最新北师大版八年级上册数学《期末考试题》及答案

合集下载

北师大版八年级(上)期末数学试卷(含答案) (共四套)

北师大版八年级(上)期末数学试卷(含答案) (共四套)

北师大版八年级上期末测试卷(1)一、选择题:(每小题3分,共18分。

) 1、下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。

C ;81的算术平方根是9 D:x=2 y=1是方程2x-y=3的解。

2、414 ,226 15三个数的大小关系是( ) A: 414<`15<`226 B:226<`15<`414C: 414<`226<15 D:15< 226 <4143、以方程组{12+=+-=x y x y 的解为坐标的点在( )A 第一象限B 第二象限C 第三象限D 第四象限 4、如图,AD ⊥ BC,三角形ABD 和三角形CDE都是等腰三角形 , 且BC=17,DE=5 那么线段AC=( )A:5, B:7, C:12, D:135、在平面直角坐标系中,O 为原点,直线y=kx+b 交 X 轴于A (-2,0),交y 轴于B ,且三角形AOB 的面积为8,则k=( ) A:1 B: 2 C: -2或4, D:-4或46、某班七个合作学习小组人数如下,4, 5, 5, x , 6, 7, 8, 已知这组数据的平均数为6,则这组数据的中位数和众数是( )A :5, 5B :6, 5C :6, 5和6,D :6, 5和7二填空题(每小题3分,共24分。

)7、在△ABC 中,如果BC :AC :AB=1:3:2,则∠A :∠B :∠C=……………… 8、直线y=ax-2与直线y=bx+1的交点在x 轴上,则a:b=……………9、已知实数x y 满足y=xx 221616---+2,则x-y=…………----------10、已知A (m,-2) B (3, m-1)且AB ∥x 轴,则线段AB= ---------11、函数y=-3x+2的图象上有一点P,且P 点到x 轴的距离为3,则P 点坐标为… 12、等边△ABC 的两个顶点为A (2,0) B(-4,0)则顶点C 坐标为………13、已知直线y=mx-1上有一点P (1,n)到原点的距离为10,则直线与两轴所围成的三角形面积为………………14、在y=kx+b 中,当x=5时y=6,当x=-1时y=-2,当x=2时y=……… 三、简答题15(10分)解方程组(1) ⎩⎨⎧=-=+②①7211y x y x (2)⎩⎨⎧=+=.13y 2x 11,3y -4x .16.化简:(10分) (1)31318)62(-⨯-.(2)计算: 34827++)32)(32(-+17(6分)如图,将一副直角三角尺如图放置,已知AE ∥BC ,试求∠AFD 的度数。

新北师大版八年级上期末数学试卷及答案

新北师大版八年级上期末数学试卷及答案

八年级数学上册期末测试一、选择题(每小题3分, 共24分)1.的值等于()A. 4B. -4C. ±4D. ±22.下列四个点中, 在正比例函数的图象上的点是()A.(2, 5)B.(5, 2)C.(2, -5)D.(5, ―2)3.估算324 的值是()A. 在5与6之间B. 在6与7之间C. 在7与8之间D. 在8与9之间4.下列算式中错误的是()A. B. C. D.5.下列说法中正确的是()A. 带根号的数是无理数B. 无理数不能在数轴上表示出来C. 无理数是无限小数D. 无限小数是无理数6.如图, 一根垂直于地面的旗杆在离地面5m处撕裂折断, 旗杆顶部落在离旗杆底部12m处, 旗杆折断之前的高度是()A. 5mB. 12mC. 13mD. 18mA. B.C. D.8.点A(3,y1,),B(-2,y2)都在直线上,则y1与y2的大小关系是()A. y1>y2B. y2>y1C. y1=y2D. 不能确定二、填空题(每小题3分, 共24分)9.计算: .10.若点A 在第二象限, 且A 点到x 轴的距离为3, 到y 轴的距离为4, 则点A 的坐标为 .11.写出一个解是的二元一次方程组 .12.若直线y =ax +7经过一次函数y =4-3x 和y =2x -1的交点, 则a 的值是______.13. 一次函数y =x +1的图象与y =-2x -5的图象的交点坐标是__________.14. 已知2x -3y =1, 用含x 的代数式表示y, 则y =______, 当x =0时, y =______.15.已知函数的图象不经过第三象限则 0, 0.16.如图, 已知A 地在B 地正南方3千米处, 甲、乙两人同时分别从A 、B 两地向正北方向匀速直行, 他们与A 地的距离S (千米)与所行时间t (小时)之间的函数关系图象如右图所示的AC 和BD 给出, 当他们行走3小时后, 他们之间的距离为 千米.三、解答题(共52分)17.(1)计算7002871-+18.(2)化简)23)(23()132(2-++-(3)解方程组⎩⎨⎧-=-=-547965y x y x18.某校教师为了对学生零花钱的使用进行教育指导, 对全班50名学生每人一周内的零花钱数额进行了调查统计, 并绘制了下表零花钱数额/元5 10 15 20学生人数 10 15 20 5 ((2)你认为(1)中的哪个数据代表这50名学生每人一周零花钱数额的一般水平较为合适?简要说明理由.19.已知点A(2, 2), B(-4, 2), C(-2, -1), D(4, -1).在如图所示的平面直角坐标系中描出点A.B.C.D, 然后依次连结A.B.C.D得到四边形ABCD, 试判断四边形ABCD的形状, 并说明理由.(2)班多于50人, 如果两班都以班为单位分别购票, 则一共付款1118元(1)两班各有多少名学生?(2)如果你是学校负责人, 你将如何购票?你的购票方法可节省多少钱?21. (8分)甲、乙两件服装的成本共500元, 商店老板为获取利润, 决定将甲服装按50%的利润定价, 乙服装按40%的利润定价. 在实际出售时, 应顾客要求, 两件服装均按9折出售, 这样商店共获利157元, 求甲、乙两件服装的成本各是多少元.22(9分).我国是世界上严重缺水的国家之一, 为了增强居民的节水意识, 某自来水公司对居民用水采取以户为单位分段计费办法收费;即每月用水10吨以内(包括10吨)的用户, 每吨水收费a元, 每月用水超过10吨的部分, 按每吨b 元(b>a)收费, 设一户居民月用水x(吨), 应收水费y(元), y与x之间的函数关系如图所示.(1)分段写出y与x的函数关系式.(2)某户居民上月用水8吨, 应收水费多少元?(3)已知居民甲上月比居民乙多用水4吨, 两家一共交水费46元, 求他们上月分别用水多少吨?新北师大版八年级数学上册 期末测试卷参考答案12答案: -613答案:(-2, -1)14答案: -19(1)平均数是12元(2分) 众数是15元(1分) 中位数是12.5元(1分)(2)用众数代表这50名学生一周零花钱数额的一般水平较为合适, 因为15元出现次数最多, 所以能代表一周零花钱的一般水平(2分)20(1)设一班学生x 名, 二班学生y 名根据题意⎩⎨⎧=+=+1181012102y x y x (5分)解得⎩⎨⎧==5349y x (2分)答 (1分)(2)两班合并一起购团体票1118-102×8=302 (2分)∴可节省302元故两家用水均超过10吨(1分)设甲、乙两户上月用水分别为m 、n 吨则⎩⎨⎧=-+-=-4652524n m n m (3分)解得⎩⎨⎧==1216n m (2分)∴甲用水16吨, 乙用水12吨。

