2020最新中考数学全真模拟预测试卷附答案

合集下载

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。

A。

$\sqrt{2}$。

B。

$-2$。

C。

$\dfrac{1}{2}$。

D。

$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。

A。

菱形。

B。

等边三角形。

C。

平行四边形。

D。

等腰梯形3.(3分)图中立体图形的主视图是()。

A。

B。

C。

D。

4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。

A。

$10\%x=330$。

B。

$(1-10\%)x=330$。

C。

$(1-10\%)2x=330$。

D。

$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。

A。

平均数。

B。

中位数。

C。

众数。

D。

方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。

A。

B与C。

B。

C与D。

C。

E与F。

D。

7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。

A。

$x\geq1$。

B。

$x\geq2$。

C。

$x>1$。

D。

$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。

A。

B。

C。

D。

9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。

A。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。

B。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。

2020年中考数学全真模拟试卷8套附答案(适用于湖南省长沙市)

2020年中考数学全真模拟试卷8套附答案(适用于湖南省长沙市)

C.
D.
12. 如图,在等腰直角△ABC 中,∠C=90°,D 为 BC 的中 点,将△ABC 折叠,使点 A 与点 D 重合,EF 为折痕 ,则 sin∠BED 的值是( )
A.
B.
C.
D.
二、填空题(本大题共 6 小题,共 18.0 分) 13. 分解因式:x3-4x=______.
14. 计算:
3.【答案】A
【解析】【分析】 此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|< 10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值. 科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要 看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原 数绝对值>10 时,n 是正数;当原数的绝对值<1 时,n 是负数. 【解答】 解:20 万=200000=2×105. 故选:A.
6.【答案】C
【解析】解:∵点 A(1,3)向左平移 2 个单位,再向下平移 4 个单位得到点 B, ∴点 B 的横坐标为 1-2=-1,纵坐标为 3-4=-1, ∴B 的坐标为(-1,-1). 故选:C. 根据向左平移横坐标减,向下平移纵坐标减求解即可. 本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减; 纵坐标上移加,下移减.
24. 如图,在⊙O 中,直径 CD 垂直于不过圆心 O 的弦 AB,垂足为点 N,连接 AC,BC ,点 E 在 AB 上,且 AE=CE. (1)求证:∠ABC=∠ACE; (2)过点 B 作⊙O 的切线交 EC 的延长线于点 P,证明 PB=PE; (3)在第(2)问的基础上,设⊙O 半径为 2 ,若点 N 为 OC 中点,点 Q 在⊙O 上,求线段 PQ 的最大值.

2020年中考模拟试卷数学试卷及答案共5套精品版

2020年中考模拟试卷数学试卷及答案共5套精品版

中考模拟试卷 数学卷考生须知:1、本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2、答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.3 、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4 、考试结束后,上交试题卷和答题卷.试 题 卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。

注意可以用多种不同的方法来选取正确答案。

1.北京时间3月11日,日本发生了9.0级大地震,地震发生后, 中国红十字会一直与日本红十字会保持沟通,密切关注灾情发展。

截至目前,中国红十字会已经累计向日本红十字会提供600万元人民币的人道援助。

这里的数据“600万元”用科学计数法表示为( ▲ )(第1题) A . 4610⨯元 B . 5610⨯元 C .6610⨯元 D .7610⨯元 2. 若15a =,55b =,则a b 、两数的关系是( ▲ )A 、a b =B 、5ab =C 、a b 、互为相反数D 、a b 、互为倒数 3. 公务员行政能力测试中有一类图形规律题,可以运用我们初中数学中的图形变换再结合变化规律来解决,下面一题问号格内的图形应该是( ▲ )(第3题)4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12, 则在这一周中,最低气温的众数和中位数分别是( ▲ ) A. 13和11 B. 12和13 C. 11和12 D. 13和125.若有甲、乙两支水平相当的NBA 球队需进行总决赛,一共需要打7场,前4场2比2,最后三场比赛,规定三局两胜者为胜方,如果在第一次比赛中甲获胜,这时乙最终取胜的可能性有多大?(不考虑主场优势)( ▲ ) A .21 B .31C .41D . 156. 如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( ▲ )A .1B .22C .2D .2(第6题)(第7题)7. 如图,小亮同学在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为 ( ▲ )A .6.4米B . 8米C .9.6米D . 11.2米8. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ▲ )A .15°B .30°C .45°D .60°(第9题)9.如图,直线l 和双曲线ky x=(0k >)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S ,则 ( ▲ ) A .123S S S << B .123S S S >> C . 123S S S => D . 123S S S =<10.如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( ▲ )Oxy 4 4A . Ox y4 4 B .Ox y4 4 C .Ox y4 4 D .(第10题)C DE FAB (第8题)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.分解因式:x x 43-= ▲12.已知函数y 1=2x-5,y 2= -2x +15,如果y 1<y 2 ,则x 的取值范围是 ▲13.如图,相离的两个圆⊙O 1和⊙O 2在直线l 的同侧。

2020年中考数学全真模拟试卷8套附答案(适用于山东省各地市)

2020年中考数学全真模拟试卷8套附答案(适用于山东省各地市)

中考数学模拟试卷题号得分一二三四总分一、选择题(本大题共12 小题,共36.0 分)1.7 的相反数是()A. B. 7 C. D. -72.下面四个几何体中,左视图是四边形的几何体共有()A. 1 个B. 2 个C. 3 个D. 4 个3.某种流感病毒的直径是0.00000008m,这个数据用科学记数法表示为()A. 8×10-6mB. 8×10-5mC. 8×10-8mD. 8×10-4m4.把x3-2x2y+xy2 分解因式,结果正确的是()A. x(x+y)(x-y)C. x(x+y)2B. x(x2-2xy+y2)D. x(x-y)25.下面的图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.6.求值:的结果是()A. 1B. 2C. -1D. -27.在菱形ABCD中,∠A=110°,E、F分别是边AB和BC的中点,EP⊥CD,垂足为P,则∠EPF=()A. 35°B. 45°C. 50°D. 55°8.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,市某中学八年级三班50 名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据如图提供的信息,捐款金额的众数和中位数分别是()A. 20,20B. 30,20C. 30,30D. 20,309.某农户2008 年的年收入为5 万元,由于党的惠农政策的落实,2010 年年收入增加到7.2 万元,则平均每年的增长率是()A. 10%B. 20%C. 24%D. 44%10.如图,圆锥的侧面积恰好等于其底面积的2 倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A. 60°B. 90°C. 120°D. 180°11.从2,3,4,5 这四个数中,任取两个数p和q(p≠q),构成函数y=px-2 和y=x+q,并使这两个函数图象的交点在直线x=2 的右侧,则这样的有序数对(p,q)共有()A. 12 对B. 6 对C. 5 对D. 3 对12.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l,l,l上,且l,1 2 3 1l之间的距离为2,l,l之间的距离为3,则AC2 2 3的长是()A.B.C.D. 7二、填空题(本大题共5 小题,共20.0 分)13.已知正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为______cm(结果保留π).14.将抛物线y=x2 向上平移一个单位后,得到新的抛物线,那么新的抛物线的表达式是______ .15.某学校把学生的纸笔测试、实践能力两项成绩分别按60%、40%的比例计入学期总成绩.小明实践能力这一项成绩是81 分,若想学期总成绩不低于90 分,则纸笔测试的成绩至少是______分.16.如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=8,则S△A′B′C′=______.17. 如图,⊙O 和⊙O 的半径为 1 和 3,连接 O O ,交⊙O 于点 P ,O O =8,若将⊙O1 12 1 2 2 1 2 绕点 P 按顺时针方向旋转 360°,则⊙O 与⊙O 共相切______次.1 2 三、计算题(本大题共 1 小题,共 7.0 分)18. 如图,在海面上产生了一股强台风,台风中心(记为点 M )位于滨海市(记作点 A)的南偏西 15°,距离为 千米,且位于临海市(记作点 B )正西方向 千米 处,台风中心正以 72 千米/时的速度沿北偏东 60°的方向移动(假设台风在移动过 程中的风力保持不变),距离台风中心 60 千米的圆形区域内均会受到此次强台风 的侵袭.(1)滨海市、临海市是否会受到此次台风的侵袭?请说明理由;(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?四、解答题(本大题共8 小题,共57.0 分)19.计算;(1)解下列不等式组,并把解集在数轴上表示出来.(2)用配方法解一元二次方程:x2-2x-2=0.20.如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.21.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图像信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4h时与甲地的距离.22.已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cos C= 时,求⊙O的半径.23.有3 张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.(1)写出k为负数的概率;(2)求一次函数y=kx+b的图象经过二、三、四象限的概率.(用树状图或列表法求解)24.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF .经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.25.在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.(1)求b的值和点D的坐标;(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;26.如图,已知直线y=- x+1 交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E.(1)请直接写出点C,D的坐标;(2)求抛物线的解析式;(3)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E 两点间的抛物线弧所扫过的面积.答案和解析1.【答案】D【解析】解:根据相反数的定义,得7 的相反数是-7.故选:D.求一个数的相反数,即在这个数的前面加负号.本题考查了相反数的意义.解答这类题学生易将其和倒数相混淆,而错误地选择或.常考查的知识点:相反数、倒数、绝对值、平方根、及算术平方根.2.【答案】B【解析】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体,故选:B.四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.考查立体图形的左视图,考查学生的观察能力.3.【答案】C【解析】解:0.000 00008=8×10-8.故选:C.绝对值小于1 的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.本题考查用科学记数法表示较小的数.一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0 的个数所决定.4.【答案】D【解析】解:x3-2x2y+xy2,=x(x2-2xy+y2),=x(x-y)2.故选:D.此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3 项,可采用完全平方公式继续分解.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.5.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.根据轴对称图形和中心对称图形的概念即可解答.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.6.【答案】D【解析】解:原式=3+1-6=-2,故选:D.原式利用零指数幂法则,绝对值的代数意义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.7.【答案】A【解析】解:如图,延长PF交AB的延长线于点G.在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵∠BEP=90°,∴EF= PG=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP-∠FEP=∠EPC-∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°-∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE= (180°-70°)=55°,∴∠FPC=55°,∴∠EPF=90°-55°=35°,故选:A.延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而求得∠FPC的度数,根据余角的定义即可得到结果.此题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键.8.【答案】C【解析】解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.故选C.由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数.本题考查了众数和中位数的概念.解答这类题学生常常对中位数的计算方法掌握不好而错选.9.【答案】B【解析】解:设平均每年的增长率是x,则:5(1+x)2=7.2,即1+x=±1.2,解得:x=0.2 或x=-2.2(不合题意,应舍去).1 2答:平均每年的增长率是20%.故选:B.通过理解题意可知本题的等量关系,即2008 年的收入×(1+增长率)2=2010 年的收入,根据这个等量关系,可列出方程,再求解.本题考查了一元二次方程应用中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10.【答案】D【解析】解:设母线长为R,圆锥侧面展开图所对应扇形圆心角的度数为n,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面积= ×2πr×R=πRr=2×πr2,∴R=2r,∵=2πr=πR,∴n=180°.故选:D.设出圆锥的母线长和底面半径,利用圆锥的侧面积等于其底面积的2 倍,得到圆锥底面半径和母线长的关系,然后利用圆锥侧面展开图的弧长=底面周长即可得到圆锥侧面展开图所对应扇形圆心角的度数.本题考查了圆锥的计算以及扇形的面积公式,圆的面积公式,弧长公式,圆的周长公式等知识,利用圆锥与展开图对应情况是解题关键.11.【答案】B【解析】解:令px-2=x+q,解得x= ,因为交点在直线x=2 右侧,即>2,整理得q>2p-4.把p=2,3,4,5 分别代入即可得相应的q的值,有序数对为(2,2),(2,3),(2,4),(2,5),(3,3),(3,4),(3,5 ),(4,5),又因为p≠q,故(2,2),(3,3)舍去,满足条件的有6 对.故选:B.先让两个函数相等表示出x,再让x>2,找出p,q的关系,然后把p=2,3,4,5 分别代入即可得.本题考查根据交点坐标确定解析式字母系数的取值及分类讨论思想的运用,一般地,先求出交点坐标,再把坐标满足的条件转化成相应的方程或是不等式进而解决问题.12.【答案】A【解析】解:作AD⊥l于D,作CE⊥l于E,3 3∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE ∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC= 在Rt△ABC中,根据勾股定理,得AC= 故选:A.= ,×=2 ;过A、C点作l3 的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.13.【答案】2π【解析】解:方法一:先求出正六边形的每一个内角= 所得到的三条弧的长度之和=3×,=2πcm;方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为2πcm.故答案为:2π.本题主要考查求正多边形的每一个内角,以及弧长计算公式.与圆有关的计算,注意圆与多边形的结合.14.【答案】y=x2+1【解析】解:∵将抛物线y=x2 向上平移一个单位后,得到新的抛物线,∴新的抛物线的表达式是:y=x2+1.故答案为:y=x2+1.直接利用二次函数图象的平移规律:上加下减进而得出答案.此题主要考查了二次函数图象与几何变换,正确掌握平移规律是解题关键.15.【答案】96【解析】解:设纸笔测试的成绩为x分则81×40%+60%x≥90,解得:x≥96.故答案为:96.学期总成绩不低于90 分,即学期的总成绩≥90分.设纸笔测试的成绩设x分,根据这个不等关系就可以得到一个不等式.从而求出纸笔测试成绩.解决问题的关键是读懂题意,找到关键描述语,理解加权平均数的计算方法是解决本题的关键.16.【答案】18【解析】解:△ABC与△A′B′C′是位似图形且有OA=2AA′.可得两位似图形的位似比为2:3,所以两位似图形的面积比为4:9,又由△ABC的面积为8,得△A′B′C′的面积为18.△ABC与△A′B′C′是位似图形,由OA=2AA′可得两个图形的位似比,面积的比等于位似比的平方.本题考查了位似图形的性质:面积的比等于位似比的平方.17.【答案】3【解析】解:两圆相切时,O O之间的距离等于4(外切)或者2(内切)时即可,1 2当⊙O绕P点顺时针旋转时360°时,O O的变化范围从8 到2 再到8,其中有两次外1 1 2切和一次内切.可以用尺规作图的方法来做,以P为圆心做一个半径为5 的圆,再以O2为圆心,做一个半径为4 的圆,两者相交即为外切,然后以O2 为圆心做一个半径为2 的圆,两者相交即为内切.故答案为:3.根据两圆相切时,O O之间的距离等于4(外切)或者2(内切)时即可,分别得出当1 2⊙O绕P点顺时针旋转时360°时,O O的变化范围从8 到2 再到8,其中有两次外切1 1 2和一次内切.此题主要考查了圆与圆的位置关系,得出当⊙O绕P点顺时针旋转时360°时,O O的1 1 2变化范围从8 到2 再到8,其中有两次外切和一次内切是解决问题的关键.18.【答案】解:(1)设台风中心运行的路线为射线MN,于是∠AMN=60°-15°=45°.过A作AH⊥MN于H,故AMH是等腰直角三角形.∵AM= ,∠AMH=60°-15°=45°,∴AH=AM•sin45°=61>60.∴滨海市不会受到台风的影响;过B作BH⊥MN于H.1 1∵MB= ,∠BMN=90°-60°=30°,∴BH1= ×<60,因此临海市会受到台风的影响.(2)以B为圆心60 千米为半径作圆与MN交于T、T,则BT=BT=60.1 2 1 2在Rt△BT H中,sin∠BT H= ,1 1 1 1∴∠BT H=60°.1 1∴△BT T是等边三角形.1 2∴T T=60.1 2∴台风中心经过线段T T上所用的时间= 小时.1 2因此临海市受到台风侵袭的时间为小时.【解析】(1)过A作AH⊥MN于H,故AMH是等腰直角三角形,可求出AM,则可以判断滨海市是否会受到此次台风的侵袭.同理,过B作BH⊥MN于H,求出BH,可以判断临海市是否会受到此次台风的侵袭.1 1 1(2)求该城市受到台风侵袭的持续时间,以B为圆心60 为半径作圆与MN交于T1、T2,则T T就是台风影响时经过的路径,求出后除以台风的速度就是时间.1 2解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.19.【答案】解:(1)由(1)可得:x<2,由(2)可得:x≤1,∴x≤1,数轴表示如下,(2)∵x2-2x-2=0,∴(x-1)2=3,∴,【解析】(1)根据不等式组的解法即可求出答案;(2)根据配方法即可求出答案.本题考查学生的运算能力,解题的关键是数量运用运算法则,本题属于基础题型.20.【答案】证明:(1)∵四边形ABCD是矩形.∴∠ABC=∠BCD=90°.∵△PBC和△QCD是等边三角形.∴∠PBC=∠PCB=∠QCD=60°.∴∠PBA=∠ABC-∠PBC=30°,∠PCD=∠BCD-∠PCB=30°.∴∠PCQ=∠QCD-∠PCD=30°.∴∠PBA=∠PCQ=30°.(2)∵AB=DC=QC,∠PBA=∠PCQ,PB=PC.∴△PAB≌△PQC.∴PA=PQ.【解析】(1)根据矩形的性质及等边三角形的性质可证明得到∠PBA=∠PCQ=30°.(2)由第一步求得∠PBA=∠PCQ.由等边三角形的性质及矩形的性质得到AB=CQ,PB=PC,利用SAS判定△PAB≌△PQC,从而得到PA=PQ.此题考查学生对矩形的性质,全等三角形的判定及等边三角形的性质等的综合运用.21.【答案】解:(1)不同.理由如下:∵往、返距离相等,去时用了2 小时,而返回时用了2.5 小时,∴往、返速度不同;(2)设返程中y与x之间的表达式为y=kx+b,则,解之,得.∴y=-48x+240.(2.5≤x≤5)(评卷时,自变量的取值范围不作要求);(3)当x=4 时,汽车在返程中,∴y=-48×4+240=48.∴这辆汽车从甲地出发4h时与甲地的距离为48km.【解析】(1)由图象可知,去时用了2 小时,返回时用了5-2.5=2.5 小时,而路程相等,所以往返速度不同;(2)可设该段函数解析式为y=kx+b.因为图象过点(2.5,120),(5,0),列出方程组即可求解;(3)由图象可知,x=4 时,汽车正处于返回途中,所以把x=4 代入(2)中的函数解析式即可求解.本题是对一次函数应用的考查,需仔细分析图象,利用待定系数法解决问题.22.【答案】(1)证明:连接OM,则OM=OB∴∠1=∠2∵BM平分∠ABC∴∠1=∠3∴∠2=∠3∴OM∥BC∴∠AMO=∠AEB在△ABC中,AB=AC,AE是角平分线∴AE⊥BC∴∠AEB=90°∴∠AMO=90°∴OM⊥AE∵点M在圆O上,∴AE与⊙O相切;(2)解:在△ABC中,AB=AC,AE是角平分线∴BE= BC,∠ABC=∠C∵BC=4,cos C=∴BE=2,cos∠ABC=在△ABE中,∠AEB=90°∴AB= =6设⊙O的半径为r,则AO=6-r∵OM∥BC∴△AOM∽△ABE∴∴解得∴⊙O的半径为.【解析】(1)连接OM,证明OM∥BE,再结合等腰三角形的性质说明AE⊥BE,进而证明OM⊥AE;(2)结合已知求出AB,再证明△AOM∽△ABE,利用相似三角形的性质计算.本题是小综合题,考查等腰三角形,平行线,角平分线,直线和圆的位置关系,相似三角形等知识点.23.【答案】解:(1)∵共有3 张牌,两张为负数,∴k为负数的概率是;(2)画树状图共有6 种情况,其中满足一次函数y=kx+b经过第二、三、四象限,即k<0,b<0 的情况有2 种,所以一次函数y=kx+b经过第二、三、四象限的概率为.【解析】(1)利用概率的计算方法解答;(2)由图表解答.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0 时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0 时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:(1)正确.证明:在AB上取一点M,使AM=EC,连接ME.∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF(ASA),∴AE=EF.(2)正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE,∴∠N=∠NEC=45°,∵CF平分∠DCG,∴∠FCE=45°,∴∠N=∠ECF,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,即∠DAE+90°=∠BEA+90°,∴∠NAE=∠CEF,∴△ANE≌△ECF(ASA),∴AE=EF.【解析】(1)在AB上取一点M,使AM=EC,连接ME,根据已知条件利用ASA判定△AME≌△ECF,因为全等三角形的对应边相等,所以AE=EF.(2)在BA的延长线上取一点N,使AN=CE,连接NE,根据已知利用ASA判定△ANE≌△ECF,因为全等三角形的对应边相等,所以AE=EF.此题主要考查学生对正方形的性质,角平分线的性质及全等三角形的判定方法的掌握情况.25.【答案】解:(1)∵点A的坐标为(1,0),点B与点A关于原点对称,∴点B的坐标为(-1,0).∵直线y=x+b经过点B(-1,0),∴0=-1+b,∴b=1,∴直线BD的解析式为y=x+1.当y=4 时,x+1=4,解得:x=3,∴点D的坐标为(3,4).(2)设点P的坐标为(m,0)(m>0),∵点O的坐标为(0,0),点D的坐标为(3,4),∴OD= =5,OP=m,DP= .∵△POD是等腰三角形,∴分三种情况考虑:①当OD=OP时,m=5,∴点P的坐标为(5,0);②当OD=DP时,5= ,整理,得:m2-6m=0,解得:m=0(不合题意,舍去),m=6,1 2∴点P的坐标为(6,0);③当OP=DP时,m=,整理,得:6m-25=0,解得:x= ,∴点P的坐标为(,0).综上所述:点P的坐标为(5,0),(6,0)或(,0).【解析】(1)由点A的坐标结合点A,B关于原点对称可求出点B的坐标,由点B的坐标,利用一次函数图象上点的坐标特征可求出b值,再利用一次函数图象上点的坐标特征可求出点D的坐标;(2)设点P的坐标为(m,0)(m>0),结合点O,D的坐标可得出OD,OP,DP 的长,分OD=OP,OD=DP及OP=DP三种情况,可得出关于m的方程,解之即可得出m的值,进而可得出点P的坐标.本题考查了一次函数图象上点的坐标特征、两点间的距离公式(勾股定理)以及等腰三角形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出b的值及点D的坐标;(2)分OD=OP,OD=DP及OP=DP三种情况,求出点P的坐标.26.【答案】解:(1)C(3,2)D(1,3);(2)设抛物线为y=ax2+bx+c,抛物线过(0,1)(3,2)(1,3),解得 ,∴y =- x 2+ x +1;(3)①当点 A 运动到 x 轴上时,t =1, 当 0<t ≤1 时,如图 1, ∵∠OFA =∠GFB ′, tan ∠OFA = ,∴tan ∠GFB ′= ∴GB ′= t,∴S △FB ′G = FB ′×GB ′ = × t × = t 2;②当点 C 运动到 x 轴上时,t =2, 当 1<t ≤2 时,如图 2,A ′B ′=AB =∴A ′F = t - ∴A ′G = ,, ,∵B ′H = ∴S 梯形 A ′B ′HG = (A ′G +B ′H )×A ′B ′ = t - ;,=③当点 D 运动到 x 轴上时,t =3, 当 2<t ≤3 时,如图 3, ∵A ′G = ∴GD ′=,,∵S △AOF = ×1×2=1,OA =1,△AOF ∽△GD ′H ∴ ∴,,∴S五边形GA′B′C′H=()2-(=- t2+ t- ;(4)∵t=3,BB′=AA′=3 ,∴S阴影=S矩形BB′C′C=S矩形AA′D′D=AD×AA′= ×3=15.【解析】(1)可先根据AB所在直线的解析式求出A,B两点的坐标,即可得出OA、OB的长.过D作DM⊥y轴于M,则△ADM≌△BAO,由此可得出MD、MA的长,也就能求出D的坐标,同理可求出C的坐标;(2)可根据A、C、D三点的坐标,用待定系数法求出抛物线的解析式;(3)要分三种情况进行讨论:①当F点在A′B′之间时,即当0<t≤1时,此时S为三角形FBG的面积,可用正方形的速度求出AB′的长,即可求出B′F的长,然后根据∠GFB′的正切值求出B′G 的长,即可得出关于S、t的函数关系式.②当A′在x轴下方,但C′在x轴上方或x轴上时,即当1<t≤2时,S为梯形A′GB′H的面积,可参照①的方法求出A′G和B′H的长,那么梯形的上下底就可求出,梯形的高为A′B′即正方形的边长,可根据梯形的面积计算公式得出关于S、t 的函数关系式.③当D′逐渐移动到x轴的过程中,即当2<t≤3时,此时S为五边形A′B′C′HG的面积,S=正方形A′B′C′D′的面积-三角形GHD′的面积.可据此来列关于S,t的函数关系式;(4)CE扫过的图形是个平行四边形,经过关系不难发现这个平行四边形的面积实际上就是矩形BCD′A′的面积.可通过求矩形的面积来求出CE扫过的面积.本题着重考查了待定系数法求二次函数解析式、图形平移变换、三角形相似等重要知识点,(3)小题中要根据正方形的不同位置分类进行讨论,不要漏解.中考数学二模试卷一二三四总分题号得分一、选择题(本大题共12小题,共48.0分)1. 下列实数中,有理数是()A. B. C. D. 3.14352. 下列几何体中,俯视图是三角形的是()A. B. C. D.3. 港珠澳大桥总投资1100 亿,那么1100 用科学记数法表示为()A. 1.1×103B. 1.1×104C. 11×102D. 0.11×1044. 在以下节能、回收、绿色食品、节水四个标志中,是轴对称图形的是()A. B. C. D.5. 将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A. 10°B. 15°C. 20°D. 25°6. 下列运算中,正确的是()A. (x2)3=x5B. x2+2x3=3x5C. (-ab)3=a3bD. x3•x3=x67. 不等式组的解集为()A. x>B. x<-1C. -1<x<D. x>-8. 如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A. 60°B. 70°C. 120°D. 140°9. 下表显示的是某种大豆在相同条件下的发芽试验结果:每批粒数n100 300 400 600 1000 2000 3000发芽的粒数m96 282 382 570 948 1904 2850发芽的频率0.960 0.940 0.955 0.950 0.948 0.952 0.950下面有三个推断:①当n为400 时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955;②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95 附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800 粒.其中推断合理的是()A. ①②③B. ①②C. ①③D. ②③A,B两点在一次函数图象上的位置如图所示,两点的坐标10.分别为A(x+a,y),B(x,y+b),下列结论正确的是()A. a>0B. ab<0C. ab>0D. b<011.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A. 2B. 3C. 5D. 612.已知抛物线y=a(x-3)2+ 过点C(0,4),顶点为M,与x轴交于A、B两点.如图所示以AB为直径作圆,记作⊙D,下列结论:①抛物线的对称轴是直线x=3;②点C在⊙D外;③在抛物线上存在一点E,能使四边形ADEC为平行四边形;④直线CM与⊙D相切.正确的结论是()A. ①③B. ①④C. ①③④D. ①②③④二、填空题(本大题共6小题,共24.0分)13.分解因式xy2+4xy+4x=______.14.计算:=______.15.某校对n名学生的体育成绩统计如图所示,则n=______人.16.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为____.17.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是______m.18.如图,ABCD、CEFG是正方形,E在CD上,直线BE、DG交于H,且HE•HB=4-2 ,BD、AF交于M,当E在线段CD(不与C、D重合)上运动时,下列四个结论:①BE⊥GD;②AF、GD所夹的锐角为45°;③GD= AM;④若BE平分∠DBC,则正方形ABCD的面积为4,其中结论正确的是______(填序号)三、计算题(本大题共3小题,共22.0分)19.计算:+()-1-(π-3.14)0-tan60°.20.用公式法解一元二次方程:2x2-7x+6=0.21.如图,已知直线y= x与双曲线y= 交于A、B两点,且点A的横坐标为.(1)求k的值;(2)若双曲线y= 上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y= 上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.四、解答题(本大题共6小题,共56.0分)B、A、D、E在同一直线上,BD=AE,BC∥EF22.已知:如图,点,∠C=∠F.求证:AC=DF.23.学校广播站要招聘一名播音员,擅长诵读的小龙想去应聘,但是不知道是否符合应聘条件,于是在微信上向好朋友亮亮倾诉,如图是他们的部分对话内容.面对小龙的问题,亮亮也犯了难.聪明的你用所学方程知识帮小龙准确计算一下,他是否符合学校广播站应聘条件?。

