试总用时120分钟.
第I卷
-、选择题:本题共12小题,每小题5分’共60分.在每小题给出的四个选项中,只有一项是符台题目要求的.
1.已知全集U=(z|工≤8}’集合A=(工|工2—8工≤0),则0uA=
A. (—°°’8)
第9题图
,|/
~○
勿
∧
O
A
B
C
D
11.已知点F是抛物线y2=2工的焦点’M’Ⅳ是该抛物线上的两点’若|MF|+|NF|=4’则线段MN的中点的横坐标为
A÷
且2
C;
D3
文科数学样卷(十一)
〔
l2巳知函数/(z)=:+彪(ln墅—堑),若匪ˉl是函数/(甄)的唯—极值点’则实数晦的取值范围是
A. (—◎°,e]
炼
文科数学样卷(十-)
\ ≥
Cl
C
第18题图
D
文科数学样卷(十_)
19. (本小题满分12分)
在平面直角坐标系翅山巾,椭圆C;莆+莆-l(“>b>0)的离心率为÷,点M(1,;)在椭圆C上
(1)求椭圆C的方程;
(2)已知P(—2’0)与Q(2’0)为平面内的两个定点’过点(1’0)的直线/与椭圆C交于A’B两点’求四边形APBQ面积
辅
k=k +1
否
嘉
圃
; 标原点,且△OAB的内切圆半径为÷,则双曲线的离心率为
第4题图
A2
凰佰
C夸
n仍
7已知正项等比数列{翻露}满足α』-l,翻5与;哩』的等差中项为÷,设S阀是{α厕}的前"项机则使得S厕>2020α蹦成立的测的
(新课标全国卷)2020年高考数学考试说明文
2020年咼考考试说明数学(文)根据教育部考试中心《2020年普通高等学校招生全国统一考试大纲(文科)》(以下简称《大纲》),结合基础教育的实际情况,制定了《2020年普通高等学校招生全国统一考试大纲的说明(文科)》(以下简称《说明》)的数学科部分。
制定《说明》既要有利于数学新课程的改革,又要发挥数学作为基础学科的作用;既要重视考查考生对中学数学知识的掌握程度,又要注意考查考生进入高等学校继续学习的潜能;既要符合《普通高中数学课程标准(实验)》和《普通高中课程方案(实验)》的要求,符合教育部考试中心《大纲》的要求,符合本省(自治区、直辖市)普通高等学校招生全国统一考试工作指导方案和普通高中课程改革试验的实际情况,又要利用高考命题的导向功能,推动新课程的课堂教学改革。
I•命题指导思想1•普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试.2•命题注重考查考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求.3•命题注重试题的创新性、多样性和选择性,具有一定的探究性和开放性•既要考查考生的共同基础,又要满足不同考生的选择需求. 合理分配必考和选考内容的比例,对选考内容的命题应做到各选考专题的试题分值相等,力求难度均衡.4•试卷应具有较高的信度、效度,必要的区分度和适当的难度.□ •考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式•全卷满分为150分,考试时间为120分钟.二、试卷结构全卷分为第I卷和第n卷两部分.第I卷为12个选择题,全部为必考内容•第n卷为非选择题,分为必考和选考两部分•必考部分题由4个填空题和5个解答题组成;选考部分由选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”各命制1个解答题,考生从3题中任选1题作答,若多做,则按所做的第一题给分.1•试题类型试题分为选择题、填空题和解答题三种题型•选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程•三种题型分数的百分比约为:选择题40%左右,填空题10%左右,解答题50%左右.2•难度控制试题按其难度分为容易题、中等难度题和难题•难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题•三种难度的试题应控制合适的分值比例,试卷总体难度适中.川•考核目标与要求一、知识要求知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(独立操作)、掌握(运用、迁移),且高一级的层次要求包括低一级的层次要求.1•知道(了解、模仿):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它•这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等2•理解(独立操作):要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等•3•掌握(运用、迁移):要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等•二、能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识•1•空间想像能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.2•抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断•3•推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法. 一般运用合情推理进行猜想,再运用演绎推理进行证明•4•运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算5•数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题•6•应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决•7•创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,仓U 造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强•三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神四、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自发展过程中的纵向联系和各部分知识之间的横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构•对数学基础知识的考查,要求既全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面•要从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度•数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和社会生活. 因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度. 考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.