基于Matlab平台人脸面部表情识别疲劳检测
使用Matlab进行人脸识别的基本步骤

使用Matlab进行人脸识别的基本步骤随着计算机视觉和人工智能的快速发展,人脸识别已经成为一项重要的技术。
而Matlab作为一种强大的数学计算软件,也能够用于人脸识别的研究和应用。
本文将介绍使用Matlab进行人脸识别的基本步骤。
一、数据采集和预处理人脸识别的第一步是数据采集和预处理。
数据采集包括收集大量的人脸图像,可以通过摄像头进行实时采集,或者使用已有的人脸数据库。
预处理则是对采集到的图像进行预处理,以便后续的特征提取和分类。
预处理包括图像的灰度化、直方图均衡化、尺寸归一化等。
二、特征提取特征提取是人脸识别的核心步骤。
在Matlab中,有很多经典的特征提取方法可以选择,例如主成分分析(PCA)、线性判别分析(LDA)、等距特征映射(ISOMAP)等。
这些方法可以将复杂的人脸图像转化为低维的特征向量,提取出人脸的独特特征,以便后续的分类和识别。
三、训练模型训练模型是使用Matlab进行人脸识别的关键步骤。
在训练阶段,我们需要使用提取到的人脸特征和对应的标签,训练一个分类器或者神经网络模型。
常用的分类算法包括支持向量机(SVM)、k近邻算法(KNN)、卷积神经网络(CNN)等。
通过训练模型,我们可以让计算机自动学习和寻找人脸特征和类别之间的关系。
四、测试和评估在测试阶段,我们需要使用已经训练好的模型对新的人脸进行识别。
首先,我们需要将测试图像进行与训练图像相同的预处理,然后提取测试图像的特征向量。
最后,使用预训练好的模型对特征向量进行分类,得到识别结果。
为了评估人脸识别系统的性能,常用的评估指标包括准确率、召回率、F1值等。
五、优化和改进人脸识别是一个持续改进的过程。
通过分析和评估识别结果,我们可以发现其中的不足之处,并进行优化和改进。
例如,可以增加训练样本的数量和质量,调节分类器或神经网络的参数,尝试不同的特征提取方法,以提高人脸识别系统的准确率和鲁棒性。
总之,使用Matlab进行人脸识别需要经过数据采集和预处理、特征提取、训练模型、测试和评估等基本步骤。
基于matlab的人脸检测程序

基于Matlab的一个最简单的人脸检测程序2010-08-09 20:28:39| 分类:默认分类| 标签:matlab 人脸检测程序|字号大中小订阅clear;I=imread('E:\Matlab\图片\q5.jpg');O=rgb2ntsc(I);G=O(:,:,2);[m n]=size(G);U=zeros(m,n);for i=1:mfor j=1:nif G(i,j)>0.03&&G(i,j)<0.16U(i,j)=1;endendendsr=strel('disk',6);C=imclose(U,sr);L=bwlabel(C);B=regionprops(L,'area');Se=[B.Area];Sm=max(Se);if Sm>m*n/27B1=bwareaopen(C,Sm);k_y1=m;k2=m;l2=n;if any(B1(i,:))==1k_y1=i;breakendendfor i=k_y1:mif B1(i,:)==0k2=i;breakendendfor j=1:nif any(B1(:,j))==1l_y1=j;breakendendfor j=l_y1:nif B1(:,j)==0l2=j;breakendendk_y=k2-k_y1;if k_y>.5*l&&k_y<3*lI1=imcrop(B1,[l_y1 k_y1 l .4*k_y]); [n1 m1]=size(I1);L1=bwlabel(I1);E=regionprops(L1,'area');Si=[E.Area];Sm=max(Si);if Sm/(n1*m1)>.3B2=bwareaopen(I1,floor(.5*Sm)); g_y1=m1;g2=m1;for j=1:m1if any(B2(:,j))==1g_y1=j;breakendendfor j=g_y1:m1if B2(:,j)==0;g2=j;breakendendg=g2-g_y1;figure;imshow(I);hold onh1=line([l_y1+g_y1,l_y1+g_y1+g],[k_y1,k_y1]);h2=line([l_y1+g_y1+g,l_y1+g_y1+g],[k_y1,k_y1+1.1*g]);h3=line([l_y1+g_y1+g,l_y1+g_y1],[k_y1+1.1*g,k_y1+1.1*g]);h4=line([l_y1+g_y1,l_y1+g_y1],[k_y1+1.1*g,k_y1]);h=[h1 h2 h3 h4];set(h,'Color',[1 0 0],'LineWidth',2);elsefigure;imshow(I);endelsefigure;imshow(I);endelsefigure;imshow(I);end注:本程序是基于肤色的人脸侦测程序,较为简单,只能检测出一个人脸,对于背景较单调的情况下的个体照,有较高的检测率,而且检测速度快。