2020年中考数学全真模拟试卷6套附答案(适用于湖南省长沙市)

2020年中考数学全真模拟试卷6套附答案(适用于湖南省长沙市)
7.【答案】C
【解析】解:A、正六边形的外角和等于 360°,正确,是真命题; B、位似图形必定相似,正确,是真命题; C、对角线相等的平行四边形是矩形,故错误,是假命题; D、两组对角相等的四边形是平行四边形,正确,是真命题, 故选:C. 利用正多边形的外角和、位似图形的定义、矩形的性质及平行四边形的判定分别判断后 即可确定正确的选项. 本题考查了命题与定理的知识,解题的关键是了解正多边形的外角和、位似图形的定义 、矩形的性质及平行四边形的判定等知识,难度不大.
10.【答案】C
【解析】解:根据题意,得
黄球的概率 P=

故选:C. 随机事件 A 的概率 P(A)=事件 A 可能出现的结果数所有可能出现的结果数,P(必然 事件)=1,P(不可能事件)=0. 本题考查了概率,熟练运用概率公式进行计算是解题的关键.
11.【答案】B
【解析】解:∵点 A(x1,-3)、B(x2,-2)、C(x3,1)在反比例函数
第 3 页,共 15 页
23. 如图,AB 为半⊙O 的直径,弦 AC 的延长线与过点 B 的切线交于点 D,E 为 BD 的中点,连接 CE. (1)求证:CE 是⊙O 的切线; (2)过点 C 作 CF⊥AB,垂足为点 F,AC=5,CF=3, 求⊙O 的半径.
24. 为了美化环境,建设宜居衡阳,我市准备在一个广场上种植甲、乙两种花卉.经市 场调查,甲种花卉的种植费用 y(元)与种植面积 x(m2)之间的函数关系如图所 示,乙种花卉的种植费用为每平方米 100 元. (1)求 y 与 x 的函数关系式; (2)广场上甲、乙两种花卉的种植面积共 1000m2,若甲种花卉的种植面积不少于 200m2,且不超过乙种花卉种植面积的 3 倍,那么应该怎忙分配甲、乙两种花卉的 种植面积才能使种植费用最少?最少总费用为多少元?

2020年中考数学全真模拟试卷及答案(共五套)

2020年中考数学全真模拟试卷及答案(共五套)

2020年中考数学全真模拟试卷及答案(共五套)中考数学全真模拟试卷及答案(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其它位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.下列实数中,无理数是 A .2B .- 12C .3.14D .32.下列运算正确的是A .a 2+a 3=a 5B .a 2 a 3=a 6C .a 4÷a 2=a 2D .(a 2)4=a 63.不透明的布袋中有2个红球和3个白球,所有球除颜色外无其它差别.某同学从布袋里任意摸出一个球,则他摸出红球的概率是A . 3 5B . 2 5C . 2 3D . 1 24.某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为 A .5,7B .6,7C .8,5D .8,75.如图,AB 是⊙O 的弦,半径OC ⊥AB ,AC ∥OB ,则∠BOC 的度数为 A .30° B .45° C .60°D .75°6.如图,△ABC 三个顶点分别在反比例函数y = 1 x ,y = kx 的图像上,若∠C =90°,AC ∥y 轴,BC ∥x 轴,S △ABC =8,则k 的值为(第5题)ABCOyxOABC (第6题)A .3B .4C .5D .6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7. 若式子x -22在实数范围内有意义,则x 的取值范围是 ▲ . 8. 2017南京国际马拉松于4月16日在本市正式开跑.本次参赛选手共12629人,将12629用科学记数法表示为 ▲ . 9. 因式分解:a 3-2a 2+a = ▲ . 10.计算: 4 2- 8 = ▲ .11.已知 x 1,x 2是方程 x 2-4x +3=0 的两个实数根,则x 1 + x 2=▲ .12.将点A (2,-1)向左平移3个单位,再向上平移4个单位得到点A ′,则点A ′的坐标是 ▲ .13.如图,点A 、B 、C 、D 都在方格纸的格点上,若△AOB 绕点O按逆时针方向旋转到△COD 的位置,则旋转角为 ▲ °.ABCDE(第14题) ABCDO(第13题)14.如图,在平行四边形ABCD 中,点E 为AB 边上一点,将△AED沿直线DE 翻折,点A 落在点P 处,且DP ⊥BC ,则∠EDP = ▲ °.15.如图,正五边形ABCDE 的边长为2,分别以点C 、D 为圆心,CD 长为半径画弧,两弧交于点F ,则⌒BF 的长为 ▲ .16.如图,在等腰△ABC 中,AB =AC =5,BC =6,半径为1的⊙O分别与AB 、AC 相切于E 、F 两点,BG 是⊙O 的切线,切点为G ,则BG 的长为 ▲ .PABCOEFG(第16题)BCDEF(第15题)A三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求代数式的值:(1-1m +2)÷ m 2+2m +1m 2-4 ,其中m =1.18.(7分)解不等式组⎩⎨⎧ x +32≥x +1,3+4(x -1)>-9,并把解集在数轴上表示出来.19.(7分)某学校以随机抽样的方式开展了“中学生喜欢数学的程度”的问卷调查,调查的结果分为A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级,图1、图2是根据采集的数据绘制的两幅不完整的统计图. 请根据统计图提供的信息,回答下列问题: (1)C 等级所占的圆心角为 ▲ °; (2)请直接在图2中补全条形统计图;0 1 -4 -3 -2 -1 2 3 4(3)若该校有学生1000人,请根据调查结果,估计“比较喜欢”的学生人数为多少人.某校“中学生喜欢数学的程度”的扇形统计图 某校“中学生喜欢数学的程度”的条形统计图20.(8分)如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,DE ∥AC 交BC 的延长线于点E . (1)求证:△ABC ≌△DCE ; (2)若CD =CE ,求证:AC ⊥BD .(第20题)AB CDEO(第19题)等级图2C10%A BD 23% 32% 图 1 80 60 40 2020 4664ABC D人数(人)21.(7分)运动会上,甲、乙、丙三位同学进行跳绳比赛,通过“手心手背”游戏决定谁先跳,规则如下:三个人同时各用一只手随机出示手心或手背,若其中有一个人的手势与另外两个不同,则此人先进行比赛;若三个人手势相同,则重新决定.那么通过一次“手心手背”游戏,甲同学先跳绳的概率是多少?22.(6分)如图,已知点P为∠ABC内一点,利用直尺和圆规确定一条过点P的直线,分别交AB、BC于点E、F,使得BE=BF.(不写作法,保留作图痕迹)APB C(第22题)23.(7分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C 两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B 时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)ABM N CO (第23题)24.(7分)某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出100千克.经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元?25.(9分)已知一元二次方程x2-4mx+4m2+2m-4=0,其中m为常数.(1)若该一元二次方程有实数根,求m的取值范围.(2)设抛物线y=x2-4mx+4m2+2m-4的顶点为M,点O为坐标原点,当m变化时,求线段MO长度的最小值.26.(12分)今年暑假,小勇、小红打算从城市A到城市B旅游,他们分别选择下列两种交通方案:方案一:小勇准备从城市A坐飞机先到城市C,再从城市C坐汽车到城市B,整个行程中,乘飞机所花的时间比汽车少用3h.如图1所示,城市A 、B 、C 在一条直线上,且A 、C 两地的距离为2400km ,飞机的平均速度是汽车的8倍.方案二:小红准备坐高铁直达城市B ,其离城市A 的距离y 2(km )与出发时间x (h )之间的函数关系如图2所示. (1)AB 两地的距离为 ▲ km ; (2)求飞机飞行的平均速度;(3)若两家同时出发,请在图2中画出小勇离城市A 的距离y 1与x之间的函数图像,并求出y 1与x 的函数关系式.ABC图1x (h )y (km )O1 2 3 4 5 6 7 8 9 10 11 600 1200 1800 2400 3000 图2(第26题)27.(12分)定义:当点P 在射线OA 上时,把OPOA 的值叫做点P 在射线OA 上的射影值;当点P 不在射线OA 上时,把射线OA 上与点P 最近点的射影值,叫做点P 在射线OA 上的射影值.例如:如图1,△OAB 三个顶点均在格点上,BP 是OA 边上的高,则点P 和点B 在射线OA 上的射影值均为OP OA = 13.(1)在△OAB 中,①点B 在射线OA 上的射影值小于1时,则△OAB 是锐角三角形;②点B 在射线OA 上的射影值等于1时,则△OAB 是直角三角形;CA BO图2 BCDOA图 3ABOP图1(第27题)③点B 在射线OA 上的射影值大于1时,则△OAB 是钝角三角形.其中真命题有A .①②B .②③C .①③D .①②③(2)已知:点C 是射线OA 上一点,CA =OA =1,以O 为圆心,OA 为半径画圆,点B 是⊙O 上任意点.①如图2,若点B 在射线OA 上的射影值为 12.求证:直线BC 是⊙O 的切线.②如图3,已知D 为线段BC 的中点,设点D 在射线OA 上的射影值为x ,点D 在射线OB 上的射影值为y ,直接写出y 与x 之间的函数关系式.数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(每小题2分,共计12分)题号 1 2 3 4 5 6 答案DCBDCC二、填空题(每小题2分,共计20分)7.x ≥2 8.1.2629×104 9.a (a -1)2 10.0 11.412.(-1,3) 13.90° 14.45° 15.815π 16.113三、解答题(本大题共10小题,共计88分) 17.(本题6分)解:原式=m +1m +2 (m +2)(m -2)(m +2)2··········································· 2分=m -2m +1 ······························································· 4分 当m =1时,原式=1-21+1=-12. ·························· 6分18.(本题7分)解:解不等式①,得x ≤1. ··············································· 2分解不等式②,得x >-2. ············································· 4分所以,不等式组的解集是-2<x≤1. ··························· 5分画图正确(略). ······················································ 7分19.(本题7分)(1)126; ···································································· 2分(2)图略;··································································· 4分(3)在抽取的样本中,“比较喜欢”数学的人数所占的百分比为1-32%-10%-23%=35%,········································ 5分由此可估计,该校1000名学生中,“比较喜欢”数学的人数所占的百分比35%,1000×35%=350(人). ············································ 6分答:估计这些学生中,“比较喜欢”数学的人数约有350人. 7分20.(本小题满分8分)证明:(1)∵四边形ABCD是平行四边形,∴AB//CD,AB=DC.∴∠ABC=∠DCE.∵AC//DE,∴∠ACB=∠DEC.·································· 3分在△ABC和△DCE中,∠ABC=∠DCE,∠ACB=∠DEC,AB =DC.∴△ABC≌△DCE(AAS). ··································· 4分(2)由(1)知△ABC≌△DCE,则有BC=CE.∵CD=CE,∴BC=CD.∴四边形ABCD为菱形.············································· 7分21.(本题7分)列表或树状图表示正确; ············································· 3分 ∵共有8种等可能的结果,通过一次“手心手背”游戏, 小明先跳绳的有2种情况 ······ 5分 ∴通过一次“手心手背”游戏,小明先跳绳的概率是: 2 8 = 1 4. 答:通过一次“手心手背”游戏,小明先跳绳的概率是 14. ···· 7分 22.(本题6分)方法1: 方法2:··················································································· 6分 23.(本题7分)解:过点A 作AD ⊥OB 于点D .由题意得AN ⊥MN ,OB ⊥MN ,AD ⊥OB ,∴四边形ANMD 是矩形,ABMN CO D设OB=OA=x cm,在Rt∆OAD中,∠ODA=90°,cos∠AOD=ODOA=x+5-14x≈0.6. ······························· 5分解得x=15cm.经检验,x=15为原方程的解.答:细线OB的长度是15cm. ······································· 7分24.(本小题满分7分)解:设每千克樱桃应降价x元,根据题意,得························ 1分(60-x-40)(100+10x)=2240. ·························· 4分解得:x1=4,x2=6.·················································· 6分答:每千克樱桃应降价4元或6元. ······························ 7分25.(本小题满分9分)(1)解法一:∵关于x的一元二次方程x2-4mx+4m2+2m-4=0有实数根,∴△=(-4m)2-4(4m2+2m-4)=-8m+16≥0, ······ 3分∴m≤2. ································································· 4分解法二:∵x2-4mx+4m2+2m-4=0,∴(x-2m)2=4-2m.3分∴m≤2. ································································· 4分(2)解法一:y=x2-4mx+4m2+2m-4的顶点为M为(2m,2m-4), ································································ 6分∴MO 2=(2m )2+(2m -4)2=8(m -1)2+8. ············ 7分 ∴MO 长度的最小值为22. ········································ 9分 解法二:y =x 2-4mx +4m 2+2m -4的顶点为M 为(2m ,2m -4), ·············································································· 6分 ∴点M 在直线l :y=x -4上, ······································· 7分 ∴点O 到l 的距离即为MO 长度的最小值22. ··············· 9分 26.(本小题满分12分)解:(1)3000; ····························································· 2分 (2)设汽车的速度为x km/h ,则飞机的速度为8x km/h ,根据题意得:3000-2400x -24008x =3, ··············································· 4分 解之得:x =100.经检验,x =100为原方程的解.则飞机的速度为8×100=800 km/h .答:飞机的速度为800 km/h . ······································· 6分 (3)图略. ······························································ 8分 当0≤x ≤3,y 1=800x .当3<x ≤9,,设函数关系式为y 1=kx +b ,代入点(3,2400),(9,3000)得:⎩⎨⎧3k +b =2400,9k +b =3000解得⎩⎨⎧k =100,b =2100.∴函数关系式为:y 1=100x +2100 ································ 12分27.(本题10分)解:(1)B . ································································· 2分 (2)解法一:过点B 作BH 垂直OC ,垂足为H .∵B 在射线OA 上的射影值为12,∴OH OA =12,∵OB =OA ,∴OHOB =12,∵CA =OA ,∴OB OC =12,∴OH OB =OBOC .又∵∠O =∠O ,∴△OHB ∽△OBC . ··················································· 6分 ∴∠OBC =∠OHB =90°.∴OB ⊥BC ,∵点B 是圆O 上的一点, ∴BC 是圆O 的切线. ················································· 8分 解法二:连接AB ,过点B 作BH 垂直OC ,垂足为H . ∵B 在射线OA 上的射影值为12,∴OH OA =12,∵OB =OA ,∴OH OB =12=cos ∠O ,∴∠O =60°.∵OB =OA ,∴△OBA 是等边三角形,∴∠OAB =60°. ····································································· 4分 ∵AC =OA ,∴AB =AC ,∴∠ABC =∠C ,∴∠C =30°. ······ 6分 ∴∠OBC =90°.∴OB ⊥BC ,∵点B 是圆O 上的一点, ∴BC 是圆O 的切线. ················································· 8分 (3)y =0 (12≤x <34); ················································ 10分 y =2x -32(34≤x ≤32) ············································· 12分CA BO H中考数学全真模拟试卷及答案(二)一、选择题 (共10小题,每小题3分,共30分)1.364=()A.4 B.±8 C.8 D.±4x没有意义,那么x的取值范围是()2.如果分式1xA.x≠0 B.x=0 C.x≠-1 D.x =-13.下列式子计算结果为2x2的是()A.x+x B.x·2x C.(2x)2 D.2x6÷x34.下列事件是随机事件的是()A.从装有2个红球、2个黄球的袋中摸出3个球,至少有一个红球B.通常温度降到0℃以下,纯净的水结冰C.任意画一个三角形,其内角和是360°D.随意翻到一本书的某页,这页的页码是奇数5.运用乘法公式计算(4+x)(x-4)的结果是()A.x2-16 B.16-x2 C.x2+16 D.x2-8x+16 6.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC 位似,且位似比为2∶1,点C1的坐标是()A.(1,0)B.(1,1)C.(-3,2)D.(0,0)7.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是()A. B. C.D.8.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12 13 14 15人数(个) 2 4 6 8根据表中信息可以判断该排球队员的平均年龄为()A .13B .14C .13.5D .59.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为( ) A .50 B .51 C .48 D .5210.已知二次函数y =x 2-(m +1)x -5m (m 为常数),在-1≤x ≤3的范围内至少有一个x 的值使y ≥2,则m 的取值范围是( ) A .m ≤0 B .0≤m ≤21 C .m ≤21 D .m >21二、填空题(共6小题,每小题3分,共18分) 11.计算:计算7-(-4)=___________ 12.计算:2121----x x x =___________ 13.在-2、-1、0、1、2这五个数中任取两数m 、n ,求二次函数y =(x -m )2+n 的顶点在坐标轴上的概率是___________ 14.P 为正方形ABCD 内部一点,PA =1,PD =2,PC =3,求阴影部分的面积S ABCP =______15.如图,将一段抛物线y =x (x -3)(0≤x ≤3)记为C 1,它与x 轴交于点O 和点A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 2,交x 轴于点A 3.若直线y =x +m 于C 1、C 2、C 3共有3个不同的交点,则m 的取值范围是___________16.如图,在平面直角坐标系第一象限有一半径为5的四分之一⊙O,且⊙O内有一定点A(2,1)、B、D为圆弧上的两个点,且∠BAD=90°,以AB、AD为边作矩形ABCD,则AC的最小值为___________三、解答题(共8小题,共72分,应写出文字说明、证明过程或演算步骤)17.(本题8分)解方程:3(2x+3)=2(x-1)-618.(本题8分)如图,AB∥DE,AC∥DF,点B、E、C、F在一条直线上,求证:△ABC∽△DEF19.(本题8分)某厂签订48000辆自行车的组装合同,这些自行车分为L1、L2、L3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题:(1) 从上述统计图可知,此厂需组装L1、L2、L3型自行车的辆数分别是,________辆,________辆,________辆(2) 若组装每辆不同型号的自行车获得的利润分别是L1:40元/辆,L2:80元/辆,L3:60元/辆,且a=40,则这个厂每天可获利___________元(3) 若组装L 1型自行车160辆与组装L3型自行车120辆花的时间相同,求a20.(本题8分)为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元(1) 求购进A、B两种纪念品每件各需多少元?(2) 若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?21.(本题8分)如图,⊙O 是弦AB 、AC 、CD 相交点P ,弦AC 、BD 的延长线交于E ,∠APD =2m °,∠PAC =m °+15° (1) 求∠E 的度数 (2) 连AD 、BC ,若3=ADBC,求m 的值22.(本题10分)如图,反比例函数xk y =与y =mx 交于A 、B 两点.设点A 、B 的坐标分别为A (x 1,y 1)、B (x 2,y 2),S =|x 1y 1|,且ss 413=-(1) 求k 的值(2) 当m 变化时,代数式12)1()1122212+++-m y x m y x m (是否为一个固定的值?若是,求出其值;若不是,请说理由(3) 点C 在y 轴上,点D 的坐标是(-1,23).若将菱形ACOD 沿x 轴负方向平移m 个单位,在平移过程中,若双曲线与菱形的边AD 始终有交点,请直接写出m 的取值范围23.(本题10分)如图,△ABC 中,CA =CB (1) 当点D 为AB 上一点,∠A =21∠MDN =α① 如图1,若点M 、N 分别在AC 、BC 上,AD =BD ,问:DM 与DN 有何数量关系?证明你的结论② 如图2,若41 BDAD ,作∠MDN =2α,使点M 在AC 上,点N 在BC 的延长线上,完成图2,判断DM 与DN 的数量关系,并证明(2) 如图3,当点D 为AC 上的一点,∠A =∠BDN =α,CN ∥AB ,CD =2,AD =1,直接写出AB ·CN 的积24.(本题12分)如图1,直线y =mx +4与x 轴交于点A ,与y 轴交于点C ,CE ∥x 轴交∠CAO 的平分线于点E ,抛物线y =ax 2-5ax +4经过点A 、C 、E ,与x 轴交于另一点B (1) 求抛物线的解析式(2) 点P 是线段AB 上的一个动点,连CP ,作∠CPF =∠CAO ,交直线BE 于F .设线段PB 的长为x ,线段BF 的长为56y ,当P 点运动时,求y 与x 的函数关系式,并写出自变量x 的取值范围(3) 如图2,点G 的坐标为(316,0),过A 点的直线y =kx +3k (k <0)交y 轴于点N ,与过G 点的直线kx ky 3161+-=交于点P ,C 、D 两点关于原点对称,DP 的延长线交抛物线于点M .当k 的取值发生变化时,问:tan ∠APM 的值是否发生变化?若不变,求其值,若变化,请说明理由参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.)11. 11;12.1 ; 13. 52 ;14.232 ; 15.-4≤m ≤4; 16.52 .三、解答题(共8小题,共72分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分8分)解: x =417-18.略 19.⑴ 28800,12000,7200题号 1 2345678910答案 AD B D A A A B A C⑵ 10000 ⑶a=4020.解:⑴ A,100元;B:50元 ⑵ 至少购进A50件。

2020届中考数学全真模拟预测试卷含答案

2020届中考数学全真模拟预测试卷含答案

卷Ⅰ(选择题,共20分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若-2的绝对值是a ,则下列结论正确的是A .a =2B .a =21 C .a =-2 D .a =-212.不等式组⎩⎨⎧--x x x 332312ππ的解集是A .x >-3B .x <2C .2<x <3D .-3<x <23.如图,AB 是⊙O 的弦,半径OA =2,2sin 3A =,则弦AB 的长为ABC .4 D4.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误..的是 A .众数是80 B .中位数是75 C .平均数是80 D .极差是155.有理数a 、b 在数轴上的位置如图所示,化第5题图0 ab第3题图简a b a b +++的结果是A .22a b +B .2bC .0D .2a 6.如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF ,则四边形ABFD 的周长为A .6B .8C .10D .12 7.如图,直线y=2x 与双曲线xky =的图象的一个交点坐标为(2,4).则它们的另一个交点坐标是A .(-2,-4)B .(-4,-2)C .(-2,4)D .(2,-4) 8.如图,菱形ABCD 中,∠BAD =60º,M 是AB 的中点,P 是对角线AC 上的一个动点,若PM +PB 的最小值是3,则AB 长为A .3B .3C .6 D.9.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm .现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于A .2cmB .3cm第9题图第8题图第6题图ABDECC .4cmD .5cm10.某蓄水池的横断面示意图如图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图像能大致表示水下降的高度h 和放水时间t 之间的关系的是数 学 试 卷卷II (非选择题,共100分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚. 2.答卷II 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.分解因式:2a -2b +2b -1= . 12.据媒体报道,我国因环境污染造成的巨大经济损失每年高达680A 第10题图000 000元,这个数用科学记数法表示为 元. 13.已知:320x x y -+-=,那么x y +的值为 . 14.已知点P 在第二象限,且到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标为 .15.抛物线2y ax bx c =++过点A (1,0),B (3,0),则此抛物线的对称轴是直线x = .16.如图所示,矩形纸片ABCD ,AB =2,∠ADB =30°,沿对角线BD 折叠(使△ABD 和△EBD 落在同一平面内),则A 、E 两点间的距离为 .17.如图,在△ABC 中,∠C =90°,∠B =25°,以点C 为圆心,AC 为半径的圆交AB 于点D ,则︿AD 的度数为 .18.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个红球的概率为14,则口袋里绿球的个数为 个。