数学是一门思维的科学,是培养理性思维的重要载体,通过空间想象、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式作出思考和判断,形成和发展理性思维,构成数学能力的主题•对能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料. 对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查,以思维能力为核心.全面考查各种能力,强调综合性、应用性,切合学生实际•运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是对算理合逻辑推理的考查,以含字母的式的运算为主. 空间想象能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合. 实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持“贴近生活,背景公平,控制难度”的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要结合中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考试自觉地置身于现实社会的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识.创新意识和创造能力是理想思维的高层次表现•在数学的学习和研究过程中,知识的迁移、组合、融会的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强•命题时要注意试题的多样性,涉及考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目,让考生独立思考,自主探索,发挥主观能动性,探究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现创新意识、发挥创造能力创设广阔的空间.W、考试范围与要求(一)必考内容与要求1 •集合(1)集合的含义与表示①了解集合的含义、元素与集合的属于关系②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集②在具体情境中,了解全集与空集的含义•(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集•②理解在给定集合中一个子集的补集的含义,会求给定子集的补集③能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算2•函数概念与基本初等函数I(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数•③了解简单的分段函数,并能简单应用(函数分段不超过三段)④理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义⑤会运用基本初等函数的图像分析函数的性质•(2)指数函数①了解指数函数模型的实际背景•②理解有理指数幕的含义,了解实数指数幕的意义,掌握幕的运算③理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2 , 1/3的指数函数的图像•④体会指数函数是一类重要的函数模型•(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用•②理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10, 1/2的对数函数的图像•③体会对数函数是一类重要的函数模型;④了解指数函数」一与对数函数匸 --(a>0,且1)互为反函数•(4)幕函数①了解幕函数的概念•二= 1 d尸二兀尸== —,y = x②结合函数L的图像,了解它们的变化情况(5)函数与方程结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数•(6)函数模型及其应用①了解指数函数、对数函数、幕函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义•②了解函数模型(如指数函数、对数函数、幕函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用•3.立体几何初步(1)空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构•②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图③会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式④了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理♦公理1 :如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内♦公理2:过不在同一条直线上的三点,有且只有一个平面♦公理3 :如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.♦公理4 :平行于同一条直线的两条直线互相平行•♦定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补•②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理•理解以下判定定理•♦如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行♦如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行♦如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直•♦如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直理解以下性质定理,并能够证明•♦如果一条直线与一个平面平行,经过该直线的任一个平面与此平面的交线和该直线平行.♦如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行♦垂直于同一个平面的两条直线平行•♦如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直•③能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题•4•平面解析几何初步(1)直线与方程①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式③能根据两条直线的斜率判定这两条直线平行或垂直④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系•⑤能用解方程组的方法求两直线的交点坐标⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离•(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程②能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系③能用直线和圆的方程解决一些简单的问题•④初步了解用代数方法处理几何问题的思想•(3)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置②会推导空间两点间的距离公式•5•算法初步(1)算法的含义、程序框图①了解算法的含义,了解算法的思想•②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环(2)基本算法语句了解几种基本算法语句一一输入语句、输出语句、赋值语句、条件语句、循环语句的含义.6.