电压放大器模型
运算放大器的电路模型和比例电路的分析及有运算放大器的电阻电路概述
(R、C等),使其工作在闭环状态。
Rf
1
+ ui_
R1 _
1
+
A +
2
RL
+
+
ui _
_uo
R1
Rf
Ri
Ro +
Aun1
2
+ RL uo
_
运放等效电路
2. 电路分析 用结点法分析:(电阻用电导表示)
(G1+Gi+Gf)un1-Gf un2=G1ui
Rf
-Gf un1+(Gf+Go+GL)un2 +
ud> 则 uo= Usat
③反向饱和区:
注意
ud<- 则 uo= -Usat
是一个数值很小的电压,例如
Usat=13V, A =105,则 = 0.13mV。
输入电阻
3. 电路模型
当: u+= 0, 则uo=-Au-
uRi
当: u-= 0, 则uo=Au+ u+
4. 理想运算放大器
输出电阻
+
x1
x2 x3
a1 a2
-y -1
y
a3
②非倒向比例器
Ri
iu+ i+
_
+
+
+ ui _
uR2 R1
结论
① uo与ui同相
根据“虚短”和“虚断”
u+= u-= ui i+= i-= 0
+ uo
(uo-u-)/R1= u-/R2
_ uo =[(R1 + R2)/R2 ] ui
=(1+ R1/R2) ui
基本放大电路
功率放大器电路实物图(12张)功放电路和前面介绍的基本放大电路都是能量转换电路,从能量控制的角度来 看,功率放大器和电压放大器并没有本质上的区别。但是,从完成任务的角度和对电路的要求来看,它们之间有 着很大的差别。低频电压是在小信号状态下工作,动态工作点摆动范围小,非线性失真小,因此可用微变等效电 路法分析、计算电压放大倍数、输入电阻和输出电阻等性能指标,一般不考虑输出功率。而功率放大电路是在大 信号情况下工作,具有动态工作范围大的特点,通常只能采用图解法分析,而分析的主要性能指标是输出功率和 效率。
具有足够大的输出功率
为了获得尽可能大的功率输出,要求功放管工作在接近“极限运用”的状态。选管子时应考虑管子的三个极 限参数能小
功放工作在大信号状态下,不可避免地会产生非线性失真,而且同一功放管的失真情况会随着输出功率的增 大而越发严重。技术上常常对电声设备要求其非线性失真尽量小,最好不发生失真。而在控制电动机和继电器等 方面,则要求以输出较大功率为主,对非线性失真的要求不是太高。
前级功放 其主要作用是对信号源传输过来的节目信号进行必要的处理和电压放大后,再输出到后级放大器。 后级功放 其对前级放大器送出的信号进行不失真放大,以强劲的功率驱动扬声器系统。除放大电路外,还设计有各种 保护电路,如短路保护、过压保护、过热保护、过流保护等。前级功放和后级功放一般只在高档机或专业的场合 采用。 合并式放大器 将前级放大器和后级放大器合并为一台功放,兼有前二者的功能,通常所说的放大器都是合并式的,应用范 围较广。
功率放大器主要考虑获得最大的交流输出功率,而功率是电压与电流的乘积,因此功放电路不但要有足够大 的输出电压,而且还应有足够大的输出电流。因此,对功放电路具有以下几点要求。
效率尽可能高
功放是以输出功率为主要任务的放大电路。由于输出功率较大,造成直流电源消耗的功率也大,效率的问题 突显。在允许的失真范围内,期望功放管除了能够满足所要求的输出功率外,应尽量减小其损耗,首先应考虑尽 量提高管子的工作效率。
五管经典放大器仿真
五管经典放大器仿真
五管放大器是大家接触到的第一个运放。
五管放大器
一般的分析会假设Vin+和Vin-是差分的然后假设Vs是虚地来简化分析。
VgVin+=−gm1gm3
VoutVg=−gm4(ro2//ro4)
M3和M4是完全对称的,所以gm3=gm4
VoutVin+=gm1(ro2//ro4)
得出了五管放大器的增益表达式。
实际上五管放大器的一端是一个基准电压,因此往往承担的是一个单端输入的特性,研究五管放大器的单端特性是有一定的实际意义的。
为简化电路,采用一个串并转换:
五管放大器的小信号模型
如果把M1和M2的等效模型转换成串联形式:
转换后的小信号图
电路一下子变成了一个串联模型方便计算,值得注意的是,Vs相关项已被约去。
通路电流
i=−gm1ro1Vin−gm4ro4Vg2ro1+ro4=Vg1gm3//ro3
忽略ro3
可得
VgVin+=−gm1ro12gm3(ro1+ro4)
i=(−gm1ro1Vin)2(ro1+ro4)
进而算出输出电压
VoutVin=gm1(ro2//ro4)
再计算一下Vs节点:
Vg−Vs=ro1gm1ro1Vin2(ro1+ro4)−gm1(Vin−Vs))可算得Vs约为:
Vs=(ro1+2ro4)2(ro1+ro4)Vin。
电子技术实验报告—实验4单级放大电路
电子技术实验报告实验名称:单级放大电路系别:班号:实验者:学号:实验日期:实验报告完成日期:目录一、实验目的 (3)二、实验仪器 (3)三、实验原理 (3)(一)单级低频放大器的模型和性能 (3)(二)放大器参数及其测量方法 (4)四、实验容 (5)1、搭接实验电路 (5)2、静态工作点的测量和调试 (6)3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (6)4、放大器上限、下限频率的测量 (7)5、电流串联负反馈放大器参数测量 (8)五、思考题 (8)六、实验总结 (8)一、实验目的1.学会在面包板上搭接电路的方法;2.学习放大电路的调试方法;3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法;4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能;5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。
二、实验仪器1.示波器 1台2.函数信号发生器 1台3. 直流稳压电源 1台4.数字万用表 1台5.多功能电路实验箱 1台6.交流毫伏表 1台三、实验原理(一)单级低频放大器的模型和性能1. 单级低频放大器的模型单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。
从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。
若反馈信号的极性与原输入信号的极性相反,则为负反馈。
根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。
负反馈是改变房卡器及其他电子系统特性的一种重要手段。
负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。
模电课件集成运放基本电路
R f 8 R f 20
