第二章燃烧与大气污染

合集下载

大气污染控制工程第二章1-2

大气污染控制工程第二章1-2

大气污染控制工程
第二章 燃烧与大气污染
(3)时间条件
时间条件即燃料在燃烧室中的停留时间。燃料 在高温区的停留时间应超过燃料燃烧所需要的时间。
(4)燃料与空气的混合程度
一般取决于空气的湍流度。若混合不充分, 部分燃料在富燃条件下燃烧,将产生较多未燃尽物 质。
大气污染控制工程
第二章 燃烧与大气污染
完全燃烧需要的条件
2.1.1 固体燃料的燃烧
煤的燃烧 在燃烧器中,煤主要以煤粉或块状固体形式燃 烧。 a.煤粉燃烧 煤粉的燃烧受到两种形式的控制:同相燃烧和 异相燃烧
大气污染控制工程
第二章 燃烧与大气污染
同相燃烧
燃料中挥发性组分首先被蒸 馏,与空气扩散混合,达到着火 点后迅速燃烧,称为同相燃烧。
异相燃烧
煤粉挥发后残留的固定 碳与空气反应,以固态燃 烧,称为异相燃烧。
图4 煤的同相燃烧
大气污染控制工程
第二章 燃烧与大气污染
b.煤块燃烧
煤块燃烧则是将块状固体置于炉栅上或随炉栅 移动而燃烧。右图是上部加煤的层燃炉结构示意图。
图6 煤块的燃烧
大气污染控制工程
第二章 燃烧与大气污染
2.1.2液体燃料和气体燃料的燃烧
a.液体燃料的燃烧
燃料油的燃烧过程包括: 燃料油的雾化、油雾粒子中可燃物的蒸发与扩散, 以及可燃物与空气的混合燃烧,燃烧状态受蒸发过程 控制。
大气污染控制工程
第二章 燃烧与大气污染
b.气体燃料的燃烧
燃烧过程包括气体燃料与空气的混合、可燃 气的加热与着火、燃烧反应三个阶段。燃烧状态 受空气的扩散和混合过程控制。
大气污染控制工程
第二章 燃烧与大气污染
小结:
1.煤的挥发分以气态燃烧,称为固相燃烧; 2.煤中的固定碳以固态燃烧,称为异相燃烧; 3.煤的燃烧速率取决于氧气向表面的扩散速率; 4.液体燃料以气态形式燃烧,燃烧过程受蒸发 过程控制 5.气体燃料最易燃烧,燃烧过程受空气的扩散 和混合控制

燃料燃烧空气量烟气量计算

燃料燃烧空气量烟气量计算

6.70(m 3 N
/ kg)
②理论烟气量为:
CO2:54.75mol SO2:0.53mol H2O:16+5=21mol N2:3.78(54.75 0.53 8 0.72) 236.4(8 mol)
V fg
0
(54.75
0.53 21 1000
236.48)
22.4
7.00(m 3 N
✓ 烟气体积和密度旳校正 转化为标态下(273K、1atm)旳体积和密度 原则状态下旳烟气体积
VN VS * PS * TN PN TS
原则状态下烟气旳密度
PN PS * PN * TS PS TN
烟气体积及污染物排放量计算
❖ 过剩空气校正
以碳在空气中旳完全燃烧为例 C十O2+3.76N2——>C02+3.76N2
和SO2在烟气中旳浓度(以体积分数计)。
解: 元素
重量(g) 摩尔数(mol)需氧量(mol)
C
657
54.75
54.75
S
17
0.53
0.53
H
32
16
8
H2O
90
5
0
O
23
0.72
-0.72
污染物排放量旳计算
①理论空气量
Va 0
(54.75
0.53 8 0.72) 4.76 22.4 1000
CH4+2O2+7.52N2----->CO2+2H2O+7.52N2 空燃比为:
AF 2 32 7.56 28 17.2 116
烟气体积及污染物排放量计算
烟气体积计算 ✓ 理论烟气体积

大气污染控制工程复习提纲

大气污染控制工程复习提纲
第一章 概论
大气污染 大气污染指由于人类活动或自然过程使 得某些物质进入大气中,呈现出足够的浓度, 达到了足够的时间,并因此而危害了人体的 舒适、健康和人们的福利、甚至危害了生态 环境。
大气污染源 大气污染物
大气污染过程
大气扩散
人、动植物
接受者
1
环境空气质量控制标准的种类和作用
环境空气质量标准
依用途分为 大气污染物排放标准 大气污染控制技术标准 大气污染警报标准 国家标准 依适用范围分为 地方标准 行业标准
y w y w C x H y S z Ow x z O2 3.78 x z N 2 4 2 4 2 y y w xCO2 H 2O zSO2 3.78 x z N 2 Q 2 2 2
15
2烟流型与大气稳定度的关系
晴朗的夏天午后
波浪型(不稳) 锥型(中性or弱稳) 扇型(逆温)
阴天﹑风速较大﹑中性
晴朗夜间或早晨
出现在傍晚
爬升型(下稳,上不稳)
漫烟型(上逆、下不稳)
日出后辐射逆温被破坏时
16
第四章 大气扩散浓度估算模式
一、大气湍流 1、大气的无规则运动称为大气湍流。 2、风和湍流是决定污染物在大气中扩散稀释的最 直接最本质的因素。 二、高斯扩散模式
9
元素 C H
质量/g 855 113
摩尔数/mol 71.25 113
需O2量/mol 71.25 28.25
产生的烟气量/mol 71.25 (CO2) 56.5 (H2O)
O N
S
20 2
10
1.25 0.143
0.3125
-0.625 0