最新北师大版数学八年级上册期末试卷(含答案)

最新北师大版数学八年级上册期末试卷(含答案)

最新北师大版数学八年级上册期末试卷(含答案)最新北师大版数学八年级上册期末试卷(含答案)说明:本卷共七大题,全卷共24题,满分120分,考试时间为100分钟。

一、选择题(本大题共6小题;每小题3分;共18分)1.16的平方根是A。

2B。

4C。

±2D。

±42.P1 (x1.y1);P2 (x2.y2)是正比例函数y=-x图象上的两点;下列判断中,正确的是A。

y1.y2B。

y1 < y2C。

当x1 < x2时,y1 < y2D。

当x1.y23.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71;1.85;1.85;1.95;2.10;2.31;则这组数据的众数是A。

1.71B。

1.85C。

1.90D。

2.314.下列长度的各组线段能组成一个直角三角形的是A。

4cm;6cm;11cmB。

4cm;5cm;1cmC。

3cm;4cm;5cmD。

2cm;3cm;6cm5.如图AB=AC,则数轴上点C所表示的数为A。

5+1B。

5-1C。

-5+1D。

-5-16.XXX去距县城28千米的旅游点游玩,先乘车,后步行。

全程共用了1小时。

已知汽车速度为每小时36千米,步行的速度每小时4千米,则XXX乘车路程和步行路程分别是A。

26千米,2千米B。

27千米,1千米C。

25千米,3千米D。

24千米,4千米二、填空题(本大题共8小题;每小题3分;共24分)7.计算:8-2=6.8.已知点A(l,-2),若A、B两点关于x轴对称,则B点的坐标为(l,2)。

9.若a<1,则(a-1)-1=1-a。

10.某校八年级(1)班共有男生30名,女生20名,若测得全班平均身高为1.56米,其中男生平均身高为1.6米,则女生平均身高为1.48米。

11.若一次函数y=2x+6与y=kx图象的交点到x轴的距离为2,则k的值为4.12.若关于x,y的方程组2x-y=mx+my=n的解是(x。

北师大版数学八年级上学期《期末测试卷》及答案

北师大版数学八年级上学期《期末测试卷》及答案
23.如图在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A,B分别在x,y轴上,已知OA=3,点D为y轴上一点,其坐标为(0,1),CD=5,点P从点A出发以每秒1个单位的速度沿线段A﹣C﹣B的方向运动,当点P与点B重合时停止运动,运动时间为t秒
(1)求B,C两点坐标;
(2)①求△OPD的面积S关于t的函数关系式;
A 2.5mB.2mC.1.5mD.1m
[答案]C
[解析]
[分析]
根据图形分别求得二人的速度,相减后即可确定正确的选项.
[详解]观察图象知:甲跑64米用时8秒,速度为8m/s,
①把 向上平移5个单位后得到对应的 ,画出 ,并写出 的坐标;
②以原点 为对称中心,再画出与 关于原点 对称的 ,并写出点 的坐标.
五、本大题共2小题,每小题10分,满分20分.
19.某水果种植场今年收获的“妃子笑”和“无核Ⅰ号”两种荔枝共3200千克,全部售出后卖了30400元.已知“妃子笑”荔枝每千克售价8元,“无核Ⅰ号”荔枝每千克售价12元,问该种植场今年这两种荔枝各收获多少千克?
=4,故B符合题意,
故选B.
[点睛]本题考查了算术平方根,利用乘方求一个正数的算术平方根,注意一个正数只有一个算术平方根.
2.下列实数中是无理数的是()
A. B.πC.0.141414D.﹣
[答案]B
[解析]
[分析]
根据无理数是无限不循环小数,可得答案.
[详解]A、 =2是有理数,故A错误;
B、π是无理数,故B正确;
七、本题满分12分.
22.直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B 坐标.

最新北师大版八年级数学(上册)期末测试卷含答案

最新北师大版八年级数学(上册)期末测试卷含答案

新北师大版八年级数学(上册)期末测试卷含答案八年级数学试卷命题:双柏县教研室 郎绍波 一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.计算- )A .-3B .3C .-9D .9 2.下列几组数能作为直角三角形的三边长的是( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,6 3.下列说法正确的是( )A .所有无限小数都是无理数B .所有无理数都是无限小数C .有理数都是有限小数D .不是有限小数的不是有理数 4.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9 B .中位数是9 C .众数是5 D .极差是55.在平面直角坐标系中,已知点P 的坐标是(-1,-2),则点P 关于x 轴对称的点的坐标是( )A .(-1,2)B .(1,-2)C .(1,2)D .(2,1) 6.如图,AB ∥CD,∠D =∠E =35°,则∠B 的度数为( )A .60°B .65°C .70°D .75° 7.一次函数y kx b =-,当k <0,b <0时的图象大致位置是( )B ACD EA .B .C .D .8.下列计算正确的是( )A. BC.2+ D.49-二、填空题(本大题共6个小题,每小题3分,满分18分)9.25的算术平方根是 .10.化简:= . 11.某水池有水15m 3,现打开进水管进水,进水速度5m 3/ h ;x h 后这个水池内有水y m 3,则y 关于x 的关系式为 . 12.命题“对顶角相等”的条件是 ,结论是 .13.如果a 、b 同号,则点P (a ,b )在 象限.14.方程组521x y x y +=⎧⎨-=⎩的解是 .三、解答题(本大题共有9个小题,满分58分)15.(本小题4分)计算:)16.(本小题5分)已知13x y =⎧⎨=⎩ 和02x y =⎧⎨=-⎩都是方程ax -y=b 的解,求a 与b 的值.O ABD F3 4 1 2 C E17.(本小题6分)如图,直线CD 、EF 被直线OA 、OB 所截,∠1 +∠2 =180°.求证:∠3=∠4.18.(本小题5分)长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标.19.(本小题5分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.请问榕树和香樟树的单价各多少?20.(本小题6分)已知直线y=2x与y=-x+b的交点为(1,a),试确定方程组2y0+y0xx b-=⎧⎨-=⎩的解和a、b的值.21.(本小题9分)已知一次函数y=kx-3的图象与正比例函数12y x=的图象相交于点(2,a).(1)求a的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.x22.(本小题9分)甲、乙两名工人同时加工同一种零件,现根据两人7天产品中每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题: 相关统计量表:众数 中位数 平均数 方差甲 2 107 乙11147次品数量统计表: 第1天 第2天 第3天 第4天 第5天 第6天 第7天 甲(件) 2 2 0 3 1 2 4 乙(件)1211(1)补全图、表.(2)判断谁出现次品的波动小.(3)估计乙加工该种零件30天出现次品多少件?甲 乙数量23.(本小题9分)汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.O 2 4 6 8 t/hOABDF342C E1 52013-2014学年上学期末综合素质测评八年级数学 参考答案一、选择题(每小题只有一个正确的选项,每小题3分,共24分)1.A 2.C 3.B 4.D 5.A 6.C 7.C 8.A二、填空题(每小题3分,共18分)9.5 10.2 11.y=5x +15 12.如果两个角是对顶角,那么它们相等13.一或三 14.2y 3x =⎧⎨=⎩ 三、解答题(共58分)15.(每小题4-×(-= -616.(本小题5分)解:因为13x y =⎧⎨=⎩ 和02x y =⎧⎨=-⎩都是方程ax -y=b 的解 所以,35,22a b a b b -==⎧⎧⎨⎨==⎩⎩解得 17.(本小题6分)证明:∵∠2与∠5是对顶角∴∠2=∠5∵∠1 +∠2 =180° ∴∠1 +∠5 =180° ∴CD ∥EF ∴∠3=∠4 18.(本小题5分)解:如图建立直角坐标系, 因为长方形的一个顶点的 坐标为A (-2,-3)所以长方形的另外三个顶点 的坐标分别为:B (2,-3),C (2,3),D (-2,3) (答案不唯一)19.(本小题5分)解:设榕树的单价为x 元/棵,香樟树的单价是y 元/棵,则:y 203+2y 340x x =-⎧⎨=⎩,解得60y 80x =⎧⎨=⎩ 答:榕树和香樟树的单价分别是60元/棵,80元/棵 20.(本小题6分)解:因为直线y=2x 与y=-x +b 的交点为(1,a ),所以221+3a a ab b ==⎧⎧⎨⎨=-=⎩⎩,解得 则有 2y 02y 01,,+y 30+y 3y 2x x x x x -=-==⎧⎧⎧⎨⎨⎨-===⎩⎩⎩即解得 因此,方程组2y 0+y 0x x b -=⎧⎨-=⎩ 的解是1y 2x =⎧⎨=⎩,a 、b21.(本小题9分) 解:(1)∵ 正比例函数12y x =的图象过点(2,a ) ∴ a =1(2)∵一次函数y=kx -3的图象经过点(2,1)∴1=2k -3 ∴k =2∴y=2x -3 (3)函数图像如右图22.(本小题9分)解:(1)补全的图如下.(2)从表(2)可以看出,甲的第一天、第二天、都六天都是是2, 则2出现了3次,出现的次数最多,因此,甲的众数是2,把这组数据从小到大排列为0,1,2,2,2,3,4,最中间的数是2,则甲的中位数是2, 因为乙的平均数是1,则乙的第7天的数量是1×7﹣1﹣0﹣2﹣1﹣1﹣0=2; (2)∵S 甲2=107,S 乙2=47, ∴S 甲2>S 乙2,∴乙出现次品的波动小.(3)∵乙的平均数是1,∴30天出现次品是1×30=30(件).x甲 乙数量23.(本小题9分) 解:(1)从图象中可以看出,汽车行驶3小时后加油,中途加油45-14=31升 (2)因为函数图象过点(0,50)和(3,14) 所以设函数关系式为y=kt +b ,则5012143+50b t t b b ==-⎧⎧⎨⎨==⎩⎩,解得 因此,y= -12t +50(3)油箱中的油够用.因为汽车加油前行驶了3小时,行驶了3×70=210(km ),用去了50-14=36升油,而目的地距加油站还有210 km,所以要达到目的地还需36升油,而中途加油31升后有油45升,即油箱中的剩余油量是45升,所以够用.因此,要到达目的地油箱中的油够用.。

