《检测与转换技术》实验二 应变片单臂特性实验

合集下载

应变片单臂电桥性能实验的实验数据的计算

应变片单臂电桥性能实验的实验数据的计算

应变片单臂电桥性能实验的实验数据的计算首先,我们需要确定实验的目的和假设。

通常,我们希望通过实验来测量材料或结构的应变变化,并评估应变片单臂电桥的精度和灵敏度。

然后,我们需要设计实验方案,并收集实验数据。

实验方案包括选择合适的材料和结构,确定测试条件(如加载方法、载荷大小等),以及选择测量仪器和测量方法。

实验数据一般包括以下几个方面:
1.载荷值:记录每个加载点施加的载荷值。

2.应变值:在每个加载点测量应变片的应变值。

3.电桥输出电压:根据应变片单臂电桥的原理,利用电桥测量应变片的应变值,并记录电桥的输出电压。

接下来,我们需要进行一定的数据处理和计算。

以下是可能需要进行的一些计算:
1.应变的计算:根据应变片的几何尺寸和电桥的灵敏度系数,将电桥输出电压转换为应变值。

2.灵敏度计算:根据应变值和载荷值的关系,计算应变片单臂电桥的灵敏度。

3.精度评估:根据实测数据和理论计算值的比较,评估应变片单臂电桥的精度。

最后,我们需要对实验数据进行分析和总结,得出结论。

通过分析实验数据,我们可以评估应变片单臂电桥的性能,比较不同条件下的结果,并找出可能存在的问题和改进方法。

在撰写实验报告时,我们应该清晰地描述实验的目的、实验方案、数据收集方法、数据处理和计算方法,以及分析和总结结果。

通过这些完整的实验过程,我们可以提高实验的可重复性和可靠性,得出准确的结论,并为进一步的研究和应用提供参考。

检测与转换技术实验一实验指导书

检测与转换技术实验一实验指导书

实验说明:1、请在实验之前写好预习报告2、预习报告要以理解为目的,结合实验指导书,按照自己的理解写预习报告,不以字数论成绩;3、预习报告要用铅笔,直尺画好电路图。

4、试验中独立或合作完成,大胆动手,积极分析解决实验中出现的问题。

5、实验中要结合理论学习,认真观察体会应变片的结构、安装、引线及使用;认真理解分析应变片测量与转换电路的设计,真正达到通过实验,掌握传感器的应用,不以弄个实验数据为目的。

实验一金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相=EKε/4。

应的受力状态。

对单臂电桥输出电压Uo1三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘、砝码、41位2数显万用表(自备)。

图1.1应变片单臂电桥性能实验安装、接线示意图四、实验步骤:应变传感器实验模板说明:实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

1、根据图 1.1〔应变式传感器(电子秤传感器)已装于应变传感器模板上。

传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4和加热器上。

传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。

当传感器托盘支点受压时,R1、R3阻值增加,R2、R4阻值减小,可用四位半数显万用进行测量判别。

应变片单臂电桥性能实验

应变片单臂电桥性能实验

塔里木大学课程实验报告它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:k=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

金属导体的电阻应变灵敏度一般在2左右。

(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

半导体材料之所以具有较大的电阻变化率,是因为它有远比金属导体显著得多的压阻效应。

在半导体受力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

5、测量电路为了将电阻应变式传感器的电阻变化转换成电压或电流信号,在应用中一般采用电桥电路作为其测量电路。

电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。

能较好地满足各种应变测量要求,因此在应变测量中得到了广泛的应用。

电桥电路按其工作方式分有单臂、双臂和全桥三种,单臂工作输出信号最小、线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂时的四倍,性能最好。

因此,为了得到较大的输出电压信号一般都采用双臂或全桥工作。

基本电路如图1—2(a)、(b)、(c)所示。

(a)单臂(b)半桥(c)全桥图1—2 应变片测量电路(a)、单臂Uo=U①-U③=〔(R1+△R1)/(R1+△R1+R5)-R7/(R7+R6)〕E={〔(R7+R6)(R1+△R1)-R7(R5+R1+△R1)〕/〔(R5+R1+△R1)(R7+R6)〕}E 设R1=R5=R6=R7,且△R1/R1=ΔR/R<<1,ΔR/R=Kε,K为灵敏度系数。

则Uo≈(1/4)(△R1/R1)E=(1/4)(△R/R)E=(1/4)KεE(b)、双臂(半桥)同理:Uo≈(1/2)(△R/R)E=(1/2)KεE(C)、全桥同理:Uo≈(△R/R)E=KεE6、箔式应变片单臂电桥实验原理图图1—3 应变片单臂电桥性能实验原理图图中R5、R6、R7为350Ω固定电阻,R1为应变片; R W1和R8组成电桥调平衡网络,E 为供桥电源±4V。

检测与转换实验指导书

检测与转换实验指导书

检测与转换实验指导书福建农林大学汽车工程系2010.3实验一金属箔式应变片—全桥性能实验一、实验目的:了解全桥测量电路的优点。

二、基本原理:全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KEε。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、需用器件和单元:同实验二。