第二章 燃烧与大气污染

第二章 燃烧与大气污染
燃料是指用以产生热量或动力的可燃性物质, 燃料是指用以产生热量或动力的可燃性物质,主要是 含碳物质或碳氢化合物,如煤、焦炭、木柴、石油、 含碳物质或碳氢化合物,如煤、焦炭、木柴、石油、 天然气、发生炉煤气等。 天然气、发生炉煤气等。 一、燃料的分类
按获得方法分 按物态分 固体燃料 液体燃料 气体燃料 天然燃料 木柴、煤、油页岩 木柴、 石油 天然气 人工燃料 木炭、焦炭、煤粉等 木炭、焦炭、 汽油、煤油、柴油、 汽油、煤油、柴油、 重油 高炉煤气、 高炉煤气、发生炉煤 气、焦炉煤气
第二章 燃烧与大气污染
本章主要内容
主要的大气污染物:烟尘、NOx和 主要的大气污染物:烟尘、NOx和 SO2源于燃料燃烧 燃料燃烧过程的基本原理; 燃料燃烧过程的基本原理; 污染物的生成机理; 污染物的生成机理; 如何控制燃烧过程, 如何控制燃烧过程,以便减少污染物 的排放量。 的排放量。
第一节 燃料的性质
mf m a 114 114 = = 12.5(32 + 3.78 × 28) 1723 = 0.0662 s
气体组成通常以摩尔百分比表示,它不随气体温度和压力变化。 气体组成通常以摩尔百分比表示,它不随气体温度和压力变化。 燃烧产物的总摩尔数为8 47.25=64.25,因此烟气组成为: 燃烧产物的总摩尔数为8+9+47.25=64.25,因此烟气组成为:
3、煤的元素分析
用化学分析的方法测定去掉外部水分的煤中主要组分 硫和氧的含量 的含量。 碳、氢、氮、硫和氧的含量。 碳和氢:通过燃烧后分析尾气中CO 碳和氢:通过燃烧后分析尾气中CO2和H2O的生成量测定 在催化剂作用下使煤中的氮转化为氨,碱液吸收, 氮:在催化剂作用下使煤中的氮转化为氨,碱液吸收, 滴定 与氧化镁和无水硫酸钠混合物反应, 硫:与氧化镁和无水硫酸钠混合物反应,S 定 SO42-,滴

大气污染控制工程(郝吉明版) 课后习题答案:Unlock-2

大气污染控制工程(郝吉明版) 课后习题答案:Unlock-2

作业习题第二章燃烧与大气污染2.1已知重油元素分析结果如下:C :85.5%H :11.3%O :2.0%N :0.2%S :1.0%,试计算:1)燃油1kg 所需理论空气量和产生的理论烟气量;2)干烟气中SO 2的浓度和CO 2的最大浓度;3)当空气的过剩量为10%时,所需的空气量及产生的烟气量。

2.2普通煤的元素分析如下:C65.7%;灰分18.1%;S1.7%;H3.2%;水分9.0%;O2.3%。

(含N 量不计)1)计算燃煤1kg 所需要的理论空气量和SO 2在烟气中的浓度(以体积分数计);2)假定烟尘的排放因子为80%,计算烟气中灰分的浓度(以mg/m 3表示);3)假定用硫化床燃烧技术加石灰石脱硫。

石灰石中含Ca35%。

当Ca/S 为1.7(摩尔比)时,计算燃煤1t 需加石灰石的量。

2.3煤的元素分析结果如下S0.6%;H3.7%;C79.5%;N0.9%;O4.7%;灰分10.6%。

在空气过剩20%条件下完全燃烧。

计算烟气中SO 2的浓度。

2.4某锅炉燃用煤气的成分如下:H 2S0.2%;CO 25%;O 20.2%;CO28.5%;H 213.0%;CH 40.7%;N 252.4%;空气含湿量为12g/m 3N ,,试求实际需要的空气量和燃烧时产生的实际烟2.1=α气量。

2.5干烟道气的组成为:CO 211%(体积),O 28%,CO2%,SO 2120×10-6(体积分数),颗粒物30.0g/m 3(在测定状态下),烟道气流流量在700mmHg 和443K 条件下为5663.37m 3/min ,水气含量8%(体积)。

试计算:1)过量空气百分比;2)SO 2的排放浓度();3)在标准状态下(1atm 和3/m g µ273K ),干烟道体积;4)在标准状态下颗粒物的浓度。

2.6煤炭的元素分析按重量百分比表示,结果如下:氢50%;碳75.8%;氮1.5%;硫1.6%;氧7.4%;灰8.7%,燃烧条件为空气过量20%,空气的湿度为0.0116molH 2O/mol 干空气,并假定完全燃烧,试计算烟气的组成。