统计(1)随机抽样①理解随机抽样的必要性和重要性•②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法(2)用样本估计总体①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点•②理解样本数据标准差的意义和作用,会计算数据标准差③能从样本数据中提取基本的数字特征(如平均数、标准差) ,并给出合理的解释•④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想•⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题•(3)变量的相关性①会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系•②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆)7.概率(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别•②了解两个互斥事件的概率加法公式•(2)古典概型①理解古典概型及其概率计算公式•②会计算一些随机事件所含的基本事件数及事件发生的概率(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率②了解几何概型的意义•&基本初等函数n (三角函数)(1)任意角的概念、弧度制①了解任意角的概念和弧度制的概念•②能进行弧度与角度的互化•(2)三角函数①理解任意角三角函数(正弦、余弦、正切)的定义色士②能利用单位圆中的三角函数线推导出二 ,冗土三的正弦、余弦、正切的诱导公式,能画出- ………---:- -丄…的图像,了解三角函数的周期性•③理解正弦函数、余弦函数在区间[0 , 2 n ]的性质(如单调性、最大和最小值以及与工'7T 71_轴交点等)•理解正切函数在区间( 1 ])的单调性•④理解同角三角函数的基本关系式:sin A3T . ------- = tan x.sm x + cos x = l, cos J⑤了解函数••——丄■■:二:-的物理意义;能画出■':的图像,了解参数.’对函数图像变化的影响•⑥会用三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题•9•平面向量(1)平面向量的实际背景及基本概念①了解向量的实际背景•②理解平面向量的概念和两个向量相等的含义③理解向量的几何表示•(2)向量的线性运算①掌握向量加法、减法的运算,并理解其几何意义②掌握向量数乘的运算及其意义,理解两个向量共线的含义③了解向量线性运算的性质及其几何意义•(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义②掌握平面向量的正交分解及其坐标表示③会用坐标表示平面向量的加法、减法与数乘运算④理解用坐标表示的平面向量共线的条件•(4)平面向量的数量积①理解平面向量数量积的含义及其物理意义•②了解平面向量的数量积与向量投影的关系•③掌握数量积的坐标表达式,会进行平面向量数量积的运算④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系•(5)向量的应用①会用向量方法解决某些简单的平面几何问题②会用向量方法解决简单的力学问题与其他一些实际问题10.三角恒等变换(1)两角和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式•②会用两角差的余弦公式导出两角差的正弦、正切公式③会用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系•(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆) .11.解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题•12.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式)②了解数列是自变量为正整数的一类函数•(2)等差数列、等比数列①理解等差数列、等比数列的概念•②掌握等差数列、等比数列的通项公式与前n项和公式•③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题•④了解等差数列与一次函数、等比数列与指数函数的关系13.不等式(1)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型②通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图(3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组•②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(4)基本不等式:①了解基本不等式的证明过程•②会用基本不等式解决简单的最大(小)值问题•14.常用逻辑用语①理解命题的概念•②了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系•③理解必要条件、充分条件与充要条件的意义④了解逻辑联结词“或”、“且”、“非”的含义•⑤理解全称量词与存在量词的意义•⑥能正确地对含有一个量词的命题进行否定•15.圆锥曲线与方程①掌握椭圆的定义、几何图形、标准方程和简单几何性质(范围、对称性、顶点、离心率).。
2020年普通高等学校招生全国统一考试数学试题 文(山东卷,含解析)