基于某matlab地人脸识别系统设计与仿真

基于Matlab的人脸识别系统设计与仿真摘要人脸识别即指利用分析比对人脸视觉特征信息从而达到身份鉴别效果的计算机技术。
人脸识别是一项当下十分热门的计算机技术的研究领域,该项技术可以人脸明暗侦测,并且自动调整动态曝光补偿,同时对人脸追踪侦测,并自动调整影像放大;这项技术属于生物特征识别技术的一种,是利用生物体(一般指人)本身的生物特征从而达到区分生物体个体的目的。
人脸识别技术目前主要用做身份识别。
由于视频监控的飞速普及,使这项应用迫切的需要一种能实现在用户非配合状态下、远距离的进行快速身份识别的技术,以求能在远距离之下快速识别人员身份,从而实现智能预警的功能。
最佳的选择无疑是人脸识别技术。
采用快速人脸检测识别技术可以从视频监控图象中实时捕获到人脸信息,并与人脸数据库中的已存信息进行实时比对,从而达到快速身份识别的效果。
报告利用MATLAB软件来实现人脸信息检测与识别,利用YCbCr空间以及灰度图像来实现人脸的边缘分割, 将真彩图像转换为灰度图像,并根据肤色在YCbCr色度空间上的分布范围,来设定门限阀值,从而实现人脸区域与非人脸区域的分割,通过图像处理等一系列的操作来剔除干扰因素,再通过长宽比和目标面积等方法在图像中定位出人脸区域,经试验,该方法能够排除面部表情、衣着背景、发型等干扰因素,从而定位出人脸区域。
关键词:Matlab软件;灰度图像;边缘分割;人脸区域AbstractFace recognition especially use comparative analysis face visual feature information for identification of computer technology. Face recognition is a hot research field computer technology, face detection, light and shade can be automatically adjusted dynamically exposure compensation, human face tracking detection, automatic adjustment of image magnification; It belongs to the biometric identification technology, it is of organisms (generally refers to a person) individual biological characteristics to distinguish between the organism itself.Face recognition is mainly used for identification. Because of the video monitoring is fast popularization, many of the video monitoring application is an urgent need to a long distance, the user not cooperate condition of rapid identification technology, in order . Face recognition technology is undoubtedly the best choice, the fast face detection technology to monitor in real-time video image search from face, and with real-time than face database, so as to realize rapid identification.Report using MATLAB software