四、实验步骤:1、将托盘安装到应变传感器的托盘支点上。

将实验模板差动放大器调零:用导线将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连,再将实验模板中的放大器的两输入口短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。

图3—1 全桥性能实验接线图2、拆去放大器输入端口的短接线,根据图3—1接线。

实验方法与实验二相同,将实验数据填入表3画出实验曲线;进行灵敏度和非线性误差计算。

实验完毕,关闭电源。

表3五、思考题:1、测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

2某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如图3—2,如何利用这四片应变片组成电桥,是否需要外加电阻。

图3-2应变式传感器受拉时传感器圆周面展开图实验二直流激励时霍尔式传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。

三、需用器件与单元:主机箱、霍尔传感器实验模板、霍尔传感器、测微头。

新测试技术实验教学指导书

新测试技术实验教学指导书

实验一、金属箔式应变片性能 ——单臂电桥一、实验原理:应用应变片测试时,应变片牢固地粘贴在被测件表面上,当被测件受力变形时,应变片的敏感栅随同变形,电阻值也发生相应的变化。

通过测量电路,将其转换为电压或电流信号输出。

电桥电路是非电量电测法中最常用的一种方法。

当电桥平衡时,即R1×R4=R2×R3,电桥的输出为,在桥臂R1、R2、R3、R4中,电阻的相对变化分别为ΔR1/R1、ΔR2/R2、ΔR3/R3、ΔR4/R4。

桥路输出与εR=ΔR1/R1-ΔR2/R2-ΔR3/R3+ΔR4/R4成正比。

当使用两个应变片时,εR=ΔR1/R1-R2/R2。

如二片应变片工作于差动状态,则有εR=2ΔR/R 。

用四片应变片组成二个差动对工作,且R1=R2=R3=R4=R ,于是ΔR1/R1=-ΔR2/R2=-ΔR3/R3=ΔR4/R4=ΔR/R ,所以εR =4ΔR/R 。

由此可知,单臂、双臂、全桥电路的灵敏度依次增大。

二、 实验所需部件:直流稳压电源、电桥、差动放大器、测微头、电压表(毫伏表)三、实验步骤:1、按图1所示,将实验部件连接。

其中,差动放大器和毫伏表使用前都要调零,(3-l /2电压表可不必调零)。

毫伏表放在50 mV 一档比较合适。

2、将差动放大器调零。

方法是用导线将正负输入端对地短接,然后将输出端接到毫伏表的输入端,调整差动放大器的增益旋钮,使增益尽可能大,同时调整差动放大器的调零旋钮,使毫伏表指示到零。

调好零后,调零旋钮就不可再动。

3、 确认接线无误时开启电源。

4、 在测微头离开悬臂梁,悬臂梁处于水平状态的情况下,通过调整电桥平衡电位器,使系统输出为零。

差动放大器的增益以用手将梁压到最低处和提到最高处时毫伏表指针左右能打到满刻度时为宜。

5、装上测微头,调整到系统输出为零。

此时测微头读数为悬臂梁处于水平位置(自由状态)。

然后向上旋动测微头7—8mm 从此位置开始,记下梁的位移与电压表指示值,每往下1mm 记一个数值,一直到水平下7—8mm 为止。

检测与转换技术指导书

检测与转换技术指导书

检测与转换技术实验一金属箔式应变片单臂电桥一、实验目的:了解金属箔式应变片单臂电桥的工作原理和工作情形。

二、所需单元和部件:直流稳压电源、差动放大器、电桥、测微器、V/F表。

有关旋钮的初始位置:直流稳压电源输出置于0V档,V/F表置于V表,20V档, 差动放大器增益旋钮置于最大。

三、注意事项:(1)电桥单元上部所示的四个桥臂电阻(Rx)并未按装,仅作为组桥示意标记,表示在组桥时应外接桥臂电阻(如应变片或固定电阻)。

R1,R2,R3作为备用的桥臂电阻,按需接入桥路。

电桥单元面板和差动放大器单元示用意见图1(a).(b)。

(2)做此实验时应将低频放大器、音频放大器的幅度调至最小,以减小其对直流电桥的阻碍。

(3)实验进程中,直流稳压电源输出不许诺大于4V,以防应变片过热损坏。

(4)不能用手触及应变片及过度弯曲平行梁,以避免应变片损坏。

(5)实验顶用到所需单元时,那么该单元上有电源开关的应合上开关,完成实验后应关闭所有开关及输出。

四、实验步骤:(1) 观看梁上应变片,而且了解结构和粘贴位置(对应受力,变形方向,见图1©)。

(2)将差动放大器调零。

用导线将差动放大器的正负输入端与地端连接起来,然后将差动放大器的输出端接至电压表的输入端,电压表的量程取2V档,调整差动放大器上的调零旋钮,使电压表指示为零。

稳固后去除差动放大器输入端的导线。

(3)依照图2的电路结构,将一片应变片与电桥平稳网络、差动放大器、电压表、直流稳压电源连接起来,组成一个测量线路(这时直流稳压电源应置于0V档,电压表应置于20V档)。