燃料燃烧、空气量、烟气量计算

燃料燃烧、空气量、烟气量计算

元素 C
重量(g) 摩尔数(mol) 需氧量(mol)
855
71.25
71.25
H
113
56.5
28.25
S
10
0.31
0.31
O
20
0.625

N2
2


燃烧1kg重油所需要的氧气量为: 71.25 + 28.25 + 0.31 - 0.625 =99.185 (mol/kg)
则理论空气量Va0 =(3.78+1)×99.185×22.4/1000 = 10.62 (m3/kg)
气量和SO2在烟气中的浓度(以体积分数计)。
解:
元素
重量(g) 摩尔数(mol)需氧量(mol)
C
657
54.75
54.75
S
17
0.53
0.53
H
3216Leabharlann 8H2O90
5
0
O
23
0.72
-0.72
污染物排放量的计算
①理论空气量
Va 0
(54.75
0.53
8 0.72) 1000
4.76 22.4
所以实际烟气体积Vfg=V0fg + V0a(α-1) = 11.01+10.47×(1.2-1)= 13.10 m3N/kg
污染物排放量的计算
例3 普通煤的元素分析如下:C 65.7%;灰分18.1%;S 1.7%;H 3.2;
水分 9.0%;O 2.3%。(含N量不计)试计算燃煤1kg所需要的理论空
量时可以忽略; e)燃料中氮主要被转化成氮气N2; f)燃料的化学式设为CxHySzOw,其中下标x、y、z、w分别代

大气污染控制工程课后题

大气污染控制工程课后题

第二章:燃烧与大气污染2.1 已知重油元素分析结果如下:C :85.5% H :11.3% O :2.0% N :0.2% S :1.0%,试计算:1)燃油1kg 所需理论空气量和产生的理论烟气量; 2)干烟气中SO 2的浓度和CO 2的最大浓度;3)当空气的过剩量为10%时,所需的空气量及产生的烟气量。

【解】:1kg 燃油含:重量(g ) 摩尔数(g ) 需氧数(g )C 855 71.25 71.25H 113-2.5 55.25 27.625(转化为氧,即原料中含有氧,20g ,相当于0.625molO2,转化为H 为2.5g )S 10 0.3125 0.3125 H 2O 22.5 1.25 0 N 元素忽略。

1)理论需氧量 71.25+27.625+0.3125=99.1875mol/kg设干空气O 2:N 2体积比为1:3.78,则理论空气量99.1875×4.78=474.12mol/kg 重油。

即474.12×22.4/1000=10.62m 3N /kg 重油。

烟气组成为CO 271.25mol ,H 2O 55.25+11.25=56.50mol ,SO 20.1325mol ,N 23.78×99.1875=374.93mol 。

理论烟气量 71.25+56.50+0.3125+374.93=502.99mol/kg 重油。

即502.99×22.4/1000=11.27 m 3N /kg 重油。

2)干烟气量为502.99-56.50=446.49mol/kg 重油。

SO 2百分比浓度为%07.0%10049.4463125.0=⨯,空气燃烧时CO 2存在最大浓度%96.15%10049.44625.71=⨯。

3)过剩空气为10%时,所需空气量为1.1×10.62=11.68m 3N /kg 重油, 产生烟气量为11.267+0.1×10.62=12.33 m 3N /kg 重油。

大气污染控制工程第三版课后习题答案第2章燃烧与大气污染

大气污染控制工程第三版课后习题答案第2章燃烧与大气污染

作业习题解答第二章 燃烧与大气污染2.1 解:1kg 燃油含:重量(g ) 摩尔数(g ) 需氧数(g )C 855 71.25 71.25H 113-2.5 55.25 27.625S 10 0.3125 0.3125H 2O 22.5 1.25 0N 元素忽略。

1)理论需氧量 71.25+27.625+0.3125=99.1875mol/kg设干空气O 2:N 2体积比为1:3.78,则理论空气量99.1875×4.78=474.12mol/kg 重油。

即474.12×22.4/1000=10.62m 3N /kg 重油。

烟气组成为CO 271.25mol ,H 2O 55.25+11.25=56.50mol ,SO 20.1325mol ,N 23.78×99.1875=374.93mol 。

理论烟气量 71.25+56.50+0.3125+374.93=502.99mol/kg 重油。

即502.99×22.4/1000=11.27 m 3N /kg 重油。

2)干烟气量为502.99-56.50=446.49mol/kg 重油。

SO 2百分比浓度为%07.0%10049.4463125.0=⨯, 空气燃烧时CO 2存在最大浓度%96.15%10049.44625.71=⨯。

3)过剩空气为10%时,所需空气量为1.1×10.62=11.68m 3N /kg 重油, 产生烟气量为11.267+0.1×10.62=12.33 m 3N /kg 重油。