R2
R3
加减运算电路旳设计环节 R1 24k 先根据函数关系画出电路,R2然 后30计k算参数
解(1) 画出电路 (2) 计算电阻
平衡电阻
R3 12k R 80k
Rf
R’ // R1 // R2 =Rf // R3
uo
Rf R1
ui1
Rf R2
ui 2
Rf R3
ui 3
(由2虚)断因:为i叠 加i点为0虚地,i输i1 入ii信2 号ii3之间i f
满u足i1 线u0性 叠u加i2 定 0u理 ,互ui不3 影0u响。u0 uo
R1
R2
R3
Rf
uo 由由u虚R虚Rf 短地uu:i:1 u0i2 ui3
ui3 ui2
ii3 ii2
R3 R2
Rf
若 R1 = R2 = R3 = R
换作用
1反相微分器 平衡电阻R’=Rf
iC
C
duC dt
由虚断:i i 0 iC i i f i f
iC
u uo Rf
C d ui
dt
由“虚
地u” 0
u
uo
iC
R
f
C
iiCi
ui
dui t
RuC
dt
u
u R
if ii+
Rf
uo
2实际应用旳微分器Zf
uRωi ↑限i→Zi制11/输uω入Ci电↓- →流i,C ↑降→低高高频u频噪o 噪声声uo Cf相位补u 偿i,+ 克制自激振荡
由虚短: u u
uo ui2
R1 R f RRf R2 R R1
运算放大器
运算放大器绪论运算放大器是电压控制型电压源模型,其增益(放大倍数)非常大。
运算放大器有5个端子、4个端口的有源器件。
其符号和内部结构如图1所示:图1 运算放大器模型和内部结构图图中电压VCC和VEE是由外部电源提供,通常决定运算放大器的输出电压等级。
符号“+”和“—”分别表示同相和反相。
输入电压Vp和Vn以及输出电压Vo都是对地电压。
运算放大器的五个接线端构成了一个广义节点,如果电流按照图1所示定义,根据KCL (基尔霍夫电流定律)有如下公式:因此,为了保持电流平衡,我们必须将所有电流都包括进来,这是根据有源器件的定义得出的。
如果我们仅仅考虑输入和输出电流来列出KCL,则等式不成立,即:运算放大器的等效电路模型如图2所示。
电压Vi是输入电压Vp和Vn的差值即Vi=Vp -Vn。
Ri是放大器的输入电阻,Ro是输出电阻。
放大参数A称为开环增益。
运算放大器的开环结构定义为:运算放大器的结构中不包括将输入和输出端连接起来的回路。
图2 运算放大器的等效电路模型如果输出端不接任何负载,输出电压为:该公式说明,输出电压Vo是与输入电压Vp和Vn之差的函数。
因此可以说该运算放大器是差值放大器。
大多数实际的运算放大器的开环放大倍数是非常大的。
例如,比较常用的741型运算放大器,它的放大倍数为200000Vo/Vi,甚至一些运算放大器的放大倍数达到108 Vo/Vi。
反映输入电压和输出电压关系的曲线称为电压传输特性,而且该曲线是放大器电路设计和分析的基础。
运算放大器的电压传输曲线如图3所示:图3 电压传输特性曲线注意:该曲线有2个变化区域,一个为在Vi=0V附近时,输出电压和输入电压成正比例放大,称之为线性区域;另一个为Vo随Vi改变而不变的区域,称之为饱和区(或非线性区)。
可以通过设计让运算放大电路工作在上述的2个区域。
在线性区域Vo和Vi直线的斜率是非常大的,实际上,它与开环放大倍数A相等。
例如,741运算放大器正负电源电压为VCC=+10V,VEE=-10V,Vo的饱和值(最大输出电压)一般在±10 V,而当A=200000 Vo/Vi 时,可以算出输入的电压非常小:10/200,000 = 50μV。
康华光《电子技术基础-模拟部分》(第5版)笔记和课后习题(含考研真题)..
目 录第1章 绪 论1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 运算放大器2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 二极管及其基本电路3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 双极结型三极管及放大电路基础4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 场效应管放大电路5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 模拟集成电路6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 反馈放大电路7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 功率放大电路8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第9章 信号处理与信号产生电路9.1 复习笔记9.2 课后习题详解9.3 名校考研真题详解第10章 直流稳压电源10.1 复习笔记10.2 课后习题详解10.3 名校考研真题详解第11章 电子电路的计算机辅助分析与设计第1章 绪 论1.1 复习笔记一、电子系统与信号电子系统指若干相互连接、相互作用的基本电路组成的具有特定功能的电路整体。
信号是信息的载体,按照时间和幅值的连续性及离散性可把信号分成4类:①时间连续、数值连续信号,即模拟信号;②时间离散、数值连续信号;③时间连续、数值离散信号;④时间离散、数值离散信号,即数字信号。
二、信号的频谱任意满足狄利克雷条件的周期函数都可展开成傅里叶级数(含有直流分量、基波、高次谐波),从这种周期函数中可以取出所需要的频率信号,过滤掉不需要的频率信号,也可以过滤掉某些频率信号,保留其它频率信号。
幅度频谱:各频率分量的振幅随频率变化的分布。
相位频谱:各频率分量的相位随频率变化的分布。
三、放大电路模型信号放大电路是最基本的模拟信号处理电路,所谓放大作用,其放大的对象是变化量,本质是实现信号的能量控制。
放大电路有以下4种类型:1.电压放大电路电路的电压增益为考虑信号源内阻的电压增益为2.电流放大电路电路的电流增益为考虑信号源内阻的电压增益为3.互阻放大电路电路的互阻增益为4.互导放大电路电路的互导增益为四、放大电路的主要性能指标1输入电阻:输入电压与输入电流的比值,即对输入为电压信号的放大电路,R i越大越好;对输入为电流信号的放大电路,R i越小越好。
电子技术基础模拟部分
电子技术基础模拟部分第一章 绪论1、写出下列正弦电压信号的表达式(设初始相角为零):(1)峰-峰值10V ,频率10 kHz;10=。
试分别计算下列条件下的源电压增益s vs A υυο=:( 1 ) si i R R 10= ,οR R L 10=;( 2) si i R R = ,οR R i =;( 3) 10si i R R = ,10οR R L =;( 4 ) si i R R 10= ,10οR R L =。