to realize face information detection and recognition, using YCbCr space and gray image to realize the face edge segmentation, the true color image is converted to a grayscale image, and according to the color of skin in YCbCr chroma space distribution, to set the threshold threshold, so as to realize the segmentation of face region with the face region, through a series of operations such as image processing to eliminate interference factors, and through such means as aspect ratio and the target area locate the face region in the image, the experiment, this method can eliminate facial expressions, clothes, hair background interference factors, so as to locate the face region. Keywords:Matlab;Gray image;edge segmentation;face region目录摘要 0ABSTRACT (1)目录 (2)第1章绪论 (3)1.1课题的研究背景、目的及意义 (3)1.1.1 课题的研究背景 (3)1.1.2 研究目的及意义 (4)1.2本课题的主要内容 (4)第2章图像处理的MATLAB实现 (5)2.1识别系统构成 (5)2.2人脸图像的读取与显示 (6)2.3图像类型的转换 (6)2.4图像增强 (7)2.5灰度图像平滑与锐化处理 (8)2.6边缘检测 (10)第3章人脸识别计算机系统 (11)3.1系统基本构架 (11)3.2人脸检测定位算法 (11)3.3匹配与识别 (16)结论 (23)致谢 (24)参考文献 (25)附录1 人脸识别的MATLAB源程序 (26)附录2 外文参考文献及翻译 (30)第1章绪论1.1 课题的研究背景、目的及意义1.1.1 课题的研究背景数字图像处理技术是20世纪60年代发展起来的一门新兴技术。
Matlab中的人脸识别和图像识别技术

Matlab中的人脸识别和图像识别技术人脸识别和图像识别技术是计算机视觉领域的重要研究方向,它们在人脸识别、图像搜索、安防监控等领域有着广泛的应用。
Matlab作为一种强大的科学计算软件,提供了丰富的工具箱,可以方便地进行人脸识别和图像识别的开发和实现。
本文将介绍Matlab中的人脸识别和图像识别技术,并探讨其应用和挑战。
一、人脸识别技术在Matlab中的实现人脸识别技术是指通过计算机自动识别和验证人脸信息的一种技术。
在Matlab 中,可以利用图像处理和模式识别的工具箱来实现人脸识别。
首先,我们需要收集一批人脸图像进行训练,然后利用这些训练样本训练一个人脸识别模型。
训练过程中,可以使用特征提取算法来提取人脸图像的特征向量,常用的算法有主成分分析(PCA)和线性判别分析(LDA)。
接着,可以使用分类器来对待识别的人脸图像进行分类,常用的分类算法有支持向量机(SVM)和人工神经网络。
最后,可以通过对比待识别人脸图像与已知识别模型中的人脸特征进行比较,从而实现人脸识别。
在Matlab中,人脸识别技术的实现可以参考以下步骤:1. 数据准备:收集一批包含不同人脸图像的训练样本,标记好每个图像对应的人脸ID。
2. 特征提取:使用PCA或LDA等算法对训练样本的人脸图像进行特征提取,生成特征向量。
3. 模型训练:利用训练样本的特征向量训练一个分类模型,如SVM或神经网络。
4. 人脸识别:对待识别的人脸图像进行特征提取,然后使用训练好的分类模型进行分类,得到识别结果。
二、图像识别技术在Matlab中的应用除了人脸识别技术之外,图像识别技术在Matlab中的应用也非常广泛。
图像识别技术是指通过计算机自动识别和解析图像信息的一种技术。
在Matlab中,可以利用图像处理和模式识别的工具箱来实现图像识别。