2.2 解:相对于碳元素作如下计算:%(质量) mol/100g 煤 mol/mol 碳C 65.7 5.475 1H 3.2 3.2 0.584S 1.7 0.053 0.010O 2.3 0.072 0.013灰分 18.1 3.306g/mol 碳水分 9.0 1.644g/mol 碳故煤的组成为CH 0.584S 0.010O 0.013, 燃料的摩尔质量(包括灰分和水分)为molC g /26.18475.5100=。

大气污染课件2

大气污染课件2
(2)实际烟气量:等于理论烟气量和过剩空气量之和
2、烟气体积、密度和浓度的校正:
(1)体积校正 V0=Vs(Ps/P0)×(T0/Ts) (2)密度校正 ρ 0= ρ s(P0/Ps)×(Ts/T0) (3)浓度校正 C 0= C s(P0/Ps)×(Ts/T0) 例2-4 已知排烟温度是150℃,气压是9.8×104Pa,试计算燃烧含 C 87%,H 12%,S 0.5%, H2O 0.5%,的1kg重油所生成的理论烟气量; 若过剩空气系数为1.2,计算实际烟气量(标准状态:温度,273K; 压力1.013×105Pa )。
(二)、燃料燃烧的空气量
1、理论空气量:标准状态下单位量(1kg或1m3 )燃料按燃烧 反应方程式完全燃烧所需的空气量称为理论空气量,用符 号A0表示。
几点假设: (1)空气仅由氮和氧组成,其体积分数为79:21=3.76; (2)燃料中的固态氧参与反应; (3)燃料中的硫主要转化为二氧化硫; (4)燃料中的氮转化为氮气.
us-烟气流速,m/s; Kp-皮托管系数; Pd-烟气动压,Pa; Ps-烟气静压,Pa; Ba-大气压力, Pa; Ts-烟气温度,K ρ s-实测烟气密度, kg/m3; ρ 0-标准状态烟气密度, kg/m3; XO2、XCO、XCO2、XN2-干烟气中几种气体的体积百分数,%; XH2O-烟气含湿量,%
例2-7:测得干球温度52℃,湿球温度40℃,流过湿球 烟气压力-1334Pa,大气压力101380Pa,烟气静压 -883Pa, 40℃时水的饱和蒸汽压力为7377Pa,求烟气中水气含 量百分数。
(4)烟气流速
①流速测定原理:气体流速与气体动压的平方根成正比
②流速计算: us=Kp[(2Pd)/ρs]1/2 ρs= ρ o×[(Ba+Ps)/101325] ×[273/Ts] ρ o = [(MO2XO2+ MCOXCO+ MCO2XCO2+ MN2XN2)(1-XH2O)+ MH2OXH2O] × 1/22.4