电压放大电路模型 解:由图可知,)(i R R v v +=,L A R v ν⋅=,所以可得以下结果: i v ,5mV ,功率增益 200001051052000)1(632=⨯⨯⨯Ω==--AV V P P A i p ο 4、当负载电阻Ω=k R L 1时,电压放大电路输出电压比负载开路)(∞=L R 时输出电压减少20%,求该放大电路的输出电阻οR 。
解:设负载开路时输出电压为ο'v ,负载电阻Ω=k R L 1时输出电压为οv ,根据题意 而 )('L L R R R v v +=οοο则 Ω=Ω⨯⨯-=-=250101)18.01()1'(3L R v v R οοο5、一电压放大电路输出端接1k Ω负载电阻时,输出电压为1V ,负载电阻断开时,输v A 、Ωk 4,Ωk ;(2)高增益型:Ω=k R i 102,1002=οv A ,Ω=k R 12ο;(3 )低输出电阻型:Ω=k R i 103,13=οv A ,Ω=203οR 。
用这三种放大电路组合,设计一个能在100Ω负载电阻上提供至少 0.5W 功率的放大器。
已知信号源开路电压为30mV(有效值),内阻为Ω=M R si 5.0。
解:由于高输入电阻放大电路对电压信号源衰减小,所以输入级(第一级)宜采用高输入电阻型放大电路;低输出电阻放大电路带负载能力强,所以输出级(第三级)宜采用低输出电阻型放大电路;中间级(第二级)用高增益型。
集成运算放大器实际模型
集成运算放大器主要参数及理想模型分析详解正确使用集成运算放大器必须了解影响其工作性能的主要参数,其中输入误差信号是影响运放工作性能的重要参数之一。
本文主要研究引起集成运放输入误差信号的主要参数及减小其影响的方法。
<--摘要CH(结束)←--><--→关键CH(开始)-->关键词:集成运放输入误差信号输入失调电压输入偏置电流输入失调电流<--关键CH(结束)←--><--→摘要EN(开始)-->1集成运算放大器集成运算放大器简称“集成运放”或“运放”,它实际上是一个直接耦合的高增益多级放大器。
从原理上讲,它与普通的放大器没有多大区别,两者都用于电压放大或功率放大。
但普通放大器的性能是由其内部电路所决定的,而集成运放的性能和工作方式主要由外部反馈电路决定。
为实现这一点,集成运放总是以直接耦合放大器的形式出现,具有很高的电压增益、输入电阻和很低的输出电阻。
由于这种放大器以前只在模拟计算机中用于诸如加、减法和微、积分之类的数学运算,故得名为“运算放大器”。
市场上见到的集成运放都是以单块集成电路的形式出现的,其型号和封装形式多种多样,性能也各不相同,一般有以下两种分类方法:(1)从运算放大器的性能和用途上可以分为通用型和专用型两种。
两者的主要区别是专用型运算放大器在功能上或至少在某个性能上具有特殊性,它的某项性能指标往往比通用型运算放大器高出几个数量级。
其生产工艺也与通用型不同。
(2)从抑制漂移所采取的手段上可分为以电路参数相互补偿的原理来抑制漂移的“参数补偿式集成运算放大器”和以斩波稳零原理来抑制漂移的“斩波稳零集成运算放大器”。
2运算放大器的电路符号和理想模型大多数集成运放都是双端输入和单端输出的高增益放大器。
它的引出端子中,除了两个输入端和一个输出端外,还有两个电源引入端、调零端,还有相位补偿端和其它一些端子。
在分析应用电路时,常用带两个输入端和一个输出端的三角符号来代表运算放大器,如图1所示。
cadence运算放大器的差模dc增益
1. 什么是cadence运算放大器Cadence运算放大器是一种特殊的运算放大器,它可以在直流(DC)和交流(AC)电路中对电压进行放大。
Cadence运算放大器通常由差分放大器和晶体管级联组成,能够实现高增益和低失真的放大效果。
2. Cadence运算放大器的组成结构Cadence运算放大器主要由差分放大器、级联放大器和输出级组成。
(1)差分放大器差分放大器是Cadence运算放大器的核心部分,它由两个共模输入和非共模输入相连接的晶体管组成。
差分放大器能够将输入信号进行放大,并实现对共模信号的抑制。
(2)级联放大器级联放大器用于进一步放大差分放大器的输出信号,提高整体的增益和带宽。
(3)输出级输出级是Cadence运算放大器的最后一个放大器级别,它将级联放大器的输出信号转换为所需的电压信号。
3. Cadence运算放大器的差模dc增益差模dc增益是指Cadence运算放大器在直流工作条件下对差分输入信号的放大倍数。
它是衡量Cadence运算放大器放大能力的重要参数。
4. 计算差模dc增益的方法计算Cadence运算放大器的差模dc增益可以使用极点分析法或者小信号等效电路法。
(1)极点分析法极点分析法是一种简便快速的计算方法,通过对Cadence运算放大器的传输特性进行极点分析,可以得到其差模dc增益。
(2)小信号等效电路法小信号等效电路法将Cadence运算放大器变为其小信号模型,然后使用电路分析方法计算差模dc增益。
5. 差模dc增益的影响因素Cadence运算放大器的差模dc增益受到多种因素的影响,包括晶体管的参数、电阻、电容等元件的取值,以及电路的布局和工艺等。
6. 如何优化差模dc增益(1)优化晶体管参数调整晶体管的工作点和尺寸,优化其参数以提高差模dc增益。
(2)合理布局和连接优化Cadence运算放大器的布局和连接方式,减小布线长度和电路电容,降低信号传输损耗。
(3)精确调节元件取值合理选取电阻和电容的取值,精确调节元件参数以获得最佳的差模dc增益。
模电--运算放大器
2.2.2 理想运放电路模型
V+
iP = 0
vP
ri
ro
+
+
vo
vN iN = 0
Avo(vP – vN) V-
vO / V V+
O vP – vN /mV V-
12 / 105
2.3 基本线性运放电路
2.3.1 同相放大电路
• 基本电路 • 负反馈概念 • 虚短与虚断 • 近似计算 • 电压跟随器
2.1.2 运算放大器电路模型
B. 电压传输特性
Avo越大,运放的线性 范围越小,必须在输
vo / V 正饱和
V+
线性放大区
出与输入之间加负反 馈才能使其扩大输入
vo = Avo(vP – vN)
信号的线性范围。
O
vP – vN /mV
例:若UOM =12V,Avo=106,
则 |ui| <12V 时,运放
15 / 105
2.3 基本线性运放电路
2.3.1 同相放大电路
3. 虚短与虚断
vi
由于运放的开环放大倍数很
大,输入电阻高,输出电阻
ii vp
vid+–
vn
+
A
–
vo
小,分析时常将其理想化, 称所谓的理想运放。
R1 R2
理想运放
线性区工作特点
Avo
ri ro 0