常见的图像识别任务包括物体识别、场景识别、文字识别等。
在Matlab中,图像识别技术的实现可以参考以下步骤:1. 数据准备:收集一批包含不同类别图像的训练样本,标记好每个图像对应的类别。
基于MATLAB的人脸识别考勤系统

电子技术‖77‖基于MATLAB的人脸识别考勤系统◆杨天成本文的主要研究内容是人脸识别技术。
在研究中了解人脸识别技术在国内外的研究现状及发展前景,掌握了部分MA TLAB 的图像处理功能,并按照人脸图像采集、图像预处理、人脸特征提取与识别这条技术路线开发实现了一个简易人脸识别系统。
本次设计中的核心部分是人脸的检测与识别,此人脸识别可应用于企业员工考勤签到上。
本设计分为图像采集、数据库信息存储与显示、人脸识别、数据库信息清除、退出程序几部分组成。
采集图像模块的目的就是采集所要存储的人脸图片,将其存入数据库中,为后面的人脸识别算法提供相应的训练素材。
模块代码如下:if chos==1, clc ;[namefile ,pathname]=uigetfile ('*.pgm','Select image');%读取.pgm 文件 if name fi le~=0[img ,map]=imread (strcat (pathname ,name fi le ));imshow (img ); elsewarndlg ('放入的图片必须是已采集的',' Warning ') end end其中的name fl ie ,和pathname 分别指的是文件名和查找文件的路径。
当点击“采集图像”时,系统会根据操作指令弹出要采集的图片,选择确定后,会将这个图片的路径以及图片名相关信息保存到变量pathname 和name fi le 里。
当采集到图片后要将采集的图片保存到数据库中,此目的是为了给后期人脸识别时提供相应的训练素材。
但是需要注意的是在进行保存图片时要对保存的图片划分类别,同一个人的不同照片要划分到同一类中。
设第一个人的所有图片组成的类别为1,第二个人的所有图片组成的类别就为2,由此以此类推。
每一类的图片种类越多,越能保证后期识别的成功率。
同时为了能够保证录入的信息正确,可以点击“数据库信息”就会显示出数据库中存入了多少张照片以及分了多少类别。
如何使用Matlab进行人脸表情识别与情感分析

如何使用Matlab进行人脸表情识别与情感分析人类情感是复杂而广泛的。
通过表情可以传达出愤怒、快乐、悲伤等各种情感。
对于计算机来说,要理解人类表情并进行情感分析是一项具有挑战性的任务。
幸运的是,现代计算机视觉和机器学习技术的发展使我们能够利用工具如Matlab来实现人脸表情识别和情感分析。
在开始讨论如何使用Matlab进行人脸表情识别之前,有必要先了解一下人脸表情识别的背后原理。
人脸表情识别主要依赖于面部特征和模式识别算法。
Matlab提供了一系列工具和函数,帮助我们分析面部特征并应用模式识别算法。
在这里,我们将重点介绍几个重要的步骤。
第一步,人脸检测。
在进行人脸表情识别之前,我们需要先检测和定位人脸。
Matlab提供了许多人脸检测算法,如Haar级联分类器和基于特征值的方法。
这些算法可以帮助我们在图像中准确地检测到人脸。
第二步,特征提取。
提取面部特征是人脸表情识别的关键步骤之一。
在Matlab 中,我们可以使用特征提取算法如LBP(局部二值模式)和HOG(方向梯度直方图)来捕获面部的细微结构和纹理信息。
这些特征具有良好的不变性和判别性,有助于准确识别不同的表情。
第三步,分类器设计。
设计一个有效的分类器是实现准确的人脸表情识别的关键。
在Matlab中,我们可以使用机器学习算法如支持向量机(SVM)、K最近邻(KNN)和神经网络等来训练和构建分类模型。
这些算法可以根据输入的特征向量来学习和分类不同的表情。
第四步,情感分析。
除了识别表情,我们还希望能够进行情感分析,即根据表情来预测人类的情感状态。
在Matlab中,我们可以使用分类模型和情感词典来实现情感分析。
情感词典是一个包含情感标签和情感词汇的数据库,我们可以利用其中的信息来量化及预测人类的情感状态。
在实际应用中,人脸表情识别和情感分析有着广泛的应用潜力。
例如,在人机交互、情感计算和市场研究领域,人脸表情识别可以用来改善用户体验和情感交流。
情感分析则可以帮助我们了解用户的情感需求和对产品的评价。
Matlab在人脸识别中的应用示例

Matlab在人脸识别中的应用示例人脸识别是计算机视觉领域中一项重要的技术,能够通过图像或视频中的人脸信息进行身份验证和识别。
在现实生活中,人脸识别技术的应用广泛,涉及到安全监控、个人身份识别等诸多领域。