2020学年最新中考数学全真模拟预测试卷含详细解析

2020学年最新中考数学全真模拟预测试卷含详细解析

一、选择题(本大题共8题,每小题3分.共24分)在每小题所给的四个选项中,只有一项是符合题目要求的,请把答案涂在答题卡上.1.|﹣3|的相反数是()A.3 B.﹣3 C.D.﹣2.2015年,我国筹备成立亚洲基础设旌投资银行(亚投行).据统计,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8 000 000 000 000美元基建投资,将8 000 000 000 000用科学记效法表示应为()A.08×1013 B.8×l013 C.8×1012 D.80×l0113.下列几何体的主视图是三角形的是()A.B.C.D.4.如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=35°,则∠B 的度数为()A.25°B.35°C.55°D.65°5.下列计算正确的是()A.3a﹣2a=l B.a2+a5=a7 C.(ab)3=ab3 D.a2•a4=a66.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x袖于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a﹣b B.2a+b=﹣1 C.2a﹣b=l D.2a+b=l7.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B.C.D.58.矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B 以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的()A.B.C.D.二、填空题(本大题共有7题.每小题3分,共21分)9.﹣32++(﹣2)0= .10.分式方程+=1的解是.11.如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB绕点O 按顺时针方向旋转120°得到△OA′B′,则点A′的坐标是.12.已知关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则实数k的取值范围是.13.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为.14.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.15.如图是矩形纸片ABCD.AB=16cm,BC=40cm,M是边BC的中点,沿过M的直线翻折.若点B恰好落在边AD上,那么折痕长度为cm.三、解答题(本大题共8题,共75分)解答应写出文字说明,证明过程或演算步骤,请写在答题卡上.16.先化简,再求值:(1﹣)÷,其中x是不等式组的整数解.17.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC= °时,四边形ODEB是正方形.②当∠BAC= °时,AD=3DE.18.为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽攀枝花”的号召,我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.19.钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图2),点C在点A的北偏东47°方向,点B在点A 的南偏东79°方向,且A、B两点的距离约为5.5km;同时,点B在点C的南偏西36°方向.若一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19)20.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3).反比例函数y1=图象经过点C,一次函数y2=ax+b的图象经过点A、C (1)求反比例函数与一次函数的解析式;(2)观察图象,在第四项限内写出使得y1<y2成立的自变量x的取值范围;(3)若点P是反比例函数图象上的一点,且△OAP的面积恰好等于正方形ABCD 的面积,求P点的坐标.21.某商场新近一批A、B两种型号的节能防近视台灯,每台进价分别为200元、170元,近两周的销售情况如下:销售时段A种型号B种型号销售收入3台5台1800元第一周销售数量第二周销售数4台10台3100元量(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的台灯的销售单价;(2)若该商场准备用不多于5400元的金额再购进这两种型号的台灯共30台,求A种型号的台灯最多能购进多少台?(3)在(2)的条件下,该商场销售完这30台台灯能否实现利润为1400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.22.已知四边形ABCD中.E、F分别是AB、AD边上的点,DE与CF交于点G.(一)问题初探;如图①,若四边形ABCD是正方形,且DE⊥CF.则DE与CF的数量关系是;(二)类比延伸(1)如图②若四边形ABCD是矩形.AB=m,AD=n.且DE⊥CF,则= .(用含m,n的代数式表示)(2)如图③,若四边形ABCD是平行四边形,当∠B+∠EGC=180°时,(1)中的结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(三)拓展探究如图④,若BA=BC=6,DA=DC=8,∠BAD=90°.DE⊥CF,请直接写出的值.23.如图,二次函数y=ax2+bx+c的图象与x轴的交点为A、D(A在D的右侧),与y轴的交点为C,且A(4,0).C(0,﹣3),对称轴是直线x=l.(1)求二次函数的解析式;(2)若M是第四象限抛物线上一动点,且横坐标为m,设四边形OCMA的面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA 的面积最大;(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A,B、C,P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共8题,每小题3分.共24分)在每小题所给的四个选项中,只有一项是符合题目要求的,请把答案涂在答题卡上.1.|﹣3|的相反数是()A.3 B.﹣3 C.D.﹣考点:绝对值;相反数.分析:根据相反数的定义:只有符号不同的两个数叫互为相反数.解答:解:|﹣3|的相反数是﹣3.故选B.点评:本题考查绝对值与相反数的意义,是一道基础题.可能会混淆倒数、相反数和绝对值的概念,错误地认为﹣3的绝对值等于,或认为﹣|﹣3|=3,把绝对值符号等同于括号.2.2015年,我国筹备成立亚洲基础设旌投资银行(亚投行).据统计,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8 000 000 000 000美元基建投资,将8 000 000 000 000用科学记效法表示应为()A.08×1013 B.8×l013 C.8×1012 D.80×l011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将8 000 000 000 000用科学记数法表示为8.0×1012.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列几何体的主视图是三角形的是()A.B.C.D.考点:简单几何体的三视图.分析:主视图是从物体正面看,所得到的图形.解答:解:A、圆柱的主视图是矩形,故此选项错误;B、圆锥的主视图是三角形,故此选项正确;C、球的主视图是圆,故此选项错误;D、正方体的主视图是正方形,故此选项错误;故选:B.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=35°,则∠B 的度数为()A.25°B.35°C.55°D.65°考点:平行线的性质.分析:先根据平行线的性质求出∠C的度数,再由直角三角形的性质求出∠B的度数即可.解答:解:∵DE∥BC,∠1=35°,∴∠C=∠1=35°.∵∠A=90°,∴∠B=90°﹣35°=55°.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.5.下列计算正确的是()A.3a﹣2a=l B.a2+a5=a7 C.(ab)3=ab3 D.a2•a4=a6考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:A:根据合并同类项的方法判断即可.B:根据整式加法的运算方法判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.解答:解:∵3a﹣2a=a,∴选项A不正确;∵a2+a5≠a7,∴选项B不正确;∵(ab)3=a3b3,∴选项C不正确;∵a2•a4=a6,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了合并同类项的方法,要熟练掌握.6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x袖于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a﹣b B.2a+b=﹣1 C.2a﹣b=l D.2a+b=l考点:作图—基本作图;坐标与图形性质.分析:根据作图过程可得P在第二象限角平分线上,由角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系.解答:解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1.故选:B.点评:此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.7.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B.C.D.5考点:菱形的性质.专题:几何图形问题.分析:连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.解答:解:连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC•DB=×6×8=24,∴BC•AE=24,AE=,故选:C.点评:此题主要考查了菱形的性质,以及菱形的性质面积,关键是掌握菱形的对角线互相垂直且平分.8.矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B 以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的()A.B.C.D.考点:动点问题的函数图象.专题:压轴题;动点型.分析:重点考查学生的阅读理解能力、分析研究能力.在解答时要注意先总结出函数的解析式,由解析式结合其取值范围判断,不要只靠感觉.解答:解:此题在读懂题意的基础上,分两种情况讨论:当x≤4时,y=6×8﹣(x•2x)=﹣2x2+48,此时函数的图象为抛物线的一部分,它的最上点抛物线的顶点(0,48),最下点为(4,16);当4<x≤6时,点E停留在B点处,故y=48﹣8x=﹣8x+48,此时函数的图象为直线y=﹣8x+48的一部分,它的最上点可以为(4,16),它的最下点为(6,0).结合四个选项的图象知选A项.故选:A.点评:本题考查了二次函数及其图象,一次函数及其图象的知识.二、填空题(本大题共有7题.每小题3分,共21分)9.﹣32++(﹣2)0= ﹣10 .考点:实数的运算;零指数幂.分析:首先求出﹣32、、(﹣2)0的值各是多少;然后根据实数的运算顺序,从左向右依次计算即可.解答:解:﹣32++(﹣2)0=﹣9﹣2+1=﹣11+1=﹣10故答案为:﹣10.点评:(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.10.分式方程+=1的解是x=﹣4 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3+x(x+3)=x2﹣9,解得:x=﹣4,经检验x=﹣4是分式方程的解,故答案为:x=﹣4.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB绕点O 按顺时针方向旋转120°得到△OA′B′,则点A′的坐标是(2,﹣2).考点:坐标与图形变化-旋转.分析:首先求得点A的坐标,然后再求得∠AOB=∠A′OB,从而可知点A与点A′关于x轴对称,从而可求得点A′的坐标.解答:解:∵∠ABO=90°,∠A=30°,OA=4,∴OB=2,AB=2.∴点A的坐标为(2,2).∵∠ABO=90°,∠A=30°,∴∠AOB=60°.由旋转的性质可知:∠BOA′=60°,又∵∠AOA′=120°,∴∠AOB=180°.∴∠B0A′=180°﹣∠BOA′﹣∠AOB=180°﹣60°﹣60°=60°,∵OA=OA′,∠AOB=∠A′OB,∴点A与点A′关于x轴对称.∴点A′的坐标为(2,﹣2).点评:本题主要考查的是旋转的性质、轴对称的性质和锐角三角函数,利用旋转的性质和轴对称的性质得出:点A与点A′关于x轴对称是解题的关键.12.已知关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则实数k的取值范围是k>﹣1且k≠0..考点:根的判别式.专题:计算题.分析:根据一元二次方程的定义以及根的判别式得到k≠0,且△>0,然后解两个不等式即可得到实数k的取值范围.解答:解:根据题意得,k≠0,且△>0,即22﹣4×k×(﹣1)>0,解得k>﹣1,∴实数k的取值范围为k>﹣1且k≠0.故答案为k>﹣1且k≠0.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;也考查了一元二次方程的定义.13.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为 3 .考点:反比例函数系数k的几何意义.专题:应用题;数形结合.分析:本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.解答:解:由题意得:E、M、D位于反比例函数图象上,则S△OCE=,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++9=4k,解得:k=3.故答案是:3.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.14.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.考点:扇形面积的计算.分析:连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.解答:解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=.则阴影部分的面积是:﹣.故答案为﹣.点评:本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.15.如图是矩形纸片ABCD.AB=16cm,BC=40cm,M是边BC的中点,沿过M的直线翻折.若点B恰好落在边AD上,那么折痕长度为10或8 cm.考点:翻折变换(折叠问题).分析:过F作ME⊥AD于E,可得出四边形ABME为矩形,利用矩形的性质得到AE=BF,AB=EM,分两种情况考虑:(i)当G在AB上,B′落在AE上时,如图1所示,由折叠的性质得到B′M=BM,BG=B′G,在直角三角形EMB′中,利用勾股定理求出B′E的长,由AE﹣B′E求出AB′的长,设AG=x,由AB﹣AG 表示出BG,即为B′G,在直角三角形AB′G中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出AG的长,进而求出BG的长,在直角三角形GBM中,利用勾股定理即可求出折痕MG的长;(ii)当G在AE上,B′落在ED上,如图2所示,同理求出B′E的长,设A′G=AG=y,由AE+B′E﹣AG表示出GB′,在直角三角形A′B′G中,利用勾股定理列出关于y的方程,求出方程的解得到y的值,求出AG的长,由AE﹣AG求出GE的长,在直角三角形GEM中,利用勾股定理即可求出折痕MG的长,综上,得到所有满足题意的折痕MG的长.解答:解:分两种情况考虑:(i)如图1所示,过M作ME⊥AD于E,G在AB上,B′落在AE上,可得四边形ABME为矩形,∴EM=AB=16,AE=BM,又∵BC=40,M为BC的中点,∴由折叠可得:B′M=BM=BC=20,在Rt△EFB′中,根据勾股定理得:B′E==12,∴AB′=AE+B′E=20+12=32,设AG=x,则有GB′=GB=16﹣x,在Rt△AGB′中,根据勾股定理得:GB′2=AG2+A′B′2,即(16﹣x)2=x2+82,解得:x=6,∴GB=16﹣6=10,在Rt△GBM中,根据勾股定理得:GM==10;(ii)如图2所示,过M作ME⊥AD于E,G在AE上,B′落在ED上,可得四边形ABME为矩形,∴EM=AB=16,AE=BM,又BC=40,M为BC的中点,∴由折叠可得:B′M=BM=BC=20,在Rt△EMB′中,根据勾股定理得:B′E==12,∴AB′=AE+B′E=20+12=32,设AG=A′G=y,则GB′=AB′﹣AG=AE+EB′﹣AG=32﹣y,A′B′=AB=16,在Rt△A′B′G中,根据勾股定理得:A′G2+A′B′2=GB′2,即y2+162=(32﹣y)2,解得:y=12,∴AG=12,∴GE=AE﹣AG=20﹣12=8,在Rt△GEM中,根据勾股定理得:GM==8;综上所述,折痕MG=10或8.故答案为:10或8.点评:此题考查了翻折变换﹣折叠问题,矩形的判定与性质,勾股定理,利用了方程、转化及分类讨论的思想,是一道综合性较强的试题.三、解答题(本大题共8题,共75分)解答应写出文字说明,证明过程或演算步骤,请写在答题卡上.16.先化简,再求值:(1﹣)÷,其中x是不等式组的整数解.考点:分式的化简求值;一元一次不等式组的整数解.分析:先根据分式混合运算的法则把原式进行化简,再求出求出x的值代入进行计算即可.解答:解:原式=÷=•=x+1,∵解不等式x+2>0得x>﹣2解不等式2x﹣3<1得x<2,∴不等式组的解集为﹣2<x<2,∴整数解为:﹣1、0、1但只取x=l,∴原式=2.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC= 45 °时,四边形ODEB是正方形.②当∠BAC= 30 °时,AD=3DE.考点:切线的性质.分析:(1)连接OD,证明Rt△ODE≌Rt△OBE得到∠BOE=∠DOB,根据半径相等得到∠A=∠DOB,根据平行线的判定证明OE∥AD;(2)①根据正方形的性质和平行线的性质可得结论;②作OF⊥AD于F,根据垂径定理和锐角三角函数的知识计算得到答案.解答:解:(1)连接OD,∵DE是⊙O的切线,∴OD⊥DE,在Rt△ODE和Rt△OBE中,,∴Rt△ODE≌Rt△OBE,∴∠BOE=∠DOB,∵OA=OD,∴∠A=∠DOB,∴∠BOE=∠A,∴OE∥AD;(2)①当四边形ODEB是正方形时,BO=BE,∴∠BOE=45°,∵OE∥AD,∴∠BAC=45°;②当∠BAC=30°时,AD=3DE,证明:作OF⊥AD于F,由垂径定理可知,AF=DF=AD,∵∠BAC=30°,∴∠ODF=∠DOE=30°,∴OD==AD,OD==DE,∴AD=3DE.点评:本题考查的是切线的性质和全等三角形的判定和性质以及锐角三角函数的概念,正确找出辅助线、灵活运用切线的性质在直角三角形中正确运用三角函数的概念是解题的关键.18.为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽攀枝花”的号召,我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.考点:条形统计图;扇形统计图;列表法与树状图法.分析:(1)根据投稿6篇的班级个数是3个,所占的比例是25%,可求总共班级个数,利用投稿篇数为2的比例乘以360°即可求解;(2)根据加权平均数公式可求该校八,九年级各班在这一周内投稿的平均篇数,再用总共班级个数﹣不同投稿情况的班级个数即可求解:(3)利用树状图法,然后利用概率的计算公式即可求解.解答:解:(1)3÷25%=12(个),×360°=30°.故投稿篇数为2所对应的扇形的圆心角的度数为30°;(2)12﹣1﹣2﹣3﹣4=2(个),(2+3×2+5×2+6×3+9×4)÷12=72÷12=6(篇),将该条形统计图补充完整为:(3)画树状图如下:总共12种情况,不在同一年级的有8种情况,所选两个班正好不在同一年级的概率为:8÷12=.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图2),点C在点A的北偏东47°方向,点B在点A 的南偏东79°方向,且A、B两点的距离约为5.5km;同时,点B在点C的南偏西36°方向.若一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19)考点:解直角三角形的应用-方向角问题.分析:过点B作BD⊥AC交AC于点D,根据方向角分别求出∠DAB和∠DCB 的度数,然后在Rt△ABD和Rt△BCD中,分别解直角三角形求出AD、CD的长度,然后根据时间=路程÷速度即可求出需要的时间.解答:解:过点B作BD⊥AC交AC于点D,由题意得,∠DAB=180°﹣47°﹣79°=54°,∠DCB=47°﹣36°=11°,在Rt△ABD中,∵AB=5.5,∠DAB=54°,=cos54°,=sin54°,∴AD=5.5×0.59=3.245,BD=4.455,在Rt△BCD中,∵BD=4.455,∠DCB=11°,∴=tan11°,∴CD==23.447,∴AC=AD+CD=3.245+23.447=26.692≈26.70(km),则时间t=26.70÷30≈0.89(h).答:需要0.89h到达.点评:本题考查了解直角三角形的应用,难度适中,解答本题的关键是构造直角三角形并解直角三角形,20.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3).反比例函数y1=图象经过点C,一次函数y2=ax+b的图象经过点A、C (1)求反比例函数与一次函数的解析式;(2)观察图象,在第四项限内写出使得y1<y2成立的自变量x的取值范围;(3)若点P是反比例函数图象上的一点,且△OAP的面积恰好等于正方形ABCD 的面积,求P点的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)先根据正方形的性质求出点C的坐标为(5,﹣3),再将C点坐标代入反比例函数y=中,运用待定系数法求出反比例函数的解析式;同理,将点A,C的坐标代入一次函数y=ax+b中,运用待定系数法求出一次函数函数的解析式;(2)当0<x<5时,y1<y2;(3)设P点的坐标为(x,y),先由△OAP的面积恰好等于正方形ABCD的面积,列出关于x的方程,解方程求出x的值,再将x的值代入y=﹣,即可求出P点的坐标.解答:解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣3),∴AB=5,∵四边形ABCD为正方形,∴点C的坐标为(5,﹣3)∵反比例函数y=的图象经过点C,∴﹣3=,解得k=﹣15,∴反比例函数的解析式为y=﹣;∵一次函数y=ax+b的图象经过点A,C,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)由图象知:∵点C的坐标为(5,﹣3),∴当0<x<5时,y1<y2;(3)设P点的坐标为(x,y),∵△OAP的面积恰好等于正方形ABCD的面积,∴×OA•|x|=52,∴×2|x|=25,解得x=±25.当x=25时,y=﹣=﹣,当x=﹣25时.y==,∴P点的坐标为(25,﹣)或(﹣25,).点评:本题考查了正方形的性质,反比例函数与一次函数的交点问题,运用待定系数法求反比例函数与一次函数的解析式,三角形的面积,难度适中.运用方程思想是解题的关键.21.某商场新近一批A、B两种型号的节能防近视台灯,每台进价分别为200元、170元,近两周的销售情况如下:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段A种型号B种型号销售收入3台5台1800元第一周销售数量第二周销售数4台10台3100元量(1)求A、B两种型号的台灯的销售单价;(2)若该商场准备用不多于5400元的金额再购进这两种型号的台灯共30台,求A种型号的台灯最多能购进多少台?(3)在(2)的条件下,该商场销售完这30台台灯能否实现利润为1400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.考点:一元一次不等式的应用;一元一次方程的应用;二元一次方程组的应用.分析:(1)利用A、B两种型号的台灯的价格,结合图表中数据得出等式等式求出即可;(2)利用商场准备用不多于5400元的金额购进这两种型号的台灯共30台,进而得出不等式求出即可;(3)利用其利润为1400元,进而得出等式求出即可.解答:解:(1)设A、B两种型号台灯的销售单价分别为x元、y元,依题意得:,解得:答:A、B两种型号台灯的销售单价分别为250元、210元;(2)设采购A种型号台灯a台,则采购B种型号台灯(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号台灯10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400.解得:a=20,此时,a>10.所以在(2)的条件下超市不能实现利润1400元的目标,点评:此题主要考查了二元一次方程组的应用以及一元一次方程的应用和一元一次不等式的应用等知识,根据题意得出正确的等量关系是解题关键.22.已知四边形ABCD中.E、F分别是AB、AD边上的点,DE与CF交于点G.(一)问题初探;如图①,若四边形ABCD是正方形,且DE⊥CF.则DE与CF的数量关系是相等相等;(二)类比延伸(1)如图②若四边形ABCD是矩形.AB=m,AD=n.且DE⊥CF,则= .(用含m,n的代数式表示)(2)如图③,若四边形ABCD是平行四边形,当∠B+∠EGC=180°时,(1)中的结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(三)拓展探究如图④,若BA=BC=6,DA=DC=8,∠BAD=90°.DE⊥CF,请直接写出的值.。