uo Avo (up un ) up un
v3
v2–
–
A2
+
R3 v4
v4
v2
iR2
R1 R2 R1
v2
R2 R1
v1
R4 R3
模电第02章+运算放大器(康华光)
- A(vp-vn)
其中: 其中: (1)线性工作 放大 区 线性工作(放大 线性工作 放大)区 -ε<(vp- vn)<ε时, vo=A(vp-vn) ε 很小。 ε=Vom/A ,很小。 (2)正向饱和区 正向饱和区 vp-vn>+ε 时, vo=+Vom ε (3)反向饱和区 反向饱和区 vp-vn <-ε时, vo=-Vom (5-7)
Rf R1 + vi _ _ +
104
+ RL
+ vo _
经整理后得: 经整理后得:
A R1 vo = v i =9.99vi 1+ A 1 1 + + Rf R1 ri
v+= 0 vo= A(v+-v-)
当:(1) vi =0.1V时, vo ≈1V 时 (2) vi =1V时: 时 vo ≈ 5V
(5-5)
二、 运算放大器的电路模型 放大电路处在线性工作状态且信号源单独作用时: 放大电路处在线性工作状态且信号源单独作用时: 信号源单独作用时 从净输入端( 之间看进去运放等效为r 从净输入端 vp-vn)之间看进去运放等效为 i ,从输出 之间看进去运放等效为 vo~地⊥之间看进去运放用戴维宁定理等效为一个受控 地 恒压源A(v 和一个内阻r 恒压源 p-vn)和一个内阻 o相串联。 和一个内阻 相串联。 1.实际运算放大器的特点 实际运算放大器的特点 开环电压放大倍数 很大 A=106~108 ——很大 差摸输入电阻 ri =106~1011 ——很大 很大 输出电阻 ro=10~100 ——很小 很小 很大 共模抑制比 KCMR=80dB~140dB ——很大
vp
第四章Volterra模型
第四章Volterra模型在本章中,我们首先回顾最常用的非线性建模方法.第 4.1.2节讨论多项式Volterra模型建模方法的特性,第4.2节详细解说记录下来的完全电非线性和电热非线性,以及建模非线性级数展开中所用的项.4.3节描述了如何应用Volterra分析方法计算一个普通发射放大器的失真,并且作为第一个研究案例,第 4.4介绍了在一个BJT CE放大器中,影响IM3失真的所有项的分析.同样的分析(对一个MESFET放大器)在第4.5节中介绍.4.1非线性建模为了能够分析功放的非线性行为,我们需要为实际的非线性电路,无源匹配以及偏置元件建立精确的模型.但此模型的获取又有一定难度.众所周知,N阶失真的数量与I-V和Q-V波形的N阶导数成比例(参照[1-3]).因此,为了达到精确的失真模拟,对有源元件的I-V和 Q-V波必须建模,因此不仅是直流值,高阶导数同样是正确且连续的.(为了便于参考,在早期的仿真模型中,第一阶导数可以不连续).此外,电容是很容易建模的,因此电荷没有存储,这将导致完全容性结点的非物理整流和自偏压.因此,特别是如果电容值同时取决于两个终端电压,将电容模拟等效于电荷平衡是十分重要的[5].由于无源元件在高频具有分布特性,很难在射频频率上对其建模.有损耗的传输线难以在时域上进行建模,一般而言,无源元件的建模在频域上更加精确.尽管如此,有些无源元件的频域仿真模型在高次谐波时也可能是不准确的,例如传输线宽上的阶跃变化,在电路分析中,可以采用测试电路的标准终端阻抗值来进行分析.简而言之,为了得到精确的失真模拟,从模拟模型中需要:1. 对N阶失真模拟来说, I-V 和Q-V波形的N阶导数必须足够精确.2. 结点阻抗的频率响应对于最高相关谐波,必须是正确的.同时,在基带频率,偏置阻抗和热阻抗的正确模型也是十分需要的.3. 如果可以得到主要失真源的组成信息,将十分有用.4.1.1非线性仿真模型通常来说,功放和发射机设计师使用两种非线性模型:一种是用于系统仿真的行为黑盒子模型,另一种是用于电路仿真的器件模型.根据建模方法的不同,可以对这两类模型进行更深层分割:可以是解析的,基于一些预先确定的和物理学的用参数表示的模型函数,或者完全根据实验的,将测量数据列表并以内插值替换的,或者用简单的曲线或物理意义不清楚的多项式表示的模型.在表4.1中有所介绍.表4.1 功率放大器的非线性模型行为基带模型广泛用于模拟和优化整个发射机和收发器,并且增加了新的功能,例如模拟记忆效应,在[6]中介绍.然而,行为模型描述的或者是一个已经存在的放大器,或者行为模型源自到目前为止不存在的放大器规范说明,但是在设计一个新的功率放大器中,行为模型的使用遭到限制.这里简明地介绍了最常用的行为模型的特性,仅用于参考.简单的静态的AM-AM 和 AM-PM波形不能够模拟记忆效应,但是基于调制频率的AM-AM和AM-PM波形的模型已经被开发出来.如图4.1所示,在Saleh模型中, AM-AM和AM-PM非线性模块的输入和输出端都增加了线性滤波器.在Blum 和Jeruchim(在[7]中描述)模型中,用快速傅立叶算法及足够的抽样来找到用于修改AM-AM表的瞬时调制频率.有一种Volterra型的行为模型被称作Volterra输入输出图(VIOMAP).它是普通S参数的非线性的概念性扩展,包括谐波响应,并且被成功应用于单音负载下拉仿真中[9,10].图4.1 (a)功率放大器的AM-AM和AM-PM波形(b)基于滤波器和无记忆非线性的由频率决定的非线性模型.器件模型描述了半导体设备的动作,以及无源和分布式元件的合适模型,可以建立并优化功放的模型.早期的半导体模型是解析的,所采用的等式首先来源于半导体物理学,然后将其简化以减少仿真时间.这些基于等式的模型的一个基本问题是,所选用的函数和控制参数固定了I-V 和Q-V特性的可能形状,并且可能没有足够的自由度来模拟例如I C-V CE曲率.例如,在基本的Gummel- Poon (GP) BJT SPICE模型中,集电极电流的简化形式如下:其中, 基本的指数仅可被三个控制参数修改:IS依比例决定电流, VAF (所谓的早期电压[12], 如图4.2所示)构成输出电导的一个极其简化的模型, IKF (所谓的拐点电流)降低高电流时的增益[13, 14].这个简单的等式涵盖了整个I-V平面,同时固定了导数dn I C/d V n,因而固定了非线性行为. SPICE GP模型可以适当地用于模拟基带信号[15],但是特别是对于过分简单化和固有性线的输出阻抗模型, 不能用SPICE GP模型进行精确的失真仿真,这将在本书后面说明.更好的物理模型已经被开发出来,比如BJT的Mextram和VBIC ,以及用于LDMOS 的摩托罗拉MET模型,这都是久经考验的模型.与早期的SPICE模型其比,这些模型的性能大大地提高了.后者对于找到正确的直流偏置十分重要,这是因为自我加热使得I-V波形产生一个大的差值.