而Matlab作为一种强大的科学计算软件,可以提供丰富的人脸识别工具,本文将介绍一些Matlab在人脸识别中的应用示例。
一、人脸检测人脸检测是人脸识别的第一步,通过定位图像中的人脸位置,为后续的特征提取和识别提供准确的目标区域。
Matlab提供了一些经典的人脸检测算法,如Viola-Jones算法和Haar特征分类器。
通过调用这些算法,我们可以实现快速准确的人脸检测。
二、人脸特征提取为了进行人脸识别,需要提取人脸的特征信息。
Matlab中有多种算法可以实现人脸特征提取,其中最常用的是主成分分析(PCA)算法和线性判别分析(LDA)算法。
PCA算法通过分析人脸图像中的主要变化模式,将原始高维数据降维到低维空间。
这样可以减少计算复杂度,并且保留了主要的人脸特征信息。
在Matlab中,我们可以使用eig函数来计算PCA特征向量和特征值,并利用这些信息提取人脸的主要特征。
LDA算法则是通过最大化类间距离和最小化类内距离,实现对人脸图像进行判别分析。
相比于PCA,LDA算法更加关注类别信息,能够从多个类别中提取不同类别的判别特征。
Matlab提供了lda函数来计算LDA的特征向量和特征值,从而实现人脸特征提取。
三、人脸识别在得到人脸的特征向量后,我们可以使用分类算法进行人脸识别。
常用的分类算法包括支持向量机(SVM)算法和人工神经网络(ANN)算法。
SVM算法是一种基于统计学习理论的非线性分类方法,在人脸识别领域有着广泛的应用。
在Matlab中,我们可以通过调用svmtrain函数训练SVM分类器,并使用svmclassify函数进行人脸识别。
ANN算法是一种基于人工神经网络的模式匹配方法,通过模拟人脑神经元之间的连接来进行学习和识别。
Matlab处理图像后实现简单的人脸检测

Matlab处理图像后实现简单的⼈脸检测⽬录1.⼈脸检测原理框图2 步骤2.1 均值滤波2.2 ⼆值化2.3.形态学边界提取2.4 纵向闭合与横向腐蚀2.5 消除边界多余连通域2.6 寻找最⼤连通域并画框3 检测结果1.⼈脸检测原理框图整体思路是寻找图⽚中最⼤的连通域,将其认定为⼈脸。
第⼀个环节均值滤波,是为了减弱图像的相关细节部分,以免⽑刺影响后期连通域的形成,⼆值化⽅便形态学处理,减少运算量。
考虑到⼈脸有⿊⼈和⽩⼈黄种⼈,⿊⼈肤⾊较深,在⼆值化之后⾯部区域不容易形成较⼤的连通域,如果采取形态学边界提取的办法,就可以避免这个问题,形态学边界提取,只要结构元素够⼤,也可以形成较⼤的封闭连通域。
然后就是纵向闭合操作,这⼀步我选择采⽤竖向长条状的结构元素进⾏闭合运算,因为⼈的脸部和颈部以及头发和⾐物等等都是纵向分布的,在进⾏形态学边界提取的时候,容易将这些靠近的成分割裂开来,这对连通域的判断极为不利,所以⽤竖向长条状的结构元素在在纵向进⾏闭合运算,将脸部上下部的区域重新连接起来。
紧接着我⼜⽤横向长条状结构元素进⾏横向腐蚀运算,这是因为,⼈的头部以下的⾝体部分存在有⼤量连通域的时候,容易对最⼤连通域的判决产⽣⼲扰,⼜因为下半部分,多半呈纵向分布,通过横向腐蚀可以将这些⼤块的连通域割裂开来,但是要注意的是,割裂程度不应太⼤,否则会使得上⼀步闭合操作丧失意义。
接着,由于背景杂物等因素,同样也会产⽣⼤量连通域,这会对最后结果的判决产⽣⼲扰,因此要予以剔除。
进⾏了层层筛选之后,在剩下的连通域⾥⾯挑⼀个最⼤的连通域,并且尺⼨形状满⾜要求的⽤矩形框框起来作为⼈脸检测结果。
2 步骤2.1 均值滤波h = ones(9)/81;I = uint8(conv2(I,h));figure,imshow(I),title('线性均值滤波')采⽤9x9模板进⾏线性均值滤波,因为后⾯调⽤gpuArray()函数转换对输⼊数据有要求,所以在进⾏了⼆维卷积之后重新将数据格式转换成8位⽆符号整形数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
防止质检员 打盹
列车员疲劳 提醒
疲劳检测
特定岗位防 瞌睡
研究目标
本设计目标在于利用Matlab强大的图像处理能
力和实用便捷的编程方法,通过处理包含人脸的
视频图像,识别分析面部特征,从而得到比较准 确的疲劳状况。
2.系统软件设计框架
疲劳检 测
基于肤 色的人 脸检测 与提取
检测人 眼的闭 合状态
基于霍 夫变换 的人眼 定位
•
Thank you
图2-10
总结及展望
• 本设计简单易行,但是运 行速度比较慢,主要是霍 夫变换运算量比较大。为 了减少运算量,可以进一 步减少人眼搜索范围。