北师大版八年级上册期末考试数学试卷(共5套,含参考答案)

北师大版八年级上册期末考试数学试卷(共5套,含参考答案)

初二上学期期末考试数学试卷选择题(每小题3分,共30分)1.下列各数:1.414,2,31-,0,其中是无理数的为( ) A. 1.414 B. 2 C. 31- D. 0 2.下列二次根式中,不是最简二次根式的是( ) A.10 B.8 C.6 D.23.今年5月1日~7日,威海地区每天最高温度(单位:℃)情况如图1所示,则表示最高温度的这组数据的中位数是( )A. 24B. 25C. 26D. 27① ②图1 图2 图34. 下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例是( )A. ∠A =30°,∠B =40°B. ∠A =30°,∠B =110°C. ∠A =30°,∠B =70°D. ∠A =30°,∠B =90°5.如图2,给出下列条件:①∠3=∠4;②∠1=∠2;③EF ∥CD ,且∠D =∠4;④∠3+∠5=180°. 其中,能推出AD ∥BC 的条件为( )A. ①②③B. ①②④C. ①③④D. ②③④6.小亮解方程组651x y x y -=∙⎧⎨+=-⎩,的解为1x y =-⎧⎨=*⎩,,由于不小心,滴上了两滴墨水,刚好遮住了•和*处的两个数,则点(•,*)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.设0<k <2,关于x 的一次函数y =kx +2(1-x ),当1≤x≤2时的最大值是( )A. 2k -2B. k -1C. kD. k +18. 对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分和4分四个等级,将调查结果绘制成条形统计图(如图3-①)和扇形统计图(如图3-②).根据图中信息,这些学生的平均分数是( )A. 2.25B. 2.5C. 2.95D. 39.若一次函数y 1=k 1x +b 1与y 2=k 2x +b 2,满足b 1<b 2,且已知21k k 没有意义,则能大致表示这两个函数图象的是( )最高温度日期A B C D 图410.如图4,在长方形纸片ABCD中,AB=5 cm,BC=10 cm,CD上有一点E ,ED=2 cm,AD上有一点P,PD=3 cm,过点P作PF⊥AD,交BC于点F,将纸片折叠,使点P与点E重合,折痕与PF交于点Q,则PQ的长是()A.134cm B. 3 cm C. 2 cm D.72cm二、填空题(每小题4分,共32分)11. 如图5,点A表示的实数是____________.图5 图6 图7 图812.已知函数23(1)my m x-=+是正比例函数,且图象在第二、四象限内,则m的值是.13.如图6,在方格纸中有三个点A,B,C,若点A的位置记为(0,1),点B的位置记为(2,-1),则点C 的位置应记为________________.14.方程组4123x yy x-=⎧⎨=+⎩,的解是____________,则一次函数y=4x-1与y=2x+3的图象的交点坐标为________________.15.一副三角尺如图7所示叠放在一起,则图中∠α的度数是___________.16.(2016年大庆)甲、乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_______________.(填“甲”或“乙”)17.如图8,已知A点坐标为(2,0),点B在直线y=x上运动,当线段AB长度最短时,直线AB的表达式为_____________.18.如图9,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的平分线,CA2是∠A1CD的平分线,BA3是∠A2BD的平分线,CA3是∠A2CD的平分线,…若∠A1=α,则∠A2016的度数为.图9三、解答题(共58分)19.(每小题5分,共10分)计算:(1()20161-;(2)()()()2227373-++-.y=x20.(8分)一次函数y=kx+b的图象经过点A(-1,3),B(2,-3).(1)求这个一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积.21.(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输. 为提高质量,做进一步研究,某饮料加工厂需生产A,B 两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶添加2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A,B两种饮料各多少瓶?22.(10分)某中学举行“中国梦·校园好声音”歌手大赛,初中部与高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛. 两个队各选出的5名选手的决赛成绩(满分100分)如图10所示:(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.图1023.(10分)在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OB=OA=3.(1)求点A,B的坐标;(2)已知点C(-2,2),求△BOC的面积;(3)若P是第一象限角平分线上一点,且S△ABP=332,求点P的坐标.100 95 90 85 80 75 70O24.(12分)平面内不重合的两条直线有相交和平行两种位置关系.(1)如图12-①,若AB∥CD,点P在AB,CD的同侧,则有∠B=∠BOD,∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB,CD的异侧,如图12-②,结论∠BPD=∠B-∠D是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在图12-②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图12-③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?并证明你的猜想;(3)设BF交AC于点M,AE交DF于点N,已知∠AMB=140°,∠ANF=105°.利用(2)中的结论直接写出∠B+∠E+∠F的度数为_____________度,∠A比∠F大_______________度.①②③图12期末模拟测试题 参考答案一、1. B 2. B 3. B 4. C 5. C 6. B 7. C 8. C 9. D 10. A二、11.5 12. -2 13. (-3,-2) 14. 2,7x y =⎧⎨=⎩ (2,7) 15. 75° 16. 甲 17. y =-x +2 18. 20152α 三、19. 解:(1)原式=-3+21-1=-72. (2)原式=9-7+22-2=2+22-2=22.20. 解:(1)依题意,得323k b k b -+=⎧⎨+=-⎩,,解得21.k b =-⎧⎨=⎩,所以所求一次函数的表达式是y=-2x+1. (2)令x=0,由y=-2x+1,得y=1;令y=0,由y=-2x+1,得x=21. 所以直线AB 与坐标轴的交点坐标分别是(0,1)和(21,0).所以围成的三角形的面积为21×21×1=14. 21. 解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶.根据题意,得方程组10023270.x y x y +=⎧⎨+=⎩,解得3070.x y =⎧⎨=⎩,答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.22. 解:(1)初中部决赛成绩的平均数为15(75+80+85+85+100)=85(分),众数85分,高中部决赛成绩的中位数80分.(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)因为2s 初=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,2s 高=15[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160,所以2s初<2s 高. 所以初中代表队选手的成绩较为稳定.23.解:(1)由OB=OA=3,A ,B 两点分别在x 轴、y 轴的正半轴上,得A (3,0),B (0,3).