假如热模型有足够的时间常量来模拟缓慢加热包(主要影响直流偏置和芯片表面的微秒范围热记忆),后面的模型也可用于模拟热记忆效应.图4.2 在BJT中使用早期电压VAF模拟输出阻抗模型的额外自由度增加了其复杂性以及控制参数的数量.在一个极限中,MOS BSIM模型有数十个参数来单独控制比例特性.因此,模型的复杂性趋于失控,并且其配置愈加复杂,对错误愈加敏感.另一种设备建模的方法是放弃等式,而采用列表的测试数据或者完全根据实际以验的函数来代替.现在,任何形式的I-V和Q-V特性的模型可以被建立,这是通过Root模型得到的方法,称作”设备最了解”模型[5].在内插列表数据时,存在一些技术问题,这是因为内插的多项式容易使数据点之间产生振荡,因此派生出高阶非物理波动.然而,由于预定函数不需要压力,列表模型使用灵活.Volterra模型是一种经验模型,它不依赖于半导体物理学.其非线性描述为多项式,系数可以通过对I-V和Q-V函数微分得到,也可通过将多项式直接填入测量数据表里得到.在此我们使用的是后者,在接下来的章节中,我们将会更深层次地对Volterra模型的特性进行研究.4.1.2 Volterra模型的特性多项式模型并不自动地对模拟快速响应,相反,它可能严重地会聚在高于原始设置范围的信号电平上.然而,多项式模型允许使用高效的Volterra分析程序.然而,采用Volterra模拟方法的主要动机并不是看中了其速度优势,而是它能提供一个极好的分析工具来进行分析.主要的失真机制可以用与在普通交流噪声分析中采用的相同的方法来进行分析,由于非线性分析,多重的混合机制同样可被识别,例如可以帮助谐波终端阻抗的设计等.因此, Volterra分析是少数可以帮助理解记忆效应和帮助设计优化的方法之一.尽管如此,仍需承认多项式模型存在一些缺点.首先,多项式模型要遭受在适宜的带宽范围外,其响应接近无穷大这一事实.传统的非线性建模函数与此正好相反,它在整个偏置范围内平滑,有限的表现是我们设计的特性,因为它帮助使信号收敛,并且信号摆动不必要进行推理的了解.因此, Volterra分析并不是一个非常普通的工具.由于速度原因, Volterra分析被用于快速失真分析和模拟器中的低噪放型小信号电路(例如Voltaire XL [22]和SPICE的早期版本)中,或者甚至做为独立的模拟器使用[23].然而,为了功放能被成功地进行分析,可靠的早期信息仍是必需的.第二,预先得需要实际的大信号直流偏置电压.大信号动作经常会引起直流工作点的移位,它同时影响增益和非线性的数量.此信号感应引起的直流移位会减缓谐波平衡模拟中收敛的速度,并且在非反复Volterra计算程序中,只能对它进行估计,而非完全地预测.为了克服这点,我们需要检查直流移位是不是很大,或者在实际的大信号工作点使得多项式模型合适.第三,在多项式函数的装配中,需要知道输入和输出电压摆动的范围.多项式模型的实际功率是除开失真成分的其它部分.适宜的范围越大,低阶多项式的精确度越小.因此,沿着最大信号振幅安装是合适的,为确保多项式模型的精度,不能太超过此范围,并且由于多项式响应可能在合适的范围外是完全非物理的,也不能超过一个较小的范围.在这种情况下,就需要对输入输出轨道有较好地评估.总之, Volterra分板并不是一种简单使用的独立的仿真方法,但当它用在与其它仿真方法(例如谐波平衡)并联使用时,此方法提供了更多调试功能.在本书中,研究的案例仅限于单级晶体管放大器,并且对Volterra分析半解析地计算(象征性地来源于每一个失真源到所有结点电压的转移函数). 象征性的分析并不是必需的,它限制了对CE或CS放大器固定的结构以及双音测试信号的分析.而Volterra分析却能达到,通过在(用标准修改结分析矩阵以及非线性电流源表示的)任何电路上运用通常非线性交流分析方法.4.2非线性I-V和Q-V特性大多数的晶体管模型是以Π模型或T模型为基础.这里使用的是Π模型,本节中描述了用BJT,异质结BJT(HBT)和场效应管(FET)的Π模型表示的典型传导(I-V)和电容(Q-V)的非线性特性.在这里将BJT作为一个案例,但同样的模型也可用于FET晶体管,只是多项式系数设置不同.前面已经讲过, Volterra模型是以I-V和Q-V曲线的多项式建模为基础.测量这些曲线也许会有些困难,详见第五章.这样的电荷不能直接进行测量,我们必须依靠交流测量的电容以及对所得电容值得到的电荷等式求积分.用类似的方法,I-V曲线可以通过由S参数测量得到的和值进行大部分重造,但是实际的I-V曲线是一个更安全的出发点.这里介绍的模型是电热模型,这意味着其结温是一自由变量.然而,直流温度上升包含在偏置点中,并且只考虑由动态自我加热引起的温度变化.由于功耗是电压和电流的产物,我们认为结温中的交流成分已经是一个二阶现象.因此,一个三阶的模型仅仅包括温度的一次方,这意味着电容元件的温度依靠性被认为是线性的.4.2.1 特性在大多数被报导的BJT/HBT Volterra级数分析中,集电极电流被认为只是基极电压的函数[25-27],此考虑方法抓住了主要指数的输入输出非线性但是认为输出电导是常数.在MESFET Volterra级数分析中,漏电压的效应通常用的一个多项式来实现, (参照[28]),但即使如此,也难以捕捉所有的非线性特性.在(4.1)式中,等式是,和结温T的一个三维简单函数,就像.通过扩展大信号I-V函数到一个三输入的泰勒级数(在直流工作点,和周围),很容易得到一个多项式模型.因此,交流电流的电热三阶级数展开可以写作:其中, ,,并且K ixxx是元素xxx的i阶非线性系数.( 可以用来标志).由等式可见,第一行只受影响,第二行只受影响(例如非线性输出电导).尽管如此,第三行又列出了和的向量积.最后,第四行列出了与两个终端电压混合在一起的温度变化.图4.3中证明了电非线性的影响,其中,绘制了在三个基极电压处的集电极电流,它是三个不同基极电压处集电极电压的函数.如果除外的所有系数都是零,我们可以得到如图4.3(a)所示的三条等间距的水平线.由于线精确地保持水平,输出电导为零,且集电极电压不影响电流数量.此外,由于线之间等间距,跨导是线性的.然而,如果或偏离了零,在I-V平面的线距离将会变得不等,这表明跨导是非线性的.图4.3 证明集电级电流非线性.垂直的轴是集电极电流,水平轴是电压.(a)线性响应(b)非零 (c)非零 (d) 非零 (e) 非零 (f)非零图4.3(b)证明了的影响,仅仅存在和.与图4.3(a)相比,图4.3(b)中的线有一个非零的斜率,它与成比例且不依赖与.图4.3(b)仍是完全线性的, 图4.3(c)证实了输出电导的非线性,其电流的斜率随而变化.在这种情况下,仅有一个非零值,和可被用于模拟输出电导的曲线效应,例如饱和和击穿.图4.3(d-f)分别图解说明了,和的截项,它模拟了基极和集电极非线性物性的交互作用.