绝密★启用前2020年普通高等学校招生全国统一考试数学试题文山东卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).【试卷点评】【命题特点】2020年山东高考数学试卷,试卷结构总体保持了传统的命题风格,以能力立意,注重考查考生的基础知识、基本技能和基本数学素养,符合考试说明的各项要求,贴近中学教学实际,是一份知识与能力完美融合、传统与创新和谐统一的优秀试卷.试题的顺序编排,遵循由易到难,基本符合学生由易到难的答题习惯.从命题内容来看,既突出热点内容的年年考查,又注意了非热点内容的考查,对教学工作有较好的导向性.同以往相比,今年对直线与圆没有独立的考题,而在压轴题的圆锥曲线问题中有所涉及直线与圆的位置关系,对基本不等式有独立的考查,与往年突出考查等差数列不同,今年对此考查有所淡化.具体看还有以下特点:1.体现新课标理念,保持稳定,适度创新.试卷紧扣山东高考《考试说明》,重点内容重点考查,试题注重考查高中数学的基础知识,并以重点知识为主线组织全卷,在知识网络交汇处设计试题内容,且有适度难度.而对新增内容则重点考查基本概念、基础知识,难度不大.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求. 数学思想方法是数学的灵魂,是对数学知识最高层次的概括与提炼,也是试卷考查的核心.通过命题精心设计,较好地考查了数形结合的思想、函数与方程的思想、转化与化归的数学思想.利用函数导数讨论函数的单调性、极值的过程,将分类与整合的思想挖掘得淋漓尽致.3.体现数学应用,关注社会生活.通过概率问题考查考生应用数学的能力,以学生都熟悉的内容为背景,体现试卷设计问题背景的公平性,对推动数学教学中关注身边的数学起到良好的导向.【命题趋势】2020年起,山东将不再自主命题,综合全国卷特点,结合山东教学实际,预测2020年应特别关注:1.函数与导数知识:以导数知识为背景的函数问题,多与单调性相关;对具体函数的基本性质(奇偶性、周期性、函数图象、函数与方程)、分段函数及抽象函数的考查依然是重点. 导数的几何意义与利用导数研究函数的性质的命题变换空间较大,直接求解问题、定值问题、存在性问题、求参数问题等,因此,其难度应会保持在中档以上.2.三角函数与向量知识:三角函数将从三角函数的图象和性质、三角变换、解三角形等三个方面进行考查,预计在未来考卷中,三方面内容依然会轮流出现在小题、大题中,大题综合化的趋势不容忽视.向量具有数与形的双重性,并具有较强的工具性,从近几年命题看,高考中向量试题的命题趋向依然是考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题,其难度不会增大.3.不等式知识:突出工具性,淡化独立性,突出解不等式及不等式的应用是不等式命题的重要趋向之一.不等式的性质与指数函数、对数函数、三角函数、二次函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多与导数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性往往较强,能力要求较高;解不等式的试题,往往与集合、函数图象等相结合.4.数列知识:等差数列、等比数列的通项公式及求和公式,依然会是考查的重点.由于数列求和问题的求解策略较为模式化,因此,这方面的创新往往会在融入“和”与“通项”的关系方面,让考生从此探究数列特征,确定应对方法.少有可能会象浙江卷,将数列与不等式综合,作为压轴难题出现.5.立体几何知识:近几年的命题说明,通过垂直、平行位置关系的证明题,二面角等角的计算问题,综合考查考生的逻辑思维能力、推理论证能力以及计算能力,在这方面文科倾向于证明.6.解析几何知识:预计小题中考查直线与圆、双曲线及抛物线的标准方程和几何性质为主旋律,解答题考查椭圆及椭圆与直线的位置关系等综合性问题为主,考查抛物线及抛物线与直线的位置关系等综合性问题为辅,和导数一样,命题变换空间较大,面积问题、定点问题、定值问题、存在性问题、求参数问题等,因此,导数问题或圆锥曲线问题作为压轴题的地位难以变化.7.概率与统计知识:概率与统计知识较为繁杂,命题的难度伸缩性也较大,其中较多地考查基础知识、基本应用,内容包括:古典概型、几何概型、茎叶图、平均数、中位数、变量的相关性、频率分布直方图(表)、假设性检验、回归分析等.试卷解析第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}11M x x =-<,{}2N x x =<,则M N =I (A )()1,1- (B )()1,2- (C )()0,2 (D )()1,2【答案】C【解析】试题分析:由|1|1x -<得02x <<,故={|02}{|2}{|02}M N x x x x x x <<<=<<I I ,故选C.【考点】 不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.(2)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =(A )-2i (B )2i (C )-2 (D )2【答案】A【解析】【考点】复数的运算【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2=±2i;(2)1+i 1-i =i,1-i 1+i=-i. (3)已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是(A)-3 (B)-1 (C)1 (D)3【答案】D【解析】【考点】线性规划【名师点睛】(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点,并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点.(2)利用线性规划求目标函数最值的步骤:①画出约束条件对应的可行域;②将目标函数视为动直线,并将其平移经过可行域,找到最优解;③将最优解代入目标函数,求出最大值或最小值.(4)已知3cos4x=,则cos2x=(A)14-(B)14(C)18-(D)18【解析】 试题分析:由3cos 4x =得2231cos22cos 12148x x ⎛⎫=-=⨯-= ⎪⎝⎭,故选D. 【考点】二倍角公式【名师点睛】(1)三角函数式的化简与求值要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)三角函数式化简与求值要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.(5)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是(A )p q ∧ (B )p q ∧⌝ (C )p q ⌝∧ (D )p q ⌝∧⌝【答案】B【解析】【考点】命题真假的判断【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(6)执行下面的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为(A )3x > (B )4x > (C )4x ≤ (D )5x ≤【解析】【考点】程序框图【名师点睛】程序框图试题主要有求程序框图执行的结果和完善程序框图两种形式,求程序框图执行的结果,要先找出控制循环的变量的初值(计数变量与累加变量的初始值)、步长、终值(或控制循环的条件),然后看循环体,循环体是反复执行的步骤,循环次数比较少时,可依次列出;循环次数较多时,可先循环几次,找出规律,最后要特别注意循环结束的条件,不要出现多一次或少一次循环的错误.完善程序框图的试题多为判断框内内容的填写,这类问题常涉及,,,≥>≤<的选择,解答时要根据循环结构的类型,正确地进行选择,注意直到型循环是“先循环,后判断,条件满足时终止循环”,而当型循环则是“先判断,后循环,条件满足时执行循环”,两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.另外,还要注意判断框内的条件不是唯一的,如5i >也可写成6i ≥.(7)函数32cos 2y x x =+的最小正周期为 (A )π2 (B )2π3(C )π (D )2π 【答案】C【解析】 试题分析:因为π32cos 22sin 23y x x x ⎛⎫=+=+⎪⎝⎭,所以其最小正周期2ππ2T ==,故选C. 