(2)画图形如图1所示,知点C 到OB 的距离为点C 的横坐标的绝对值,则S △BOC =2321⨯⨯=3.(3)由点P 在第一象限的角平分线上,可设P 的坐标为(a ,a ).由S △AOB =12OA·OB=92<S △ABP ,知点P 在AB 的右侧,则S △ABP =S △PAO +S △PBO -S △AOB=12×3a+12×3a-12×3×3,即12×3a+12×3a-12×3×3=233. 整理,得293-a =233,解得7=a .所以P 的坐标为(7,7). 24. 解:(1)不成立.应为∠BPD=∠B+∠D.证明:如图2,延长BP 交CD 于点E.∵AB ∥CD ,∴∠B=∠BED. 又∵∠BPD=∠BED+∠D ,∴∠BPD=∠B+∠D.(2)∠BPD=∠BQD+∠B+∠D.证明:如图3所示,连接QP 并延长.利用“三角形的一个外角等于和它不相邻的两个内角的和”,得∠BPD=(∠BQP+∠B )+(∠DQP+∠D )=∠BQD+∠B+∠D .(3)75 65提示:由(2)的结论,得∠ENF=∠B+∠E+∠F ,∠AMB=∠B+∠E+∠A.因为∠ANF=105°,所以∠B+∠E+∠F=180°-∠ANF=180°-105°=75°.因为∠A=∠AMB-∠B-∠E ,∠F=∠ENF-∠B-∠E ,所以∠A-∠F=∠AMB-∠ENF=140°-75°=65°.图2 图3北师大版八年级上学期期末测试题数学一、选择题(每小题3分,共30分)1.下列四组线段中,能构成直角三角形的是( )A .1,2,3B .13 C .2,3,4 D .1,12.下列计算正确的是( )A5 B12= C=1D3.一组数据2,7,6,3,4,7的众数和中位数分别是( )A .7,4.5B .4,6C .7,4D .7,54.如图1,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组y ax b y kx=+⎧⎨=⎩,的解是( ) A .31x y =⎧⎨=-⎩, B .31x y =-⎧⎨=-⎩, C .31x y =-⎧⎨=⎩, D .31x y =⎧⎨=⎩,图1 图2 图3 图4 5.一次函数y=6x+1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6. 点M 关于y 轴对称的点为M 1(3,–5),则点M 关于x 轴对称的点M 2的坐标为( )A .(–3,5)B .(–3,–5)C .(3,5)D .(3,–5)7.如图2,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠A=∠ECDC .∠B=∠ACBD .∠A=∠ACE8=0,则x 2015+y 2016的值为( )A .0B .1C .﹣1D .29.图3所示是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于( )A .90°B .120°C .150°D .180°10. 甲、乙两车从A 地匀速驶向B 地,甲车比乙车早出发2 h ,并且甲车图中休息了0.5 h 后仍以原速度驶向B 地,图4所示是甲、乙两车行驶的路程y (km )与行驶的时间x (h )之间的函数图象.下列说法:①m=1,a=40;②甲车的速度是40 km/h ,乙车的速度是80 km/h ;③当甲车距离A 地260 km 时,甲车所用的时间为7 h ;④当两车相距20 km 时,则乙车行驶了3 h 或4 h.其中正确的个数是( )32 1A .1个B .2个C .3个D .4个二、填空题(每小题4分,共32分)11.已知正比例函数y=kx (k≠0)的图象经过点(1,﹣2),则正比例函数的表达式为 .12.若7在两个连续整数a ,b 之间,即a <7<b ,则=+b a .13.若一组数据2,4,x ,6,8的平均数是6,则这组数据的极差为 ,方差为 .14.若点P 的坐标为(a 2+1,–6+2),则点P 在第_________象限.15. 如图5,点D ,B ,C 在同一直线上,∠A=75°,∠C=55°,∠D=20°,则∠1的度数是_______________.图5 图6 图7 图816.若m ,n 为实数,且,则(m+n )2017的值为____________.17.在Rt △ABC 中,∠C=90°,AB=AC+BC=6,则△ABC 的面积为 .18.如图6,直线y=x+1分别与x 轴、y 轴相交于点A ,B ,以点A 为圆心,AB 长为半径画弧交x 轴于点A 1,再过点A 1作x 轴的垂线交直线y=x+1于点B 1,以点A 为圆心,AB 1长为半径画弧交x 轴于点A 2,…,按此作法进行下去,则点A 8的坐标是 .三、解答题(共58分)19. (每小题6分,共12分)(1) 计算:2+(2)解方程组:230311.x y x y +=⎧⎨-=⎩, 20. (6分) 如图7,AB ∥CD ,∠A=75°,∠C=30°,求∠E 的度数.21. (8分)目前节能灯在城市已基本普及,今年广东省面向农村地区推广,为响应号召,某商场计划用3800元购进节能灯120个,这两种节能灯的进价、售价如下表:进价(元/个) 售价(元/个)甲 型25 30 乙 型45 60 (1)求甲、乙两种节能灯各购进多少个?(2)全部售完120个节能灯后,该商场获利润多少元?22. (10分)如图8,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (4,0),B (﹣1,4),C (﹣3,1).(1)在图中作△A′B′C′与△ABC 关于x 轴对称;(2)写出点A′,B′,C′的坐标.23.(10分)甲、乙两人参加理化实验操作测试,学校进行了6次模拟测试,成绩如表所示:第1次第2次第3次第4次第5次第6次平均数众数甲7 9 9 9 10 10 9 9乙7 8 9 10 10 10 _______ _______(1)根据图表信息,补全表格;(2)已知甲的成绩的方差等于1,请计算乙的成绩的方差;(3)从平均数和方差相结合看,分析谁的成绩好些?24.(12分)甲、乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象(如图9所示).请根据图象所提供的信息,解答下列问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?图9期末测试题参考答案一、1. D 2. C 3. D 4. C 5. D 6. A 7. D 8. D 9. D 10. C二、11. y=﹣2x 12. 5 13. 8 8 14. 四15. 30°16. -1 17. 4 18.(15,0)三、19. (1) 原式=2+3﹣.(2)方程组230 311x yx y+=⎧⎨-=⎩,②,①②×3+①,得11x=33,解得x=3.把x=3代入②,得y=﹣2.则原方程组的解是32. xy=⎧⎨=-⎩,20. 解:如图1所示.∵AB∥CD,∠A=75°,∴∠1=∠A=75°. ∵∠C=30°,∴∠E=∠1-∠C=75°-30°=45°.图1 图2 图321. 解:(1)设商场购进甲型节能灯x个,则购进乙型节能灯y个.由题意,得25453800120.x yx y+=⎧⎨+=⎩,解得8040.xy=⎧⎨=⎩,答:甲型节能灯购进80个,乙型节能灯购进40个.(2)由题意,得80×5+40×15=1000(元).答:全部售完120个节能灯后,该商场获利润1000元.22. 解:(1)如图所示.(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1).23. 解:(1)乙的平均数是(7+8+9+10+10+10)÷6=9;因为10出现了3次,出现的次数最多,所以乙的众数是10.(2)乙的方差是16[(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=43.(3)甲的成绩好些,因为两个人的平均成绩都是9分,但甲的方差小,所以成绩更稳定.24. 解:(1)设甲登山的路程y与登山时间x之间的函数表达式为y=kx.∵点C(30,600)在函数y=kx的图象上,∴30k=600,解得k=20.∴y=20x(0≤x≤30).(2)设乙在AB段登山的路程y与登山时间x之间的函数表达式为y=ax+b(8≤x≤20).将点A(8,120),B(20,600)代入,得812020600a ba b+=⎧⎨+=⎩,.解得40200.ab=⎧⎨=-⎩,所以y=40x﹣200.联立方程,得2040200.y xy x=⎧⎨=-⎩,解得10200.xy=⎧⎨=⎩,故乙出发后10分钟追上甲,此时乙所走的路程是200米.北师大版八年级上册数学期末考试试卷一、选择题(每小题3分,共30分。