• 对于人脸,可以确定,人 眼一般位于头部中间偏上 的位置,加上是下方的脖 子等区域,可以认为人眼 在头部上半部分,如此就 可以把搜索范围减少一半, 运算速度也可以加快一倍。
•
•
相关概念
• • 人眼定位 人眼定位是在包含人脸的图像中,比较准确的找到人眼的位置, 并且提取相关的人眼信息。 常见的人眼定位方法包括一下四种:
•
•
• • •
1) 模版匹配法
2) 霍夫变换法 3) 灰度投影法 4) 对称变换法
求职应注意的礼仪
• • 求职时最礼貌的修饰是淡妆 面试时最关键的神情是郑重 • 无论站还是坐,不能摇动和抖动 • 对话时目光不能游弋不定 • 要控制小动作 • 不要为掩饰紧张情绪而散淡 最优雅的礼仪修养是体现自然
•
在对色彩信息的利用中,HSV模型的优点在于它将亮度和反映色彩 本质特性的两个参数分开。在提取一类物体(如人脸)在色彩方面
的特性时,可以获得比较好的效果。
相关概念
•
•
边缘检测算子
几种边缘算子处理实验待测图片的效果对比:
相关概念
• • 膨胀 膨胀是将与目标区域接触的背景点合并到该目标中,是目标边界向外 部扩张的处理。膨胀可以用来填补目标区域中存在的某些空洞,以及 消除包含在目标区域中的小颗粒噪声。 由于得到的人眼边缘不是很完整,难以统计大小信息,需要做膨胀处 理。
• 而人出现疲劳后,眨眼频率往往会加快,每次眨眼经历时间 也会相应的变长,因此可以依据人的眨眼频率判断人是否疲 劳。
肤色在HSV色彩空间的子空间
S 10 V 40 S 110 H 0.1W H 75 0.4V 0.08(100 V)H 0.5V S 0.5H 35
图2-3
2.1基于肤色的人脸检测与提取算法流程
把图2-3与原图2-1乘操作就可以得到整个人脸范围
图2-4
2.2基于霍夫变换的人眼定位与统计
人脸图像
灰度化
边缘检测
统计对象 面积
膨胀
检测圆
2.2基于霍夫变换的人眼定位与统计 把得到的人脸图像转换为灰度图像,如图2-5
图2-5
2.2基于霍夫变换的人眼定位与统计 使用Prewitt算子进行边缘检测,得到人眼的边缘曲线如图2-6所示。
相关概念
• 霍夫变换(Hough变换)
• 霍夫变换(Hough变换)是一种用于区域边界形状描述的方法,
常常被用于直线段、圆和椭圆的检测。其基本思想是将图像
的空间域变换到参数空间,用大多数边界点满足的某种参数 形式来描述图像中的曲线。Hough变换检测技术根据局部度 量来计算边界曲线参数,因而,对于区域边界噪声干扰或被 其它目标遮盖而引起边界发生间断的情况,具有比较好的容 错性和鲁棒性。
2.1基于肤色的人脸检测与提取算法流程
原始图像
转换色彩空间
肤色提取
得到人脸范围
内部填充
提取人脸轮廓
2.1基于肤色的人脸检测与提取算法流程
图2-1为待处理的原图
图2-1
2.1基于肤色的人脸检测与提取算法流程
图2-2为在HSV色彩空间中提取到的肤色范围。
图2-2
2.1基于肤色的人脸检测与提取算法流程 把图2-2中的肤色范围设置为白色,非肤色范围取黑,并且进 行内部填充,可以得到如图2-3所示的人脸范围的黑白模版。
基于面部特征识别的疲劳检测 系统设计实现
指导老师:杨阳 学院:信息科学与工程学院 专业:电子信息科学与技术
目录 • 研究背景与意义
• 系统软件设计及实现
• 总结及展望 • 致谢
1.研究背景与意义
• 疲劳检测在现实生活中具有很大的意义和实用价值,也是一个值 得进一步完善研究的课题。
汽车防止疲 劳驾驶
•
相关概念
• 眨眼与疲劳
• 眨眼,是一种快速的闭眼动作,称为瞬目反射。
• 据统计,正常人平均每分钟要眨眼十几次,通常2~6秒就 要眨眼一次,每次眨眼要用0.2~0.4秒钟时间。20-40岁之 间的正常人每分钟眨眼约20次,而在睁眼凝视变动快速的 电脑屏幕时,或者人的注意力相对十分集中时,眨眼次数可 能会减少到每分钟4-5次。
•
以一种修养面对两种结果
• 必须首先学会面对的一种结果----被拒绝 • 仍然感谢这次机会,因为被拒绝是面试后的两种结果之一。 • 被拒绝是招聘单位对我们综合考虑的结果,因为我们最关心的是自己 什么地方与用人要求不一致,而不仅仅是面试中的表现。 • 不要欺骗自己,说“我本来就不想去”等等。 • 认真考虑是否有必要再做努力。 必须学会欣然面对的一种结果----被接纳 • 以具体的形式感谢招聘单位的接纳,如邮件、短信 • 考虑怎样使自己的知识能力更适应工作需要 • 把走进工作岗位当作职业生涯的重要的第一步,认真思考如何为以后 的发展开好头。
总结及展望
• 减小人脸范围后实验结果:
感谢您的关注!