2020年中考数学全真模拟预测试卷含详细解析

2020年中考数学全真模拟预测试卷含详细解析

一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑:1.方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.5和4 B.5和﹣4 C.5和﹣1 D.5和12.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大3.抛物线y=x2向下平移一个单位得到抛物线()A.y=(x+1)2 B.y=(x﹣1)2 C.y=x2+1 D.y=x2﹣14.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指()A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n次硬币,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.55.如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD为()A.正方形B.菱形C.矩形D.直角梯形6.在平面直角坐标系中,点A(﹣4,1)关于原点的对称点的坐标为()A.(4,1)B.(4,﹣1)C.(﹣4,﹣1)D.(﹣1,4)7.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切8.用配方法解方程x2+10x+9=0,配方正确的是()A.(x+5)2=16 B.(x+5)2=34 C.(x﹣5)2=16 D.(x+5)2=259.如图,在平面直角坐标系中,抛物线y=ax2+bx+5经过A(2,5),B(﹣1,2)两点,若点C在该抛物线上,则C点的坐标可能是()A.(﹣2,0)B.(0.5,6.5)C.(3,2)D.(2,2)10.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC 的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣B.﹣1 C.2 D.+1二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为.12.方程x2﹣x﹣=0的判别式的值等于.13.抛物线y=﹣x2+4x﹣1的顶点坐标为.14.某村的人均收入前年为12 000元,今年的人均收入为14 520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为.15.半径为3的圆内接正方形的边心距等于.16.圆锥的底面直径是8cm,母线长9cm,则它的侧面展开图的圆心角的度数为.三、解答题(共8小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.解方程:x2+2x﹣3=0.18.不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画村状图的方法求出“两球都是绿色”的概率;(2)随机摸出两个小球,直接写出两次都是绿球的概率.19.如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.(1)若∠AOB=56°,求∠ADC的度数;(2)若BC=6,AE=1,求⊙O的半径.20.如图,E是正方形ABCD申CD边上任意一点.(1)以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形;(2)在BC边上画一点F,使△CFE的周长等于正方形ABCD的周长的一半,请简要说明你取该点的理由.21.如图,某建筑物的截面可以视作由两条线段AB,BC和一条曲线围成的封闭的平面图形.已知AB⊥BC,曲线是以点D为顶点的抛物线的一部分,BC=6m,点D到BC,AB的距离分别为4m和2m.(1)请以BC所在直线为x轴(射线BC的方向为正方向),AB所在直线为y 轴建立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围;(2)求AB的长.22.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件.设这段时间内售出该商品的利润为y元.(1)直接写出利润y与售价x之间的函数关系式;(2)当售价为多少元时,利润可达1000元;(3)应如何定价才能使利润最大?23.如图,△ABC为等边三角形.O为BC的中垂线AH上的动点,⊙O经过B,C两点,D为弧上一点,D,A两点在BC边异侧,连接AD,BD,CD.(1)如图1,若⊙O经过点A,求证:BD+CD=AD;(2)如图2,圆心O在BD上,若∠BAD=45°;求∠ADB的度数;(3)如图3,若AH=OH,求证:BD2+CD2=AD2.24.如图,抛物线y=(x+m)2+m,与直线y=﹣x相交于E,C两点(点E 在点C的左边),抛物线与x轴交于A,B两点(点A在点B的左边).△ABC 的外接圆⊙H与直线y=﹣x相交于点D.(1)若抛物线与y轴的交点坐标为(0,2),求m的值;(2)求证:⊙H与直线y=1相切;(3)若DE=2EC,求⊙H的半径.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑:1.方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.5和4 B.5和﹣4 C.5和﹣1 D.5和1考点:一元二次方程的一般形式.分析:根据ax2+bx+c=0(a,b,c是常数且a≠0),a,b,c分别叫二次项系数,一次项系数,常数项,可得答案.解答:解:5x2﹣4x﹣1=0的二次项系数和一次项系数分别为5,﹣4,故选:B.点评:本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大考点:可能性的大小.分析:要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.解答:解:A、因为袋中扑克牌的花色不同,所以无法确定抽取的扑克牌的花色,故本选项错误;B、因为黑桃的数量最多,所以抽到黑桃的可能性更大,故本选项正确;C、因为黑桃和红桃的数量不同,所以抽到黑桃和抽到红桃的可能性不一样大,故本选项错误;D、因为红桃的数量小于黑桃,所以抽到红桃的可能性小,故本选项错误.故选B.点评:本题考查的是可能性的大小,熟知随机事件发生的可能性(概率)的计算方法是解答此题的关键.3.抛物线y=x2向下平移一个单位得到抛物线()A.y=(x+1)2 B.y=(x﹣1)2 C.y=x2+1 D.y=x2﹣1考点:二次函数图象与几何变换.分析:利用二次函数图象平移规律,上加下减进而得出即可.解答:解:抛物线y=x2向下平移一个单位得到抛物线解析式为:y=x2﹣1.故选:D.点评:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.4.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指()A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n次硬币,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.5考点:利用频率估计概率.分析:利用“大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,这个常数可以估计事件发生的概率”进行判断即可.解答:解:连续抛掷2n次不一定正好正面向上和反面向上的次数各一半,故A、B、C错误,抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.5,故D正确,故选D.点评:本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,这个常数可以估计事件发生的概率.5.如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD为()A.正方形B.菱形C.矩形D.直角梯形考点:垂径定理.分析:利用垂径定理可求得OE⊥AC,OD⊥AB,得出∠OEA=∠ODA=∠A=90°,即可证得四边形OEAD是矩形.解答:解:∵D,E分别为AB,AC的中点,∴OE⊥AC,OD⊥AB,∴∠OEA=∠ODA=∠A=90°∴四边形OEAD是矩形.故选C.点评:本题考查学生对垂径定理及矩形的判定的理解及运用,熟练掌握垂径定理是本题的关键.6.在平面直角坐标系中,点A(﹣4,1)关于原点的对称点的坐标为()A.(4,1)B.(4,﹣1)C.(﹣4,﹣1)D.(﹣1,4)考点:关于原点对称的点的坐标.分析:本题比较容易,考查平面直角坐标系中任意一点(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数,可得答案.解答:解:点A(﹣4,1)关于原点的对称点的坐标为(4,﹣1),故选:B.点评:本题考查了关于原点对称的点的坐标,把点的横坐标换成它的相反数,纵坐标换成它的相反数.7.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切考点:直线与圆的位置关系.分析:求圆与直线的交点个数,即确定直线与圆的位置关系,关键是把圆心距4.5cm与半径6.5cm进行比较.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.(d为圆心距,r为圆的半径).解答:解:已知圆的直径为13cm,则半径为6.5cm,当d=6.5cm时,直线与圆相切,d<6.5cm直线与圆相交,d>6.5cm直线与圆相离,故A、B、D错误,C正确,故选C.点评:本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.8.用配方法解方程x2+10x+9=0,配方正确的是()A.(x+5)2=16 B.(x+5)2=34 C.(x﹣5)2=16 D.(x+5)2=25考点:解一元二次方程-配方法.分析:移项,配方(方程两边都加上一次项系数的一半的平方),即可得出答案.解答:解:x2+10x+9=0,x2+10x=﹣9,x2+10x+52=﹣9+52,(x+5)2=16.故选A.点评:本题考查了用配方法解一元二次方程的应用,关键是能正确配方.9.如图,在平面直角坐标系中,抛物线y=ax2+bx+5经过A(2,5),B(﹣1,2)两点,若点C在该抛物线上,则C点的坐标可能是()A.(﹣2,0)B.(0.5,6.5)C.(3,2)D.(2,2)考点:二次函数图象上点的坐标特征.分析:因为抛物线过A(2,5),B(﹣1,2)两点,所以把以上两点的坐标代入求出a和b的值即可求出抛物线的解析式,然后分别把A、B、C、D点的横坐标代入解析式即可判定.解答:解:把A(2,5),B(﹣1,2)两点坐标代入得,解这个方程组,得,故抛物线的解析式为y=﹣x2+2x+5;当x=﹣2时,y=﹣3,x=0.5时,y=,x=3时,y=2,x=2时,y=5;故选C.点评:此题考查了二次函数图象上的坐标特征,待定系数法求函数的解析式,抛物线上点的坐标符合解析式是本题的关键.10.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC 的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣B.﹣1 C.2 D.+1考点:相交两圆的性质;轴对称的性质.分析:利用圆周角定理确定点C的运动轨迹,进而利用点与圆的位置关系求得OC长度的取值范围.解答:解:如图,连接OA、OD,则△OAD为等边三角形,边长为半径1.作点O关于AD的对称点O′,连接O′A、O′D,则△O′AD也是等边三角形,边长为半径1,∴OO′=×2=.由题意可知,∠ACB=∠ABC=∠AOD=30°,∴∠ACB=∠AO′D,∴点C在半径为1的⊙O′上运动.由图可知,OC长度的取值范围是:﹣1≤OC≤+1.故选A.点评:本题涉及圆的知识,难度较大.解题要点是确定点C的运动轨迹.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三辆车全部继续直行,再利用概率公式即可求得答案;解答:解:列树状图为:三辆车经过丁字路口的情况有8种,全部向右转的情况数为1种,以全部右转的概率.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.方程x2﹣x﹣=0的判别式的值等于 4 .考点:根的判别式.分析:写出a、b、c的值,再根据根的判别式△=b2﹣4ac代入数进行计算即可.解答:解:由题意得:a=1,b=﹣1,c=﹣,△=b2﹣4ac=(﹣1)2﹣4×1×(﹣)=4,故答案为:4.点评:此题主要考查了根的判别式,关键是掌握根的判别式的计算公式.13.抛物线y=﹣x2+4x﹣1的顶点坐标为(2,3).考点:二次函数的性质.分析:利用配方法将抛物线的解析式y=﹣x2+4x﹣1转化为顶点式解析式,然后求其顶点坐标.解答:解:由y=﹣x2+4x﹣1,知y=﹣(x﹣2)2+3;∴抛物线y=﹣x2+4x﹣1的顶点坐标为:(2,3).故答案是:(2,3).点评:本题考查了二次函数的性质.二次函数的三种形式:一般式:y=ax2+bx+c,顶点式:y=(x﹣h)2+k;两根式:y=a(x﹣x1)(x﹣x2).14.某村的人均收入前年为12 000元,今年的人均收入为14 520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为12000(1+x)2=14520 .考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:设这两年的平均增长率为x,前年的人均收入×(1+平均增长率)2=今年人均收入,把相关数值代入求得年平均增长率.解答:解:设这两年的平均增长率为x,由题意得:12000(1+x)2=14520.故答案为:12000(1+x)2=14520.点评:本题考查了从实际问题中抽象出一元二次方程,应明确增长的基数,增长的次数,根据公式增长后的人均收入=增长前的人均收入×(1+增长率)列式解答即可.15.半径为3的圆内接正方形的边心距等于.考点:正多边形和圆.分析:根据题意首先求出OE的长,即可解决问题.解答:解:如图,∵四边形ABCD是⊙O的内接正方形,∴∠OBE=45°;而OE⊥BC,∴BE=CE;∵OB=3,∴sin45°=,∴OE=,故答案为:.点评:本题考查了圆内接正方形的性质及其应用问题;解疑的关键是灵活运用有关定理来分析、判断、推理或解答;对综合运用能力提出了一定的要求.16.圆锥的底面直径是8cm,母线长9cm,则它的侧面展开图的圆心角的度数为160°.考点:圆锥的计算.专题:计算题.分析:设它的侧面展开图的圆心角的度数为n°,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到8π=,然后解方程即可.解答:解:设它的侧面展开图的圆心角的度数为n°,根据题意得8π=,解得n=160,所以它的侧面展开图的圆心角的度数为160°.故答案为160°.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题(共8小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.解方程:x2+2x﹣3=0.考点:解一元二次方程-因式分解法.专题:计算题.分析:观察方程x2+2x﹣3=0,可因式分解法求得方程的解.解答:解:x2+2x﹣3=0∴(x+3)(x﹣1)=0∴x1=1,x2=﹣3.点评:解方程有多种方法,要根据实际情况进行选择.18.不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画村状图的方法求出“两球都是绿色”的概率;(2)随机摸出两个小球,直接写出两次都是绿球的概率.考点:列表法与树状图法.分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,(1)是放回试验;(2)是不放回试验.解答:解:(1)红色小球用数字1表示,两个绿色小球分别用2和3表示,列表得:第一次第二次1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)由上表可知,从袋子总随机摸出两个小球可能会出现9个等可能的结果,其中两球都是绿色的结果有4个,所以P(两球都是绿色)=;(2)一次摸出两球是一个不放回试验,共有6种等可能的结果,都是绿色的有2种,故随机摸出两个小球,两次都是绿球的概率是.点评:本题考查了用列表法求概率,解题的关键是列表将所有等可能的结果全部列举出来并分清是否为放回试验.19.如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.(1)若∠AOB=56°,求∠ADC的度数;(2)若BC=6,AE=1,求⊙O的半径.考点:垂径定理;勾股定理;圆周角定理.分析:(1)利用圆周角与圆心角的关系即可求解.(2)利用垂径定理可以得到CE=BE=BC=3,然后根据勾股定理即可求得.解答:解:(1)∵OA⊥BC,∴,∴,∵∠AOB=56°,∴∠ADC=28°;(2)∵OA⊥BC,∴CE=BE,设⊙O的半径为r,则OE=r﹣1,OB=r在Rt△BOE中,OE2+BE2=OB2,∵BE=3,则32+(r﹣1)2=r2解得这个方程,得r=5.点评:此题考查了圆周角与圆心角定理以及垂径定理,熟练掌握垂径定理是解题关键.20.如图,E是正方形ABCD申CD边上任意一点.(1)以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形;(2)在BC边上画一点F,使△CFE的周长等于正方形ABCD的周长的一半,请简要说明你取该点的理由.考点:作图-旋转变换.分析:(1)利用旋转的性质得出△ABE′的位置;(2)根据全等三角形的判定与性质得出△AEF≌△AE′F(SAS),以及EF=E′F=BF+DE,进而得出EF+EC+FC=BC+CD.解答:解:(1)如图所示:△ABE′即为所求;(2)作∠EAE′的平分线交BC于点F,则△CFE的周长等于正方形ABCD的周长的一半,在△AEF和△AE′F中∵,∴△AEF≌△AE′F(SAS),∴EF=E′F=BF+DE,∴EF+EC+FC=BC+CD.点评:此题主要考查了图形的转变换以及全等三角形的判定与性质,得出△AEF ≌△AE′F是解题关键.21.如图,某建筑物的截面可以视作由两条线段AB,BC和一条曲线围成的封闭的平面图形.已知AB⊥BC,曲线是以点D为顶点的抛物线的一部分,BC=6m,点D到BC,AB的距离分别为4m和2m.(1)请以BC所在直线为x轴(射线BC的方向为正方向),AB所在直线为y 轴建立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围;(2)求AB的长.考点:二次函数的应用.分析:(1)首先建立坐标系,再利用顶点式求出二次函数解析式,进而得出答案;(2)利用x=0时,求出y的值即可得出AB的长.解答:解:(1)建立坐标系如图:∵点D(2,4)是抛物线的顶点,可设抛物线的解析式为:y=a(x﹣2)2+4,点C(6,0)在抛物线上,可得,0=a(6﹣2)2+4,解得:a=﹣,因此,y=﹣(x﹣2)2+4,0≤x≤6;(2)当x=0时,y=3,所以,AB=3m.点评:此题主要考查了二次函数的应用,正确建立坐标系利用顶点式求出是解题关键.22.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件.设这段时间内售出该商品的利润为y元.(1)直接写出利润y与售价x之间的函数关系式;(2)当售价为多少元时,利润可达1000元;(3)应如何定价才能使利润最大?考点:二次函数的应用.分析:(1)利用销量×每件利润进而得出y与x的函数关系式;(2)利用y=1000,解方程求出即可;(3)利用配方法求二次函数最值方法得出即可.解答:解:(1)由题意可得:y=(x﹣30)(100﹣x)=﹣x2+130x﹣3000;(2)令﹣x2+130x﹣3000=1000,解得:x1=50,x2=80,答:当售价为50元/件或80元/件时,利润可达1000元;(3)由题意可得:y=﹣x2+130x﹣3000=﹣(x﹣65)2+1225,当x=65时,函数有最大值1225,答:当定价为65元/件时,利润最大.点评:此题主要考查了二次函数的应用以及一元二次方程的应用,正确得出y 与x的函数关系式是解题关键.23.如图,△ABC为等边三角形.O为BC的中垂线AH上的动点,⊙O经过B,C两点,D为弧上一点,D,A两点在BC边异侧,连接AD,BD,CD.(1)如图1,若⊙O经过点A,求证:BD+CD=AD;(2)如图2,圆心O在BD上,若∠BAD=45°;求∠ADB的度数;(3)如图3,若AH=OH,求证:BD2+CD2=AD2.考点:圆的综合题.分析:(1)利用图1,在DA上截取DM=DC,连接MC,由于⊙O经过点A,由∠ADC=∠ABC=60°,得出△MDC为等边三角形,易证△AMC≌△△BDC,可得AM=BD,即可得出结论,(2)由点O在BD上,即BD为直径,可得∠BCD=90°,结合AH⊥BC,可得AO∥CD,∠OAD=∠ADC,由角的关系可得∠CAD=∠CDA,可得AC=DC,BC=DC,∠BDC=45°,即可求出∠ADB的值.(3)利用图3,连接OB,OC,以点C为中心,把△ACD顺时针旋转60°,得到△BCN,连接DN,则AD=BN,DN=DC,∠ACB=∠DCN=60°,由AH=OH,可得△DCN,△BOC均为等边三角形,∠BOC=∠CDN=60°,∠BDC=30°,∠BDN=90°,由勾股定理可得BD2+CD2=BN2,即可得出BD2+CD2=AD2.解答:证明:(1)如图1,在DA上截取DM=DC,连接MC,∵⊙O经过点A,∴∠ADC=∠ABC=60°,∴△MDC为等边三角形,∴MC=DC,∠MCD=∠ACB=60°,∴∠BCD=∠ACM,又∵∠MAC=∠DBC,AC=BC,∴△AMC≌△△BDC,∴AM=BD,∴BD+CD=AD,(2)∵点O在BD上,即BD为直径,∴∠BCD=90°,∵AH⊥BC,∴AO∥CD,∴∠OAD=∠ADC,∵∠BAD=45°,∴∠OAD=∠CAD=15°,∴∠CAD=∠CDA=15°,∴AC=DC,∴BC=DC,∴∠BDC=45°,∴∠ADB=30°.(3)如图3,连接OB,OC,以点C为中心,把△ACD顺时针旋转60°,得到△BCN,连接DN,则AD=BN,DN=DC,∠ACB=∠DCN=60°.∵AH=OH,∴△DCN,△BOC均为等边三角形,∠BOC=∠CDN=60°,∴∠BDC=30°,∴∠BDN=90°,∴BD2+CD2=BN2,∴BD2+CD2=AD2.点评:本题主要考查了圆的综合题,解题的关键是正确作出辅助线,利用等边三角形的性质求解.24.如图,抛物线y=(x+m)2+m,与直线y=﹣x相交于E,C两点(点E 在点C的左边),抛物线与x轴交于A,B两点(点A在点B的左边).△ABC 的外接圆⊙H与直线y=﹣x相交于点D.(1)若抛物线与y轴的交点坐标为(0,2),求m的值;(2)求证:⊙H与直线y=1相切;(3)若DE=2EC,求⊙H的半径.考点:二次函数综合题.分析:(1)由抛物线y=(x+m)2+m与y轴的交点坐标为(0,2),可得m2+m=2,又由抛物线与x轴有两个交点,即可得(x+m)2+m=0有两个不相等的实数根,继而求得答案;(2)首先作直径CM交弦AB于点G,连接HB,由抛物线y=(x+m)2+m,与直线y=﹣x相交于E,C两点(点E在点C的左边),可得(x+m)2+m=﹣x,继而可证得点C是抛物线的顶点,由抛物线与圆的对称性得:CM垂直平分AB,可证得CM⊥直线y=1,然后设A,B两点的横坐标分别为x1,x2,则x1,x2是(x+m)2+m=x2+2mx+m2+m=0的两根,可得x1+x2=﹣2m,x1•x2=m2+m,再设⊙H的半径为r,CG=﹣m,HG=﹣m﹣r,易证得点H到直线y=1的距离为:﹣m﹣r+1=2r﹣r=r,即可得⊙H与直线y=1相切;(3)首先连接MD,由⊙H与直线y=1相切于点M,可得△CMN是等腰直角三角形,CM为直径,易得DN=DC,则可求得EC的长,继而求得答案.解答:(1)解:∵抛物线y=(x+m)2+m与y轴的交点坐标为(0,2),∴当x=0时,y=m2+m=2,解得:m1=﹣2,m2=1;∵抛物线与x轴有两个交点,∴(x+m)2+m=0有两个不相等的实数根,∴m<0,∴m=﹣2;(2)证明:作直径CM交弦AB于点G,连接HB,∵抛物线y=(x+m)2+m,与直线y=﹣x相交于E,C两点(点E在点C的左边),∴(x+m)2+m=﹣x,∴(x+m)(x+m+1)=0,解得:x1=﹣m,x2=﹣m﹣1,∴点E(﹣m﹣1,m+1),C(﹣m,m);∴点C是抛物线的顶点,由抛物线与圆的对称性得:CM垂直平分AB,∴CM⊥直线y=1,设A,B两点的横坐标分别为x1,x2,则x1,x2是(x+m)2+m=x2+2mx+m2+m=0的两根,∴x1+x2=﹣2m,x1•x2=m2+m,∴AB=x 2﹣x1==2,设⊙H的半径为r,CG=﹣m,HG=﹣m﹣r,在Rt△HGB中,HG=﹣m﹣r,HB=r,GB=,∴(﹣m﹣r)2+()2=r2,解得:r=,∵HG=﹣m﹣r,∴点H到直线y=1的距离为:﹣m﹣r+1=2r﹣r=r,∴⊙H与直线y=1相切;(3)连接MD,∵⊙H与直线y=1相切于点M,∴△CMN是等腰直角三角形,∵CM为直径,∴∠CDM=90°,∴DN=DC,∵点E(﹣m﹣1,m+1),C(﹣m,m),∴EC=,∵DE=2EC,∴CD=3EC=3,∴CN=2CD=6,∴CM=2r=6,∴r=3.点评:此题属于二次函数的综合题,考查了待定系数法求函数的解析式、圆周角定理、切线的判定与性质以及等腰三角形的性质.此题综合性很强,能准确作出辅助线,并能利用方程思想求解是关键.。

2020年中考数学全真模拟试卷6套附答案(适用于河北省各地市)

2020年中考数学全真模拟试卷6套附答案(适用于河北省各地市)