2《大气污染控制工程》第二章

2《大气污染控制工程》第二章

第二章燃烧与大气污染在大气污染物浓度较高的城市,烟尘、NOx和SO2等主要是由燃料燃烧产生的。

本章侧重介绍燃料燃烧过程的基本原理、污染物的生成机理、以及如何控制燃烧过程,以便减少污染物的排放量。

第一节燃料的性质(请同学们列举哪些是燃料并做总结)定义:燃料是指在燃烧过程中,能够放出热量,且在经济上可以取得效益的物质。

燃料是指用以生产产生热量或动力的可燃性物质。

可分为常规燃料和非常规燃料。

常规燃料:煤、石油和天然气等化石燃料。

非常规燃料:除了煤、石油和天然气等常规燃料外,所有可燃性物质都包括在非常规燃料之列;如生活垃圾、农作物秸秆等。

燃料按物理状态可分为:(1)气体燃料:气体燃料的优点是燃烧迅速,其燃烧状态可基本上由空气与燃料的扩散或混合所控制。

(2)液体燃料:液体燃料也是以气态形式燃烧,因此它的燃烧速度受其蒸发过程控制。

(3)固体激料:固体燃料的燃烧则受以下二种现象控制:燃料中挥发性组分被蒸馏后以气态燃烧,而遗留下来的固定碳则以固态燃烧,后者的速率由氧向固体表面的扩散控制。

燃料的性质影响燃烧设备设计和各种操作条件,也影响大气污染物的形成和排放,所以接下来对常规燃料及非常规燃料做一简要介绍。

一、煤煤是最重要的固体燃料,它是一种复杂的物质聚集体,主要是由植物的部分分解和变质而形成的。

煤的可燃成分主要是由碳、氢及少量氧、氮和硫等一起构成的有机聚合物。

煤中有机成分和无机成分的含量,因煤的种类和产地不同而有很大差别。

下面对煤的分类做一介绍。

1.煤的分类:我们知道,煤是由植物做在高压覆盖和较高温度条件下经过长期过程形成的,不同的植物及其不同覆盖时间即腐蚀程度会形成不同的煤。

(我们把植物原料变成煤的过程称为“煤化”过程)根据“煤化”程度,桨煤分成以下三大类:(1)褐煤:褐煤是由泥煤形成的初始煤化物。

是煤中等级最低的一类,形成年代最短。

呈黑色、褐色或泥土色,其结构类似木材。

水分和灰分含量都较高,燃烧热值较低。

(2)烟煤:烟煤的形成历史较褐煤为长,呈黑色,外形有可见条纹。

《大气污染控制工程》郝吉明 第二章燃烧与大气污染

《大气污染控制工程》郝吉明 第二章燃烧与大气污染

1.硫的氧化机理
✓ 元素S的氧化
S8 S7 S S O2 SO O S8 O SO S S6 SO O SO2* SO2 hv SO O2 SO2 O SO2 O2 SO3 O SO2 O M SO3 M
1.硫的氧化机理
✓ 有机硫化物的氧化
RCH2SSCH2R O2 RCH2S S CHR HO2 RCH2S S CHR RCH2S RCHS RCH2S RH RCH2SH R RSH O2 RS HO2 RS O2 R SO2
2. SO2和SO3之间的转化
SO3生成速率
d
SO3
dt
k1SO2
OM
k2
SO3
O
当d[SO3] /dt = 0 时,SO3浓度达到最大
SO3 max
k1SO2 M
k2
在富氧条件下,[O]浓度低得多,SO3的去除反应主要为反 应(3), SO3的最大浓度:
SO3 max
k1SO2 M k3H
在所有的情况下,它都作为一种重要的反应中间体
1.硫的氧化机理 (走马看花)
✓ H2S的氧化
O H2S SO H2 SO O2 SO2 O O H2S OH SH H2 O OH H H O2 OH O OH H 2 H 2O H
1.硫的氧化机理
✓ CS2和COS的氧化
测定煤中水分、挥发分、灰分和固定碳。估测硫含量和热 量,是评价工业用煤的主要指标。
✓ 元素分析( ultimate analysis )
用化学分析的方法测定去掉外部水分的煤中主要组分碳、氢、 氮、硫和氧的含量。
4.煤的分类和组成
➢ 煤的工业分析 ✓ 水分:
• 一定重量13mm以下粒度的煤样,在干燥箱内318-323K温 度下干燥8小时,取出冷却,称重 外部水分

《大气污染物控制工程》燃烧与大气污染

《大气污染物控制工程》燃烧与大气污染
Cd + H d +Od + Nd + S d + Ad =100%
干燥无灰基:以去掉水分和灰分的燃料作为100%的成分
Cdaf + H daf + Odaf + N daf + S daf = 100%
三、煤的性质 3、煤的成分的表示方法
ar ad d daf
A Sly 灰分
C 固定碳
固体部分 (焦炭)
O + SO → SO2 + h
在所有的情况下,SO都作为一种重要的反应中间体
二、硫的氧化机理 有机硫化物的氧化
RCH2SSCH2R O2 RCH2S S CHR HO2 RCH2SS CHR RCH2S RCHS RCH2S RH RCH2SH R RSH O2 RS HO2 RS O2 R SO2
原油中还含有微量金属,如钒、镍、氯、砷、铅等。
氢含量增加时,比重减少,发热量增加
五、天然气的组成与性质
典型的气体燃料 一般组成为甲烷85%、
乙烷10%、丙烷3% 单位热量产生的CO2最少,且无灰分,是最清洁的化石燃料 天然气中还含有H2O、CO2、N2、He、H2S等。
东华大学
第二章 燃烧与大气污染
磷黄铁矿(Fe1-xS)
无机硫
黄铜矿(CuFeS2)
石膏(CaSO4·2H2O)

硫酸盐硫 绿矾(FeSO4 ·7H2O)

重晶石(BaSO4)
硫 的
硫醇或醚基化合物(R-SH)

硫醚(R-S-R)

有机硫
二硫醇羧(R-S-S-R)
噻吩类环硫化物
环醌化合物
元素硫

燃烧与大气污染更新

燃烧与大气污染更新

烷、3%丙烷及少量含C更高的碳氢化合物组成。此外还含有水、二氧
化碳和硫化氢等。硫化氢燃烧生成硫氧化物,污染环境,很多国家都
规定了天然气中总硫量和硫化氢的最大允许值。

液化石油气主要成分是C2、C3、C4。具有易运输、储存、发热
高、含硫低、轻污染等特点。广泛用于汽车和民用生活燃料。
24
非常规燃料
• 非常规燃料 城市固体废弃物 商业和工业固体废弃物 农产物和农村废物 水生植物和水生废物 污泥处理厂废物 可燃性工业和采矿废物 天然存在的含碳和含碳氢的资源 合成燃料 非常规燃料通常需要专门技术转化为易于利用的形式 城市固体废物用作燃料必须考虑其大气污染问题
• 用作锅炉燃料或化工原料 ,当地使用。
泥煤
• 褐煤:形成时间较短,黑
、褐色,含炭量较高 ,氢 、氧含量较低;水分和灰 分含量较高 ,热值较低; 易碎,当地使用。
褐煤
• 烟煤:形成时间较长,含
碳量高,氢、氧含量较低; 密度较大,含水量较少,燃 烧易粘结;
• 品种多(长烟煤、气煤、肥 煤、瘦煤、结焦煤等)
Va01.1045 .1Q 8l17300.02
43
• 例:某燃烧装置采用重油作燃料,重油成分分析结果如下(按质量)C: 88.3%,H:9.5%,H2O:0.5 % ,S:1.6%,灰分:0.10%。试确定燃烧1kg重油 所需的理论空气量。
解:以1kg重油燃烧为基础,则:
重量(g)
C
883
第一节 燃料的性质
• 燃料:在燃烧过程中能散发出热量,并能被利用的可燃性物质。 • 燃料分类
(1)按物理状态分 固体燃料: 液体燃料: 气体燃料:
(2)按燃料来源分: 天然燃料:

燃烧与大气污染

燃烧与大气污染

Vy Vyo 1.016(a 1)Vko
VyVo ຫໍສະໝຸດ O2Vo SO2Vo N2
Vo H2O
1.016(a 1)Vko
•§2.3.1 污染物排放量的计算
• 通过测定烟气中污染物的浓度,根据实际排烟 量,很容易计算污染物排放量。但在很多情况下, 需要根据同类燃烧设备的排污系数,燃料组成和燃 烧情况,预测烟气量和污染物浓度。
•§2.4 燃烧过程硫氧化物的形成与控制 •§2.4.1硫氧化物发生机制
燃料燃烧过程中硫氧化物生成的主要化学反应为
•单体硫的燃烧: •硫铁矿的燃烧
S O2 SO2
SO2
1 2
O2
SO3
4FeS2 11O2 2Fe2O3 8SO2
SO2
1 2
O2
SO3
• 硫醚等有机硫的燃烧
• CH3CH2
• §2.2.燃烧产生的污染物 • 燃烧烟其主要有颗粒物、氧化物、氧化剂 及惰性气
体组成。主要物按物有硫氧化物、氮氧化物、碳氧化 物、碳氢化合物、飞灰等。其形成与燃料种类、燃烧 条件等有关。
• §2.3 燃烧过程污染物排放量计算 • §2.3.1 烟气体积计算 • 1.理论烟气体积 • 若供给燃料以理论空气量,燃料完全燃烧,烟气中

振动炉:
烟尘浓度 ~7 g / Nm3;

抛煤机炉:
烟尘浓度 9 ~ 13 g / Nm3
燃煤锅炉初始排放最高允许烟尘浓度和烟气黑度
燃烧方式
烟尘浓度(mg/m3)
Ⅰ时段
Ⅱ时段
烟气黑度 (林格曼黑度,级)
煤炭灰分
煤炭灰分
层燃炉
Aad≤18% Aad≤10% 10%≤Aad≤18%
1

大气污染控制工程-4版大气污染控制工程思考与练习-第二章

大气污染控制工程-4版大气污染控制工程思考与练习-第二章

《大气污染控制工程》思考与作业
第二章燃烧与大气污染
1.列举燃料的主要元素成分。

其中哪些是可燃的,哪些是不可燃的?
各成分燃烧以后的变化是什么?
2.根据形成年代分,主要的煤种有哪些?它们各有什么特点?
3.煤的成分分析都有哪几种方法?它们各自的分析内容是什么?
4.煤的成分分析的基准都有哪些?解释它们的含义。

5.列举燃料完全燃烧需要的条件;解释“3T”的含义。

6.煤中硫的存在形态主要有哪几种?简单描述它们的氧化机理。

7.影响燃煤飞灰排放特征的因素主要有哪些?
8.计算甲烷的理论空燃比(用质量比表示);计算H和C的理论空燃
比;以H和C的分子个数比为自变量,写出燃料的理论空燃比的计算方程(假定燃料只含有C、H两种元素)。

(课后作业)
9.某燃烧装置采用重油作燃料,重油成分分析结果如下(质量分
数):C:88.3% ;H:9.5%;S:1.6%;H2O:0.05%;灰分:
0.10%。

试确定:
⑴燃烧1kg重油所需要的理论空气量;
⑵若燃料中硫全部转化为SO x(其中SO2占97%),试计算空气
过剩系数为1.20时湿烟气中SO2及SO3的浓度,以10-6表示,并计算此时干烟气中CO2的含量,以体积百分比表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