为了帮助比较,图4.3(d-f)中的稍细线是临摹图(c)的( 和都有非零值).(对应于项)在图4.3(d)中是非零的,这是由于其线的斜率变化不仅仅受图4.3(c)中集电极电压的作用,也受基极电压的作用.这对于图4.2所示的模拟早期效应是十分必需的.相似的推理也可应用于和,如图4.3(e, f)所示,确定输出电导的形状,分别是和的函数.图4.4对不同建模方法的I-V曲线做了更多的比较.如果集电极电流被模拟为基极电压和线性的一维函数,就产生了一条直的I-V线,如图4.4中细虚线所示.用SPICE Gummel-Poon模型模拟的I-V曲线同样也是直的细的线,但是其斜率和输出电导随集电极电流变化,如图4.2所示.实际上,由于准饱和和截止影响,在大信号或半大信号的情况下,BJT的I-V曲线决不是直线.曲率可以通过使用和的一维多项式模拟,如图4.4中粗实线所示.然而,初步的现象(例如早期效应)在没有引起斜率决定于的值截项时不能被模拟.如图中粗虚线所示,并对应于(4.3)的完全级数展开.饱和和截止的开关同样取决于基极电压,这使得截项的使用强制地避免了I-V平面角落处的重大误差,如图4.4所示.图4.4 三个Volterra模型和Gummel-Poon SPICE模型的I-V特性最后讨论了集电极电流的电热效应,如(4.3)中最后三项所示.在图4.5(a, b)中,描述了一个二次项,它模拟了电流中由温度决定的移位.值得注意的是,是一个包含温度和集电极电压影响的三次项,如图4.5(c)所示.它在本质上模拟了温度对输出电导的依靠性.同样的,如图4.5(d)所示,模拟了温度和基极电压的结合效应.由于曲线的斜率反应了跨导,可被认为是受温度影响的跨导的一个变化.轴.(c)非零影响(d)非零影响特性是FET型晶体管中唯一重要的传导性非线性.在BJT中,存在另外的两个非线性:由指数引起的非线性和非线性.电导的影响通常更重大,并且也容易模拟.理论上, 等式可以粗略地用电流增益β除,但可用一些方式简化.由于基极电流并不是强烈地依赖于集电极电压,我们可以用一个仅由和决定的两维模型:这里,系数与之前有着相似的含义.线性项通过进行模拟,和模拟其指数曲率.此外, 模拟了由自我加热产生的移位,可以看成线性项的温度依靠.本征基极电阻较难模拟.它是内部基极点和外在基极点之间的串联电阻,它的值取决于基极区的电流拥挤,也取决于内部值.因此,它可以模拟为一个由电阻器电压(),内部基极电压和结温控制的三维电导.所有的K项(k=1,2,...)都是零,但是电流拥挤效应是用和间的截项模拟的,如(4.5)所示.不论如何,通常较小,且在下面例子中被模拟为一个线性电导.4.2.3电容模型如前面解释,将电容建模成多项式电荷,然后将其关于时间进行区分以得到位移电流.电荷可能并且经常是由多于一个的端口电压所控制,这使得我们必须使用一个类似于(4.3)的多维多项式.电荷同样可以模拟为一个电容,在这种情况下,电荷不出现在控制结点之间,而出现在一些其它的结点间.在下面的例子中,只假定了一个控制电压,式(4.6)描述了基极到发射极的电荷,它是基极到发射极的电压以及温度的函数.从这个等式中,可以轻松地得到对应测量电荷C pi和非线性电流源.只需将电荷等式(4.6)分别关于和时间进行区分即可.在(4.8)式中, ω仅是失真音调的频率;因此,电容并不会引起直流失真电流但是在谐波频率处失真最严重.等式(4.7)指出由温度决定的电荷项K2CPIT不能来源于电荷测量;尽管如此,一个时变的结温可能引起一个与它成比例的电流.另外, (4.6)式中的第一项C pi描述了小信号电容, K2CPI和K3CPI定义了它的有关电的非线性. K3CPIT描述了是控制电压和结温函数的电荷,由于C = d Q/d v, K3CPIT的作用可以看成是电荷值的温度决定性.如(4.6)所示,一个线性的C-V趋势K2CPI引起了二次电荷非线性.同样的,与v2 (K3CPI)成比例的电荷引起立方的非线性.不同类型的电容有着不同的特性,如图4.6(a)所示.如 (4.27)所示,基极-射极电容C pi是指数的,因此它是高度的非线性的.BJT和FET中有偏的P-N结或肖特基结仅是稍微的非线性,它们可以通过增加反偏压进行更深一层的线性化. MOSFET型晶体管有着特殊的栅电容,例如, C GS在门限电压的周围dip.如果MOSFET动作接近于关断,此dip会引起大量的二阶非线性.图4.6 (a)归一化的电容(b) 和的电荷4.3共射极BJT/HBT放大器模型现在我们使用直接的方法来计算一个共射极BJT/HBT放大器的IM3成分,使用第2.5.2节所列出的步骤.这样进行分析:首先为电路建立一个模型,通过一个线性的交流分析建立基本的幅度.然后,通过使用第4.3.2节所示的步骤计算二阶电流电压以及三阶电流电压.4.3.1线性分析图4.7所示的是一个共射极BJT放大器,它包括输入阻抗Z IN(混合匹配网络和偏置电路),基极-射极电导g pi和电容C pi,反馈电容CBC,输出电容CCE,输出电导跨导,负载阻抗Z L以及发射极阻抗Z E.输入和负载阻抗不仅包含匹配网络的阻抗,也包括偏置网络和包寄生的阻抗,Z IN由前级的输出阻抗和本征基极电阻r bb组成,如图4.7所示.为减少等式的数量,输入电压源可以用诺顿等效源来代替且用下列简化符号矩阵等式.通过使用Cramer法则,可以得到结果以及对的响应.因此,在基极,发射极和集电极的电压如下所示:导纳矩阵的行列式写作:基极到发射极,集电极到发射极的电压分别是和.最后,由于和经常用于计算失真,例如由gm 成分产生的失真,很容易得到它们的比值:线性化分析的目的是为了获得所有非线性元件的基本电压幅度,这样我们就可以继续计算这些元件内部产生的非线性电流.在此之前,我们需要对信号摆动进行一些观察.BJT的指数响应是极端的非线性,并且在没有过度失真的情况下,不能承受高于10到30 mV的信号幅度.这听起来不像一个功率放大器,但是两件事情恰好帮助改变此情况.首先,器件并不是完全指数的,但是当驱动到高注入时,BJT线性化可用(4.1)中的参数IKF来模拟.第二,放大器有一些反馈机制来减小BE结中的信号电平.串联发射极阻抗引起一个线性化的串联反馈,CBC引起一个并联反馈.CBC的作用十分重大,这是由于强烈的电容性反馈降低了基极阻抗,因此也减小了BE电压摆动和从驱动激励产生的失真数量.4.3.2非线性分析在本节中展示了一个CE BJT放大器的非线性模型,并由它得到IM3失真.该电路有三个两输入和一个三输入的I-V和Q-V非线性,通过鉴定7个一阶系数,二阶系数和三阶系数模拟得到,其中18个是电系数,其它9个与动态温度变化相关.最后,此分析将介绍IM3音调,它是一个矢量和,由以下组成:7个由立方电非线性引起的项,21个由级联二次方非线性(修正包络信息向上转换到IM3中)引起的项,21个二次谐波向下混合到IM3的项,最后,5个立方的和24个级联的二阶电热项.