【考点】三角变换及三角函数的性质【名师点睛】求三角函数周期的方法:①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.③对于形如sin cos y a x b x ωω=+的函数,一般先把其化为()22y a b x ωϕ=++的形式再求周期.(8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A )3,5 (B )5,5 (C )3,7 (D )5,7【答案】A【解析】【考点】茎叶图、样本的数字特征【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失;第二点是茎叶图便于记录和表示.缺点是当样本容量较大时,作图较烦琐. 利用茎叶图对样本进行估计时,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.(9)设()(),0121,1x x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭(A )2 (B )4 (C )6 (D )8【答案】C【解析】试题分析:由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【考点】分段函数求值 【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.(10)若函数()e xf x (e=2.71828L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中具有M 性质的是(A )()2x f x -= (B )()2f x x = (C )()3xf x -= (D )()cos f x x = 【答案】A【考点】导数的应用【名师点睛】(1)确定函数单调区间的步骤:① 确定函数f (x )的定义域;②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(2)根据函数单调性确定参数范围的方法:①利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.②转化为不等式的恒成立问题,即转化为“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)已知向量a =(2,6),b =(1,)λ- ,若∥a b ,则λ= .【答案】3-【解析】试题分析:由∥a b 可得162 3.λλ-⨯=⇒=-【考点】向量共线与向量的坐标运算【名师点睛】平面向量共线的坐标表示问题的常见类型及解题策略:(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则∥a b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.(12)若直线1(00)x y a b a b+=>,> 过点(1,2),则2a +b 的最小值为 . 【答案】8【解析】【考点】基本不等式【名师点睛】应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(13)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 .【答案】π22+ 【解析】试题分析:由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以2π1π21121242V ⨯=⨯⨯+⨯⨯=+. 【考点】三视图及几何体体积的计算.【名师点睛】(1)由实物图画三视图或判断、选择三视图,此时需要注意“长对正、高平齐、宽相等”的原则.(2)由三视图还原实物图,解题时首先对柱、锥、台、球的三视图要熟悉,复杂的几何体也是由这些简单的几何体组合而成的;其次,要遵循以下三步:①看视图,明关系;②分部分,想整体;③综合起来,定整体.(14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6x f x -=,则f (919)= .【答案】6【解析】【考点】函数奇偶性与周期性【名师点睛】与函数奇偶性有关问题的解决方法:①已知函数的奇偶性,求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.②已知函数的奇偶性求解析式:将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.③已知函数的奇偶性,求函数解析式中参数的值:常利用待定系数法,利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.④应用奇偶性画图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.(15)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 . 【答案】2y x = 【解析】 试题分析:由抛物线定义可得:||||=4222A B A B p p p AF BF y y y y p ++++=⨯⇒+=, 因为22222222221202x y a y pb y a b a b x py ⎧-=⎪⇒-+=⎨⎪=⎩,所以2222A B pb y y p a b a +==⇒=⇒渐近线方程为22y x =±. 【考点】抛物线的定义与性质、双曲线的几何性质【名师点睛】若AB 是抛物线()220y px p =>的焦点弦,设A (x 1,y 1),B (x 2,y 2).则 (1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2p sin 2θ(θ为AB 的倾斜角).(3)1|AF |+1|BF |为定值2p . (4)以AB 为直径的圆与准线相切.(5)以AF 或BF 为直径的圆与y 轴相切.三、解答题:本大题共6小题,共75分. (16)(本小题满分12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游. (Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率. 【答案】(Ⅰ)15;(Ⅱ)2.9【解析】包含1A 但不包括1B 的事件所包含的基本事件有:{}{}1213,,,A B A B ,共2个, 所以所求事件的概率为:29P =.【考点】古典概型【名师点睛】(1)对于事件A 的概率的计算,关键是要分清基本事件总数n 与事件A 包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A 是什么,它包含的基本事件有多少个.(2)如果基本事件的个数比较少,可用列举法把古典概型试验所包含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式P (A )=mn求出事件A 的概率,这是一个形象、直观的好方法,但列举时必须按照某一顺序做到不重不漏. (17)(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-u u u r u u u r,3ABC S =△,求A 和a .