中考数学二模试卷题号得分一二三四总分一、选择题(本大题共16小题,共42.0分)1. 下列各数中,比−2小的数是(B. −3)32A. 0 C. − D. −12. 如图,将木条a,b与c钉在一起,∠1= 70°,∠2= 50°,要使木条a与b平行,木条a旋转的度数至少是( )A. 10°B. 20°C. 50°D. 70°3. 把实数6.12 × 10−3用小数表示为()A. 0.0612B. 6120C. 0.00612D. 61200010 +1的值是( )4. 估计A. 在2 和3 之间B. 在3 和4 之间C. 在4 和5 之间D. 在5 和6 之间5. 如图1,该几何体是由5 个棱长为1 个单位长度的正方体摆放而成,将正方体A向右平移2 个单位长度后(如图2),所得几何体的视图( )A. 主视图改变,俯视图改变C. 主视图改变,俯视图不变B. 主视图不变,俯视图不变D. 主视图不变,俯视图改变1 푥2 + 2푥+ 16. 计算(1 + ) ÷的结果是( )푥푥1 푥푥+ 1A. 푥+ 1B.C.D.푥+ 1 푥+ 1 푥7. 如图是一个中心对称图形,则此图形的对称中心为( )A. A点B. B点C. C点D. D点8. 如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(3푎,푏+ 1),则a与b的数量关系为( )A. 3푎= −푏−1B. 3푎= 푏+ 1C. 3푎+ 푏−1= 0D. 3푎= 2푏9. 《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9 枚(每枚黄金重量相同),乙袋中装有白银11 枚(每枚白银重量相同),称重两袋相等.两袋互相交换1 枚后,甲袋比乙袋轻了13 两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y 两,根据题意得(11푥= 9푦)10푦+ 푥= 8푥+ 푦{9푥+ 13 = 11푦{A. B.D.(10푦+ 푥)−(8푥+ 푦)= 139푥= 11푦(8푥+ 푦)−(10푦+ 푥)= 139푥= 11푦{ {(10푦+ 푥)−(8푥+ 푦)= 13C.10. 如图为张小亮的答卷,他的得分应是( )A. 80 分B. 60 分C. 40 分D. 20 分11. 点P在正方形ABCD所在平面内,且△푃퐴퐵、△푃퐶퐷、△푃퐴퐷、△푃퐵퐶都是等腰三角形,这样的点P有( )A. 1 个B. 9 个C. 10 个D. 12 个12. 如图,两张完全相同的正六边形纸片(边长为2푎)重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是( )A. 5:2B. 3:2C. 3:1D. 2:113. m,b,n为常数,且(푚−푛)2 > 푚2 + 푛2,关于x的方程푚푥2 +푏푥+ 푛= 0根的情况是( )A. 有两个相等的实数根C. 无实数根B. 有一根为0D. 有两个不相等的实数根14. 如图,在平面直角坐标系中,点O为坐标原点,将含30°角的三角形△퐴퐵퐶放在第一象限,其中30°角的对边BC长为1,斜边AB的端点A,B分别在y轴的正半轴,x轴的正半轴上滑动,连接OC,则线段OC的长的最大值是( )A. 5B. 3C. 2D. 7615. 如图,正比例函数푦= 푘푥与反比例函数푦= 的图象有푥一个交点퐴(2,푚),퐴퐵⊥푥轴于点퐵.平移直线푦= 푘푥,使其经过点B,得到直线l,则直线l对应的函数表达式是( )A. 푦= 3푥−33B. 푦= 푥−323C. 푦= 푥−22D. 푦= 6푥−316. 如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点퐸.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠퐴퐶퐷= ∠퐵퐴퐸;③퐴퐹:퐵퐸= 2:3;④四边形퐴퐹푂퐸:푆푆= 2:3;以上四△퐶푂퐷个结论中所有正确的结论是( )A. B. C. D.①②①②③②④①②④二、填空题(本大题共3小题,共10.0分)17. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5 天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为______万人.18. 如图,数轴上点A表示的数为a,化简:푎+푎2−4푎+ 4 = ______.219. 如图,正△퐴퐵퐶的边长为2,顶点B、C在半径为的圆上,顶点A在圆内,将正△퐴퐵퐶绕点B逆时针旋转,当点A第一次落在圆上时,则点C运动的路线长为______,(结果保留휋)若A点落在圆上记做第1 次旋转,将△퐴퐵퐶绕点A逆时针旋转,当点C第一次落在圆上记做第2 次旋转,再绕C将△퐴퐵퐶逆时针旋转,当点B第一次落在圆上,记做第3 次旋转……,若此旋转下去,当△퐴퐵퐶完成第2018 次旋转时,BC边共回到原来位置______次.三、计算题(本大题共1小题,共8.0分)20. 在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1 的和的平方,减去这个数与1 的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9 + 1)2−(9−1)2] × 25 ÷ 9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是푎(푎≠0).请你帮小明完成这个验证过程.四、解答题(本大题共6小题,共60.0分)21. 如图:已知퐴퐵//퐶퐷,퐵퐶⊥퐶퐷,퐶퐷= 7,퐴퐵= 퐵퐶= 4,E是AD的中点,连接BE并延长交CD于点F.(1)请找出图中与BE相等的线段,并写出证明过程;(2)求BE的长.22. 今年5 月13 日是“母亲节”,某校开展“感恩母亲,做点家务”活动为了了解同学们在母亲节这一天做家务情况,学校随机抽查了部分同学,并用得到的数据制成如下不完整的统计表:做家务时间(小时)A组:0.5B组:1人数1530x所占百分比30%60%4% C组:1.5D组:2 3 6%合计y100%(1)统计表中的푥= ______,푦= ______;(2)小君计算被抽查同学做家务时间的平均数是这样的:−푥푥1 + 푥2 + 푥3+ … + 푥푛,第一步:计算平均数的公式是=푛第二步:该问题中푛= 4,푥= 0.5 푥= 1 푥= 1.5 푥= 2,,,4,1 2 3−0.5 + 1 + 1.5 + 24第三步:= = 1.25(小时)푥小君计算的过程正确吗?如果不正确,请你计算出正确的做家务时间的平均数;(3)现从C,D两组中任选2 人,求这2 人都在D组中的概率(用树形图法或列表法).23. 人在运动时的心跳速率通常和人的年龄有关.如果用a表示一个人的年龄,用b表示正常情况下这个人在运动时所能承受的每分心跳的最高次数,那么푏= 0.8(220−푎)(1)一个45 岁的人运动时10 秒心跳的次数为22 次,他______(填“有”或“无”)危险;(2)即将参加中考的两名同学的对话:甲同学:“我正常情况下在运动时所能承受的每分心跳的最高次数是164 次”,乙同学:“我正常情况下在运动时所能承受的每分心跳的最高次数才156 次”.请你判断甲乙两名同学谁的说法是错误的?并说明理由;(3)若一个人的年龄由a变为(푎+ 푥)(푥为正整数),发现正常情况下这个人在运动时所能承受的每分心跳的最高次数减少了12,用列方程的方法确定x.24. A、B两城相距900 千米,一辆客车从A城开往B城,车速为每小时80 千米,半小时后一辆出租车从B城开往A城,车速为每小时120 千米.设客车出发时间为푡(小时)(1)若客车、出租车距A城的距离分别为푦、푦,写出푦、푦均关于t的函数关系式;1 2 1 2(2)若两车相距100 千米时,求时间t;(3)已知客车和出租车在服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案,方案一:继续乘坐出租车到C城,C城距D60 千米,加油后立刻返回B城,出租车加油时间忽略不计;方案二:在D处换乘客车返回B城,试通过计算,分析小王选择哪种方式能更快到达B城?25. 如图,在矩形ABCD中,퐴퐵= 6,퐵퐶= 8,点P在线段AD上,由点D向点A运动,当点P与点A重合时,停止运动.以点P为圆心,PD为半径作⊙푃,⊙푃与AD交于点M点Q在⊙푃上且在矩形ABCD外,∠푄푃퐷= 120°(1)当푃퐷= 2 3时푃퐶= ______,扇形QPD的面积= ______,点C到⊙푃的最短距离= ______;(2) ⊙푃与AC相切时求PC的长?(3)如图⊙푃与AC交于点E、F当퐸퐹= 6.4时,求PD的长?(4)请从下面两问中,任选一道进行作答.①当⊙푃与△퐴퐵퐶有两个公共点时,直接写出PD的取值范围;②直接写出点Q的运动路径长以及BQ的最短距离.26. 已知:如图,点푂(0,0),퐴(−4,−1),线段AB与x轴平行,且퐴퐵= 2,抛物线l:푦= 푘푥2−2푘푥−3푘(푘≠0)(1)当푘= 1时,求该抛物线与x轴的交点坐标;(2)当0 ≤푥≤3时,求y的最大值(用含k的代数式表示);(3)当抛物线l经过点퐶(0,3)时,l的解析式为______,顶点坐标为______,点B______(填“是”或“否”)在l上;若线段AB以每秒2 个单位长的速度向下平移,设平移的时间为푡(秒)①若l与线段AB总有公共点,求t的取值范围:②若1 同时以每秒3 个单位长的速度向下平移,l在y轴及其右侧的图象与直线AB总有两个公共点,直接写出t的取值范围.答案和解析1.【答案】B【解析】解:|−3|> |−2|,∴−3< −2,故选:B.根据负数的绝对值越大负数反而小,可得答案.本题考查了有理数大小比较,利用负数的绝对值越大负数反而小是解题关键.2.【答案】B【解析】解:如图.∵∠퐴푂퐶= ∠2= 50°时,푂퐴//푏,∴要使木条a与b平行,木条a旋转的度数至少是70°−50°= 20°.故选:B.根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.3.【答案】C【解析】解:6.12 × 10−3= 0.00612,故选:C.绝对值小于1 的正数也可以利用科学记数法表示,一般形式为푎× 10−푛,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.本题考查用科学记数法表示较小的数,一般形式为푎× 10−푛,其中1 ≤|푎|< 10,n为由原数左边起第一个不为零的数字前面的0 的个数所决定.4.【答案】C【解析】解:∵32 = 9,42 = 16,∴3 < 10 < 4,∴10 +1在4 到5 之间.故选:C.应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.此题主要考查了估算无理数的能力,要求学生正确理解无理数的性质,进行估算,“夹逼法”是估算的一般方法,也是常用方法.5.【答案】D【解析】解:将正方体A向右平移2 个单位长度后,所得几何体的左视图和主视图不变,俯视图发生改变,故选:D.主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,难度一般.6.【答案】B【解析】【分析】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】푥 1 (푥+ 1)2解:原式= ( + ) ÷푥푥푥푥+ 1 푥= ⋅푥(푥+ 1)21= ,푥+ 1故选B.7.【答案】B【解析】解:如图是一个中心对称图形,则此图形的对称中心为:点B.故选:B.直接利用中心对称图形的性质得出对称中心.此题主要考查了中心对称图形,正确把握定义是解题关键.8.【答案】A【解析】解:由作图可知:点P在第二象限的角平分线上,∴3푎+ 푏+ 1 = 0,∴3푎= −푏−1,故选:A.由作图可知:点P在第二象限的角平分线上,点P的横坐标与纵坐标互为相反数,由此构建关系式即可解决问题.本题考查作图−基本作图,坐标与图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【解析】解:设每枚黄金重x两,每枚白银重y两,由题意得:9푥= 11푦{ ,(10푦+ 푥)−(8푥+ 푦)= 13故选:D.根据题意可得等量关系:①9枚黄金的重量= 11枚白银的重量;②(10枚白银的重量+1 枚黄金的重量)−(1枚白银的重量+8枚黄金的重量) = 13两,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.10.【答案】C【解析】解:①2的相反数是−2,正确;②−3的绝对值是3,正确;1③−的倒数是−2,错误;2④1的平方根是± 1,错误;所以得分是40 分,故选:C.根据平方根、相反数、倒数和绝对值解答即可.此题考查平方根,关键是根据平方根、相反数、倒数和绝对值解答.11.【答案】B【解析】解:如图所示,符合性质的点P共有9 个.故选:B.根据等腰三角形的判定和正方形的性质,分别以AB、BC、CD、DA为边作等边三角形,即可得到点P的位置,另外,正方形的中心也是符合条件的点.本题考查了等腰三角形的判定,正方形的性质,考虑利用等边三角形的性质求解是解题的关键,要注意正方形的中心也是符合条件的点.3【解析】解:正六边形的面积= 6 ×× (2푎)2 = 6 3푎2,4阴影部分的面积= 푎⋅2 3푎= 2 3푎2,∴空白部分与阴影部分面积之比是= 6 3푎2:2 3푎2 = 3:1,故选:C.求出正六边形和阴影部分的面积即可解决问题;本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.13.【答案】D【解析】解:∵(푚−푛)2 >푚2+ 푛2∴−2푚푛> 0,即푚푛< 0,∴푚≠0,,∴△= 푏2−4푚푛> 0,∴方程有两个不相等的实数根,.故选:D.利用(푚−푛)2 >푚2+ 푛2得到,푚≠0 푚푛< 0,则可判断△=푏2−4푚푛> 0,然后根据判别式的意义对各选项进行判断.本题考查了根的判别式:一元二次方程푎푥2 +푏푥+ 푐= 0(푎≠0)的根与△=푏2−4푎푐有如下关系:当△> 0时,方程有两个不相等的实数根;当△= 0时,方程有两个相等的实数根;当△< 0时,方程无实数根.14.【答案】C【解析】解:取AB的中点F,连接CF、OF.在푅푡△퐴퐵퐶中,∵∠퐴퐶퐵= 90°,∠퐵퐴퐶= 30°,퐵퐶=1,∴퐴퐵= 2퐵퐶= 2,∵∠퐴푂퐵= 90°,퐴퐹=퐹퐵,1∴푂퐹= 푂퐶= 퐴퐵=1,2∵푂퐶≤푂퐹+푂퐶,∴当O、F、C共线时,OC的值最大,最大值为2.故选:C.取AB的中点F,连接CF、푂퐹.首先求出푂퐹= 푂퐶= 1,根据三角形的三边关系可知:푂퐶≤푂퐹+ 푂퐶,推出当O、F、C共线时,OC的值最大,最大值为2.本题考查直角三角形斜边中线定理、坐标与图形的性质、三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考选择题中的压轴题.15.【答案】B6【解析】解:∵正比例函数푦= 푘푥与反比例函数푦= 的图象有一个交点퐴(2,푚),푥∴2푚= 6,解得:푚= 3,故A(2,3),则3 = 2푘,3解得:푘= ,23故正比例函数解析式为:푦= 푥,2∵퐴퐵⊥푥轴于点B,平移直线푦= 푘푥,使其经过点B,∴퐵(2,0),3∴设平移后的解析式为:푦= 푥+ 푏,2则0 = 3 + 푏,解得:푏= −3,3故直线l对应的函数表达式是:푦= 푥−3.2故选:B.首先利用图象上点的坐标特征得出A点坐标,进而得出正比例函数解析式,再利用平移的性质得出答案.此题主要考查了反比例函数与一次函数的交点问题,求得A,B点坐标是解题关键.16.【答案】D【解析】解:∵四边形ABCD是平行四边形,∴퐴퐵//퐶퐷,퐴퐵= 퐶퐷,∵퐸퐶垂直平分AB,1 1∴푂퐴= 푂퐵= 퐴퐵= 퐷퐶,퐶퐷⊥퐶퐸,2 2∵푂퐴//퐷퐶,퐸퐴퐸퐷퐸푂퐸퐶푂퐴퐶퐷1∴= = = ,2∴퐴퐸= 퐴퐷,푂퐸= 푂퐶,∵푂퐴= 푂퐵,푂퐸= 푂퐶,∴四边形ACBE是平行四边形,∵퐴퐵⊥퐸퐶,∴四边形ACBE是菱形,故正确,①∵∠퐷퐶퐸= 90°,퐷퐴=퐴퐸,∴퐴퐶= 퐴퐷= 퐴퐸,∴∠퐴퐶퐷= ∠퐴퐷퐶= ∠퐵퐴퐸,故正确,②∵푂퐴//퐶퐷,퐴퐸퐶퐹푂퐴퐶퐹1∴∴=== ,2퐴퐹퐴퐶퐴퐹퐵퐸1= ,故错误,③3设△퐴푂퐹的面积为a,则△푂퐹퐶的面积为2a,△퐶퐷퐹的面积为4a,△퐴푂퐶的面积=△퐴푂퐸的面积= 3푎,∴四边形AFOE的面积为4a,△푂퐷퐶的面积为6a∴푆四边形퐴퐹푂퐸:푆故选:D.= 2:3.故正确,④△퐶푂퐷根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可;本题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考常考题型.17.【答案】23.4【解析】解:将这5 天的人数排列如下:21.9、22.4、23.4、24.9、25.4,∴这五天游客数量的中位数为23.4万人,故答案为:23.4.根据中位数的定义求解可得.本题主要考查折线统计图,解题的关键是根据折线统计图得出具体数据及中位数的概念.18.【答案】2【解析】解:由数轴可得:0 < 푎< 2,则푎+ 푎2−4푎+ 4= 푎+ (2−푎)2= 푎+ (2−푎)= 2.故答案为:2.直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.此题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题关键.휋19.【答案】3 168【解析】解:如图,连接푂퐴′、OB、OC.∵푂퐵= 푂퐶= 2,퐵퐶= 2,∴△푂퐵퐶是等腰直角三角形,∴∠푂퐵퐶= 45°;同理可证:∠푂퐵퐴′= 45°,∴∠퐴′퐵퐶= 90°;∵∠퐴퐵퐶= 60°,∴∠퐴′퐵퐴= 90°−60°= 30°,∴∠퐶′퐵퐶= ∠퐴′퐵퐴= 30°,30휋× 2 휋∴当点A第一次落在圆上时,则点C运动的路线长为:= .180 3∵△퐴퐵퐶是三边在正方形퐶퐵퐴′퐶″上,BC边每12 次回到原来位置,2018 ÷ 12 = 168.166……,∴当△퐴퐵퐶完成第2018 次旋转时,BC边共回到原来位置168 次,휋故答案为:,168.3首先连接푂퐴′、OB、OC,再求出∠퐶′퐵퐶的大小,进而利用弧长公式问题即可解决.因为△퐴퐵퐶是三边在正方形퐶퐵퐴′퐶″上,BC边每12 次回到原来位置,2018 ÷ 12 = 168.166……,推出当△퐴퐵퐶完成第2018 次旋转时,BC边共回到原来位置168 次.本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题.20.【答案】解:(1)[(9 + 1)2−(9−1)2] × 25 ÷ 9= 18 × 2 × 25 ÷ 9= 100;(2)[(푎+ 1)2−(푎−1)2] × 25 ÷푎= 4푎× 25 ÷푎= 100.【解析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)根据题意列出关系式,化简得到结果,验证即可.此题考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)퐵퐸相等的线段为EF,理由如下:∵퐴퐵//퐶퐷∴∠퐴= ∠퐷,∵퐸是AD的中点,∴퐴퐸= 퐷퐸,且∠퐴= ∠퐷,∠퐴퐸퐵= ∠퐷퐸퐹∴△퐴퐵퐸≌△퐷퐹퐸(퐴푆퐴)∴퐵퐸= 퐸퐹(2) ∵△퐴퐵퐸≌△퐷퐹퐸∴퐴퐵= 퐷퐹= 4∵퐶퐷= 7,∴퐹퐶= 3,∵퐵퐶⊥퐶퐷,∴ 퐵퐹 = 퐵퐶2 +퐶퐹2 = 55∴ 퐵퐸 =2【解析】(1)由“ASA ”可证 △ 퐴퐵퐸≌ △ 퐷퐹퐸,可得퐵퐸 = 퐸퐹;(2)由全等三角形的性质퐴퐵 = 퐷퐹 = 4,可得퐶퐹 = 3,由勾股定理可求퐵퐹 = 5,即可求BE 的长.本题考查了全等三角形的判定和性质,勾股定理,熟练运用全等三角形的性质是本题的 关键.22.【答案】(1)2,50;(2)小君的计算过程不正确. 15 × 0.5 + 30 × 1 + 2 × 1.5 + 3 × 2被抽查同学做家务时间的平均数为: 50= 0.93(小时)被抽查同学做家务时间的平均数为0.93小时.(3)퐶组有两人,不妨设为甲、乙,D 组有三人,不妨设为:A 、B 、C ,列出树形图如下:共有 20 种情况,其中 2 人都在 D 组的按情况有:AB ,퐴퐶.퐵퐴,BC ,CA ,CB 共 6 种, 63∴ 2人都在 D 组中的概率为:푃 = = . 20 10【解析】解:(1)抽查的总人数为:15 ÷ 30% = 50(人), 푥 = 50 × 4% = 2(人) 푦 = 50 × 100% = 50(人) 故答案为:2,50; (2)见答案; (3)见答案. 【分析】该组人数(1)利用:某组的百分比 =× 100%,先计算出总人数,再求 x 、y ; 总人数(2)利用加权平均数公式计算做家务时间的平均数;(3)列出表格或树形图,把所有情况和在 D 组的情况都写出来,利用求概率的公式计算 出概率.本题考查了频数、频率的关系,概率的计算及列树形图或表格,难度不大.概率 = 所 求情况数与总情况数之比.23.【答案】无【解析】解:(1)将푎 = 45代入푏 = 0.8(220−푎), 得:푏 = 140(次),70140 ÷ 60 × 10 = > 22, 3 所以,此人没有危险. 故答案为:无; (2)乙的说法错误;甲的说法:当푏 = 164时,164 = 0.8(220−푎), 解得:푎 = 15,符合实际情况;乙的说法:当푏 = 156时,156 = 0.8(220−푎),解得:푎 = 25,不符合实际情况,所以,乙的说法错误; (3)由题意得:0.8(220−푎) + 12 = 0.8[220−(푎 + 푥)], 解得:푥 = 15, 所以:x 的值为 15.(1)将 45 代入代数式,求出一分钟能承受的最高次数,进而求出 10 秒钟能承受的最高 次数,比较即可解答.(2)根据题意,将 b 的值代入푏 = 0.8(220−푎),计算出 a 的值即可;(3)根据题意可得方程0.8(220−푎) + 12 = 0.8[220−(푎 + 푥)],再解出 x 的值即可. 此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系, 再设出未知数,列出方程.24.【答案】解:(1)由题意得,푦1 = 80푡,푦2 = 900−120(푡−0.5) = −120푡 + 960 ; (2)两车相距 100 千米,分两种情况:푦 −푦 = 100−120푡 + 960−80푡 = 100 ,① ,即 ,即 2 1 解得푡 = 4.3;푦 −푦 = 100 80푡−(−120푡 + 960) = 100 , ② 1 2 解得푡 = 5.3.综上所述,两车相距 100 千米时,时间为4.3或5.3小时;(3)两车相遇,即푦 = 푦 ,80푡 = −120푡 + 960,解得푡 = 4.8, 1 2 此时퐴퐷 = 80 × 4.8 = 384(千米),퐵퐷 = 900−384 = 516(千米). 푡 = (2 × 60 + 516) ÷ 120 = 5.3(小时 ; )方案一: 1 푡 = 516 ÷ 80 = 6.45(小时 . )方案二: 2 ∵ 푡 > 푡 , 2 1 ∴ 方案一更快.【解析】(1)根据路程 = 速度 × 时间,即可得出 1、 2关于 t 的函数关系式; 푦 푦 (2)分两种情况讨论: 푦 −푦 = 100; 푦 −푦 = 100,据此列方程解答即可; ① ② 12 1 2 (3)根据题意列方程解答即可.本题考查了一元一次方程的应用以及一次函数的应用,解题的关键根据数量关系找出方 程(或函数关系式).本题属于中档题,难度不大,但较繁琐,解决此类型题目时,根据数量关系列出方程(或函数关系式),再一步步的进行计算即可.25.【答案】4 3 4휋 2 3【解析】解:(1)如图 1,连接 PC ,QP ,PC 交 ⊙ 푃于 T , ∵ 矩 形 ABCD∴ ∠퐴퐷퐶 = 90°,퐶퐷 = 퐴퐵 = 6,퐴퐷 = 퐵퐶 = 8,在푅푡 △ 퐶퐷푃中,由勾股定理得:푃퐶 = 퐶퐷2 + 푃퐷2 = 62 + (2 3)2 = 4 3,∵ ∠푄푃퐷 = 120°,푃퐷 = 2 3120휋 ⋅ (2 3)2∴ 푆扇形푄푃퐷 = = 4휋360 퐶푇 = 퐶푃−푃푇 = 4 3−2 3 = 2 3故答案为:4 3, , ; 4휋 2 3(2)如图 2, ⊙ 푃与 AC 相切时,设切点为点 H , 连接 PH ,则푃퐻 ⊥ 퐴퐶, ∵ 四边形 ABCD 是矩形, ∴ ∠퐴퐷퐶 = 90°,在푅푡 △ 퐴퐷퐶中,퐴퐵 = 6,퐵퐶 = 8,∴ 퐴퐶 = 10, 3 在푅푡 △ 퐴퐷퐶中,sin ∠퐷퐴퐶 = ,5 设 ⊙ 푃半径为 x ,则푃퐻 = 푃퐷 = 푥,퐴푃 = 8−푥, 푃퐻퐴푃 푥在푅푡 △ 퐴퐻푃中,sin ∠푃퐴퐻 == , 8−푥푥3∴ = , 8−푥 5 ∴ 푥 = 3,在푅푡 △ 푃퐷퐶中,퐶퐷 = 6,푃퐷 = 3,∴ 푃퐶 = 3 5;(3)如图 3,过点 P 作푃퐻 ⊥ 퐴퐶,连接 PF ; 则∠푃퐻퐴 = ∠퐴퐷퐶 = 90°, ∵ ∠푃퐴퐻 = ∠퐷퐴퐶, ∴△ 퐴퐻푃∽ △ 퐴퐷퐶, 퐴푃 퐴퐶 푃퐻퐶퐷∴ = , 设 ⊙ 푃半径为 x ,则푃퐹 = 푃퐷 = 푥,퐴푃 = 8−푥, 3∴ 푃퐻 = (8−푥), 5在 ⊙ 푃中,퐹퐻 ⊥ 퐴퐶,퐸퐹 = 6.4, ∴ 퐻퐹 = 3.2,3在푅푡 △ 푃퐻퐹中,( (8−푥))2 + 3.22 = 푥2,5∴ 푥 = 4或푥 = −13(舍),∴ 푃퐷 = 4;(4)①如图 4,作푃′푀 ⊥ 퐴퐶于 M ,作푃″푁 ⊥ 퐵퐶于 N ,当푃′푀 = 푃′퐷时, ⊙ 푃′与 AC 相切,只有 1 个公共点,由(2)知,此时푃퐷 = 3, 当푃″푁 = 6时, ⊙ 푃″与 △ 퐴퐵퐶有 3 个公共点;当6 < 푃푁 ≤ 푃퐵时, ⊙ 푃与 △ 퐴퐵퐶有 3 个公共点;푃퐵2 = 퐴퐵2 +퐴푃2,퐴푃2 = (퐴퐷−푃퐷)225∴ 62 +(8−푃퐷)2 = 푃퐷2,解得:푃퐷 =4 25 综上所述,PD 的范围为:3 < 푃퐷 < 6或 < 푃퐷 ≤ 8; 4②如图 5, ∵ ∠푄푃퐷 = 120°,当点 P 与点 A 重合时,퐴푄 = 퐴퐷∴ 点 Q 的运动路径是线段 DQ ,∠퐷퐴푄 = 120°,∠퐴퐷푄 = ∠퐴푄퐷 = 30°,BQ 的最短距 离是点 B 到直线 CQ 的距离;过点 B 作퐵퐾 ⊥ 퐶푄于 K ,BK 交 AD 于 S ,过 A 作퐴퐿 ⊥ 퐶푄 于 L ,连接 BD ,AQ , ∵ 퐴퐿 ⊥ 퐶푄, ∴ ∠퐴퐿퐷 = ∠퐴퐿푄 = 90°,∵ 퐴푄 = 퐴퐷,퐴퐿 = 퐴퐿 ∴ 푅푡 △ 퐴퐷퐿≌푅푡 △ 퐴푄퐿∴ 퐷퐿 = 푄퐿,∠퐷퐴퐿 = ∠푄퐴퐿 = 60°, 퐷퐿 ∴ = sin ∠퐷퐴퐿,即:퐷퐿 = 퐴퐷 ⋅ sin ∠퐷퐴퐿 = 8푠푖푛60° = 4퐴퐷3 ∴ 퐷푄 = 2퐷퐿 = 8 3在푅푡 △ 퐵퐶퐷中,퐵퐷 = 퐵퐶2 + 퐶퐷2 =82 + 62 = 10 1设푆퐷 = 푚,则푆퐾 = 푚,퐴푆 = 8−푚 2∵ ∠퐴푆퐵 = ∠퐷푆퐾 = 90°−∠퐴퐷푄 = 90°−30° = 60°,∴ ∠퐴퐵푆 = 30°퐴푆∴ = tan ∠퐴퐵푆,即8−푚 = 6푡푎푛30°,解得:푚 = 8−2 3 퐴퐵1∴ 퐾푆 = (8−2 3) = 4− 3,퐵푆 = 2퐴푆 = 4 3 2∴ 퐵퐾 = 퐾푆 + 퐵푆 = 4− 3 + 4 3 = 3 3 + 4故点 Q 的运动路径长是8 (1)根据已知直接可求;3 , B Q 的最短距离是3 3 +4. (2) ⊙ 푃与AC 相切时,设切点为点H ,连接PH ,则푃퐻 ⊥ 퐴퐶,在푅푡 △ 퐴퐷퐶中,퐴퐵 = 6, 3퐵퐶 = 8,得퐴퐶 = 10;在푅푡 △ 퐴퐷퐶中,sin ∠퐷퐴퐶 = ,设 ⊙ 푃半径为 x ,则 5 푃퐻 퐴푃 푥푃퐻 = 푃퐷 = 푥,퐴푃 = 8−푥,在푅푡 △ 퐴퐻푃中,sin ∠푃퐴퐻 =푅푡 △ 푃퐷퐶中,퐶퐷 = 6,푃퐷 = 3,求得푃퐶 = 3 5;= ,可求푥 = 3,在 8−푥(3)过点 P 作푃퐻 ⊥ 퐴퐶,连接 PF ;则∠푃퐻퐴 = ∠퐴퐷퐶 = 90°,可证 △ 퐴퐻푃∽ △ 퐴퐷퐶,设 ⊙ 푃 3半径为 x ,则푃퐹 = 푃퐷 = 푥,퐴푃 = 8−푥,则푃퐻 = (8−푥),在 ⊙ 푃中,퐹퐻 ⊥ 퐴퐶, 53퐸퐹 = 6.4,퐻퐹 = 3.2,在푅푡 △ 푃퐻퐹中,( (8−푥))2 + 3.22 = 푥2,求得푃퐷 = 4; 5(4)①作푃푀 ⊥ 퐴퐶于 M ,作푃푁 ⊥ 퐵퐶于 N ,易知푃푀 = 푃퐷时, ⊙ 푃与 AC 相切,与 △ 퐴퐵퐶 只有一个公共点,푃푀 < 푃퐷时 ⊙ 푃与 △ 퐴퐵퐶没有公共点;当푃푁 = 푃퐷时, ⊙ 푃与 BC 相切, ⊙ 푃与 △ 퐴퐵퐶有三个公共点,当푃퐵 = 푃퐷时, ⊙ 푃与 △ 퐴퐵퐶有三个公共点;当 25푃퐵 < 푃퐷 ≤ 퐴퐷时, ⊙ 푃与 △ 퐴퐵퐶有且只有两个公共点;故3 < 푃퐷 < 6或 < 푃퐷 ≤ 8; 4 ②由 ∠푄푃퐷 = 120°,푃푄 = 푃퐷可得:∠퐴퐷푄 = 30°,即 Q 的路径是一条线段,且线段 DQ 位于 AD 上方,易求得퐷푄 = 8DQ 的最小值 = 3 3 +4;3 BQ ,的最短距离即点 B 到 DQ 的垂线段长度,可求得 本题考查圆的有关概念;熟练掌握圆中的相关概念,灵活运用直角三角形的知识解题是 关键.26.【答案】푦 = −푥2 +2푥 + 3 (1,4) 否【解析】解:(1)当푘 = 1时,该抛物线解析式푦 = 푥2−2푥−3 푦 = 0时,푥2−2푥−3 = 0,解得푥 = −1,푥 = 3, ,1 2 ∴ 该抛物线与 x 轴的交点坐标(−1,0),(3,0);−2푘2푘 (2)抛物线푦 = 푘푥2−2푘푥−3푘的对称轴直线푥 = − ∵ 푘 < 0,= 1, ∴ 푥 = 1时,y 有最大值,푦最大值 = 푘−2푘−3푘 = −4푘; (3)当抛物线经过点퐶(0,3)时, −3푘 = 3,푘 = −1,∴ 抛物线的解析式为푦 = −푥2 +2푥 + 3,顶点坐标(1,4), ∵ 퐴(−4,−1),线段 AB 与 x 轴平行,且퐴퐵 = 2, ∴ 퐵(−2,−1),将푥 = −2代入푦 = −푥2 +2푥+ 3 ∴ 点 B 不在 l 上, , 푦 = −5 ≠ −1,故答案为푦 = −푥2 +2푥+ 3 ,(1,4),否; ①设平移后퐵(−2,−1−2푡),퐴(−4,−1−2푡),当抛物线经过点 B 时,有푦 = −(−2)2 +2 × (−2)+ 3 = −5 当抛物线经过点 A 时,有푦 = −(−4)2 +2 × (−4)+ 3 = −21 ∵ 푙与线段 AB 总有公共点, ,, ∴ −21 ≤ −1−2푡 ≤ −5, 解得2 ≤ 푡 ≤ 10;②平移过程中,设퐶(0,3−3푡),则抛物线的顶点(1,4−3푡), ∵ 抛物线在 y 轴及其右侧的图象与直线 AB 总有两个公共点, −1−2푡 ≥ 3−3푡−1−2푡 < 4−3푡 { , 解得4 ≤ 푡 < 5.(1)当푘 = 1时,该抛物线解析式푦 = 푥2−2푥−3,푦 = 0时,푥2−2푥−3 = 0,解得푥1= −1,푥2 = 3,该抛物线与 x 轴的交点坐标(−1,0),(3,0);−2푘(2)抛物线푦 = 푘푥2−2푘푥−3푘的对称轴直线푥 = − = 1,当푘 > 0时,푥 = 3时,y 有最 2푘 푦 ,当 = 9푘−6푘−3푘 = 0 푘 < 0 时, 푥 = 1 푦时,y 有最大值,最大值大值, 最大值= 푘−2푘−3푘 = −4푘; (3)当抛物线经过点퐶(0,3)时,抛物线的解析式为푦 = −푥2 +2푥 + 3,顶点坐标(1,4), 퐴(−4,−1),将푥 = −2代入푦 = −푥2 +2푥 + 3,푦 = −5 ≠ −1,点 B 不在 l 上; ①设平移后퐵(−2,−1−2푡),퐴(−4,−1−2푡),当抛物线经过点 B 时,有푦 = −5,当抛物 线经过点 A 时,有푦 = −21,l 与线段 AB 总有公共点,则−21 ≤ −1−2푡 ≤ −5,解得 2 ≤ 푡 ≤ 10;−1−2푡 ≥ 3−3푡 −1−2푡 < 4−3푡 퐶(0,3−3푡),则抛物线的顶点(1,4−3푡),于是{②平移过程中,设 ,解得 4 ≤ 푡 < 5.本题考查了二次函数,熟练掌握二次函数图象的性质与平移规律是解题的关键.第 21 页,共 21 页中考数学二模试卷题号得分一二三四总分一、选择题(本大题共16 小题,共42.0 分)1.港珠澳大桥是中国第一例集桥、双人工岛、隧道为一体的跨海通道.其中海底隧道是由33 个巨型沉管连接而成,沉管排水总量约76000 吨.将数76000 用科学记数法表示为()A. 7.6×1042.使二次根式A. x>2B. 76×103有意义的x的取值范围是()B. x≥2C. x=2C. 0.76×105D. 7.6×105D. x≠23.下列图案中,是中心对称图形的为()A. B. C. D.4.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A. a+c>05.正多边形内角和为540°,则该正多边形的每个外角的度数为()A. 36°B. 72°C. 108°D. 360°B. |a|<|b|C. bc>1D. ac>06.如图,在⊙O中,AB是⊙O直径,∠BAC=40°,则∠ADC的度数是()A. 40°B. 50°C. 60°D. 90°7.如图,直线AB∥CD,直线EF分别与AB,CD交于点E,F,EG平分∠BEF,交CD于点G,若∠1=70°,则∠2 的度数是()A. 60°B. 55°C. 50°D. 45°8.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5 尺,将绳子对折再量木条,木条剩余1 尺,问木条长多少尺?”,设绳子长x尺,木条长y尺,根据题意所列方程组正确的是()A. B. C. D.9.如果m2+m-3=0,那么的值是()A. 2B. 3C. 4D. 510.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是()A. 6B. 9C. 21D. 2511.在平面直角坐标系中,直线y=-x+2 与反比例函数y= 的图象有唯一公共点,若直线y=-x+b与反比例函数y= 的图象有2 个公共点,则b的取值范围是()A. b>2B. -2<b<2C. b>2 或b<-2D. b<-212.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 513.将二次函数y=x2﹣6x+5 用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A. y=(x﹣6)2+5 C. y=(x﹣3)2﹣4B. y=(x﹣3)2+5 D. y=(x+3)2﹣914.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理的是()A. 与2017 年相比,2018 年年末全国农村贫困人口减少了1386 万人B. 2015~2018 年年末,与上一年相比,全国农村贫困发生率逐年下降C. 2015~2018 年年末,与上一年相比,全国农村贫困人口的减少量均超过1000 万D. 2015~2018 年年末,与上一年相比,全国农村贫困发生率均下降1.4 个百分点15.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:x y ……-131 2 33……-1 m有以下几个结论:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=-1;③方程ax2+bx+c=0 的根为0 和2;④当y>0 时,x的取值范围是x<0 或x>2;其中正确的是()A. ①④B. ②④C. ②③D. ③④16.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A. B.C. D.二、填空题(本大题共3 小题,共12.0 分)17.请写出两个大于2 而小于3 的无理数:______ .18.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为______.19.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,当点D第一次落在x轴上时,点D的坐标为:______;在运动过程中,点A的纵坐标的最大值是______;保持上述运动过程,经过(2014 ,)的正六边形的顶点是______.三、计算题(本大题共1 小题,共10.0 分)y= (x<0)与y=ax+b的图象交于点A(-1,n)和点B(-2,1).20.如图,函数(1)求k,a,b的值;(2)直线y=mx与y= (x<0)的图象交于点P,与y=-x+1 的图象交于点Q,当∠PAQ>90°时,直接写出m的取值范围.四、解答题(本大题共5 小题,共45.0 分)21.已知关于x的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一根为正数,求实数k的取值范围.22.如图,在△ABC中,∠ACB=90°,D为AB边上一点,连接CD,E为CD中点,连接BE并延长至点F,使得EF=EB,连接DF交AC于点G,连接CF.(1)求证:四边形DBCF是平行四边形;(2)若∠A=30°,BC=4,CF=6,求CD的长.23.中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000 名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200 名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100频数(人)频率0.050.15n103040m0.350.25 50根据所给信息,解答下列问题:(1)m=______,n=______;(2)补全频数分布直方图;(3)这200 名学生成绩的中位数会落在______分数段;(4)若成绩在90 分以上(包括90 分)为“优”等,请你估计该校参加本次比赛的3000 名学生中成绩是“优”等的约有多少人?。