北师大版数学八年级上学期《期末检测试题》含答案解析

北师大版数学八年级上学期《期末检测试题》含答案解析
∴ =180°-∠ADE=
故选D.
[点睛]此题主要考查三角形的角度求解,解题的关键是熟知三角形的外角定理与等腰三角形的性质.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()
故选:C.
[点睛]本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,题目是一道比较好的题目,难度不大.
2.下列实数是无理数的是()
A. B. C. D.0.1010010001
[答案]C
[解析]
[分析]
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
9.下列命题是真命题的是()
A.如果 ,那么
B.0的平方根是0
C.如果 与 是内错角,那么
D.三角形 一个外角等于它的两个内角之和
10.如图,在△ 中, 为 边上一点,以点 为圆心, 为半径画弧,交 的延长线于点 ,连接 .若 , ,则 的度数为()
A. B. C. D.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()

新北师大版八年级数学上册期末试卷及答案【完美版】

新北师大版八年级数学上册期末试卷及答案【完美版】

新北师大版八年级数学上册期末试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为( )A .-6B .6C .16-D .162.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.把38a 化为最简二次根式,得 ( )A .22a aB .342aC .322aD .24a a5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠110.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.如果不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,那么m 的取值范围是________. 4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、B6、A7、D8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、72、30°或150°.3、3m≤.4、(-4,2)或(-4,3)5、50°6、13 2三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、22mm-+1.3、±34、略5、(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t<9或9<t<11,③存在,当t的值为3或或9﹣或6时,△APQ为等腰三角形.6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。

北师大版初二级上册期末考试数学试卷含答案(共3套)

北师大版初二级上册期末考试数学试卷含答案(共3套)

O DC AB D CBA北师大版八年级上学期期末考试数学试卷含答案一、选择题:1.下列各式中,运算正确的是( ) A .632a a a ÷=B .325()a a =C.= D=2.点(35)p ,-关于y 轴对称的点的坐标为( )A . (3,5)--B . (5,3)C .(3,5)-D . (3,5) 3.若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->-C .32x y +>+D .33x y> 4.一个多边形的内角和是720︒,则这个多边形的边数为()A .4B .5C .6D .75.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形B .矩形C .正三角形D .平行四边形6. 如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的边长BC 的长是( ) A .2B .4C.D. (6题图) 7.如果点P (m ,1+2m )在第二象限,那么m 的取值范围是 ( )A .210<<m B .021<<-m C .0<m D .21>m 8.如图,下列条件不能使四边形ABCD 一定是平行四边形的是( )A .//AB CD AB =CD B .//AD BC //AB CD C .//AD BC B D ∠=∠ D. //AD BC AB =CD(图1)9.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处10.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G ,下列结论:①EC=2DG ; ②GDH GHD ∠=∠; ③CDGDHGE SS =四边形; ④图中只有8个等腰三角形。