【答案】3=π,=29.4A a 【解析】又3b =,所以22c =由余弦定理2222cos a b c bc A =+-, 得22982322(2a =+-⨯⨯-, 所以29a =【考点】解三角形【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想. (18)(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (Ⅰ)证明:1A O ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(Ⅰ)证明见解析.(Ⅱ)证明见解析. 【解析】所以1A O ∥平面11B CD .(Ⅱ)因为AC BD ⊥,E ,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD , 所以1,A E BD ⊥【考点】空间中的线面位置关系【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行. (19)(本小题满分12分)已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ){}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(Ⅰ)2nn a =;(Ⅱ)2552n nn T +=-【解析】试题分析:(Ⅰ)列出关于1,a q 的方程组,解方程组求基本量;(Ⅱ)用错位相减法求和.试题解析:(Ⅰ)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==.又0n a >,解得:12,2a q ==,所以2n n a =.(Ⅱ)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠【考点】等比数列的通项,错位相减法求和.【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. (20)(本小题满分13分)已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)390x y --=,(Ⅱ)见解析. 【解析】试题分析:(Ⅰ)根据导数的几何意义,求出切线的斜率,再用点斜式写出切线方程;(Ⅱ)由()()(sin )g x x a x x '=--,通过讨论确定()g x 的单调性,再由单调性确定极值.试题解析:(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-,因为(0)0h =,所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-, 当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增;有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-; 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 【考点】导数的几何意义及导数的应用【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值. (21)(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为22(Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |. 设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.【答案】(Ⅰ)22142x y +=;(Ⅱ)EDF ∠的最小值为π3. 【解析】又当1y =时,2222a x a b =-,得2222a a b-=,所以224,2a b ==,因此椭圆方程为22142x y +=. (Ⅱ)设1122(,),(,)A x y B x y ,联立方程2224y kx mx y =+⎧⎨+=⎩, 得222(21)4240k x kmx m +++-=, 由0∆>得2242m k <+.(*) 且122421kmx x k +=+,令283,3t k t =+≥, 故21214t k ++=, 所以2221616111(1)2ND t t NFt t=+=++++ . 令1y t t=+,所以211y t'=-. 当3t ≥时,0y '>,从而1y t t =+在[3,)+∞上单调递增,因此1103t t +≥,等号当且仅当3t =时成立,此时0k =,所以22134 NDNF≤+=,【考点】圆与椭圆的方程、直线与圆锥曲线的位置关系【名师点睛】圆锥曲线中的两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.。
2020年高考教育部考试中心·考试说明·高考样卷12套·数学(文)
A级.
(1)根据已知条件完成下面的2×2列联表’据此资料你是否有99%的把握认为学生数学素养成绩“A级”与“所在级部” 有关?
不是A级
A级
合计
初中部
高中部
合计
″(αd—bC)2
注:K2≡(α+6)(c+d)(α+c)(b+α)’其中n=α+b+C+α.
P(K2≥陶《)) 虎0
0.050 3.841
^ ○ ] ^
‖
‖■
γ
尸
尸
β冗
α
〗
γ
0·001
~ 10·828
(2)若这个学校共有9000名高中生,用频率估计概率’用样本估计总体,试估计这个学校的高中生的数学素养成绩为A 级的人数’并估计数学素养成绩的平均分(用组中值代表本组分数).
(3)把初中部的A级同学编号为A1’A2’A3’A4’A5’高中部的D级同学编号为D1’D2’D3’Dl’D5’从初中部A级、高 中部D级中各选~名同学’求这两名同学的编号奇偶性相同的概率.
A. 56%
B.14%
C.25%
D.67%
6若双曲线过点也/2)'且渐近线方程为y= 士卡,则该双曲线的方程 是
古去
号= A.
2
y
一
1
号- B
x 2=1
号= C.x 2 一
1
口号 一 户 1
7.中国古代数学名著《九章算术》中记载:“当(chu)蕾(meng)者,下有袤有广,而上有袤元广.鱼,草 /一一飞\
A
B
C
D
第17题图
D
文科数学样卷(_)
18. (本小题满分12分) 某学校为了调查学生数学素养的情况’从初中部、高中部各随机抽取10()名学生进行测试. 初中部的100名学生的成绩(单位:分)的频率分布直方图如图所示.
2020年高考教育部考试中心·考试说明·高考样卷12套·数学(文)
A. ./IT
B于
C.4
D.1
文科数学样卷(一 )
9.中国古代数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺’竹长两尺’松日自半’竹
日自倍,松竹何日而长等.如图是源于其思想的—个程序框图’若输人的α’b分别为5’2’则输出
的″=
A·5
B4
C·3
D°2
瞥
10.定义函数g(工)为不大于工的最大整数’对于函数/(工)=工—g(工)有以下四个命题:
D7000
5若sm(α+厕)-+,αe(—昔,0)则c°器厅l
A—平
B?