现在,应变片接入图2的Rx位置。

(4)转动测微器,将梁上振动平台中间的磁铁与测微头相吸(必要时松开测微器的固定螺钉,使之完全靠得住吸附后,再拧紧固定螺钉),并使双平行梁处于(目测)水平位置。

(5)将直流稳压电源输出置于4V档,调整电桥平稳电位器W1,使电压表指示为零,稳固数分钟后,将电压表量程置于2V档后,再认真调零。

实验二电桥测试(电阻式传感器的单臂、全桥电桥性能)实验

实验二电桥测试(电阻式传感器的单臂、全桥电桥性能)实验

实验二电桥测试(1)电阻式传感器的单臂电桥性能实验一、实验目的1、了解电阻应变式传感器的基本结构与使用方法。

2、掌握电阻应变式传感器放大电路的调试方法。

3、掌握单臂电桥电路的工作原理和性能。

二、实验所用单元电阻应变式传感器、调零电桥,差动放大器板、直流稳压电源、数字电压表、位移台架。

三、实验原理及电路1、电阻应变式传感如图1-1所示。

传感器的主要部分是上、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、(双臂)半桥与全桥电路,最大测量范围为±3mm。

1─外壳2─电阻应变片3─测杆4─等截面悬臂梁5─面板接线图图1-1 电阻应变式传感器2、电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:ΔR/ R=KΔL/ L=Kε,ΔR为电阻丝变化值,K为应变灵敏系数,ε为电阻丝长度的相对变化量ΔL/ L。

通过施加外力引起应变片变形,测量电路将电阻变化转换为电流或电压的变化。

ρρεμd K S 1)21(++=对于金属应变片,K s 主要取决于式中的第一项。

金属的泊松比通常在0.3左右,对于大多数金属K s 取2。

本实验采用直流电桥来测量金属应变片的工作特性。

3.电桥的工作原理和特性 (1)电桥的工作原理图2 是一个直流电桥.A 、C 端接直流电源,称供桥端,U o 称供桥电压;B 、D 端接测量仪器,称输出端U BD =U BC +U CD =U O [R 3/(R 3+R 4)-R 2/(R 1+R 2)] 1) 由式(1)可知,当电桥输出电压为零时电桥处于平衡状态.为保证测量的准确性,在实测之前应使电桥平衡(称为预调平衡).(2)电桥的加减特性电桥的四个桥臂都由应变片组成,则工作时各桥臂的电阻状态都将发生变化(电阻拉伸时,阻值增加;电阻压缩时,阻值减小),电桥也将有电压输出.当供桥电压一定而且△R i <<R i 时,d U=(∂ U/∂R 1) d R 1+(∂ U/∂R 2) dR 2+(∂ U/∂R 3) dR 3+(∂ U/∂R 4) dR 4 2) 其中U =U BD .对于全等臂电桥,R 1=R 2=R 3=R 4=R ,各桥臂应变片灵敏系数K 相同,上式可简化为d U=0.25U O (d R 1 / R 1- d R 2 / R 2+ d R 3 / R 3- d R 4 / R 4) 3) 当△Ri <<R 时,此时可用电压输出增量式表示∆ U=0.25 U O (∆ R 1 / R 1- ∆ R 2 / R 2+ ∆ R 3 / R 3- ∆ R 4 / R 4) 4) 式(4)为电桥转换原理的一般形式,现讨论如下:(a )当只有一个桥臂接应变片时(称为单臂电桥),桥臂R 1为工作臂,且工作时电阻由R 变为R +△R ,其余各臂为固定电阻R (△R 2=△R 3=△R 4=0),则式(4)变为∆ U=0.25 U O (∆ R / R)= 0.25 U O K ε 5) (b )若两个相邻臂接应变片时(称为双臂电桥,即半桥),(见图3)即桥臂R 1、R 2为工作臂,且工作时有电阻增量△R 1、△R 2,而R 3和R 4臂为固定电阻R (∆R 3=∆R 4=0).当两桥臂电阻同时拉伸或同时压缩时,则有△R 1=△R 2=△R ,由式(4)可得△U =0.当一桥臂电阻拉伸一桥臂压缩时,则有△R1=△R,△R2=-△R,由式(4)可得∆ U=2[ 0.25 U O (∆ R / R) ]=2 [ 0.25 U O Kε] 6)(c)当四个桥臂全接应变片时(称为全桥),(见图4),R1=R2=R3=R4=R,都是工作臂,△R1=△R3=△R,△R2=△R4=-△R,则式(4)变为∆ U=4[ 0.25 U O (∆ R / R) ]=4 [ 0.25 U O Kε] 7)此时电桥的输出比单臂工作时提高了四倍,比双臂工作时提高了二倍.(3)电桥的灵敏度电桥的灵敏度S u是单位电阻变化率所对应的输出电压的大小S u=∆ U/(∆ R/ R)= 0.25 U O (∆ R1 / R1- ∆ R2 / R2+ ∆ R3 / R3- ∆ R4 / R4)/ (∆ R/ R) 8) 令 n=(∆ R1 / R1- ∆ R2 / R2+ ∆ R3 / R3- ∆ R4 / R4)/ (∆ R/ R) 9)则S u=0.25n U O 10)式中,n 为电桥的工作臂系数.由上式可知,电桥的工作臂系数愈大,则电桥的灵敏度愈高,因此,测量时可利用电桥的加减特性来合理组桥,以增加n 及测量灵敏度.3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R1、R2、R3为固定,R为电阻应变片,输出电压∆ U=EKε11)E---电桥转换系数:单臂E= U0/4 半桥(双臂)E= U0/2 全桥E= U04.由10)11)可知:S u、∆ U均与电桥的工作臂数、U o供桥电压成正比;但U o 供桥电压过大会使应变片的温度变大。