北师大版数学八年级上册期末考试试题附答案

北师大版数学八年级上册期末考试试题附答案

北师大版数学八年级上册期末考试试卷一、选择题(共12题每题3分共36分)题号123456789101112答案1.已知a 、b 、c 是△ABC 的三边的长,则下列结论一定成立的是()A .a+b=cB .a 2+b 2=c 2C .a+b≥cD .a+b>c2.如图,有两棵树,一棵高10m ,另一棵树高4m ,两树相距8m .一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A .12mB .13mC .14mD .19m3.下列运算中正确的个数是()①532=+;②5)5(2=-;③6)6((2±=-;④23535(22=-=-;⑤31227=-.A .4个B .3个C .2个D .1个4.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是8km/h B .乙的速度是16km/h C .乙出发2/3小时追上甲D .甲比乙晚到B 地3h5.若点M(a ,b)满足(a+b)2=(a-b)2-3,则点M 所在象限是()A .第一象限或第三象限B .第二象限或第四象限C .第一象限或第二象限D .不能确定6.下列命题中是真命题的有()A.不相交的两条直线叫做平行线B.两条直线被第三条直线所截,同位角相等C.垂直于同一条直线的两条直线互相平行D.平行于同一条直线的两条直线互相平行第2题图第4题图7.小颖同学统计了今年1~8月份,她所在的单元10户业主用水总量情况(单位:吨),并绘制了如图折线统计图,下列说法正确的是()A .极差是55B .众数是100C .中位数是130D .平均数为1358.如图,将△ABC 纸片的∠A 沿DE 折叠,使点A 落在△ABC 的外部A 处,则∠A 、∠1、∠2的等量关系为()A .∠1-∠2=2∠AB .∠1=∠2+∠AC .∠1+∠2=2∠AD .∠1+∠2=∠A9.已知关于a ,b 的二元一次方程组⎩⎨⎧+=+-=-172315123k b a kb a .则a+b 的值为()A .kB .2C .2kD .-210.已知直线l:y=kx+b 与直线y=-3x-7平行,与直线y=5x+4相交于y 轴,则直线l 的函数表达式为()A .y=3x+4B .y=4x-3C .y=-3x-4D .y=-3x+411.如图,点A 的坐标是(3,4),若点P 在x 轴上,且△APO 是等腰三角形,关于点P 的坐标不正确的是()A .(-6,0)B .(6,0)C .(-5,0)D .(67,0)12.如图,已知△ABC 中,AB=AC ,AD 是∠BAC 的平分线,AE 是∠BAC 的外角平分线,ED ∥AB 交AC 于点G .下列结论:①AD ⊥AE ;②AE ∥BC ;③AE=AG ;④AG=21DE .正确的是()A .①②③B .①②④C .②③④D .①②③④二、填空题(共10题每题3分共30分)13.如果x x -=-5)5(2,那么x 的取值范围是;若51=+x x ,则=-xx 1.某小区某单元1~8月份10户业主用水总量折线统计图第7题图第8题图第11题图第12题图14.在已知点P(3,-4),在x 轴上有一点A 与P 的距离为5,则A 点的坐标为.15.“一根弹簧原长10cm ,在弹性限度内最多可挂质量为5kg 的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,,则弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式为y=10+0.5x(0≤x≤5).”王刚同学在阅读上面材料时发现部分内容被墨迹污染,被污染的部分是确定函数关系式的一个条件,你认为该条件可以是(只需写出1个).16.已知a 、b 、c 是△ABC 的三边长,且a 、b 满足bb b b a 124161622++-+-=,c=2)5(-,则△ABC 的形状是.17.把一组数据中的每一个数据都减去50,得到一组新数据,若求得这组数据的平均数是2.6,方差是3.2,则原来那组数据的平均数为,方差为.18.如图(1),BP ,CP 分别是△ABC 中∠ABC 和外角∠ACE 的平分线,∠A=80°,(1)则∠BPC 的度数;(2)如图(2),若BP 1,CP 1分别平分∠PBC ,∠PCE ,BP 2,CP 2分别平分∠P 1BC ,∠P 1CE ,BP 3、CP 3分别平分∠P 2BC ,∠P 2CE ,…,BP n ,CP n ,分别平分∠P n-1BC ,∠P n-1CE ,则∠BP 1C=°,∠BP 2C=°,∠BP n C=°.三、解答题(共8题共66分)19.(6分)计算:54818)2021(628)36(02-+-++--π;20.(8分)解方程(组)⎩⎨⎧=+=+②①202420212020201720202021y x y x .第18题图(1)第11题图(2)21.(8分)已知12-=x ,求代数式x 3-5x+1的值.22.(10分)(1)设直角三角形的两条直角边a=26+,b=26-,求斜边c 的长;(2)a a a =-+-20212020,求a-20202的值.23.(8分)如图所示,点B 、E 分别在AC 、DF 上,BD 、CE 均与AF 相交,∠1=∠3,∠C=∠D ,求证:∠A=∠F .24.(8分)一艘轮船在相距180千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用10小时,逆流航行比顺流航行多用5小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?第23题图26.(10分)如图,在平面直角坐标系中△AOB 是等腰直角三角形,且AB=26.(1)求斜边AB 所在直线的函数关系式;(2)若直线343-=x y 与直线AB 相交于点C ,且与x 轴,y 轴分别相交于点D 、E ,①请问直线7341-=x y 是否也经过点C ?②求四边形BODC 的面积S.参考答案一、选择题(共12小题每题3分共36分)第26题图题号123456789101112答案DBCCBDCABDAB二、填空题(共6小题每题3分共18分)13.x≤5,±114.(6,0),(0,0)15.每增加1千克重物弹簧伸长0.5cm16.直角三角形17.52.6,3.218.(1)40°;(2)20,10,1280+n 三、解答题(共8题共66分)19.(6分)计算:54818)2021(628)36(02-+-++--π;解:原式=6928281)26)(26()26(863⨯-⨯++-+---=6342814)26(863-++---=22631226263-+++--=4.20.(8分)解方程(组)⎩⎨⎧=+=+②①202420212020201720202021y x y x .解:由①+②得4041x+4041y=4041,解x+y=1③,由①-②得x-y=-7④,解由方程③④组成的方程组⎩⎨⎧-=-=+④③71y x y x 得,⎩⎨⎧=-=43y x .所以方程组的解为⎩⎨⎧=-=43y x .21.(8分)已知12-=x ,求代数式x 3-5x+1的值.解:∵12-=x ,∴22)2()1(=+x ,∴x 2+2x+1=2,∴x 2=1-2x ,∴x 3-5x+1=x 2·x-5x+1=x(1-2x)-5x+1=x-2x 2-5x+1=-2x 2-4x+1=-2(1-2x)-4x+1=-2+4x-4x+1=-1.22.(10分)(1)设直角三角形的两条直角边a=26+,b=26-,求斜边c 的长;(2)a a a =-+-20212020,求a-20202的值.解:(1)∵直角三角形的两条直角边a=26+,b=26-,∴根据勾股定理得:22b a c +=22)26()26(-++==128128-++=416=;(2)由题意得a-2021≥0,∴a≥2021,∴原式变化为a a a =-+-20212020∴20202021=-a ,∴a-2021=20202∴a-20202=2021.23.(8分)如图所示,点B 、E 分别在AC 、DF 上,BD 、CE 均与AF 相交,∠1=∠3,∠C=∠D ,求证:∠A=∠F .证明:∵∠2=∠3,∠1=∠3,∴∠1=∠2,∴BD ∥CE ,∴∠C=∠ABD ;又∵∠C=∠D ,∴∠D=∠ABD ,∴AB ∥EF ,∴∠A=∠F .24.(8分)一艘轮船在相距180千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用10小时,逆流航行比顺流航行多用5小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:⎩⎨⎧=-+=+180))(510(180)(10y x y x ,解得:⎩⎨⎧==315y x .第23题图经检验x=15,y=3是方程组的解,且符合题意.答:该轮船在静水中的速度是15千米/小时,水流速度是3千米/小时.(2)设甲、丙两地相距a 千米,则乙、丙两地相距(180-a)千米,依题意,得:315180315--=+aa ,解得:a=108.经检验a=108是方程的解,且符合题意.答:甲、丙两地相距108千米.AB 所在直线的函数关系式;(2)若直线343-=x y 与直线AB 相交于点C ,且与x 轴,y 轴分别相交于点D 、E ,①请问直线7341-=x y 是否也经过点C?②求四边形BODC 的面积S.解:(1)∵△AOB 是等腰直角三角形,且AB=26,∴OA=OB=62)26(2=,∴点A 的坐标为(6,0),点B 的坐标为(0,6),设AB 所在直线的函数关系式为y=kx+b ,把点A(6,0),B(0,6),代入y=kx+b ,得⎩⎨⎧==+606b b k 解得⎩⎨⎧=-=61b k .∴设AB 所在直线的函数关系式为6+-=x y ;(2)①解方程组⎪⎩⎪⎨⎧-=+-=3436x y x y 得⎪⎪⎩⎪⎪⎨⎧==76736y x ,∴点C 的坐标为76736(,,把736=x 代入7341-=x y ,解得76=y ,∴直线7341-=x y 经过点C ;②令y=0,则0343=-x ,解得x=4,∴点D 的坐标为(4,0),∴OD=4,∵OA=6,∴AD=AO-DO=2,∵点C 的坐标为76736(,,∴点C 到x 轴的距离为76,∵S 四边形BODC =S △AOB -S △ACD=AD OB OA 762121⨯-⋅=7117276216621=⨯⨯-⨯⨯.第26题图。