c平
u仔
6.已知数列{α″}满足(″+1)α′』=〃α厕+l ’α2=4’等比数列(b″)满足b1=α1 ’b2=α2’则{b厕〉的前6项和为
A·—63
B.—126
C·63
D. 126
7.已知函数/(工)是R上的偶函数’且对任意的工〔R有/(工+3)≡_/(工)’当工e(—3’0)时’/(工)=2虐r_5’则
三、解答题:共70分°解答应写出文字说明、证明或演算步骤.第17~21题为必考题,每个试题考生必须作答第22,23题为 选考题,考生根据要求作答. (-)必考题,共60分. 17. (本小题满分12分)
已知数列(α"}满足αl=2’α″+l=2α"(″〔N※)’设b″=3log2α"—2(″巴N※)’数列{c″)满足c″=α″b". (1)求证:数列{b厕)为等差数列. (2)求数列(c")的前测项和S〃.
A级.
(1)根据已知条件完成下面的2×2列联表’据此资料你是否有99%的把握认为学生数学素养成绩“A级”与“所在级部” 有关?
不是A级
A级
合计
初中部
2020年高考试题——数学(文)(全国卷II)
2020年普通高等学校招生全国统一考试(全国卷Ⅱ)数学试卷(文科)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=A.∅B.{-3,-2,2,3}C.{-2,0,2}D.{-2,2}2.(1-i)4=A.-4B.4C.-4iD.4i3.如图,将钢琴上的12个键依次记为a1,a2,…a12,设1≤i≤j≤k≤12。
若k-j=3且j-i=4,则称a i,a j,a k为原位大三和弦;若k-j=4且j-i=3,则称a i,a j,a k为原位小三和弦。
用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名5.已知单位向量a,b的夹角为60°,则下列向量中,与b垂直的是A.a+2bB.2a+bC.a-2bD.2a-b6.记S n为等比数列{a n}的前n项和,若a5-a3=12,a6-a4=24,则nnSa=A.2n-1B.2-21-nC.2-2n-1D.21-n-17.执行右面的程序框图,若输入k=0,a=0,则输出的k为A.2B.3C.4D.58.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为 525 35 459.设O 为坐标原点,直线x =a 与双曲线C :22221(0,0)x y a b a b-=>>的两条渐近线分别交于D ,E 两点。
2020年全国统一高考文科数学全国II卷(含答案)
6.设f(x)为奇函数,且当x≥0时,f(x)= ,则当x<0时,f(x)=
A. B.
C. D.
【答案】D
【解析】
【分析】
先把x<0,转化为-x>0,代入可得 ,结合奇偶性可得 .
【详解】 是奇函数, .当 时, , ,得 .故选D.
A. B.
C. D.
【答案】B
【解析】
【分析】
利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案.
【详解】 , .
,又 , ,又 , ,故选B.
【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.
1.已知集合 , ,则A∩B=
A.(–1,+∞)B.(–∞,2)
C.(–1,2)D.
2.设z=i(2+i),则 =
A. 1+2iB. –1+2i
C. 1–2iD. –1–2i
3.已知向量a=(2,3),b=(3,2),则|a–b|=
A B. 2
C. 5 D. 50
4.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为
9.若抛物线y2=2px(p>0)的焦点是椭圆 的一个焦点,则p=
A.2B.3
C.4D.8
【答案】D
【解析】
【分析】
利用抛物线与椭圆有共同的焦点即可列出关于 的方程,即可解出 ,或者利用检验排除的方法,如 时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A,同样可排除B,C,故选D.