单臂电桥性能实验报告

单臂电桥性能实验报告

竭诚为您提供优质文档/双击可除单臂电桥性能实验报告篇一:单臂电桥性能实验报告实验一金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:?R/R?K?式中?R/R为电阻丝电阻的相对变化,K为应变灵敏系数,为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压uo1?eK?/4。

三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1、根据图1-1应变式传感器已装于应变传感器模块上。

传感器中各应变片已接入模块的左上方的R1、R2、R3、R4。

加热丝也接于模块上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。

图1-1应变式传感器安装示意图2、接入模块电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器Rw3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi相连,调节实验模块上调零电位器Rw4,使数显表显示为零(数显表的切换开关打到2V档)。

关闭主控箱电源。

3、将应变式传感器的其中一个应变片R1(即模块左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入)如图1-2所示。

检查接线无误后,合上主控箱电源开关。

调节Rw1,使数显表显示为零。

图1-2应变式传感器单臂电桥实验接线图4、在电子秤上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到500g(或200g)砝码加完。

检测与变换技术-实验指导书

检测与变换技术-实验指导书

目录实验一金属箔式应变片性能-单臂电桥 (2)实验二金属箔式应变片:单臂、半桥、全桥比较 (5)实验三热电偶原理及分度表的应用 (7)实验四金属箔式应变片-交流全桥 (10)实验五差动变压器(互感式)的性能 (12)实验六霍尔式传感器的直流激励特性 (14)实验七压电传感器引线电容对电压放大器的影响、电荷放大器 (16)实验八差动变面积式电容传感器的静态及动态特性 (18)附录 (20)实验一 金属箔式应变片性能-单臂电桥实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况。

实验原理:本实验说明箔式应变片及单臂直流电桥的电源的原理和工作情 况。

应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等, 电桥输出为零,在桥臂四个电阻 R 1 、 R 2 、 R 3 、 R 4 中,电阻的相对变化率分别为 ΔR 1 R 1、 ΔR 2R 2、 ΔR 3R 3、 ΔR 4R 4,当使用一个应变片时,ΣR =ΔR ;当二个应变片组成差动状态工作,则有 ΣR = 2ΔR ;用四个应变片组 R R4ΔR成二个差对工作,且 R 1 = R 2 = R 3 = R 4 = R , ΣR = 。

R由此可知,单臂、半桥、全桥电路的灵敏度依次增大。

所需单元及部件:直流稳压电源、电桥、差动放大器、双平行梁、测微头片 应变片、F/V 表、主、副电源。

旋钮初始位置:直流稳压电源打到 ± 2V 档,F/V 打到 2V 档, 差动放大增 益最大。

实验步骤:(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片, 应 变片为棕色衬底箔式结构小方薄片。

上下二片梁的外表面各贴二片受力应变片和 一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、 右调节。

应变片单臂特性实验报告

应变片单臂特性实验报告

应变片单臂特性实验报告实验报告: 应变片单臂特性引言本次实验旨在探究应变片单臂的特性,并通过数据的分析实现对应变片单臂特性的理解与应用。

计算机、电子、测量仪器等领域中应变片单臂是十分常见的测量设备,其应变灵敏、响应迅速,用于实验测量分析时具有十分重要的作用。

实验目的1.掌握应变片单臂的工作原理及其特性2.理解应变片单臂的测量误差3.探究应变片单臂的灵敏度与各项数据的关系实验设备1.单臂应变片2.直流电源3.电压表4.导线实验过程1.组装设备并调整到正确位置2.用直流电源测试应变片单臂的灵敏度3.收集应变片单臂的各项数据,并使用电压表进行测量4.分析应变片单臂的测量误差并计算得出相应的灵敏度数据实验结果1.不加力时,应变片单臂的电位差为0.14V。