2020年中考数学全真模拟试卷10套附答案(适用于安徽省合肥市)

2020年中考数学全真模拟试卷10套附答案(适用于安徽省合肥市)

第 7 页,共 15 页
由圆周角定理可知:∠ADB=90°,求出∠OAD 即可解决问题. 本题考查平行线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中 考常考题型.
6.【答案】D
【解析】解:∵不等式组
的解集是 x>-1,
①2m+1>m+2,即 m>1, ∴2m+1=-1 ∴m=-1,与 m>1 矛盾; ②当 2m+1<m+2 时,即 m<1, ∴m+2=-1 ∴m=-3, ∴m 值是-3. 故选:D.
中考数学一模试卷
题号 得分




总分
一、选择题(本大题共 10 小题,共 40.0 分) 1. - 的绝对值是( )
A.
B. -2
C. -
D. 2
2. 计算正确的是( )
A. (-5)0=0
B. x2+x3=x5
C. (ab2)3=a2b5 D. 2a2•a-1=2a
3. 2019 年两会政府工作报告指出:我们要切实把宝贵的资金用好,努力办好人民满 意的交于,托起明天的希望,今年财力虽然很紧张,国家财政性教育经费占国内生
17. 列方程或方程组解应用题: 《九章算术》中有这样一个问题:“五只雀、六只燕,共重 1 斤(等于 16 两), 雀重燕轻,互换其中一只,恰好一样重,问;每只燕、雀的重量各为多少?” 译文如下:有 5 只麻雀和 6 只燕子,一共重 16 两;5 只麻雀的重量超过 6 只燕子 的重量,如果互换其中的一只,重量恰好相等.则每只麻雀、燕子的平均重量分别 为多少两?
二、填空题(本大题共 4 小题,共 20.0 分) 11. 分解因式:(y+2x)2-x2=______. 12. 如图,点 C 是以 AB 为直径的半圆 O 的三等分点,AC=2,

2020年中考数学全真模拟试卷和答案

2020年中考数学全真模拟试卷和答案

友情提示:1.全卷共6页,考试时间120分钟(90分钟),满分120分。

. 2.请仔细审题,细心答题,相信你一定会有出色的表现! 3.参考公式:抛物线y =ax 2+bx +c的顶点坐标是⎪⎪⎭⎫ ⎝⎛--a4b ac 4a 2b 2,. 题 号 一 二 三总分1~10 11~16 1718 1920 21 22 23 24 得 分复评人一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。

请选出各题中一个最符合题意的选项 .1.﹣7的相反数是( ) A. -7 B .7 C.-71 D.71 2.计算3a ﹣2a 的结果是( )A . 1 B. -a C. a D. 5a 3.当分式23-x 有意义时,字母x 应满足( ) A .x=0 B. x ≠3 C. X=2 D.x ≠24.在直角三角形ABC 中,∠ACB=90°,CD 是斜边AB 上的中线,且BC=CD .则∠B=()A.30° B. 45 ° C .60° D.90°5.某中学七、八、九年级学生人数的比为5:4:3,若制成一个扇形统计图,则表示七年级人数的扇形的圆心角为()A. 60°B. 90°C. 120°D. 150°6.如图,下列水平放置的几何体中,左视图不是矩形的是()A.B.C.D.7.数据2,7,3,7,5,3,7的众数是()A.2B.3C.5D.78.如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论不正确的是()A. BC=2DEB. △ADE∽△ABCC.AEAD=ACAB D.S△ABC=3S△ADE9.如图,△ABC是圆O的内接三角形,且AB≠AC,∠ABC和∠ACB的平分线,分别交圆O于点D,E,且BD=CE,则∠A等于()A.90°B.60°C.45°D.30°10.如图,△DEF的边长分别为1,3,2,正六边形网格是由24个边长为2的正三角形组成,以这些正三角形的顶点为顶点画△ABC,使得△ABC∽△DEF.如果相似比ABDE=k,那么k的不同的值共有().A.1个B.2个C.3个D.4个二、填空题(本题有6小题,每小题4分,共24分)11.因式分解x2﹣49= _________ .12.某射击运动员在一次射击训练中五次击靶的成绩为7、7、8、9、9,为了解他射击成绩的稳定性,请你计算这组数据的方差:S2= _________ .13.如图,在△ABC中,D,E分别是AB和AC的中点,F是BC延长线上一点,CF=1,DF交CE于点G,且EG=CG,则BC= _________ .14.已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD的度数为_________ .15.一次函数y=kx+b的图象如图所示,则由图象可知关于x的方程kx+b=0的解为_________ .16.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF ,DCFE 是平行四边形,则图中阴影部分的面积为________.三、解答题(本题有8小题,共66分) 17.(本题6分)当x=3时,求代数式的值.18.(本题6分)已知x ,y 满足方程组:,求代数式x ﹣y 的值.19.(本题6分)如图,直线y=k 1x+b 与双曲线y=xk 2相交于A (1,2)、B (m ,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式; (3)观察图象,请直接写出不等式k 1x+b >xk 2的解集.20.(本题8分)如图,四边形ABCD 是矩形,对角线AC 、BD 相交于点O ,BE ∥AC 交DC 的延长线于点E . (1)求证:BD=BE ;(2)若∠DBC=30°,BO=4,求四边形ABED 的面积.21.(本题8分)在6张卡片上分别写有1~6的正数,随机的抽取一张后放回,再随机的抽取一张.(1)用列表法或树形图表示所有可能出现的结果;(2)记第一次取出的数字为a ,第二次取出的数字为b ,求ab是整数的概率.22.(本题10分)如图,AB是⊙O的直径,DF⊥AB于点D,交弦AC于点E,FC=FE.(1)求证:FC是⊙O的切线;(2)若⊙O的半径为5,cos∠ECF=,求弦AC的长.23.(本题10分)湖州市某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x(月)满足关系式y=﹣x+36,而其每千克成本y2(元)与销售月份x(月)满足的函数关系如图所示.(1)试确定b、c的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)“五•一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?24.(本题12分)已知:如图,在平面直角坐标系xOy中,点A(0,3),点B(1,0),点C(3,0),以点P为圆心的圆与y轴相切于点A,与x轴相交于B、C两点(点B在点C 的左边).(1)求经过A、B、C三点的抛物线的解析式和点P坐标;(2)求证:四边形ABCP是菱形,并求出菱形ABCP面积;(3)在(1)中的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积1.如果存在,请直接写出所有满足条件的M点的坐标;如果若不存在,请的2说明理由;(4)如果点D是抛物线上一动点(不与A,B,C重合),当∠BDC≧30°时,请直接写出所有满足条件的D 点的横坐标的范围.参考答案及评分意见一、选择题(每小题3分,共30分)1 2 3 4 5 6 7 8 9 10 BCDCDBDDCC二、填空题(每小题4分,共24分)11.(x+7)(x-7) 12.4/5 13.2 14.50° 15.X=-3 16. 6 三、解答题(本题有8小题,共66分) 17.-x 11…………………………………………………………………3分 -41. ……………………………………………………………………3分 18.解:方程组两个方程相减,得2x ﹣2y=﹣6,……………………3分所以2(x ﹣y )=﹣6,所以x ﹣y=﹣3.……………………3分 或x=-1,y=2……………3分, x ﹣y=﹣3.……………………3分19.(1)∵双曲线y=xk 2经过点A (1,2),∴k 2=2,2.∴双曲线的解析式为:y=x2上,∵点B(m,﹣1)在双曲线y=x∴m=﹣2,则B(﹣2,﹣1).由点A(1,2),B(﹣2,﹣1)在直线y=k1x+b上,得,解得,∴直线的解析式为:y=x+1.……………2分(2)∵在第三象限内y随x的增大而减小,故y2<y1<0,又∵y3是正数,故y3>0,∴y2<y1<y3.……………2分(3)由图可知x>1或﹣2<x<0.……………2分20,(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,………1分∵BE∥AC,∴四边形ABEC是平行四边形,………1分∴AC=BE,∴BD=BE;………2分(2)解:∵在矩形ABCD中,BO=4,∴BD=2BO=2×4=8,∵∠DBC=30°,∴CD=BD=×8=4,∴AB=CD=4,DE=CD+CE=CD+AB=4+4=8,……………2分在Rt△BCD中,BC===4,……………1分∴四边形ABED的面积=(4+8)×4=24.……………1分21.(1)列表得:(2,6)(3,6)(4,6)(5,6)(6,6)6 (1,6)(2,5)(3,5)(4,5)(5,5)(6,5)5 (1,5)(2,4)(3,4)(4,4)(5,4)(6,4)4 (1,4)(2,3)(3,3)(4,3)(5,3)(6,3)3 (1,3)(2,2)(3,2)(4,2)(5,2)(6,2)2 (1,2)(2,1)(3,1)(4,1)(5,1)(6,1)1 (1,1)1 2 3 4 5 6则可得共有36种等可能的结果;……………4分(2)∵是整数的有(1,1),(1,2),(1,3)(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3)(3,6),(4,4),(5,5),(6,6)共14种情况,……………2分∴是整数的概率为:.……………2分22.(1)证明:连接OC.∵FC=FE(已知),∴∠FCE=∠FEC(等边对等角);又∵∠AED=∠FEC(对顶角相等),∴∠FCE=∠AED(等量代换);……………2分∵OA=OC,∴∠OAC=∠OCA(等边对等角);∴∠FCE+∠OCA=∠AED+∠OAC;……………1分∵DF⊥AB,∴∠ADE=90°,∴∠FCE+∠OCA=90°,即FC⊥OC,∴FC是⊙O的切线;……………2分(2)解:连接BC.∵AB是⊙O的直径,⊙O的半径为5,∴∠ACB=90°(直径所对的圆周角是直角),AB=2OA=10,∴∠A+∠ABC=90°.……………2分∵DF⊥AB,∴∠A+∠AED=90°,∴∠A+∠ABC=∠A+∠AED,即∠ABC=∠AED;……………1分由(1)知,∠AED=∠FEC=∠ECF,∴BC=AB•cos∠ABC=AB•cos∠ECF=10×=4,∴AC===2.……………2分23.解:(1)由题意:……………2分 解得:;……………1分(2)y=y 1﹣y 2=﹣83x+36﹣(81x 2﹣815x+259) =﹣81x 2+23x+217;……………3分 (3)y=﹣81x 2+23x+217 ==﹣(x ﹣6)2+11……………2分∵a=﹣<0,∴抛物线开口向下,由函数图象知:在对称轴x=6左侧y 随x 的增大而增大, ∵由题意x <5,∴在4月份出售这种水产品每千克的利润最大,……………1分最大利润=﹣(4﹣6)2+11=10(元).……………1分24. (1)二次函数的解析式为:.……………1分点P(2,)……………1分(2)AP∥BC,AP=BC=2四边形ABCP是平行四边形……………1分AP=AB,四边形ABCP是菱形…………1分菱形ABCP面积23…………1分(3)∵点B(1,0),点P(2,),∴BP的解析式为:y=x﹣;则过点A平行于BP的直线解析式为:y=x+,过点C平行于BP的直线解析式为:y=x﹣3,从而可得①:x+=x2﹣x+,解得:x1=0,x2=7,从而可得满足题意的点M的坐标为(0,)、(7,8);…………2分②x﹣3=x2﹣x+,解得:x1=3,x2=4,从而可得满足题意的点M的坐标为:(3,0)、(4,)…………2分综上可得点M的坐标为(0,),(3,0),(4,),(7,).(4)0≦x≦1或3≦x≦4…………3分.。

2020年最新中考数学全真模拟预测试卷含详细解析

2020年最新中考数学全真模拟预测试卷含详细解析

一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.(3分)(2020最新模拟)算术平方根等于2的数是()A.4B.±4C.D.±x=3考点:算术平方根.分析:根据a(a≥0)的算术平方根就是平方是a的非负数,据此即可判断.解答:解:算术平方根等于2的数是22=4.故选:A.点评:本题考查了算术平方根的定义,正确理解定义是关键.2.(3分)(2020最新模拟)下列计算正确的是()A.2a+3b=5ab B.x3÷x2=x C.(m+n)2=m2+n2D.a2•a3=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;完全平方公式.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、不是同类项,不能合并,选项错误;B、正确;C、(m+n)2=m2+2mn+n2,选项错误;D、a2•a3=a5,选项错误.故选B.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3.(3分)(2020最新模拟)今年我区参加初中毕业、升学考试的学生有4993人,把4993保留两个有效数字,用科学记数法表示为()A.4.9×103B.5.0×103C.5.00×103D.49×102考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:4993=4.993×103≈5.0×103.故选B.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.4.(3分)(2020最新模拟)如图,Rt△ABC中,∠ACB=90°,DE经过点C且平行于AB,∠A=65°,则∠BCE的度数是()A.25°B.35°C.65°D.115°考点:平行线的性质.专题:探究型.分析:先根据三角形内角和定理求出∠B的度数,再由平行线的性质即可得出结论.解答:解:∵Rt△ABC中,∠ACB=90°,∠A=65°,∴∠B=90°﹣∠A=90°﹣65°=25°,∵DE∥AB,∴∠BCE=∠B=25°.故选A.点评:本题考查的是平行线的性质及三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.5.(3分)(2020最新模拟)下列图形中,即是中心对称图形又是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、是中心对称图形,不是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2020最新模拟)数据5,7,8,8,9,9的众数是()A.7B.8C.9D.8和9考点:众数.分析:一组数据中出现次数最多的数据叫做众数,结合数据进行判断即可.解答:解:5,7,8,8,9,9中,8和9出现的次数最多,故众数是8和9.故选D.点评:本题考查了众数的定义,属于基础题,注意一组数据的众数可能不止一个.7.(3分)(2012•德阳)使代数式有意义的x的取值范围是()A.x≥0B.C.x≥0且D.一切实数考点:二次根式有意义的条件;分式有意义的条件.分析:根据分式有意义的条件可得2x﹣1≠0,根据二次根式有意义的条件可得x≥0,解出结果即可.解答:解:由题意得:2x﹣1≠0,x≥0,解得:x≥0,且x≠,故选:C.点评:此题主要考查了分式有意义的条件,二次根式有意义的条件,二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.8.(3分)(2012•六盘水)已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:计算题.分析:根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可.解答:解:∵x﹣1≥0,∴x≥1,在数轴上表示不等式的解集为:,故选C.点评:本题考查了不等式的性质,解一元一次不等式,在数轴上表示不等式的解集等知识点的应用,注意:在数轴上表示不等式的解集时,包括该点,用“黑点”,不包括该点时,用“圆圈”.9.(3分)(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A.26 B.25 C.21 D.20考点:等腰梯形的性质;平行四边形的判定与性质.专题:压轴题.分析:由BC∥AD,DE∥AB,即可得四边形ABED是平行四边形,根据平行四边形的对边相等,即可求得BE的长,继而求得BC的长,由等腰梯形ABCD,可求得AB的长,继而求得梯形ABCD的周长.解答:解:∵BC∥AD,D E∥AB,∴四边形ABED是平行四边形,∴BE=AD=5,∵EC=3,∴BC=BE+EC=8,∵四边形ABCD是等腰梯形,∴AB=DC=4,∴梯形ABCD的周长为:AB+BC+CD+AD=4+8+4+5=21.故选C.点评:此题考查了等腰梯形的性质与平行四边形的判定与性质.此题比较简单,注意判定出四边形ABED是平行四边形是解此题的关键,同时注意数形结合思想的应用.10.(3分)(2011•衢州)一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为()A.B.C.D.考点:等腰直角三角形;圆周角定理.专题:证明题.分析:连接OB.根据圆周角定理求得∠AOB=90°;然后在等腰Rt△AOB中根据勾股定理求得⊙O的半径AO=OB=50m,从而求得⊙O的直径AD=100m.解答:解:连接OB.∵∠ACB=45°,∠ACB=∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠AOB=90°;在Rt△AOB中,OA=OB(⊙O的半径),AB=100m,∴由勾股定理得,AO=OB=50m,∴AD=2OA=100m;故选B.点本题主要考查了等腰直角三角形、圆周角定理.利用圆周角定理求直径的评: 长时,常常将直径置于直角三角形中,利用勾股定理解答.11.(3分)(2012•泰安)将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A . y =3(x+2)2+3B . y =3(x ﹣2)2+3C . y =3(x+2)2﹣3D . y =3(x ﹣2)2﹣3考点:二次函数图象与几何变换. 专题:探究型. 分析:直接根据“上加下减,左加右减”的原则进行解答即可. 解答: 解:由“上加下减”的原则可知,将抛物线y=3x 2向上平移3个单位所得抛物线的解析式为:y=3x 2+3;由“左加右减”的原则可知,将抛物线y=3x 2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.故选A .点评: 本题考查的是二次函数的图象与几何变换,熟知二次函数图象平移的法则是解答此题的关键.12.(3分)(2020最新模拟)一个几何体的三视图如图,其中主视图、左视图都是腰长为6、底边长为3的等腰三角形,则这个几何体的侧面展开图的面积为()A.3πB.πC.8πD.9π考点:圆锥的计算;由三视图判断几何体.分析:这个几何体有两个视图为三角形,那么可得是锥体,第3个视图是圆,那么这个几何体是圆锥,圆锥的侧面积=π×底面半径×母线长.解答:解:∵这个几何体有两个视图为三角形,∴这个几何体是锥体,∵第3个视图是圆,∴这个几何体是圆锥,底面半径是1.5,母线长为6,∴圆锥的侧面积为:π×1.5×6=9π,故选D.点评:考查圆锥的计算及由三视图判断几何体;判断出几何体的形状及相关数据是解决本题的关键.二、填空题(本大题共5个小题,每小题3分,共15分)请把每小题的答案填在答题卡的相应位置上.13.(3分)(2020最新模拟)计算:= .考点:二次根式的加减法.专题:计算题.分析:先把各二次根式化为最简二次根式得到原式=6×﹣2,然后合并同类二次根式即可.解答:解:原式=6×﹣2 =3﹣2=.故答案为.点评:本题考查了二次根式的加减法:先把各二次根式化为最简二次根式,然后合并同类二次根式.14.(3分)(2020最新模拟)分式方程=的解为x=3 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3(x﹣1)=2x,去括号得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(3分)(2020最新模拟)不等式组的非负整数解是0 .考点:一元一次不等式组的整数解.分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.解答:解:由不等式1﹣x>0得x<1,由不等式3x>2x﹣4得x>﹣4,所以其解集为﹣4<x<1,则不等式组的非负整数解是0.故答案为:0.点评:考查不等式组的解法及非负整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(3分)(2012•德州)若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是a≥﹣1 .考点:根的判别式;一元一次方程的定义;一元二次方程的定义.专题:压轴题.分析:当a=0时,方程是一元一次方程,方程的根可以求出,即可作出判断;当a≠0时,方程是一元二次方程,只要有实数根,则应满足:△≥0,建立关于a的不等式,求得a的取值范围即可.解答:解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则△=2﹣4a•a≥0,解得:a≥﹣1.故答案为:a≥﹣1.点评:此题考查了根的判别式,注意本题分a=0与a≠0两种情况讨论是解决本题的关键.并且利用了一元二次方程若有实数根则应有△≥0.17.(3分)(2020最新模拟)在等边三角形ABC中,点E在直线AB上,点D 在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为1或3 .考点:等边三角形的性质.专题:分类讨论.分析:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF﹣BC求出CF的长,即可得到CD的长;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.解答:解:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,可得∠EFB=90°,∵EC=ED,∴F为CD的中点,即CF=DF=CD,∵△ABC为等边三角形,∴∠ABC=60°,∴∠BEF=30°,∵BE=AB+BE=1+2=3,∴FB=EB=,∴CF=FB﹣BC=,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,可得∠EFC=90°,∵EC=ED,∴F为CD的中点,即CF=DF=CD,∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,∴∠BEF=30°,∵BE=AE﹣AB=2﹣1=1,∴FB=BE=,∴CF=BC+FB=,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或3点评:此题考查了等边三角形的性质,含30度直角三角形的性质,利用了分类讨论的思想,熟练掌握等边三角形的性质是解本题的关键.三、解答题(本大题共9个小题,共69分)解答应写出文字说明,证明过程或演算步骤,并将解答过程写在答题卡上每小题对应的答题区域内.18.(5分)(2020最新模拟)先化简,再求值:()÷,其中a=﹣2.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后再通分并利用同分母分式的减法法则计算得到最简结果,将a的值代入计算即可求出值.解答:解:原式=•﹣1=﹣1==﹣,当a=2﹣2时,原式=﹣=﹣=﹣.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.19.(6分)(2020最新模拟)如图,我区某中学计划用一块空地修建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,已知现有的板材可使新建的板墙的总长为24米.为方便学生出行,学校决定在与墙平行的一面开一个2米宽的门.求这个车棚的长和宽分别是多少米?考点:一元二次方程的应用.分析:设与墙垂直的一面为x米,然后可得另两面则为(24﹣2x+2)米,然后利用其面积为80列出方程求解即可.解答:解:设与墙垂直的一面为x米,另一面则为(24﹣2x+2)米根据题意得:x(26﹣2x)=80整理得:x2﹣14x+40=0解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去)当x=8时,26﹣2x=10<12答:这个车棚的长为10米,宽为8米.点评:本题考查了一元二次方程的应用,要结合图形求解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.20.(2020最新模拟)如图,已知“中国渔政310”船(A)在南海执行护渔任务,接到陆地指挥中心(P)命令,得知出事渔船(B)位于陆地指挥中心西南方向,位于“中国渔政310”船正南方向,“中国渔政310”船位于陆地指挥中心北偏西60°方向,距离为80海里的地方.而“中国渔政310”船最大航速为20海里/时.根据以上信息,请你求出“中国渔政310”船接到命令后赶往渔船出事地点最少需要多少时间(结果保留根号)?考点:解直角三角形的应用-方向角问题.分析:过点P作PD⊥AB于点D,先解Rt△APD,求出AD、PD的长,再解Rt△BDP,求得DB的长,从而得到AB=AD+BD,然后根据时间=路程÷速度即可可求得“中国渔政310”船赶往出事地点最少需要多少时间.解答:解:过点P作PD⊥AB于点D.在Rt△APD中,∵AP=80海里,∠APD=90°﹣60°=30°,∴AD=AP=40海里,PD=AD=40海里.在Rt△BDP中,PD=40海里,∠B=45°,∴BD=PD=40海里,∴AB=AD+BD=(40+40)海里,“中国渔政310”船接到命令后赶往渔船出事地点最少需要的时间为=2+2(小时).答:“中国渔政310”船接到命令后赶往渔船出事地点最少需要(2+2)小时.点评:此题考查了解直角三角形的应用﹣方向角问题,难度适中.通过作辅助线,构造直角三角形,并利用解直角三角形的知识求解是解答此题的关键.21.(6分)(2012•成都)某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为50 ,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为320 ;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.考点:频数(率)分布直方图;用样本估计总体;列表法与树状图法.专题:压轴题;图表型.分析:(1)把各时间段的学生人数相加即可;用全校同学的人数乘以40分钟以上(含40分钟)的人数所占的比重,计算即可得解;(2)列出图表,然后根据概率公式计算即可得解.解答:解:(1)8+10+16+12+4=50人,1000×=320人;(2)列表如下:共有12种情况,恰好抽到甲、乙两名同学的是2种,所以P(恰好抽到甲、乙两名同学)==.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力,列表法与树状图,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(6分)(2020最新模拟)如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b 的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b ﹣<0的解集(请直接写出答案).考点:反比例函数与一次函数的交点问题.专题:数形结合.分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B 坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB 面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.解答:解:(1)∵反比例函数y=(m≠0)过点B(1,﹣4),∴m=1×(﹣4)=﹣4,∴y=﹣,将x=﹣4,y=n代入反比例解析式得:n=1,∴A(﹣4,1),∴将A与B 坐标代入一次函数解析式得:,解得:,∴y=﹣x﹣3;(2)在直线y=﹣x﹣3中,当y=0时,x=﹣3,∴C(﹣3,0),即OC=3,∴S△AOB=S△AOC+S△COB =(3×1+3×4)=;(3)不等式kx+b ﹣<0的解集是﹣4<x<0或x>1.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,一次函数与坐标轴的交点,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.23.(7分)(2011•眉山)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;菱形的性质.专题:几何综合题;压轴题.分析:(1)根据菱形的性质得CD=AD,∠CDP=∠ADP,证明△CDP≌△ADP即可;(2)由菱形的性质得CD∥BA,可证△CPD∽△FPB,利用相似比,结合已知DP:PB=1:2,CD=BA,可证A为BF的中点,又PA⊥BF,从而得出PB=PF,已证PA=CP,把问题转化到Rt△PAB中,由勾股定理,列方程求解.解答:(1)证明:∵四边形ABCD为菱形,∴CD=AD,∠CDP=∠A DP,∴△CDP≌△ADP,∴∠DCP=∠DAP;(2)解:∵四边形ABCD为菱形,∴CD∥BA,CD=BA,∴△CPD∽△FPB,∴===,∴CD=BF,CP=PF,∴A为BF的中点,又∵PA⊥BF,∴PB=PF,由(1)可知,PA=CP,∴PA=PB,在Rt△PAB中,PB2=22+(PB)2,解得PB=,则PD=,∴BD=PB+PD=2.点评:本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是根据菱形的四边相等,对边平行及菱形的轴对称性解题.24.(2020最新模拟)如图,在矩形纸片ABCD中,AB=3,BC=4.把△BCD 沿对角线BD折叠,使点C落在E处,BE交AD于点F;(1)求证:AF=EF;(2)求tan∠ABF的值;(3)连接AC交BE于点G,求AG的长.考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;矩形的性质.分析:(1)由图形折叠的性质得出ED=DC,BE=BC,根据全等三角形的判定定理得出△AFB≌△EFD,由全等三角形的性质即可得出结论;(2)设AF=x,由AB=3,BC=BE=4,AF=EF可知BF=4﹣x,在Rt△ABF 中根据勾股定理可求出x的值,根据tan∠ABF即可得出结论;(3)由于四边形ABCD是矩形,所以∠BAD=90°,AD∥BC,再根据勾股定理求出AC 的长,由相似三角形的判定定理得出△AGF∽△CGB,所以=,设AG=m,则CG=5﹣m代入比例式即可得出m的值,进而得出结论.解答:(1)证明:∵△EBD是由△CBD折叠而得,∴ED=DC,BE=BC,∵四边形ABCD是矩形,∴AB=CD,∠BAD=∠BED=90°,∴ED=AB,∴∠ABF=∠EDF,∵在△AFB与△EFD中,,∴△AFB≌△EFD(ASA),∴AF=EF;(2)解:设AF=x,∵AB=3,BC=BE=4,AF=EF∴BF=4﹣x,∵∠BAF=90°∴AF2+AB2=BF2,∴x2+32=(4﹣x)2,∴x=,∴tan∠ABF===;(3)解:∵四边形ABCD是矩形,∴∠BAD=90°,AD∥BC;∴AC===5,∴△AGF∽△CGB,∴=,设AG=m,则CG=5﹣m,∴=,解得m=,即AG=.点评:本题考查的是相似三角形的判定与性质,涉及到全等三角形的判定与性质、矩形的性质及勾股定理,熟知以上知识是解答此题的关键.25.(2020最新模拟)4月20日8时2分,四川省雅安市芦山县发生了7.0级地震,当地的部分房屋严重受损,上万灾民无家可归,灾情牵动亿万中国人的心.某市积极筹集救灾物质260吨物资从该市区运往雅安甲、乙两地,若用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:车型运往地甲地(元/辆)乙地(元/辆)大货车720 800小货车500 650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.考点:一次函数的应用;一元一次方程的应用;一元一次不等式的应用.分析:(1)首先设大货车用x辆,则小货车用(20﹣x)辆,利用所运物资为260吨得出等式方程求出即可;(2)根据安排9辆货车前往甲地,前往甲地的大货车为a辆,得出小货车的辆数,进而得出w与a的函数关系;(3)根据运往甲地的物资不少于132吨,则16a+10(9﹣a)≥132即可得出a的取值范围,进而得出最佳方案.解答:解:(1)设大货车用x辆,则小货车用(20﹣x)辆,根据题意得16x+10(20﹣x)=260,解得:x=10,∴20﹣x=10.答:大货车用10辆,小货车用10辆.(2)由题意得出:w=720a+800(10﹣a)+500(9﹣a)+650=70a+13150,∴w=70a+13150(0≤a≤10且为整数).(3)由16a+10(9﹣a)≥132,解得a≥7.又∵0≤a≤10,∴7≤a≤10且为整数.∵w=70a+13150,k=70>0,w随a的增大而增大,∴当a=7时,w最小,最小值为W=70×7+13150=13640.答:使总运费最少的调配方案是:7辆大货车、2辆小货车前往甲地;3辆大货车、8辆小货车前往乙地.最少运费为13640元.点评:此题主要考查了一次函数的应用以及一元一次不等式的应用和最佳方案问题,此题综合性较强,难度较大,应注意最佳方案的选择.26.(2020最新模拟)如图,在直角坐标系中,⊙P与y轴相切于点C,与x 轴交于A(x1,0),B(x2,0)两点,其中x1,x2是方程x2﹣10x+16=0的两个根,且x1<x2,连接BC,AC.(1)求过A、B、C三点的抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q,使△QAC的周长最小?若存在求出点Q的坐标;若不存在,请说明理由;(3)点M在第一象限的抛物线上,当△MBC的面积最大时,求点M的坐标.考点:二次函数综合题.专题:综合题.分析:(1)连接PC,则PC⊥y轴,过点P作PE⊥AB于点E,分别求出A、B、C三点坐标,利用待定系数法求出抛物线解析式;(2)利用轴对称求最短路径的知识,可得连接BC,BC与对称轴的交点即是点Q的位置,求出点Q的坐标即可;(3)经过点M且与BC平行的直线,当这条直线与抛物线相切时,点M 到BC的距离最大,即此时△MBC的面积最大,求出点M的坐标即可.解答:解:(1)连接PC,∵⊙P与y轴相切于点C ∴PC⊥y轴,过点P作PE⊥AB于点E,x1,x2是方程x2﹣10x+16=0的两个根,解得:x1=2,x2=8,即点A的坐标为(2,0),点B的坐标为(8,0),∵PE⊥AB,∴AE=BE,∴AE=3,BE=3,∴OE=5,PC=PA=5,在Rt△APE中,PE==4,故可得点C的坐标为(0,﹣4),过A、B、C三点的抛物线的解析式为y=a(x﹣2)(x﹣8),将点C(0,﹣4)代入可得:﹣4=a(0﹣2)(0﹣8),解得:a=﹣,故抛物线解析式为y=﹣(x﹣2)(x﹣8)=﹣x2+x﹣4.(2)存在.连接BC,则BC与对称轴交点即是点Q的位置,设直线BC的解析式为y=kx+b,将点B、C的坐标代入可得:,解得:,故直线BC的解析式为y=x﹣4,抛物线的对称轴为x=﹣=5,将x=5代入直线BC解析式可得:y=﹣,故点Q的坐标为(5,﹣).(3)设平行BC且经过点M的直线解析式为y=x+m,联立直线与抛物线可得:x+m=﹣x2+x﹣4,即﹣x2+2x﹣4﹣m=0,△=4﹣4×(﹣)×(﹣4﹣m)=0,解得:m=0,则﹣x2+2x﹣4﹣m=0,可化为:﹣x2+2x﹣4=0,解得:x=4,将x=4代入直线解析式可得:y=2,故点Q的坐标为(4,2).点评:本题考查了二次函数的综合题,涉及了待定系数法求函数解析式、一元二次方程的解、垂径定理及三角形的面积,考察的知识点较多,同学们注意培养自己解答综合题的能力,将所学知识融会贯通.。