北师大版八年级上册数学期末考试试题及答案

北师大版八年级上册数学期末考试试题及答案

北师大版八年级上册数学期末考试试卷一、单选题1.在ABC 中,90C A B C ∠=︒∠∠∠,,,的对应边分别是a b c ,,,则下列式子成立的是 A .222+=a b c B .222a c b += C .222a c b -= D .222b c a +=2.如图,在ABC 中,90ACB ∠=︒,CD AB ⊥,垂足为D .若3AC =,4BC =,则CD 的长为( )A .2.4B .2.5C .4.8D .53.估计3 )A .在6和7之间B .在7和8之间C .在8和9之间D .在9和10之间 4.下列各组二次根式中,属于同类二次根式的是( )A .B C .D5.在平面直角坐标系中,若点()P m m n -,与点()21Q ,关于原点对称,则点()M m n ,在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.已知点A 的坐标为()23,,直线AB y ∥轴,且5AB =,则点B 的坐标为( ) A .()28,B .()28,或()22-,C .()73,D .()73,或()33-, 7.一次函数1y ax b 与正比例函数2y bx =-在同一坐标系中的图象大致是( )A .B .C .D .8.如图,某电信公司手机的收费标准有A B ,两类,已知每月应缴费用S (元)与通话时间t (分)之间的关系如图所示,当通话时间为50分钟时,按这两类收费标准缴费的差为( )A .30元B .20元C .15元D .10元9.八(1)班同学参加社会实践活动,在王伯伯的指导下,要围一个如图所示的长方形菜园ABCD ,莱园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为12m ,设边BC的长为x m ,边AB 的长为y m ()x y >.则y 与x 之间的函数表达式为( )A .212(012)y x x =-+<<B .()164122y x x =-+<< C .212(012)y x x =-<< D .16(412)2y x x =-<< 10.下列方程组中是二元一次方程组的是( )A .23124x y x y ⎧+=⎨-=⎩ B .225xy x y =⎧⎨+=⎩ C .63a b b c -=⎧⎨+=⎩ D .310521m n m n +=⎧⎨-=⎩11.古代数学问题:“今有木,不知长短,引绳度之,余绳五尺四寸:屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余5.4尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为( )A . 5.412y x x y -=⎧⎪⎨-=⎪⎩B . 5.412x y y x -=⎧⎪⎨-=⎪⎩C . 5.412y x y x -=⎧⎪⎨-=⎪⎩D . 5.412x y xy -=⎧⎪⎨-=⎪⎩12.若324432a ba b x y ++--=是关于x ,y 的二元一次方程,则2a b +的值为( )A .0B .-3C .3D .413.在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75,成绩最稳定的是() A .甲.B .乙C .丙D .丁14.如图,在ABC 中,1268AD BC C ⊥∠=∠∠=︒,,.则BAC ∠的度数为( )A .68°B .67°C .77°D .78°15.如图,AB CD ∥,EF BD ⊥于点E ,50ABM ∠=︒,则CFE ∠的度数为( )A .130︒B .140︒C .145︒D .150︒二、填空题16______,338的算术平方根是______.17.已知Rt△ABC 中,AB =8,BC =10,△BAC =90°,则图中阴影部分面积为 _____.18.已知()115P a -,和()221P b -,关于x 轴对称,则()2022a b +的值为______.19.若点()()1232A y B y -,,,都在一次函数1yx =-+的图象上,则1y ______2y .(填“>”或“<”)20.一个三位数,十位数字比个位数字大1,百位数字是个位数字的2倍,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,则原三位数为______.三、解答题21.用适当的方法解下列方程组:(1)524x yx y+=⎧⎨-=⎩;(2)12343314312 x yx y++⎧=⎪⎪⎨--⎪-=⎪⎩22.学校运动会开设了“抢收抢种”项目,八(5)班甲、乙两个小组都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲、乙两组各10人的比赛成绩如下表:(1)甲组的平均成绩是____分;(2)计算乙组的平均成绩和方差;(3)已知甲组成绩的方差是1.4,如果你是老师,你将选择哪组代表八(5)班参加学校比赛?说说你的理由.23.如图,在四边形ABCD中,20AB=,15AD=,7CD=,24BC=,90A∠=︒,求证:△C=90°.24.某移动公司设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式费用分别是A y,B y元.(1)分别写出A y ,B y 与x 之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程. (3)小明用的A 卡,他计算了一下,若是B 卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?25.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:|P|表示点P 到x 、y 轴的距离中的最大值,|Q|表示点Q 到x 、y 轴的距离中的最大值,若P Q =,则称P ,Q 两点为“等距点”.例如:如图中的P (3,3),Q (﹣3,﹣2)两点,有|P|=|Q|=3,所以P 、Q 两点为“等距点”.(1)已知点A 的坐标为(﹣3,1),△则点A 到x 、y 轴的距离中的最大值|A|= ;△在点E (0,3),F (3,﹣3),G (2,﹣5)中,为点A 的“等距点”的是 ; △若点B 的坐标为B (m ,m+6),且A ,B 两点为“等距点”,则点B 的坐标为 ;(2)若()113T k --,-,()2443T k -,且|4k ﹣3|≤4,两点为“等距点”,求k 的值.261==;==2==.请解决下列问题: (1)=______; (2)=______;(3)....27.如图,已知12AB CD ∠=∠∥,.(1)求证:EF NP ∥;(2)若FH 平分EFG ∠,交CD 于点H ,交NP 于点O ,且14010FHG ∠=︒∠=︒,,求FGD ∠的度数.参考答案1.A【分析】根据题意,可得c 为斜边,,a b 为直角边,根据勾股定理即可求解. 【详解】解:△在ABC 中,90C A B C ∠=︒∠∠∠,,,的对应边分别是a b c ,,, △c 为斜边,,a b 为直角边, △222+=a b c ,故选:A .【点睛】本题考查了勾股定理,掌握勾股定理是解题的关键. 2.A【分析】先由勾股定理求出AB 的长,再运用等面积法求得CD 的长即可. 【详解】解:△在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,△AB 5==,CD AB ⊥△1122AB CD AC BC ⋅=⋅,即342.45AC BC CD AB ⋅⨯===. 故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键. 3.B3 【详解】解:△161725<<,△45<,△738<+,△37和8之间, 故选:B .【点睛】此题考查了无理数的估算,正确掌握各平方数及无理数估算的方法是解题的关键. 4.B【分析】将各项先化为最简二次根式,再根据同类二次根式的定义逐项判断即可.【详解】A. ,不是同类二次根式,故该选项不符合题意;B. =C. =D.=故选:B .【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式,掌握同类二次根式的定义是解题的关键. 5.C【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,求得,m n 的值,即可求解.【详解】解:△点()P m m n -,与点()21Q ,关于原点对称, △2,1m m n =--=-,△()2,1M --在第三象限, 故选:C .【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,判断点所在的象限,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键. 6.B【分析】根据平行于y 轴的直线上的点的横坐标相等求出点B 的纵坐标,再分点B 在点A 的上面与下面两种情况求出点B 的纵坐标,即可得解.