于是,理论空气量
例1 计算辛烷(C8H18)在理论空气量条件下燃烧时的 燃料/空气质量比,并确定燃烧产物气体的组成。
显然,燃烧1mol辛烷需要12.5×4.78=59.75mol空气。辛烷的摩尔 质量为114,于是理论空气量下燃烧时燃料/空气的质量比为:
气体组成通常以摩尔百分比表示,它不随气体温度和压力变化。 燃烧产物的总摩尔数为8+9+47.25=64.25,因此烟气组成为:
煤中各种形态硫的比例,直接影响煤炭脱硫 方法的选择。一般把硫分为硫化铁硫、有机 硫和硫酸盐硫。前两种能燃烧放出热量称为 挥发硫,硫酸盐硫不参加燃烧,是灰分的一 部分。
二、石油
▪ 石油是液体燃料的主要来源。原油是天然存 在的易流动的液体,比重在0.78-1.00之间。 它是多种化合物的混合物,主要由链烷烃、 环烷烃和芳香烃等碳氢化合物组成。
• 天然气中的硫化氢具有腐蚀性,它的燃烧 产物为硫的氧化物,因此许多国家规定了 天然气中总硫含量和硫化体废弃物; 商业和工业固体废弃物; 农产品及农村废物; 水生植物和水生废物; 污泥处理厂废物; 可燃性工业和采矿废物; 天然存在的含碳和含碳氢的资源;合成染
Vfg=Vfg0+(α-1)Va0=10.52+(1.051)×9.52=10.996
2 烟气体积和密度的校正
燃烧装置产生的烟气的温度和压力总是高于标准 状态(273K、1atm),烟气体积和密度往往需要 换算成为标准状态。假设烟气体积和密度可应用 理想气体状态方程换算。于是,对于温度Ts、压 力Ps的烟气,其体积Vs、密度ρs,在标准状态下 (温度Tn、压力Pn)烟气的体积为Vn,密度为 ρn,
假定空气的体积组成为20.9%O2和79.1%N2, 则实际空气量中所含的总氧量为
理系论数需:氧量为0.264N2p-O2p,因此空气过剩
第二章燃烧与大气污染
教材
郝吉明 马广大主编 大气污染控制工程 第二版 高等教育出版社
蒲恩奇主编 大气污染治理工程 高等教育出版社
Noel de Nevers Air Pollution Control Engineering (second edition) McGraw-Hill
教学大纲
(3)时间条件
(4)燃料与空气的混合条件
燃料和空气中氧的充分混合也是有效燃烧的 基本条件。混合程度取决于空气的湍流度。 若混合不充分,将导致不完全燃烧产物的产 生。对于蒸汽相的燃烧,湍流可以加速液体 燃料的蒸发。对于固体燃料的燃烧,湍流有 助于破坏燃烧产物在燃料表面形成的边界层 ,从而提高表面反应的氧利用率,并使燃烧 过程加速。
实际烟气量=理论烟气量+过剩空气量
Vfg=Vfg0+(α-1)Va0 理论烟气量可由燃烧方程计算,如CH4燃烧:
1mol的CH4完全燃烧产生10.52mol的烟气。根据 理想气体定律,近似认为烟气中各组分的摩尔 比等于体积比,所以1m3的甲烷完全燃烧产生 10.52m3的烟气,假设空气过剩系数为1.05,则
一、烟气体积计算 1.理论烟气量与实际烟气量
在理论空气量下,燃料完全燃烧所生成的烟气 体积称为理论烟气体积,以Vfg0表示。烟气成 分主要是CO2、SO2、N2和水蒸气,通常分为 干烟气(不含水蒸汽)和湿烟气(含水蒸汽) 。 理论烟气量=干烟气量+水蒸气体积 理论水蒸气体积=燃料中氢燃烧后生成的水蒸 气体积+燃料中所含的水蒸气体积+由供给的 理论空气量带入的水蒸气体积
通常把温度、时间和湍流称为燃烧过程的“三 T”
二、燃料燃烧的理论空气量 1 理论空气量
燃料燃烧所需要的氧气,一般是从空气中 获得的;单位量燃料按燃烧反应方程式完 全燃烧所需要的空气量称为理论空气量, 由燃料的组成决定,可根据燃烧方程式计 算求得。
建立燃烧化学方程式时,通常假设:
(1)空气仅是由氮和氧组成的,其体积比为 79.1:20.9=3.78 ;
3、空燃比 单位质量燃料燃烧所需要的空气质量,可以 由燃烧方程式直接求得。 例如,甲烷燃烧:
空燃比: 随着燃料中氢相对含量的减少,碳相对含量
的增加,理论空燃比随之减少。
三、燃烧产生的污染物
燃料燃烧过程并不是那么简单,还有分 解和其他的氧化、聚合过程。
燃烧烟气主要由悬浮的少量颗粒物、燃 烧产物、未燃烧和部分燃烧的燃料、氧 化剂以及惰性气体(主要是N2)等组成 。
2 空气过剩系数
在理想的混合状态下,理论量的空气即可保证完全燃烧 ;但实际的燃烧装置中,“三T”条件不可能达到理想 化的程度,因此为使燃料完全燃烧,就必须供给过量的 空气。一般把超过理论空气量多供给的空气量称为过剩 空气量,并把实际空气量Va与理论空气量Va0之比定义 为空气过剩系数α,即
通常α〉1,α值的大小取决于燃料种类、燃烧装置形 式及燃烧条件等因素。
料。
第二节 燃料燃烧过程