2020最新中考数学全真模拟试卷和答案

2020最新中考数学全真模拟试卷和答案

一、选择题(本大题每小题4分,满分24分)1.两个连续的正整数的积一定是()(A)素数;(B)合数;(C)偶数;(D)奇数.2.已知实数a、b在数轴上的位置如图所示,则下列等式成立的是()(A)a+b=a+b;(B)a+b=a-b;(C)b+1=b+1;(D)a+1=a+1.b O a13.下列关于x的方程一定有实数解的是()(A)x2+ax+1=0;(B)1+x=1;x-1x-1(C)x-3+2-x=m;(D)x2+ax-1=0.4.下列图形中,是中心对称图形的是()5.根据下表中关于二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的图像与x轴()x…-1012…4-24…则以D为圆心DC为半径的⊙D和以E为圆心EB为半径的⊙E的位置关系是y…-1-7-7(A)只有一个交点;(B)有两个交点,且它们分别在y轴两侧;(C)有两个交点,且它们均在y轴同侧;(D)无交点.6.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,DE∥BC,且AD=2CD,BE()C D A (A)外离;(B)外切;(第6题图)(C)相交;(D)不能确定.二、填空题(本大题每小题4分,满分48分)7.用代数式表示“a的相反数与b的倒数的和的平方”:.8.将a=-2-1,b=813,c=(-2π)0从小到大排列,并用不等号连接:. 9.若最简二次根式-22x与x2+1是同类二次根式,则x=.10.如果一个关于x的一元一次不等式组的解集在数轴上的表示如图所示,那么该不等式组的解集是.°-201°11.如果点P(m,1-2m)在第四象限,那么m的取值范围是.12.若反比例函数y=k(k≠0)的图像在第二、四象限,则一次函数y=kx+k的图x像经过象限.13.A(x,y)、B(x,y)是一次函数y=kx+2(k>0)图象上不同的两点,若1122t=(x-x)(y-y),则t0(填“<”或“>”或“≤”或“≥”).121214.正十二边形的中心角等于度.15.如图,在ABCD中,已知AB=9㎝,AD=6㎝,BE平分∠ABC交DC边AC于点 E ,则 DE 等于㎝.16.如图,在 ∆ABC 中,记 AB = a, AC = b ,则 BC = (用向量 a 、 b 来表示).17.如图,在矩形 ABCD 中,AD =4,DC =3,将△ADC 绕点 A 按逆时针方向旋转到△ AEF (点 A 、B 、E 在同一直线上) ,则 C 点运动的路线的长度为 .18.如图,EF 是△ABC 的中位线,将△AEF 沿中线 AD 的方向平移到 △A 1E 1F 1,使线段 E 1F 1 落在 BC 边上,若△AEF 的面积为 7cm 2,则图中阴影部分的面积是cm 2.E A 1FABaAbF EBC B E 1D F 1 C(第 18 题图)DECBA(第 16 题图) (第 17 题图)D(第 15 题图)三、解答题(第 19~22 题每题 10 分,第 23~24 题每题 12 分,第 25 题14 分,满分 78 分)19.先化简,再求值: x 2 - x - x 2 - x - 2 ,其中 x = 3x 3 - x 2x 2 + x⎨ 接测得。

2020年中考数学全真模拟试卷含答案(精选4套)

2020年中考数学全真模拟试卷含答案(精选4套)

2020年初中毕业生学业考试数学模拟试卷(一)【说明】1、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好.2、全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页。

考试时间90分钟,满分100分.3、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。

答题卡必须保持清洁,不能折叠.4、本卷选择题1—12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13—23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区规定范围内.5、考试结束,请将本试卷和答题卡一并交回.第一部分 选择题一、(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确..的) 1. -2的相反数是( ) A.21 212.“送人玫瑰,手留余香”,年轻的深圳有一批无私奉献的义工,截至2012年7月深圳注册义工达35000人,用科学计数法表示为( )A.3105.3⨯B. 4105.3⨯C. 31035⨯D. 51035.0⨯ 3.下图中既是中心对称图形,又是轴对称图形的是( )A B C D 4. 要摆出如图1所示的几何体,则最少需要( )个正方体. A .6个 个 个 个 5.下列运算正确的是( )俯视图 左视图 图1A.()222y x y x +=+ B.()422xy y x = C.()322xy xy y x =+ D.224x x x =÷6.已知点A ()1,2-+a a 在平面直角坐标系的第四象限内,则α的取值范围为 ( ) A.12<<-a B.12≤≤-a C.21<<-a D.21≤≤-a7.如图2,直线a ∥b ,∠1的度数是( ) ° ° ° °8.从一个袋中摸出一个球(袋中每一个球被摸到的可能性相等),恰为红球的概率为41,若袋中原有红球4个,则袋中球的总数大约是( )9.某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个.设甲种陀螺单价为x 元,根据题意列方程为( )A.40560006000+-=x x B.40560006000--=x x C.40560006000++=x xD.40560006000-+=x x 10.下列命题中错误的是( )A.两组对边分别相等的四边形是平行四边形B.正方形对角线相等C.对角线相等的四边形是矩形D.菱形的对角线互相垂直11.如图3,在矩形ABCD 中,动点P 从B 点以秒/1cm 速度出发,沿BC 、CD 、DA 运动到A 点停止,设点P 运动时间为x 秒,ABP ∆面积为y 2cm ,y 关于x 的函数图象如图4所示,则矩形ABCD 面积是( )2cmABC D P图3O2 7 9x5y图4ba1150°图2图512. 如图5,已知双曲线)0k (xky >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k 值是( ) D.23 第二部分 非选择题二、填空题(本题共4小题,每小题3分,共12分.) 13. 分解因式:=+-a a a 36323 .14.如图6,平行四边形ABCD 的周长是18cm ,对角线AC 、BD 相交于点O , 若△AOD 与△AOB 的周长差是5cm ,则边AB 的长是 cm.15. 二次函数6+2-=2x x y 的顶点坐标是 .16.如图7所示,在⊙○中,点A 在圆内,B 、C 在圆上,其中OA=7,BC=18, ∠A=∠B=60°,则tan OBC ∠=______.三、解答题(本题共7小题,其中第17小题6分,第18小题6分,第19小题7分,第20小题7分,第21小题8分,第22小题9分,第23小题9分,共52分.) 17.(本题6分)计算:()()︒--+-+-30sin 201312020131π18.(本题6分)先化简,再求值:121412-+÷⎪⎪⎭⎫ ⎝⎛-+-x x x x x ,其中2=x .图6OCBA图719.(本题7分)“地球一小时(Earth Hour )”是世界自然基金会(WWF )应对全球气候变化所提出的一项倡议,希望个人、社区、企业和政府在每年3月最后一个星期六20:30-21:30熄灯一小时,来唤醒人们对节约资源保护环境的意识.2013年,因为西方复活节的缘故,活动提前到2013年3月23日,在今年的活动中,关于南京电量不降反升的现象,有人以“地球一小时——你怎么看”为主题对公众进行了调查,主要有4种态度A :了解、赞成并支持 B :了解,忘了关灯 C :不了解,无所谓 D :纯粹是作秀,不支持,请根据图8中的信息回答下列问题: (1)这次抽样的公众有__________人; (2)请将条形统计图补充完整;(3)在扇形统计图中,“不了解,无所谓”部分所对应的圆心角是_________度;(4)若城区人口有300万人,估计赞成并支持“地球一小时”的有__________人.并根据统计信息,谈谈自己的感想.AB 30%DCA 人数/人DB C 50 态度图820.(本题7分)图9为学校运动会终点计时台侧面示意图,已知: 1=AB 米,5=DE 米,DC BC ⊥,︒60=∠︒30=∠BEC ADC ,.(1)求AD 的长度.(2)如图10,为了避免计时台AB 和AD 的位置受到与水平面成︒45角的光线照射,计时台上方应放直径是多少米的遮阳伞(即求DG 长度)21.(本题8分)如图11,E 是正方形ABCD 的边DC 上的一点,过A 作AF ⊥AE ,交CB 延长线于点F 。

2020年中考数学全真模拟试卷8套附答案(适用于湖北省武汉市)

2020年中考数学全真模拟试卷8套附答案(适用于湖北省武汉市)