2.施加1 N力时,应变片单臂的电位差为0.43V。

3.施加2 N力时,应变片单臂的电位差为0.87V。

4.根据数据分析得出应变片单臂的灵敏度:0.15V/N。

实验结论通过本次实验可以得出应变片单臂的特性及其灵敏度。

实验结果表明:应变片单臂的电位差与施加力成正比。

应变片单臂的灵敏度为0.15V/N,表明其灵敏度高,适用于要求较高的实验测量。

此外,实验还表明应变片单臂的测量误差也受到一些因素的影响,如光线、温度等条件。

参考文献1. “应变片单臂测量中误差的分析”,蔡秀群,Journal of 温州医科大学,20192. “应变片单臂的特性分析与应用”,胡乃明,物理学报,2018结语本次实验通过电压表对应变片单臂的测量数据进行了分析,得出了应变片单臂的特性及其灵敏度。

此过程中,我们也发现实验测量误差也很重要,需要针对实验的具体情况进行充分的考虑。

应变片单臂因其应变灵敏、响应迅速等特点被广泛应用于计算机、电子、测量仪器等领域。

(完整版)应变片单臂电桥性能实验

(完整版)应变片单臂电桥性能实验

塔里木大学课程实验报告姆)重量(g)0 20 40 60 80 100 120 140 160 180 200电阻R4(欧姆)350.82350.81350.80350.78350.77350.75350.74350.72350.71350.69350.682.差分放大器调零算法描述及实验步骤1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。

对式(1—1)全微分得电阻变化率 dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr (1—3) 式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。

2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:k=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

金属导体的电阻应变灵敏度一般在2左右。

(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

半导体材料之所以具有较大的电阻变化率,是因为它有远比金属导体显著得多的压阻效应。

在半导体受力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。

应变片单臂桥实验报告

应变片单臂桥实验报告

一、实验目的1. 理解应变片的工作原理和特性。

2. 掌握应变片单臂电桥的构成和原理。

3. 通过实验验证应变片单臂电桥的线性度、灵敏度等性能指标。

4. 学习应变片在力学测量等领域的应用。

二、实验原理应变片是一种将机械应变转换为电阻变化的传感器。

其基本原理是,当应变片受到外力作用时,其长度、截面积和电阻率发生变化,从而导致电阻值发生变化。

应变片单臂电桥是利用应变片将机械应变转换为电阻变化,并通过电桥电路放大并转换为电压信号的一种测量方法。

实验中使用的应变片为金属箔式应变片,其电阻值随应变的变化而变化。

单臂电桥电路由应变片、电阻R1、R2、R3和直流电源E组成。

当应变片受到拉伸或压缩时,其电阻值发生变化,导致电桥电路的输出电压发生变化。

三、实验仪器与设备1. 金属箔式应变片2. 单臂电桥电路3. 直流电源4. 数字电压表5. 静态拉伸装置6. 计算机及数据采集软件四、实验步骤1. 将应变片粘贴在静态拉伸装置上,确保粘贴牢固。