一、燃烧过程及其主要影响因素 1 燃烧过程及燃烧产物 燃烧是指可燃混合物的快速氧化过程,并伴随着能
量(光和热)的释放,同时使燃料的组成元素转化 成为相应的氧化物。 多数化石燃料完全燃烧的产物是CO2和H2O。然而 ,不完全燃烧过程将产生黑烟、CO和其他部分氧化 产物等大气污染物。若燃烧过程含有氮和硫,则会 生成SO2和NO,以污染物形式存在在于烟气中。 此外,当燃烧温室温度较高时,空气中的部分氮也 会被氧化成为NOx,常称为热力型氮氧化物。
a是过剩空气中O2的过剩摩尔数。根据 定义,空气过剩系数:
要计算α,必须知道过剩氧的摩尔数。 若燃烧是完全的,过剩空气中的氧仅能够以O2
的形式存在,假如燃烧产物以小标P表示 C+(1+a)O2+(1+a)3.78N2——
CO2p+O2p+N2p 其中,O2p=aO2,表示过剩氧量,N2p为实际
空气量中所含的总氮量。
煤中有机成分和无机成分的含量,因煤的种 类和产地的不同而有很大差别。
1 煤的分类
褐煤
最低品位的煤,是由泥煤形成的初始煤化物,形成年代最 短。呈黑色、褐色和泥土色,其结构类似木材。褐煤呈现 出粘结状及带状,水分含量高,与高品位煤相比,其热值 较低。
烟煤
形成年代较褐煤长,呈黑色,外形有可见条文,挥发分 含量为20%-45%,碳含量为75%-90%。烟煤的成焦性较 强,且含氧量低,水分和灰分含量一般不高,适宜于工业 上的一般应用。在空气中,它比褐煤更能抵抗风化。
mol/mol(碳) 1.00 0.808 0.013 0.013 0.057 1.23
对于该种煤,其组成可表示为:CH0.808N0.013S0.013O0.057 燃料的摩尔质量,即相对于每摩尔碳的质量,包括灰分,为
M=100g/6.43mol(碳)=15.55g/mol(碳)
一般煤的理论空气量Va0=4-9m3/kg,液体燃料的Va0=10-11m3/kg
xCO2=8/64.25=0.125=12.5% xH2O=9/64.25=0.140=14.0% xN2=47.25/64.25=0.735=73.5%
例2 假定煤的化学组成以质量计为:C:77.2%,H:5.2%, N:1.2%,S:2.6%,O:5.9%,灰分:7.9%。试计算这种煤燃 烧时的理论空气量。
▪ 原油通过蒸馏、裂化和重整生产出各种汽油 、溶剂、化学产品和燃料油。
▪ 原油中的硫大部分以有机硫的形式存在,形 成非碳氢化合物的巨大分子团。原油中硫的 含量变化范围较大,一般为0.1%-7%。
▪ 原油中的硫分约有80-90%留于重馏分中 ,一复杂的环状结构存在。
三、天然气
• 天然气是典型的气体燃料,它的组成一般 为甲烷85%、乙烷10%、丙烷3%;含碳更 高的碳氢化合物也可能存在于天然气中。 天然气还含有碳氢化合物以外的其他组分 ,如H2O、CO2、N2、He和H2S等。
燃料燃烧过程的基本原理;
污染物的生成机理;
如何控制燃烧过程,以便减少污染物 的排放量。
第一节、燃料的性质
一、煤
煤是重要的固体燃料,是一种不均匀的有机 燃料,主要是植物的部分分解和变质形成。
煤的可燃成分主要是碳、氢及少量氧、氮和 硫等一起构成的有机聚合物。各种聚合物之 间由不同的碳氢支链相互连成更大的颗粒。
则标准状态下的烟气体积:
标准状态下烟气的密度:
美国、日本和国际全球监测系统网的标准是指出298K 和1atm,在作数据比较或校对时需要注意。
3 过剩空气校正
实际燃烧过程是有过剩空气的,所以燃烧过程 中的实际烟气体积应为理论烟气气体与过剩空 气量之和。用奥氏烟气分析仪测定干烟气中 CO2、O2和CO的含量,就可以确定燃烧设备 运行时的烟气成分和空气过剩系数。 以碳在空气中完全燃烧为例: C+O2+3.78N2——CO2+3.78N2 烟气中仅含有CO2和N2,若空气过剩,则燃烧 方程式变为 C+(1+a)O2+(1+a)3.78N2—— CO2+aO2+(1+a)3.78N2
燃烧可能释放出的污染物有:CO2、CO 、SOx、NOx、烟、飞灰、金属及其氧 化物、金属盐类、醛、酮和绸环碳氢化 合物等。这些都是有害物质,它们的形 成与燃烧条件有关。
燃烧产物与温度的关系
四、热化学关系式
发热量 燃料设备的热损失
燃烧热损失与空然比的关系
第三节 烟气体积及污染物排放量计算
2 燃料完全燃烧的条件
(1)空气条件
燃料燃烧时必须保证供应与燃料燃烧相适应的空气 量。如果空气供应不足,燃烧就不安全。相反空气 量过大,也会降低炉温,增加锅炉的排烟损失。因 此,按燃烧不同阶段供给相适应的空气量是十分必 要的。 (2)温度条件
燃料只有达到着火温度才能与氧化合燃烧。着火 温度是在氧存在下可燃物质开始燃烧所必须达到的 最低温度。各种燃料都具有自己特征的着火温度, 按固体燃料、液体燃料、气体燃料的顺序上升。
相关文档
最新文档