中考数学调研试卷题号得分一二三总分一、选择题(本大题共10小题,共30.0分)1. 在数轴上,把表示-4 的点移动1 个单位长度后,所得到的对应点表示的数为()A. -2B. -6C. -3 或-5D. 无法确定2. 无论x取什么数,总有意义的分式是()A. B. C. D.3. 已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A. 8x2+13x﹣1B. ﹣2x2+5x+1C. 8x2﹣5x+1D. 2x2﹣5x﹣14. 社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100 分的为优胜者,则优胜者的频率是()分段数(分)人数(人)A. 35% 61~70 71~80 81~90 91~1001 19 22 18B. 30%C. 20%D. 10%5. 下列运算中,正确的是()A. (- )-1=-2B. a3•a6=a18C. 6a6÷3a2=2a3D. (-2ab2)2=2a2b46. 小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4 枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A. (-2,1)(-1,-2)B. (-1,1)C. (1,-2)D.7. 如图所示零件的左视图是()A.B.C.D.8. 某校在“爱护地球,绿化祖国”的创建活动中,组织了100 名学生开展植树造林活动,其植树情况整理如下表:植树棵树(单位:棵)人数(人)4 5 6 8 108 30 22 25 15则这100 名学生所植树棵树的中位数为()A. 4B. 5C. 5.5D. 69.要将9 个参加数学竞赛的名额分配给6 所学校,每所学校至少要分得一个名额,那么不同的分配方案共有()A. 56 种B. 36 种C. 28 种D. 72 种10.如图,点D在半圆O上,半径OB= ,AD=10,点C在弧BD上移动,连接AC,H是MC上一点,∠DHC=90°,连接BH,点C在移动的过程中,BH的最小值是()A. 5B. 6C. 7二、填空题(本大题共6小题,共18.0分)11.计算12.化简×=______=______.÷13.抛掷两枚均匀的正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),骰子朝上的面的数字分别为a,b,则a+b=6 的概率为______.14.如图,在直角梯形ABCD中,∠A=90°,AB=7,AD=2,BC=3,如果边AB上的一点P,使得以P,A,D为顶点的三角形和以P,B,C为顶点的三角形相似,则AP=______.15.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为______秒.16.已知m、n均为整数,当x≥0时,mx2+(mn+6)x+6n≤0恒成立,则m+n=______.三、解答题(本大题共8小题,共72.0分)17.解方程组:18.如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.(1)求证:△ADB≌△CDE;(2)求∠MDN的度数..19.甲、乙两人(1)填写表格:平均数5 场10 次投篮命中次数如图:众数中位数方差0.4甲乙8 88 9 3.2(2)①教练根据这5 个成绩,选择甲参加投篮比赛,理由是什么?②如果乙再投篮1 场,命中8 次,那么乙的投篮成绩的方差将会怎样变化?(“变大”“变小”或“不变”)20.某校两次购买足球和篮球的支出情况如表:足球(个)篮球(个)总支出(元)第一次第二次2532310500(1)求购买一个足球、一个篮球的花费各需多少元?(请列方程组求解)(2)学校准备给帮扶的贫困学校送足球、篮球共计60 个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000 元,那么最多可以购买多少个足球?21.如图,已知△BAC为圆O内接三角形,AB=AC,D为⊙O上一点,连接CD、BD,BD与AC交于点E,且BC2=AC•CE①求证:∠CDB=∠CBD;②若∠D=30°,且⊙O的半径为3+ ,I为△BCD内心,求OI的长.22.如图,点A(m,m+1),B(m+3,m-1)都在反比例函数y= 的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式;(3)将线段AB沿直线y=kx+b进行对折得到线段A B,且点A始终在直线OA上1 1 1,当线段A B与x轴有交点时,则b的取值范围为______(直接写出答案)1 123.如图,△ABC中,∠BAC=90°,∠ABC=45°,点D为AB延长线上一点,连接CD,∠AMC=90°,AM交BC于点N,∠APB=90°,AP交CD于点Q.(1)求证:AN=CQ;(2)如图,点E在BA的延长线上,且AD=BE,连接EN并延长交CD于点F,求证:DQ=EN;(3)在(2)的条件下,当3AE=2AB时,请直接写出EN:FN的值为______.24.如图,A(-1,0),B(4,0),C(0,3)三点在抛物线y=ax2+bx+c上,D为直线BC上方抛物线上一动点,E在CB上,∠DEC=90°(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,F为AB的中点,连接CF,CD,当△CDE中有一个角与∠CFO相等时,求点D的横坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:∵表示-4 的点移动 1 个单位长度, ∴所得到的对应点表示为-5 或-3. 故选:C .讨论:把表示-4 的点向左移动 1 个单位长度或向右移动 1 个单位长度,然后根据数轴表 示数的方法可分别得到所得到的对应点表示的数.本题考查了数轴:数轴的三要素(正方向、原点和单位长度);数轴上原点左边的点表 示负数,右边的点表示正数;左边的点表示的数比右边的点表示的数要小.也考查了分 类讨论的思想.2.【答案】C【解析】解:A .,x 3+1≠0,x ≠-1,,(x +1)2≠0,x ≠-1, ,x 2+1≠0,x 为任意实数,B .C .D . ,x 2≠0,x ≠0;故选:C .按照分式有意义,分母不为零即可求解.本题考查的是分式有意义的条件,按照分式有意义,分母不为零即可求解3.【答案】D【解析】【分析】此题考查了整式的加减,熟练掌握运算法则是解本题的关键. 根据和减去一个加数等于另一个加数,计算即可得到结果. 【解答】解:根据题意得:(5x 2+4x -1)-(3x 2+9x )=5x 2+4x -1-3x 2-9x =2x 2-5x -1. 故选 D .4.【答案】B【解析】解:优胜者的频率是 18÷(1+19+22+18)=0.3=30%, 故选:B .首先根据表格,计算其总人数;再根据频率=频数÷总数进行计算. 本题考查频率、频数的关系:频率=频数÷数据总和.5.【答案】A【解析】【分析】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键,直接利用整式的 乘除运算法则以及积的乘方运算法则分别计算得出答案. 【解答】解:A 、(- )-1=-2,正确;B、a3•a6=a9,故此选项错误;C、6a6÷3a2=2a4,故此选项错误;D、(-2ab2)2=4a2b4,故此选项错误;故选A.6.【答案】B【解析】解:棋盘中心方子的位置用(-1,0)表示,则这点所在的横线是x轴,右下角方子的位置用(0,-1),则这点所在的纵线是y轴,则当放的位置是(-1,1)时构成轴对称图形.故选:B.首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.本题考查了轴对称图形和坐标位置的确定,正确确定x轴、y轴的位置是关键.7.【答案】B【解析】解:如图所示零件的左视图是:.故选:B.根据已知几何体可得,左视图为一个矩形里有一条横向的实线.本题考查了简单几何体的三视图;用到的知识点为:主视图,俯视图,左视图分别是从正面看,从上面看,从左面看得到的平面图形.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.8.【答案】B【解析】解:因为共有100 个数,把这组数据从小到大排列,最中间两个数的平均数是第50 个数和第51 个数的平均数,所以中位数是(5+5)÷2=5.故选:B.利用中位数的定义求得中位数即可.本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.9.【答案】A【解析】解:可以利用9 个人站成一排,每所学校至少要1 名,就有8 个空,然后插入5 个板子把他们隔开,=56,从8 个里选5 个,就是C85=故选:A.可以将问题转化为9 个人站成一排,每所学校至少要1 名,就有8 个空然后插入5 个板子把他们隔开,从8 个里选5 个即可答案.本题主要考查了排列组合的应用即挡板法的运用,利用等价转化是解题的关键.10.【答案】D【解析】解:如图,取AD的中点M,连接BD,HM,BM.∵DH⊥AC,∴∠AHD=90°,∴点H在以M为圆心,MD为半径的⊙M上,∴当M、H、B共线时,BH的值最小,∵AB是直径,∴∠ADB=90°,∴BD= BM==12,= =13,∴BH的最小值为BM-MH=13-5=8.故选:D.如图,取AD的中点M,连接BD,HM,BM.由题意点H在以M为圆心,MD为半径的⊙M上,推出当M、H、B共线时,BH的值最小;本题考查点与圆的位置关系、勾股定理、圆周角定理等知识,解题的关键是学会添加常用辅助线,利用辅助线=圆解决问题,属于中考选择题中的压轴题.11.【答案】【解析】解:原式= ××==故答案为:根据二次根式的运算法则即可求出答案.本题考查二次根式运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.12.【答案】x+1【解析】解:原式=•(x+1)(x-1)÷==x+1,故答案为:x+1.先将除式的分母因式分解,再将除法转化为乘法,最后约分即可得.本题主要考查分式的乘除法,解题的关键是熟练掌握分式乘除法的运算法则.13.【答案】【解析】解:由树状图可知共有6×6=36种可能,骰子朝上的面的数字和为6 的有5 种,所以概率是.列举出所有情况,让a+b=6 的情况数除以总情况数即为所求的概率.用到的知识点为:概率=所求情况数与总情况数之比.14.【答案】1 或6 或【解析】解:可设PA的长为x,假设△APD∽△BPC,则= ,即= ,解得x= ;当△APD∽△BCP时,则= ,即= ,解得x=1 或x=6.故答案为或1 或6.要使两个三角形相似,则可能是△APD∽△BPC,也可能是△APD∽△BCP,所以应分两种情况讨论,进而求解AP的值即可.本题主要考查了相似三角形的判定及性质问题,能够利用其性质求解一些简单的计算问题.15.【答案】7 或25【解析】解:如图,作AD⊥BC,交BC于点D,∵BC=8cm,∴BD=CD= BC=4cm,∴AD= =3,分两种情况:当点P运动t秒后有PA⊥AC时,∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,∴PD2+32=(PD+4)2-52∴PD=2.25,∴BP=4-2.25=1.75=0.25t,∴t=7 秒,当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25 秒,∴点P运动的时间为7 秒或25 秒.根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:①PA⊥AC②PA⊥AB,从而可得到运动的时间.本题利用了等腰三角形的性质和勾股定理求解.16.【答案】-7 或-5【解析】解:∵当x≥0时,(mx+6)(x+n)≤0恒成立,∴抛物线y=(mx+6)(x+n)即y=mx2+(6+mn)+6n与x轴只有一个交点,且开口方向向下,∴m<0,△=(6+mn)2-24mn≤0,∴(6-mn)2≤0,则6=mn,∵m、n均为整数,且m<0,∴m=-1,n=-6;m=-2,n=-3;m=-3,n=-2;m=-6,n=-1,∴m+n=-7 或m+n=-5,故答案是:-7 或-5.根据题意可知抛物线y=(mx+6)(x+n)与x轴最多一个交点,且开口方向向下,由此求得整数m、n的值即可.考查了抛物线与x轴的交点,解题的关键是熟悉抛物线的开口方向和抛物线与x轴交点情况.17.【答案】解:,②×3-①×4得:2x=-10解得:x=-5,把x=-5 代入①得:y=-7,所以方程组的解为:【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】解:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°,在△ABD与△CDE中,,∴△ABD≌△CDE(SAS);(2)∵△ABD≌△CDE,∴∠BAD=∠DCE,AB=CE,∵M、N分别是AB、CE的中点,∴AM= AB,CN= CE,∴AM=CN,在△ADM和△CDN中,,∴△ADM≌△CDN(SAS),∴∠ADM=∠CDN,∵∠CDN+∠ADN=90°,∴∠ADM+∠ADN=90°,∴∠MDN=90°.【解析】(1)由垂直的定义得到∠ADB=∠ADC=90°,根据已知条件即可得到结论;(2)根据全等三角形的性质得到∠BAD=∠DCE,根据直角三角形的性质得到AM=CN,由△ADM≌△CDN,可得∠ADM=∠CDN,再根据∠CDN+∠ADN=90°,可得∠ADM+∠ADN=90°,即可得出∠MDN=90°.本题考查了全等三角形的判定和性质,直角三角形斜边上中线的性质,熟练掌握全等三角形的性质定理是解题的关键.19.【答案】解:(1)甲5 次的成绩是:8,8,7,8,9;则众数为8;乙5 次的成绩是:5,9,7,10,9;则中位数为9;(2)①∵S2=0.4<S2=3.2,甲乙∴甲的成绩稳定,故选甲;②如果乙再投篮1 场,命中8 次,那么乙的投篮成绩的方差将会变小.【解析】本题考查了方差、中位数、众数以及平均数,掌握各个量的定义以及计算方法是解题的关键.(1)根据众数、中位数的定义进行填空即可;(2)①根据方差可得出数据的波动大小,从而得出甲稳定;②根据方差的公式进行计算即可.20.【答案】解:(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得解得:,.答:购买一个足球和一个篮球的花费各需要80 和50 元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1-10%)×50(60-a)≤4000,解得:a≤,又∵a为正整数,∴a的最大值为30.答:最多可以购买30 个足球.【解析】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),根据购买甲种足球数量是购买乙种足球数量的2 倍列出方程解答即可;(2)设这所学校再次购买y个乙种足球,根据题意列出不等式解答即可本题考查了二元一次方程组的一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.21.【答案】①证明:∵BC2=AC•CE,∴= ,又∵AB=AC,∴∠BCE=∠ABC,∴△BCE∽△ACB,∴∠CBD=∠A,∵∠A=∠CDB,∴∠CDB=∠CBD.②解:连接 OB 、OC ,∵∠A =30°,∴∠BOC =2∠A =2×30°=60°,∵OB =OC ,∴△OBC 是等边三角形,∵CD =CB ,I 是△BCD 的内心,∴OC 经过点 I ,设 OC 与 BD 相交于点 F ,则 CF =BC ×sin30°= BC ,BF =BC •cos30°= BC ,所以,BD =2BF =2× BC = BC ,设△BCD 内切圆的半径为 r ,则 S △BCD = BD •CF = (BD +CD +BC )•r ,即 • BC • BC = ( BC +BC +BC )•r ,解得 r =即 IF = BC = BC , BC ,所以,CI =CF -IF = BC - BC =(2- )BC ,OI =OC -CI =BC -(2- )BC =( -1)BC ,∵⊙O 的半径为 3+ ∴BC =3+ ∴OI =( -1)(3+ )=3 +3-3- =2 ,,.【解析】①先求出 = ,然后求出△BCE 和△ACB 相似,根据相似三角形对应角相等可 得∠A =∠CBE ,再根据在同圆或等圆中,同弧所对的圆周角相等可得∠A =∠CDB ,然后求 出∠CDB =∠CBD ;②连接 OB 、OC ,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的 2 倍求出 ∠BOC =60°,然后判定△OBC 是等边三角形,再根据等腰三角形三线合一的性质以及三 角形的内心的性质可得 OC 经过点 I ,设 OC 与 BD 相交于点 F ,然后求出 CF ,再根据 I 是三角形的内心,利用三角形的面积求出 IF ,然后求出 CI ,最后根据 OI =OC -CI 计算 即可得解.本题是圆的综合题型,主要考查了相似三角形的判定与性质,等腰三角形的判定与性质 ,圆周角定理,等边三角形的判定与性质,三角形的内心的性质,(2)作辅助线构造 出等边三角形并证明得到 OC 经过△BCD 的内心 I 是解题的关键.22.【答案】 ≤b ≤【解析】解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y= 的图象上.∴m(m+1)=(m+3)(m-1)=k.解得:m=3,k=12.∴m、k的值分别为3、12.(2)设点M的坐标为(m,0),点N的坐标为(O,n).①若AB为平行四边形的一边.Ⅰ.点M在x轴的正半轴,点N在y轴的正半轴,连接BN、AM交于点E,连接AN、BM,如图1,∵四边形ABMN是平行四边形,∴AE=ME,NE=BE.∵A(3,4)、B(6,2)、M(m,0)、N(0,n),∴由中点坐标公式可得:x== ,y E= = .E∴m=3,n=2.∴M(3,0)、N(0,2).设直线MN的解析式为y=kx+b.则有解得:.∴直线MN的解析式为y=- x+2.Ⅱ.点M在x轴的负半轴,点N在y轴的负半轴,连接BM、AN交于点E,连接AM、BN,如图2,同理可得:直线MN的解析式为y=- x-2.②若AB为平行四边形的一条对角线,连接AN、BM,设AB与MN交于点F,如图3,同理可得:直线MN的解析式为y=- x+6,此时点A、B都在直线MN上,故舍去.综上所述:直线MN的解析式为y=- x+2 或y=- x-2.(3)①当点B1 落到x轴上时,如图4,设直线OA的解析式为y=ax,∵点A的坐标为(3,4),∴3a=4,即a= .∴直线OA的解析式为y= x.∵点A1 始终在直线OA上,∴直线y=kx+b与直线OA垂直.∴k=-1.∴k=- .由于BB∥OA,因此直线BB可设为y= x+c.1 1∵点B的坐标为(6,2),∴×6+c=2,即c=-6.∴直线BB1 解析式为y= x-6.当y=0 时,x-6=0.则有x= .∴点B1 的坐标为(,0).∵点C是BB1 的中点,∴点C的坐标为(,)即(,1).∵点C在直线y=- x+b上,∴- ×+b=1.解得:b= .②当点A1 落到x轴上时,如图5,此时,点A1 与点O重合.∵点D是AA的中点,A(3,4),A(0,0),1 1∴D(,2).∵点D在直线y=- x+b上,∴- ×+b=2.解得:b= .综上所述:当线段A B与x轴有交点时,则b的取值范围为≤b≤.1 1故答案为:≤b≤.(1)由题可得m(m+1)=(m+3)(m-1)=k,解这个方程就可求出m、k的值.(2)由于点A、点B是定点,可对线段AB进行分类讨论:AB是平行四边形的边、AB 是平行四边形的对角线,再利用平行四边形的性质、中点坐标公式及直线的相关知识就可解决问题.(3)由于点A关于直线y=kx+b的对称点点A1 始终在直线OA上,因此直线y=kx+b必与直线OA垂直,只需考虑两个临界位置(A在x轴上、B在x轴上)对应的b的值,1 1就可以求出b的取值范围.本题考查了反比例函数图象上点的坐标特征、用待定系数法求一次函数的解析式、平行四边形的性质、轴对称的性质、中点坐标公式[若点A(a,b)、B(c,d),则线段AB 的中点坐标为(,)]等知识,本题还考查了分类讨论的思想方法,是一道好题.23.【答案】25:3【解析】解:(1)证明:∵∠APB=90°∴∠APN=∠CPQ=90°,∴∠PNA+∠NAP=∠NAP+∠CQP=90°,∴∠PNA=∠CQP,∵AB=AC,∠BAC=90°,∴AP=PC,∴△APN≌△CPQ(ASA),∴AN=CQ;(2)证明:如图2,连接BQ,由(1)知:AP是BC的垂直平分线,∴BQ=CQ,∵AN=CQ,∴AN=BQ,∵BQ=BC,∴∠QBC=∠QCB=∠NAP,∵∠PBA=∠PAB=45°,∴∠QBA=∠BAN,∴∠DBQ=∠NAE,∵BD=AE,∴△DBQ≌△EAN(SAS),∴DQ=EN;(3)∵3AE=2AB,∴设AE=2x,AB=3x,则BD=2x,DC= x,如图3,过E作EH⊥AM,交MA的延长线于H,∴∠H=∠AMD=90°,∴EH∥DC,∴∠HEA=∠CDA,∴△AHE∽△AMD,∴= = = ,∵∠MAC=∠CDA,∠ACN=∠DAQ=45°,∴△DQA∽△ANC,∴,由(2)知:CQ=AN,∴,∴AN=CQ= x,S△ADC= ,,AM= ,∴= ,∴设AH=8m,AM=20m,AN=17m,则MN=3m,∵EH∥FM,∴△EHN ∽△FMN ,∴ = = = .故答案为:25:3.(1)利用 ASA 证明△APN ≌△CPQ ,可得 AN =CQ ;(2)如图 2,连接 BQ ,证明△DBQ ≌△EAN (SAS ),可得 DQ =EN ;(3)设 AE =2x ,AB =3x ,则 BD =2x ,DC = 角形,证明△AHE ∽△AMD 和△DQA ∽△ANC ,得 AN =17m ,再证明△EHN ∽△FMN ,可得结论.x ,作辅助线,构建直角三角形和相似三 = ,设 AH =8m ,AM =20m , 此题是相似形综合题,主要考查了等腰直角三角形的判定和性质,全等三角形的判定和 性质,相似三角形的性质和判定,解本题的关键是利用比例的条件设未知数表示一些线 段的长,作出辅助线是解本题的难点,是一道比较难的中考常考题.24.【答案】解:(1)由题意,得 ,解得 ,抛物线的函数表达式为 y =- x 2+ x +3;(2)设直线 BC 的解析是为 y =kx +b , ,解得 ,∴y =- x +3,设 D (a ,- a 2+ a +3),(0<a <4),过点 D 作 DM ⊥x 轴交 BC 于 M 点,如图 1 ,M (a ,- a +3),DM =(- a 2+ a +3)-(- a +3)=- a 2+3a ,∵∠DME =∠OCB ,∠DEM =∠BOC ,∴△DEM ∽△BOC ,∴,∵OB=4,OC=3,∴BC=5,∴DE= DM∴DE=- a2+ a=- (a-2)2+ ,当a=2 时,DE取最大值,最大值是,(3)假设存在这样的点D,△CDE使得中有一个角与∠CFO相等,∵点F为AB的中点,∴OF= ,tan∠CFO= =2,过点B作BG⊥BC,交CD的延长线于G点,过点G作GH⊥x轴,垂足为H,如图2 ,①若∠DCE=∠CFO,∴tan∠DCE= =2,∴BG=10,∵△GBH∽BCO,∴= = ,∴GH=8,BH=6,∴G(10,8),设直线CG的解析式为y=kx+b,∴,解得,∴直线CG的解析式为y= x+3,∴,解得x= ,或x=0(舍).②若∠CDE=∠CFO,同理可得BG= ,GH=2,BH= ,∴G(,2),同理可得,直线CG的解析是为y=-x+3,∴,解得x= 或x=0(舍),综上所述,存在点D,使得△CDE中有一个角与∠CFO相等,点D的横坐标为或.【解析】(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得DM,根据相似三角形的判定与性质,可得DE的长,根据二次函数的性质,可得答案;(3)根据正切函数,可得∠CFO,根据相似三角形的性质,可得GH,BH,根据待定系数法,可得CG的解析式,根据解方程组,可得答案.本题考查了二次函数的综合题:熟练掌握二次函数的性质、二次函数图象上点的坐标特征和三角形的外心性质;会利用待定系数法求函数解析式;会利用相似三角形的性质表示线段之间的关系,从而构建一元二次方程;理解坐标与图形性质.九年级四月调考数学试卷(一)题号得分一二三总分一、选择题(本大题共10 小题,共30.0 分)1.下列四个数中,是正整数的是()A. -1B. 0C.D. 12.若代数式A. x≠-3在实数范围内有意义,则实数x的取值范围是()B. x=-3C. x<-3D. x>-33.一组数据2,4,6,4,8 的中位数为()A. 2B. 4C. 6D. 84.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A. B. C. D.5.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.6.在一只不透明的口袋中装有标号为1,2,3 的3 个球,这些球除标号外其他都相同,甲、乙按先后顺序从袋中各摸出一个球(不放回),摸到1 号球者胜出,则乙胜出的概率是()A. B. C. D.7.若二元一次方程组的解为,则a-b=()A. 1B. 3C.D.8.观察“田”字中各数之间的关系:则a+d-b-c的值为()A. 52B. -52C. 51D. 519.将函数y=x2-2x(x≥0)的图象沿y轴翻折得到一个新的图象,前后两个图象其实就是函数y=x2-2|x|的图象,关于x的方程x2-2|x|=a,在-2<x<2 的范围内恰有两个实数根时,a的值为()A. 1B. 0C.D. -1=.若BD=2,CD=610.如图,AB是⊙O的直径,BC是⊙O的弦,则BC的长为()A. B. C. D.二、填空题(本大题共6 小题,共18.0 分)11.计算:×=______.12.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是______.13.化简的结果为______.14.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为______.15.平面直角坐标系中,过动点P(n,0)且垂直于x轴的直线与直线y=-3x-1 及双曲线y= 的交点分别为B和C,当点B位于点C下方时,则n的取值范围是______.16.在四边形ABCD中,AC=BC=BD,AC⊥BD,若△ABD的面积为6,则AB的长是______.三、解答题(本大题共8 小题,共72.0 分)17.计算:2x4+x2+(x3)2-5x618.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.19.某校为了做好全校800 名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查,如图是利用所得数据绘制的频数分布直方图(视力精确到0.1)请你根据此图提供的信息,回答下列问题:(1)本次调查共抽测了______名学生;(2)视力在4.9 及4.9 以上的同学约占全校学生比例为多少?(3)如果视力在第1,2,3 组范围内(4.9 以下)均属视力不良,应给予治疗矫正.请计算该校视力不良学生约有多少名?20.正六边形ABCDEF的边长1,请仅用无刻度的直尺按要求画图.(1)在图1 中,画出一条长度为的线段;(2)在图2 中,画出一条长度为的线段,并说明理由.21.在△ABC中,∠C=90°,0 为AB边上一点,以O为圆心,OA为半径作⊙O交AB于另一点D,OD=DB.(1)如图1,若⊙O与BC相切于E点,连接AE,求证:AC= CE;(2)如图2,若⊙O与BC相交于E,F两点,且F为的中点,连接AF,求tan∠CAF 的值.22.某销售商准备在南充采购一批丝绸,经调查,用10000 元采购A型丝绸的件数与用8000 元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100 元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50 件,其中A型的件数不大于B型的件数,且不少于16 件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800 元/件,销售成本为2n元/件;B型的售价为600 元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价-进价-销售成本).23.已知直线AC与BD交于点E,连接AD,BC.(1)如图1,若∠DAB=∠ABC=∠AEB,求证:AB2=AD•BC(2)如图2,延长DA,CB交于点F.若∠F=90°,AF=BF=BC,∠AED=45°,求的值;(3)在(1)的条件下,若∠AEB=135°,tan∠D= ,直接写出tan∠C的值为______.24.如图,在平面直角坐标系中抛物线与x轴交于点A(-1,0),B(3,0),与y轴交于点C(0,3),与直线l:y=k(x-3)+3(k>0)交于D,E两点.(1)求抛物线的解析式;(2)连接BD,BE,若△BDE的面积为6,求k的值;(3)点P为直线DE上的一点,若△PAB为直角三角形,且满足条件的点P有且只有3 个,直接写出k的值为______.答案和解析1.【答案】D【解析】解:A、-1 是负整数,故选项错误;B、0 是非正整数,故选项错误;C、是分数,不是整数,错误;D、1 是正整数,故选项正确.故选:D.正整数是指既是正数还是整数,由此即可判定求解.此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.2.【答案】A【解析】解:由题意,得x+3≠0,解得x≠-3,故选:A.根据分母不为零分式有意义,可得答案.本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.3.【答案】B【解析】【分析】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:一共5 个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选B.4.【答案】A【解析】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形的大小发生变化,不符合平移的性质,不属于平移得到;C、图形的方向发生变化,不符合平移的性质,不属于平移得到;D、图形由轴对称得到,不属于平移得到.故选:A.根据平移的性质,结合图形对选项进行一一分析,选出正确答案.本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想.5.【答案】C【解析】解:从左边看竖直叠放2 个正方形.故选:C.细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.6.【答案】D【解析】解:画树状图得:∵共有6 种等可能的结果,其中乙摸到1 号球的有2 种结果,∴乙胜出的概率是= ,故选:D.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与乙摸到1 号球的结果数,再根据概率公式计算可得.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.【答案】D【解析】解:∵x+y=3,3x-5y=4,∴两式相加可得:(x+y)+(3x-5y)=3+4,∴4x-4y=7,∴x-y= ,∵x=a,y=b,∴a-b=x-y=故选:D.将两式相加即可求出a-b的值.本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.8.【答案】B【解析】解:由图可得,左上角的数字分别为1,3,5,7,9,…,是一些连续的奇数,左下角的数字依次是2,4,8,16,32,…,则可以用2n表示,右下角的数字是左上角和左下角的数字之和,右上角的数字比右下角的数字小1,则a=11,b=26=64,d=11+64=75,c=75-1=74,∴a+d-b-c=11+75-64-74=-52,故选:B.根据题目中的图形,可以发小数字的变化规律,从而可以求得a、b、c、d的值,从而可以解答本题.本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a --,对称轴为2bx a=-.一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卷中对应的方框涂黑.1.如图,数轴上表示数—3的相反数的点是( )A .MB .NC .PD .Q 2.下列运算中,计算正确的是( ) A .532532a a a =+ B .422532a a a =+ C .422632a a a =•D .632532a a a =•3.下列调查中,适合用全面调查方式的是( ) A .了解一批灯泡的使用寿命B .了解一批炮弹的杀伤半径C .了解某班学生50米跑的成绩D .了解一批袋装食品是否含有防腐剂4. 如图所示的几何体的左视图是( )5.下列图形中,既是轴对称图形,又是中心对称图形的是( )DC BA6.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分 别是=0.90,=1.22,=0.43,=1.68,在本次射击测试中,成绩最稳定的是( ) A . 甲 B . 乙 C . 丙 D . 丁7.如图,CD 是Rt △ABC 斜边AB 边上的高,AB=10㎝, BC=8㎝,则ACD sin =( )A .43B .53C .54D .347题图 8. 不等式组的解集是( )A. x≤1B. x>﹣7C. ﹣7<x≤1D. 无解9.若⊙O1,⊙O2的半径分别是r1=5,r2=3,圆心距d=8,则这两个圆的位置关系是()A.内切B.相交C.外切D.外离10. 点(﹣1,y1),(2,y2),(3,y3)均在函数xky12+=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1 B.y2<y3<y1 C.y1<y2<y3 D.y1<y3<y2 11.如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与A,B重合).过Q作QM⊥PA于M,QN⊥PB于N.设AQ的长度为x,QM与QN的长度和为y.则能表示y与x之间的函数关系的图象大致是()A.B.C.D.12.下列矩形都是由大小不等的正方形按照一定规律组成,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…则第⑥个11题图矩形的周长为()①② ③ ④A.42 B.46 C.68 D.72二、填空题:(本题共6小题,每小题4分,共24分,请把下列各题的正确答案填写在横线上)13.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元.那么7840000万元用科学记数法表示为万元.14.△ADE∽△A B C,AM、AN分别是△ADE和△AB C的高,且周长分别是5和15,则AM:AN= .15.自3月1日新“国五条”细则出台,三周以来我市二手房交易市场持续火爆。

根据我市网上房地产数据显示,我市二手住宅成交量连续三周环比上涨,成交套数分别为1175套、1587套和1735套。

而细则出台前一周,我市二手住宅成交量仅为249套。

这四周我市二手住宅成交量的极差是套;16.如图,AB、AC是⊙O的弦,OE⊥AB、OF⊥AC,垂足分别为E、F.如果EF=3.5,那么BC= _____ .16题图 17题图17.如图所示,在4×4的方格中每个小正方形的边长是单位1,小正方形的顶点称为格点。

现有格点A 、B ,在方格中任意找一点C (必须是格点),使△ABC 成为等腰三角形的概率是18.重庆市政府为了大力发展农牧业,鼓励并支持青年自主创业。

打工返乡青年甲、乙两人在政府帮助下合伙养了若干头羊,而每头羊的卖价又恰与羊的头数相等,全部卖完后,两人按下面的方法平分钱:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元(都是整元),轮到乙拿去.为了平均分配,甲应该找补给乙 元?三、解答题(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:30220138)14.3(45sin 2)21(2)1(+--︒+------π20.如图所示,△ABC 在平面直角坐标系中,将△ABC 向右平 移5个单位得到111C B A ∆,再将111C B A ∆绕点1B 顺时针旋转90°得到222C B A ∆。

(1)作出111C B A ∆和222C B A ∆;(2)直接写出111C B A ∆旋转时绕过的面积。

四、解答题(本大题包括4个小题,每个小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:2221121x x x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,其中x 是不等式组⎪⎩⎪⎨⎧<-≤+4212321x x 的整数解.22.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?23.2012年5月31日是世界卫生组织发起的第25个“世界无烟日” .重庆育才成功学校学生处鼓励学生积极宣传,并设计调查问卷,以更好地宣传吸烟的危害.八年级十一班数学兴趣小组第一组的5名同学设计了如下调查问卷,随机调查了部分吸烟人群,并将调查结果绘制成统计图.根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整.(2)在扇形统计图中,C选项的人数所占百分比是,E选项所在扇形的圆心角的度数是.(3)重庆育才成功学校八年级十一班数学兴趣小组第一组的5名同学中有两名男同学,学校学生处准备从八年级十一班数学兴趣小组第一组的5名同学中选取两名同学参加“世界无烟日”活动的总结会,请你用列表法或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.ABDEFGH第24题图24.如图,E 为正方形ABCD 的CD 边上一点,连接BE ,过点A 作AF ∥BE ,交CD 的延长线于点F , ABE ∠ 的平分线分别交AF 、AD 于点G 、H .(1)若︒=∠30CBE ,3=AG ,求DH (2)证明:DF AH BE +=.25.已知:m n 、是方程2x 6x 50-+=的两个实数根,且m n <,抛物线2y x bx c=-++的图像经过点A (m,0)、B (0n ,). (1) 求这个抛物线的解析式;(2) 设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D , 试求出点C 、D 的坐标和△BCD 的面积;(3) P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,B第26题备用图B若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.26.如图,在矩形ABCD 中,AB =6,AD =E 是AD 的三等分点,且AE DE ,过点E 作EF ∥AB 交BC 于F ,并作射线DC 和AB ,点P 、Q 分别是射线DC 和射线AB 上动点,点P 以每秒1个单位的速度向右平移,且始终满足∠PQA =60°,设P 点运动的时间为t . (1)当点Q 与点B 重合时,求DP 的长度;(2)设AB 的中点为N ,PQ 与线段BE 相交于点M ,是否存在点P ,使△BMN为等腰三角形?若存在,请直接..写出时间t 的值;若不存在,请说明理由. (3)设△APQ 与四边形ABFE 的重叠部分的面积为S ,试求S 与t 的函数关系式和相应的自变量t 的取值范围.答 案全卷共五个大题,满分150分,考试时间120分钟)一、选择题(41248⨯=分) DCCAA CBCCD DC二、填空题(4624⨯=分)13.7.84×106; 14. 1:3 ; 15. 1486 ; 16. 7; 17.825; 18. 2; 三、解答题(7×2=14分)19.解:原式=4212421-=+-+--- 7分20.图略,画出每个图2分,共4分;2323605902⨯+•=πS =3425+π7分21.解:原式=2222)1()1(1)1(-+÷---+x x x x x x x 3分 =)1()1(1122+-•-+x x x x x 4分 =21x x - 5分由)1(3+x ≤7+x 得x ≤2 6分 ∴原不等式组的解集是:—1<x ≤2 7分∴原不等式组的整数解是:0,1,2 8分又∵0-xx+x)1)(1(≠∴x≠±1且x≠0∴x=2 9分110∴原式=4分22.解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.3分解得:x=30.经检验x=30是方程的解.5分答:这项工程的规定时间是30天.6分(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),8分则该工程施工费用是:18×(6500+3500)=180000(元).10分答:该工程的费用为180000元.23.解:(1)300,补全统计图如下:(2)26%,36°;(3)画树状图:女女女女女女女女女女女女男男男男男男男男女女女男男由图可知,共有20种等可能的结果,其中一男一女有12种结果; 所以:P (一男一女)=532012 . 24.24: ∵ABCD 是正方形∴∠DAB=∠ABC=∠BCD=∠CDA=90°∵∠CBE=30°且BG 平分∠ABE,∴∠ABG=∠GBE=30° 1分 ∴∠AGB=∠GBE ∴∠ABG=∠AGB∴AB=AG=3 2分又∵在Rt △ABE 中,∠ABG=30° ∴AH=33AB=1 3分又∵ABCD 是正方形 ∴AD=AB∴DH=3—1 4分(2)证明:将△ABH 绕着点B 顺时针旋转90° (辅助线加说明) 5分∵ABCD 是正方形 ∴AD=BC,∠ADC=∠C=90° ∴∠ADF=∠C ∵AF ∥BE ∴∠F=∠BEC ∴△ADF ≌△BCE∴DF=CE 6分又由旋转可知:AH=CM,∠AHB=∠M,∠BAH=∠BCM=90°∵∠BCD=90°∴∠BCD+∠BCM=180°∴点E 、C 、M 在同一直线。

相关文档
最新文档