2. 按照电路图连接应变片单臂电桥电路,将应变片作为电桥的一个桥臂,其余三个桥臂由电阻R1、R2、R3组成。

3. 打开直流电源,调节电源电压至合适值。

4. 使用数字电压表测量电桥输出电压。

5. 逐渐增加拉伸装置的拉伸力,记录应变片电阻值和电桥输出电压的变化。

6. 将实验数据输入计算机,使用数据采集软件进行数据处理和分析。

五、实验结果与分析1. 线性度分析通过实验数据,绘制应变片电阻值与电桥输出电压的关系曲线。

根据曲线斜率,计算应变片单臂电桥的线性度。

实验结果表明,应变片单臂电桥具有良好的线性度。

2. 灵敏度分析根据应变片电阻值的变化量,计算电桥输出电压的变化量。

根据变化量,计算应变片单臂电桥的灵敏度。

实验结果表明,应变片单臂电桥具有较高的灵敏度。

3. 温度特性分析在实验过程中,对应变片单臂电桥的温度特性进行观察。

实验结果表明,应变片单臂电桥的温度特性较好,输出电压随温度的变化较小。

检测与转换技术实验

检测与转换技术实验

目录实验一金属箔式应变片——单臂电桥性能实验 (1)实验二金属箔式应变片——半桥性能实验 (4)实验三金属箔式应变片——全桥性能实验 (6)实验四谐波分析实验 (7)实验五滤波器实验 (11)实验六直流全桥的应用——电子秤实验 (17)实验七移相器实验 (18)实验八相敏检波器实验 (20)实验九交流全桥的应用——振动测量实验 (22)实验十压阻式压力传感器的压力测量实验 (25)实验十一差动变压器的性能实验 (27)实验十二激励频率对差动变压器特性的影响实验 (29)实验十三差动变压器零点残余电压补偿实验 (31)实验十四差动变压器的应用——振动测量实验 (32)实验十五电容式传感器的位移特性实验 (34)实验十六电容传感器动态特性实验 (36)实验十七直流激励时霍尔式传感器的位移特性实验 (38)实验十八交流激励时霍尔式传感器的位移特性实验 (39)实验十九霍尔测速实验* (40)实验二十磁电式传感器测速实验 (41)实验二十一压电式传感器测量振动实验 (42)实验二十二电涡流传感器位移特性实验 (43)实验二十三被测体材质对电涡流传感器的特性影响实验 (45)实验二十四被测体面积大小对电涡流传感器的特性影响实验 (46)实验二十五电涡流传感器测量振动实验 (47)实验二十六电涡流传感器的应用——电子秤实验 (48)实验二十七光纤传感器的位移特性实验 (49)实验二十八光纤传感器测量振动实验 (51)实验二十九光纤传感器测速实验 (52)实验三十光电转速传感器的转速测量实验 (54)实验三十一Cu50温度传感器的温度特性实验 (55)实验三十二P t100热电阻测温特性实验 (57)实验三十三热电偶测温性能实验 (59)实验三十四气敏(酒精)传感器实验 (61)实验三十五温度仪表PID控制实验 (62)实验三十六多功能数据采集控制器的使用介绍 (64)实验三十七计算机温度PID控制实验 (67)实验三十八转速PID控制系统 (69)实验一 金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

应变片单臂、半桥、全桥性能实验教学教案

应变片单臂、半桥、全桥性能实验教学教案
应变片单臂、半桥、全桥性能实验
实验目的
• 了解电阻应变片的工作原理与应用并掌握应变片 测量电路。
• 了解应变片半桥(双臂)工作特点及性能。 • 了解应变片全桥工作特点及性能。 • 比较单臂、半桥、全桥输出时的灵敏度和非线性
度,得出相感器是在弹性元件上通过特定工艺 粘贴电阻应变片来组成。一种利用电阻材料的应 变效应将工程结构件的内部变形转换为电阻变化 的传感器。
4、箔式应变片的基本结构
• 金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基 板上,粘贴直径为0.025mm左右的金属丝或金属箔制成
(a) 丝式应变片
(b) 箔式应变片
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元 件,与丝式应变片工作原理相同。电阻丝在外力作用下发生机 械变形时,其电阻值发生变化,这就是电阻应变效应,描述电 阻应变效应的关系式为: ΔR/R=Kε 式中:ΔR/R为电阻 丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相 对变化。
7、应变片半桥特性实验原理图
• 不同应力方向的两片应变片接入电桥作为邻边,输出灵敏 度提高,非线性得到改善。
• 其桥路输出电压Uo≈(1/2)(△R/R)E=(1/2)KεE 。
8、应变片全桥特性实验原理图
• 应变片全桥测量电路中,将应力方向相同的两应变片接入 电桥对边,相反的应变片接入电桥邻边。当应变片初始阻 值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3= ΔR4时,其桥路输出电压Uo≈(△R/R)E=KεE。其输出灵 敏度比半桥又提高了一倍,非线性得到改善。
5、测量电路
• 为了将电阻应变式传感器的电阻变化转换成电压或电流信 号,在应用中一般采用电桥电路作为其测量电路。电桥电 路具有结构简单、灵敏度高、测量范围宽、线性度好且易 实现温度补偿等优点。能较好地满足各种应变测量要求, 因此在应变测量中得到了广泛的应用。

检测技术实验报告

检测技术实验报告

实验一金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应及单臂电桥工作原理和性能。

二、基本原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。

描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。

电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压Uo1= EKε/4。

三、实验器材主机箱(±4V、±15V、电压表)、应变传感器实验模板、托盘、砝码、万用表、导线等。

图2-1 应变式传感器安装示意图如图2-1,将托盘安装到应变传感器的托盘支点上,应变式传感器(电子秤传感器)已安装在应变传感器实验模板上。

传感器左下角应变片为R1,右下角为R2,右上角为R3,左上角为R4。

当传感器托盘支点受压时,R1、R3 阻值增加,R2、R4 阻值减小。

如图2-2,应变传感器实验模板中的R1、R2、R3、R4为应变片。

没有文字标记的5 个电阻是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设的。

传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4 和加热器上。

可用万用表进行测量判别,常态时应变片阻值为350Ω,加热丝电阻值为50Ω左右。

四、实验步骤1、根据图2-3 工作原理图、图2-2 接线示意图安装接线。

图2-2 应变传感器实验模板、接线示意图2、放大器输出调零:将实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi=0);调节放大器的增益电位器RW3 大约到中间位置(先逆时针旋到底,再顺时针旋转2 圈);将主机箱电压表的量程切换开关打到2V 档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。

现代检测实验

现代检测实验

实验一金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。

金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。

(E为供桥电压)。

三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1、根据图(1-1),应变式传感器已装于应变传感器模板上。

传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=1KΩ,加热丝阻值约为50Ω左右。

2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。

3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。

4、在传感器托盘上放置一只砝码,读取数显表数值,依次增加砝码并读取相应的数显表数值,记下实验结果填入表(1-1)。

传感与检测技术实验指导书 2021新

传感与检测技术实验指导书 2021新

传感与检测技术实验指导书 2021新传感与检测技术实验指导书-2021新实验一应变片测量电桥特性分析一、实验目的1.掌握应变片的布片及接桥方法;2.介绍应变片单臂、半桥、全桥的工作原理和工作特性;3.了解测试应变片单臂、半桥、全桥输出与输入电压之间的关系。