相关概念
• • HSV色彩空间 色彩空问,即色彩模型,是指颜色在三维空问中的排列方式。肤 色由于其特殊性,在不同的色彩空间表现形式也不同,对肤色的 辨识能力和处理效果也不同。
•
HSV色彩属性模式是三原色光模式的一种非线性变换,根据色彩 的三个基本属性:色相、饱和度和明度来确定颜色。色相(H)是 色彩的基本属性,取0-360度的数值。饱和度(S)是指色彩的纯 度,明度(V)也叫“亮度”,取0-100%。
图2-9
2.3疲劳判断
每一帧 人眼大小
归一化
画出人眼 变化曲线
判断疲劳
统计 眨眼频率
2.3疲劳判断 一次实验结果如图2-10所示。 对得到的每一帧图像中的人眼信息统计,得到人眼闭合的帧数与总数 的比例,判断疲劳。
Close _ frame PERCLOS 100% Sum _ frame
如果得到的PERCLOS值大于阈值20%,则判定为疲劳状态。
• 设计中采用了霍夫变换检测圆的方法定位人眼的位置,得到 人眼的轮廓,进而确定人眼,
人眼大小归一化
在所有的帧中找到人眼区域面积最大的值max, 以此为基准,其他值依次除以max得到相对大 小值η,η取值理论范围在0-1之间,但是由于 闭眼时仍然存在一些面积信息,故得到的η一 般都是大于0,实验中可以取η小于0.3就可以 判断为闭眼状态。
相关概念
• • 人脸检测 人脸检测是指在输入图像中确定所有人脸(如果存在)的位置、 大小和姿态的过程。人脸检测系统输入的是可能包含人脸的图像, 输出的是图像中是否存在人脸和人脸数目、位置、尺度等信息的 参数化描述。 常见的人脸检测方法有:基于统计的方法,基于模版匹配的方法, 基于知识匹配的方法等。其中基于知识匹配方法又可以分为一下 三种规则:轮廓规则,器官分布规则,肤色纹理规则和对称性规 则。 本次设计主要采用了基于肤色纹理规则的知识匹配方法进行人脸 检测与提取。
图 2-6
2.2基于霍夫变换的人眼定位与统计 由边缘图像进行霍夫变换检测圆,得到人眼的边缘曲线如图2-7所示。
图2-7
2.2基于霍夫变换的人眼定位与统计 得到的人眼边缘曲线不是很完整,因此做一下膨胀处理,得到人眼范 围,便于统计大小信息,如图2-8所示。
图2-8
2.2基于霍夫变换的人眼定位与统计 不同闭合度人眼检测结果对比如图2-9
式2 - 1 (H 0) (H 0)
研究背景与意义
比如说疲劳驾驶,就是诱发严重交通事故的重
要原因之一。据公安交管部门统计,60%以上的
交通事故与疲劳驾驶有关,防范疲劳驾驶刻不容 缓。这不但需要驾驶员自己做到尽量控制不疲劳 驾驶,也需要一个实时的疲劳检测系统监测驾驶 员的疲劳状态,随时提醒驾驶员保持清醒,才能 最大限度的防止疲劳驾驶的出现,减少交通事故 的发生。