这些看起来也许很多,但它描述了产生失真的不同机制的真实幅度;它同样清楚地证明了,只要立方项是解析的,大量的信息就会失去.若电路较大,分析的阶数越高,则需要对数据进行压缩,但是原理还是一样的:我们希望知道,通过从直流或谐波波段混合失真并使总失真最小化(或最小化其记忆效应),能产生多少IM3总数;我们希望知道在这些谐波波段,由失真电压引起了什么样的非线性和实际阻抗.由于项数众多,我们不单个地对这些项进行讨论.完整的分析见附件C,接下来用一些例子讲述计算步骤.4.3.2.1二阶失真电流图4.8所示的电路用于解决二阶响应,图4.7中的线性输入电压在此被短路, 添加二阶失真电流源与所有非线性电路元件并行.以T结束的电流是电热电流,将在第4.3.2.5节中讨论.如同以前, ZIN, ZE和ZL将包寄生,偏置阻抗和匹配阻抗结合在一起.为了计算自我加热效应,瞬时功耗用计算,第3.4节所示的热阻抗用于计算频率ω2–ω1处的瞬时温度波动.可以对不同的电路元件使用不同的温度,但是它们在物理上靠近基极区,此处使用共同的温度.然而对于大型设备,将此设备分成较小的并行设备是十分有利的,这样可以看出不同的温度变化.非线性被模拟为,和温度组成的三维函数,它包括和非线性以及所有高达三阶的交叉项. 和是基极到射极电压和温度的函数,非线性由集电极到基极电压和温度控制.图4.8 含电流源电路的二阶响应表示我们通过计算二阶失真电流开始进行分析.举一个例子,在ω2–ω1处由引起的二阶包络电流是:使用表2.5举另一个例子,由非线性引起的二阶包络电流是:它结合了二阶输入非线性,输出非线性和输入输出交叉项的作用,见I-V模型(4.3).从表2.5中可以看出,相量频率和可能的常量项值的选择取决于音频:例如,的乘积在2ω1处产生一个音调.上述的相量音调被选中,所以能在包络频率ω2–ω1产生失真.计算基频ω1和ω2的相量和用(4.12)-(4.14)式.4.3.2.2跨导倒数转移函数和二阶电压接下来,我们需要把不同结点的失真电流转换为失真电压.此处,我们选用了一个象征性的分析,因此很容易得到从结点X和Y到结点Z之间的非线性电流源的转移函数。
模拟小信号模型分析法
当放大电路旳输入信号电压很小时,就能够把三 极管小范围内旳特征曲线近似地用直线来替代,从而 能够把三极管这个非线性器件所构成旳电路看成线性 电路来处理。
网络有输入端和输出端两个端口,常可用电压vi、 vo及电流i1、i2来研究网络旳特征,选vi、vo及i1、i2 四个参数中旳两个作为自变量,另两个为应变量, 就可得到不同旳网络参数,如
3.4.2 共射极放大电路旳小信号模型分析
1. 利用直流通路求Q点
IB
VCC VBE Rb
IC β IB
VCE VCC IC Rc
共射极放大电路
一般对硅管取VBE=0.7V,锗管VBE=0.2V,且 已知。
3.4.2 共射极放大电路旳小信号模型分析
2. 画小信号等效电路
ic + vce -
O
k2
100%
Vo1
t
O
VO1是输出电压信号基波分量
旳有效值,Vok是高次谐波分
量旳有效值,k为正整数。
频率失真(线性失真)与非线性失真旳区别
1.2.3 放大电路旳主要性能指标
思索与习题(放大电路旳主要性能指标)
思索题: 习题:
end
3.4 小信号模型分析法
3.4.0 放大电路模型
3.4.1 BJT旳小信号建模
放大电路模型
信号源
Ii
+ Vs
Rs
+ Vi
放大电路
–
–
Io
+
Vo
RL
–
负载
放大电路是一种双口网络。从端口特征来研究放大 电路,可将其等效成具有某种端口特征旳等效电路。
输入端口特征能够等效为一种输入电阻 输出端口能够根据不同情况等效成不同旳电路形式
第四章多端元件电路
第四章 多端元件电路4.1 常用多端元件的模型多端元件指超过三个引出端子的元件。
实际上,常用多端元件一般指四端元件,含多个引出端子的复杂集成电路通常不在考虑之列。
四端元件即二端口元件,凡含一个输入端口、一个输出端口和元件均属此类。
一般的二端口元件有下列几种。
一、四种类型的受控源(1)电压控制电压源。
其模型如图 4.1-1所示,定义为)(,0121v f v i ==,其中11:E E f →为连续函数。
图4.1-1 电压控制电压源(2)电压控制电流源。
其模型如图 4.1-2所示,定义为)(,0121v f v i ==,其中11:E E f →为连续函数。
图4.1-2 电压控制电流源(3)电流控制电压源。
其模型如图4.1-3所示,定义为)(,0121i f v v ==其中11:EE f →为连续函数,图4.1-3 电流控制电压源(4)电流控制电流源。
其模型如图4.1-4所示。
定义为)(,0121i f i v ==,其中11:E E f →为连续函数。
图4.1-4 电流控制电流源这四种受控源的定义式可直接写入基尔霍夫电流及电压方程中进行计算,亦可直接代入SPICE 程序中进行运算。
二、运算放大器(1)理想运算放大器。
其外特性原理图如图4.1-5所示。
定义为0,011==v i ,2i 与2v 之间的关系由接在输出端口的负载决定。
其模型可以方便地用两种人造二端元件实现。
这两种元件是全零器(nullator ),或称零子及无定器(norrtor ),或称极子。
它们的标志分别如图4.1-6(a )和(b )所示。
全零器的定义为0,0==v i 。
无定器的定义为:v i 、均可为任意值(即无定),完全取决于电路中其他元件及基尔霍夫定律。
图4.1-5 理想运算放大器 图4.1-6 两种人造二端器件(a )全零器(b )无定器用全零器和无定器实现的理想运算放大器的模型如图4.1-7所示。
显然,这个模型完全体现了理想运算放大器的定义式。
电子技术基础模拟部分
电子技术基础模拟部分电子技术基础模拟部分第一章 绪论1、写出下列正弦电压信号的表达式(设初始相角为零):(1)峰-峰值10V ,频率10 kHz;(2)有效值220 V ,频率50 Hz;(3)峰-峰值100 mV ,周期1 ms ;(4)峰-峰值0.25 V ,角频率1000 rad/s;解:正弦波电压表达式为 )t sin(V = (t)m θω+v ,由于0=θ,于是得到:(1) V )105sin(2 = (t)4t v π⨯;(2) V 001sin 2220 = (t)t v π;(3) V 00020.05sin = (t)t v π;(4) V 00010.125sin = (t)t v ;2、电压放大电路模型如图( 主教材图 1.4. 2a ) 所示,设输出开路电压增益10=vo A 。
试分别计算下列条件下的源电压增益s vs A υυο=:( 1 ) si i R R 10= ,οR R L 10=;( 2) si i R R = ,οR R i =; ( 3) 10si i R R = ,10οR R L =;( 4 ) si i R R 10= ,10οR R L =。