二、实验原理应变片是一种将机械构件的应变转换为电阻值变化的变换元件,一般做成片状,简称为应变片。

应变片按材料的不同有金属应变片和半导体应变片。

应变片就是最常用的测力敏感元件。

当用应变片测力时,应变片应当牢固地粘贴在测试体表面,当测试体受力出现变形时,应变片脆弱栅的结构尺寸随之变化,其电阻值将产生适当的变化。

通过应变片测量电桥,将应变片电阻值的变化转换成适当的电压输入。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路相对臂电阻乘积相等,电桥输出电压为零。

在桥臂四个电阻r1、r2、r3、r4中,电阻的相对变化量分别为△r1/r1、△r2/r2、△r3/r3、△r4/r4,桥路的输电压出与应变?r??r1??r2??r3??r4成r1r2r3r4正比。

通常快速反应测量电桥都使用等臂桥,此时r1=r2=r3=r4=r,△r1=-△r2=△r3=-△r4=△r。

当使用一个应变片接成单臂桥时,则有?r??r;当使用二个应变片接成差动半桥时,r则存有?r?2?r;若用四个应变片K817差动全桥时,则存有?r?4?r。

rr根据电路分析可以得出:单臂测量电桥的输出电压uo=kuiεuo=kuiεr/2,差动全桥输入电压差动半桥输出电压r/4,uo=kuiεr;相应地单臂测量电桥输出电压的灵敏度ku=uo/△r/r=ui/4,差动半桥输入电压的灵敏度ku=uo/△r/r=ui/2,差动全桥输入电压的灵敏度ku=uo/△r/r=ui。

由此可知,单臂、半桥、全桥电路的灵敏度依次减小;当ui和电阻相对变化一定时,电桥的输入电压及其电压灵敏度与各桥臂阻值的大小毫无关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

示范实验举例实验一应变片单臂特性实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。

二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。

对式(1—1)全微分得电阻变化率 dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr (1—3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。

2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:K=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

金属导体的电阻应变灵敏度一般在2左右。

(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

半导体材料之所以具有较大的电阻变化率,是因为它有远比金属导体显著得多的压阻效应。

在半导体受力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。

且不同材质的半导体材料在不同受力条件下产生的压阻效应不同,可以是正(使电阻增大)的或负(使电阻减小)的压阻效应。

也就是说,同样是拉伸变形,不同材质的半导体将得到完全相反的电阻变化效果。

半导体材料的电阻应变效应主要体现为压阻效应,可正可负,与材料性质和应变方向有关,其灵敏度系数较大,一般在100到200左右。

3、贴片式应变片应用在贴片式工艺的传感器上普遍应用金属箔式应变片,贴片式半导体应变片(温漂、稳定性、线性度不好而且易损坏)很少应用。

一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出半导体电阻应变薄膜(扩散出敏感栅),制成扩散型压阻式(压阻效应)传感器。

*本实验以金属箔式应变片为研究对象。

4、箔式应变片的基本结构应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝 或金属箔制成,如图1—1所示。

(a) 丝式应变片 (b) 箔式应变片图1—1应变片结构图金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。

电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

5、测量电路为了将电阻应变式传感器的电阻变化转换成电压或电流信号,在应用中一般采用电桥电路作为其测量电路。

电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。

能较好地满足各种应变测量要求,因此在应变测量中得到了广泛的应用。

电桥电路按其工作方式分有单臂、双臂和全桥三种,单臂工作输出信号最小、线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂时的四倍,性能最好。

因此,为了得到较大的输出电压信号一般都采用双臂或全桥工作。

基本电路如图1—2(a)、(b)、(c)所示。

(a)单臂 (b)半桥 (c)全桥图1—2 应变片测量电路(a)、单臂Uo=U①-U③=〔(R4+△R4)/(R4+△R4+R3)-R1/(R1+R2)〕E={〔(R1+R2)(R4+△R4)-R1(R3+R4+△R4)〕/〔(R3+R4+△R4)(R1+R2)〕}E 设R1=R2=R3=R4,且△R4/R4=ΔR/R<<1,ΔR/R=Kε。

则Uo≈(1/4)(△R4/R4)E=(1/4)(△R/R)E=(1/4)KεE(b)、双臂(半桥)同理:Uo≈(1/2)(△R/R)E=(1/2)KεE(C)、全桥同理:Uo≈(△R/R)E=KεE6、箔式应变片单臂电桥实验原理图图1—3 应变片单臂电桥实验原理图图中R1、R2、R3为350Ω固定电阻,R4为应变片; W1和r组成电桥调平衡网络,供桥电源直流±4V。