2020年全国统一高考文数考试卷(全国卷Ⅱ)文科数学(附答案解析)
2020年全国统一高考文数考试卷(全国卷Ⅱ)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑。
如需改动,用橡皮擦干净后,在选涂其它答案标号框。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=( )AB {–3,–2,2,3)C {–2,0,2}D {–2,2}2.(1–i)4= ( )A.–4B.4C.–4iD.4i3.如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k–j=3且j–i=4,则称ai,aj,ak为原位大三和弦;若k–j=4且j–i=3,则称ai,aj,ak为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A. 5B . 8C. 10D. 154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名5.已知单位向量a,b的夹角为60°,则在下列向量中,与b垂直的是( )A.a+2bB.2a+bC.a–2bD.2a–b6.记Sn为等比数列{an}的前n项和.若a5–a3=12,a6–a4=24,则=( )A.2n–1B.2–21–nC.2–2n–1D.21–n–17.执行右面的程序框图,若输入的k=0,a=0,则输出的k为( )A.2B.3C.4D.58.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为( )A.BCD9.设O为坐标原点,直线x=a与双曲线C:=l(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为10.设函数f(x)=x3-,则f(x)(0,+∞)单调递增(0,+∞)单调递减(0,+∞)单调递增(0,+∞)单调递减11.已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为ABD∣x-y∣>0∣x-y∣<013.二、填空题:本题共4小题,每小题5分,共20分。
(新课标)2020年高考数学考试说明文
2020 年高考文科数考试大纲(新课标)I. 考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩.按己确定的招生计划。
德、智、体全面衡量.择优录取.因此. 高考应具有较高的信度,效度,必要的区分度和适当的难度.Ⅱ. 考试内容根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2020 年颁布的《普通搞好总课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1 和系列4 的内容,确定文史类高考数学科考试内容。
数学科考试,要发挥数学作为主要基础学科的作用,要考察考生对中学的基础知、基本技能的掌握程度,要考查考生对数学思想方法和数学本质的理解水平,要考察考生进入高等学校继续学习的潜能。
一、考核目标与要求1. 知识要求知识是指《普通高中数学课程标准(实脸)》(以卜简称《课程标准》)中所规定的必修课程、选修课程系列1 和系列4 中的数学概念、性质、法期、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步孩进行运其。
处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明对知识的要求依次是了解、理解、掌握三个层次。
(1)了解: 要求对所列知识的含义有初步的、感性的认识. 知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有: 了解,知道、识别,模仿,会求、会解等.(2)理解: 要求对所列知识内容有较深刻的理性认识. 知道知知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。
这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象。
比较、判断,初步应用等。
(3)掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。
2020年全国普通高等学校招生统一考试文科数学试卷 全国Ⅱ卷(含答案)
2020年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A=,B=,则= A.B. C. D.2. A.-4 B.4 C.-4i D.4i3.如图,将钢琴上的12个键依次记为,,…,.设.若且,则称,,为原位大三和弦;若且,则称,,为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 A.5 B.8 C.10 D.154. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊{}3,x x x Z <∈{}1,x x x Z >∈A B ∅{}3,2,2,3--{}2,0,2-{}2,2-41i =-()1a 2a 12a 112i j k ≤<<≤3k j -=4j i -=i a j a k a 4k j -=3j i -=i a j a k a跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A. 10名 B. 18名 C. 24名 D. 32名5.已知单位向量,的夹角为60°,则在下列向量中,与垂直的是 A. B. C. D.6.记为等比数列{}的前项和. 若-=12, - =24,则= A .-1 B . 2- C. 2- D .-17. 执行右面的程序框图,若输入的k=0,a=0,则输出的k 为: A. 2 B. 3 C. 4 D. 5a b b 2a b +2a b +2a b -2a b -n S n a n 5a 3a 6a 4a nnS a 2n 2t n -n-12t-n 28. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为A . B. C. D.9.设O 为坐标原点,直线与双曲线C :(a>0,b>0)的两条渐近线分别交于D ,E 两点,若的面积为8,则C 的焦距的最小值为 A .4 B .8 C .16 D .3210.设函数,则 A.是奇函数,且在(0,+)单调递增 B.是奇函数,且在(0,+)单调递减 C.是偶函数,且在(0,+)单调递增 D.是偶函数,且在(0,+)单调递减230x y --=5253545x a =2222x 1y a b-=ODE ∆331()f x x x =-()f x ∞∞∞∞11.已知△ABC的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为 AB .C .1D12. 若,则 A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
2020年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)
2020年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2B.3C.4D.52.(5分)若(1+i)=1﹣i,则z=()A.1﹣i B.1+i C.﹣i D.i3.(5分)设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01B.0.1C.1D.104.(5分)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t )=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.695.(5分)已知sinθ+sin(θ+)=1,则sin(θ+)=()A .B .C .D .6.(5分)在平面内,A,B是两个定点,C 是动点.若•=1,则点C的轨迹为()A.圆B.椭圆C.抛物线D.直线7.(5分)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)8.(5分)点(0,﹣1)到直线y=k(x+1)距离的最大值为()A.1B .C .D.29.(5分)如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+210.(5分)设a=log32,b=log53,c =,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b11.(5分)在△ABC中,cos C =,AC=4,BC=3,则tan B=()A .B.2C.4D.812.(5分)已知函数f(x)=sin x +,则()A.f(x)的最小值为2B.f(x)的图象关于y轴对称C.f(x)的图象关于直线x=π对称D.f(x)的图象关于直线x =对称二、填空题:本题共4小题,每小题5分,共20分。