电压放大电路模型 解:由图可知,)(i si i i s R R R v v +=,i v LL A R R R v νοοο⋅+=,所以可得以下结果: (1)si i R R 10=,οR R L 10=时,i i si i i s v R R R v v 1011)(=+=,i i v L L v A R R R v 101110⨯=⋅+=νοοο,则源电压增益为26.8101111100≈==i i s vs v v v v A ο。
同理可得:(2)5.225===ii s vs v v v v A ο (3)0826.0111110≈==ii s vs v v v v A ο (4)826.010111110≈==i i s vs v v v v A ο3、在某放大电路输入端测量到输入正弦信号电流和电压的峰-峰值分别为5μA 和5mV ,输出端接2k Ω电阻负载,测量到正弦电压信号峰-峰值为1V 。
模电运算放大器
类型:同相比例放大和反相比例放大。
方法:引入深度电压并联负反馈或电压串联 负反馈。这样输出电压与运放的开环 放大倍数无关,与输入电压和外围网 络有关。
10
一、反相比例运算电路
i2
R2
1. 放大倍数
虚开路
u u 0
i1 ui
R1
RP
_
+ +
uo i1= i2
虚短路 虚开路
ui uo
理想运放的电压传输特性和电路模型
6
运放的输入方式
7
三、线性工作条件
负反馈的作用:
8
分析运放组成的线性电路的出发点
Ii u+ u–
_
+ +
uo
•虚短路 •虚开路
u u
Ii 0
•放大倍数与负载无关,
可以分开分析。
运放线
信号的放大、运算
性应用
有源滤波电路
9
§2 信号的运算电路
2.1 比例运算电路
18
R11 ui1
i11
ui2
R12
i12
iF
R2
_ +
+
RP
u u0 i11i12iF
uo
uo (RR121ui1RR122ui2)
调节反相求和电路的某一路信号的输入电阻,不影 响输入电压和输出电压的比例关系,调节方便。
19
二、同相加法器
R1
RF
ui1
R21
-
uo +
+
ui2
R22
R 1//RFR 21 //R 22
1 R4
)
R2(R12
数学函数构建放大器模型
以下是讨论线性电路的情况下(输入信号为AC),对于那些二次方,指数等乱七八糟的暂且不论。
如何用数学关系表示电路模型,从而推导出放大器模型呢?下面一一论证,由于水平有限,欢迎大家指出错误。
1、对于下图模型,我们给它输入电压v1,输出电压v2,输入端流入电流i1,输出端电流电流i2。
我们先不管内部电路是什么了,但是对于输入AC信号,且是线性电路。
我们可以从图中任取两点来表达他们的函数关系式:i1=f(v1,i2)………………①v2=g(v1,i2)………………②那么以下就是数学推导过程了,我们的大前提是线性电路,即由上式我们可以得到这样的函数关系:i1=h11v1+h12i2………………③v2=h21v1+h22i2………………④【4个系数会在后面的公式有推导】得出这样的方程式,我们是不是要想办法求出各个系数h11,h12,h21,h22?根据上式的⑤⑥⑦⑧,有没有感觉很熟悉呢?来,一一剖析:对于公式⑤,是不是电阻的倒数?对于公式⑥,是不是可变电流源?对于公式⑦,是不是可变电压源?对于公式⑧,是不是电阻?最后,最重要的一点我们也不能忘记,①公式,电流怎么相加?当然是并联;②公式,电压怎么相加?当然串联。
结合上面的数学分析,我们可以得出一个电路模型:为什么说这不算是放大器的模型呢?首先,我们需要了解放大的特性,在输入端给一个AC 信号,那么输出端会有信号产生,反之,在输出端给一个AC信号,输入端是不会有任何信号的。
在看上图,如果电流i2存在,那么输入端存在h12i2就必然会回到输入端。
由此可见,若要这是一个放大器模型,那么左端的电流源就必定不会存在。
即Amplifier=(h12=0)。
由此,将图中的系数换成电路符号,则我们就可以得到放大器的模型:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
07级工程硕士《专业英语》试题翻译
电气工程学院刘刚
电压放大器模型
放大器可通过在图1.17中说明的可控制源而做出模型。
因为真实的放大器会从信号源引出电流,所以一个逼真的放大器模型必须包括一个通过输入终端的电阻R i。
另外,必须包含电阻R0和输出终端串联来应对真实放大器的输出电压流过负载电流时会降低的情况。
在图1.17中显示的完整放大器模型叫做电压放大器模型。
后面我们将看到其它的能用做放大器的模型。
当查看输入终端时,放大器的输入电阻R i可以看成等效电阻。
我们以后会发现,输入电路有时包括电容或电感的影响,我们将其看成输入阻抗。
例如:典型的晶体管输入放大器的输入阻抗包括1MΩ的电阻和与之并连的47pF的电容,在这一章,除非另外声明,我们假设输入阻抗是纯电阻的。
和输出终端串联的电阻R0被称为输出电阻,真实的放大器不能给变化的负载电阻传送固定不变的电压,相反当负载电阻R L变小时,输出电压也会变小,且输出电阻随之降低,结果输出电压也降低。
可控电压源模拟出了放大器的放大性质。
注意这个电压源产生的电压只是输入电压V i的常数A w倍。
如果负载是开路电路,电压通过输出电阻时就没有降低。
V0=A V0V i,因为这被称为开路电压增益。
综上所述,电压放大器模型包括输入阻抗、输出阻抗和在放大器等价电路中的开路电压增益。
电流增益
如图1.17所示,输入电流i 是流到放大器输入终端的电流,输出电流i 0是通过负载流出的电流。
放大器电流增益是输出电流和输入电流之比。
A i
(1.3)
输入电流可被描述为输入电压除以输入电阻,输出电流等于输出电压除以负载电阻。
因此,我们能得出用电压增益和电阻来表示电流增益的公式。
A
i = = (1.4)
其中 A V =
是电压增益和与之关联的负载电阻。
因为经过输出电阻时电压会降低所以A V 要比开路电压增益小得很多。
功率增益
由信号源传递给输入终端的功率称之为输入功率P i ,经放大器传递给负载的功率称之为输出功率P 0。
放大器的功率增益为输出功率和输入功率之比:
G= (1.5)
V 0/R i
V 0
V I P 0
因为我们假设输入阻抗和负载都是纯电阻的,所以功率平均值只是电流的平方和电压的平方的乘积。
因此,我们可以写为:
=
=
A v A i =(A v)2 (1.6)
注意,我们经常使用大写字母符号,如V0I0表示电流和电压的平方值,我们使用小写字母符号如v0i0表示瞬时值,当然,我们假设瞬时输出是固定值。
R i。