桥路输出电压Uo≈(1/4)(△R4/R4)E=(1/4)(△R/R)E=(1/4)KεE 。

三、需用器件与单元:机头中的应变梁的应变片、测微头;显示面板中的F/V表(或电压表)、±2V~±10V步进可调直流稳压电源;调理电路面板中传感器输出单元中的箔式应变1位数显万用表(自备)。

片、调理电路单元中的电桥、差动放大器; 42四、需用器件与单元介绍:1、图1—4调理电路面板中的电桥单元。

图中:⑴菱形虚框为无实体的电桥模型(为实验者组桥参考而设,无其它实际意义)。

⑵R1=R2=R3=350Ω是固定电阻,为组成单臂应变和半桥应变而配备的其它桥臂电阻。

⑶W1电位器、r电阻为电桥直流调节平衡网络,W2电位器、C电容为电桥交流调节平衡网络。

图1—4电桥面板图2、图1—5为差动放大器原理图与调理电路中的差动放大器单元面板图。

图1—5 差动放大器原理与面板图图中:左图是原理图,A是差动输入的放大器;右图为面板图。

*3、附:测微头的组成与使用:测微头组成和读数如下图1—6所示。

图1—6测位头组成与读数测微头组成: 测微头由不可动部分中的安装套(应变梁的测微头无安装套)、轴套和可动部分中的测杆、微分筒、微调钮组成。

测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。

用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。

微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。

测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图1—6甲读数为3.678mm,不是3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图1—6乙已过零则读2.514mm;如图1—6丙未过零,则不应读为2mm,读数应为1.980mm。

测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。

一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。

当转动测微头的微分筒时,被测体就会随测杆而位移。

五、实验步骤:1位数显万用表2kΩ电阻档测量所有1、 在应变梁自然状态(不受力)的情况下,用42应变片阻值;在应变梁受力状态(用手压、提梁的自由端)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的4片应变片纵向受力阻值有变化;标有左右箭头的2片应变片 横向不受力阻值无变化,是温度补偿片)。

如下图1—7所示。

图1—7观察应变片阻值变化情况示意图2、 差动放大器调零点:按下图1—8示意接线。

将F/V表(或电压表)的量程切换开关 切换到2V档,合上主、副电源开关,将差动放大器的增益电位器按顺时针方向轻轻转到底后再逆向回转一点点(放大器的增益为最大,回转一点点的目的:电位器触点在根部估计会接触不良),调节差动放大器的调零电位器,使电压表显示电压为零。

差动放大器的零点调节完成,关闭主电源。

图1—8 差放调零接线图3、应变片单臂电桥特性实验:⑴将±2V~±10V步进可调直流稳压电源切换到4V档,将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片应变片中任意一片为工作片)与电桥单元中R1、R2、R3组成电桥电路,电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的二输入端,将W1电位器、r电阻直流调节平衡网络接入电桥中(W1电位器二固定端接电桥的±4V电源端、W1的活动端r电阻接电桥的输出端),如图1—9示意接线(粗细曲线为连接线)。

图1—9 应变片单臂电桥特性实验原理图与接线示意图⑵检查接线无误后合上主电源开关,当机头上应变梁自由端的测微头离开自由端(梁处 于自然状态,图1—7机头所示)时调节电桥的直流调节平衡网络W1电位器,使电压表显示为0或接近0。

⑶在测微头吸合梁的自由端前调节测微头的微分筒,使测微头的读数为10mm左右(测微头微分筒的0刻度线与测微头轴套的10mm刻度线对准);再松开测微头支架轴套的紧固螺钉,调节测微头支架高度使梁吸合后进一步调节支架高度,同时观察电压表显示绝对值尽量为最小时固定测微头支架高度(拧紧紧固螺钉,图1—9机头所示)。

仔细微调测微头的微分筒使电压表显示值为0(梁不受力处于自然状态),这时的测微头刻度线位置作为梁位移的相对0位位移点。

首先确定某个方向位移,以后每调节测微头的微分筒一周产生0.5mm位移,根据表1位移数据依次增加0.5mm并读取相应的电压值填入表1中;然后反方向调节测微头的微分筒使电压表显示0V(这时测微头微分筒的刻度线不在原来的0位位移点位置上,是由于测微头存在机械回程差,以电压表的0V为标准作为0位位移点并取固定的相对位移ΔX 消除了机械回程差),再根据表1位移数据依次反方向增加0.5mm并读取相应的电压值填入表1中。

*注:调节测微头要仔细,微分筒每转一周ΔX=0.5mm;如调节过量再回调,则产生回程差。

表1 应变片单臂电桥特性实验数据:位移(mm) -8.0 …… -1.0 -0.5 0 +0.5 +1.0 …… +8.0电压(mV)⑷根据表1数据画出实验曲线并计算灵敏度S=ΔV/ΔX(ΔV输出电压变化量,ΔX位移变化量)和非线性误差δ(用最小二乘法),δ=Δm/yFS ×100%式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差:yFS满量程输出平均值,此处为相对总位移量。

相关文档
最新文档