【详解】解:△AB y ∥轴,点A 的坐标为()23,, △点B 的横坐标为2, △5AB =,△点B 在点A 的下面时,纵坐标为352-=-, 点B 在点A 的上面时,纵坐标为358+=,△点B 的坐标为()28,或()22-,. 故选:B .【点睛】本题考查了平面直角坐标系中点的坐标特点,利用了平行于y 轴的直线是上的点的横坐标相等的性质,难点在于要分情况讨论. 7.C【分析】根据一次函数和正比例函数的性质逐一判断即可得答案. 【详解】A.△一次函数经过一、二、三象限, △a >0,b >0, △-b <0,△正比例函数应经过二、四象限,故本选项不符合题意, B.△一次函数经过一、三、四象限, △a >0,b <0, △-b >0,△正比例函数应经过一、三象限,故本选项不符合题意, C.△一次函数经过二、三、四象限, △a <0,b <0,△正比例函数应经过一、三象限,故本选项符合题意, D.△一次函数经过二、三、四象限, △a <0,b <0, △-b >0,△正比例函数经过一、三象限,故本选项不符合题意, 故选:C .【点睛】本题考查一次函数和正比例函数的性质,对于一次函数y=kx+b ,当k >0时,图象经过一、三象限,当k <0时,图象经过二、四象限;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴;熟练掌握相关性质是解题关键. 8.D【分析】根据题意,待定系数法求得解析式,分别令50x =,求得S 是的值,进而即可求解. 【详解】解:设A 类收费的解析式为AS ax b =+,代入()0,20 ,()100,30,得2010030b a b =⎧⎨+=⎩, 解得11020a b ⎧=⎪⎨⎪=⎩, △12010A S x =+, B 类收费的解析式为BS kx =,代入()100,30,得30100k =, 解得310k =, △310B S x =, △当50x =时,150202510A S =⨯+=,3501510B S =⨯=, △251510-=(元), 故选:D .【点睛】本题考查了一次函数的应用,待定系数法求解析式,求得解析式是解题的关键.9.B【分析】根据菜园的三边的和为12m ,即可得出一个x 与y 的关系式. 【详解】解:根据题意得,菜园三边长度的和为12m ,212y x ∴+=,162y x ∴=-+,0y >,x y >,∴1602162x x x ⎧-+>⎪⎪⎨⎪>-+⎪⎩,解得412x <<,16(412)2y x x ∴=-+<<,故选:B .【点睛】本题考查一次函数的应用,理解题目中的数量关系,即菜园三边的长度和为12m ,列出关于x ,y 的方程是解决问题的关键. 10.D【分析】二元一次方程组是指含有两个未知数,且未知数的次数都是1的一次整式方程组成的方程组,据此求解即可.【详解】解:A 、23124x y x y ⎧+=⎨-=⎩未知数的最高次不是1,不是二元一次方程组,不符合题意;B 、225xy x y =⎧⎨+=⎩xy 的次数不是1,不是二元一次方程组,不符合题意; C 、63a b b c -=⎧⎨+=⎩含有3个未知数,不是二元一次方程组,不符合题意;D 、310521m n m n +=⎧⎨-=⎩是二元一次方程组,符合题意;故选D .【点睛】本题主要考查了二元一次方程组的定义,熟知二元一次方程组的定义是解题的关键. 11.C【分析】设木条长x 尺,绳子长y 尺,根据用一根绳子去量一根木条,绳子剩余5.4尺;将绳子对折再量木条,木条剩余1尺,列出二元一次方程组,即可求解.【详解】设木条长x 尺,绳子长y 尺,可列方程组为5.412y x y x -=⎧⎪⎨-=⎪⎩, 故选:C .【点睛】本题考查了列二元一次方程组,根据题意列出方程组是解题的关键.12.D【分析】根据二元一次方程的定义,得出1a b +=,3241a b +-=,解出a b 、的值,然后把a b 、的值代入2a b +,计算即可得出结果.【详解】解:△324432a b a b x y ++--=是关于x ,y 的二元一次方程,△可得:13241a b a b +=⎧⎨+-=⎩, 解得:32a b =⎧⎨=-⎩, 把32a b =⎧⎨=-⎩代入2a b +, 可得:22324a b +=⨯-=.故选:D【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.13.A【分析】根据方差的意义,即可求解.【详解】解:△S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75△2222甲乙丁丙<<<S S S S△成绩最稳定的是甲故选A【点睛】此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据越稳定,理解方差的意义是解题的关键.14.B【分析】根据垂直的定义,直角三角形的两个锐角互余,可得145,22DAC ∠=︒∠=︒,即可求解.【详解】解:△1268AD BC C ⊥∠=∠∠=︒,,,△90ADB ADC ∠=∠=︒,△1245∠=∠=°,90906822DAC C ∠=︒-∠=︒-︒=︒,△1452267BAC DAC ∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了直角三角形的两个锐角互余,求得145,22DAC ∠=︒∠=︒是解题的关键.15.B【分析】根据题意和平行线的性质得=50D ABM ∠∠=︒,根据垂直得=90DEF ∠︒,运用三角形内角和定理求出=40EFD ∠︒,即可得.【详解】解:△AB CD ∥,50ABM ∠=︒,△=50D ABM ∠∠=︒,△EF BD ⊥,△=90DEF ∠︒,△=180=1805090=40EFD D DEF ∠︒∠∠︒︒︒︒----,△180=18040=140CFE EFD ∠=︒-∠︒-︒︒,故选:B .【点睛】本题考查了平行线的性质,三角形内角和定理,解题的关键是掌握这些知识点.16. 2± 【分析】根据平方根和算术平方根的定义求解即可.【详解】4,△4的平方根是2±,,即338故答案为:2± 【点睛】本题考查的是平方根、算术平方根的计算,如果一个数的平方等于a ,这个数就叫a 的平方根,如果一个正数的平方等于a ,这个数就叫a 的算术平方根,0的算术平方根是0.掌握定义是解题的关键.17.24【分析】根据阴影部分面积等于以,AB AC 为直径的半圆的面积与ABC 的面积的和减去以BC 为直径的半圆面积即可求解.【详解】解:Rt△ABC 中,AB =8,BC =10,△BAC =90°,6AC ∴==,222111111=+222222ABC S AB AC BC S πππ⎛⎫⎛⎫⎛⎫∴+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭△阴影部分 ABC S =△1862=⨯⨯ =24.故答案为:24.【点睛】本题考查了勾股定理,掌握勾股定理是解题的关键.18.1【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,求得,a b 的值,进而代入代数式即可求解.【详解】解:△()115P a -,和()221P b -,关于x 轴对称, △12,510a b -=+-=,解得3,4a b ==-,△()2022a b +()2022341=-=,故答案为:1.【点睛】本题考查了关于x 轴对称的两个点的坐标特征,掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.19.>【分析】根据解析式中10k =-<,可得y 随x 的增大而减小,即可求解.【详解】解:△在1y x =-+中,10k =-<,△y 随x 的增大而减小,△32-<,点()()1232A y B y -,,,都在一次函数1yx =-+的图象上, △12y y >,故答案为:>.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.20.643【分析】设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意:十位数字比个位数字大1,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,列出二元一次方程组,解方程组即可.【详解】解:设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意得:1100210(100102)297y x x y x x y x =+⎧⎨⨯++-++=⎩, 解得:34x y =⎧⎨=⎩, △26x =,即原三位数为643,故答案为:643.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(1)32x y =⎧⎨=⎩(2)22x y =⎧⎨=⎩【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】(1)解:524x y x y +=⎧⎨-=⎩①②△+△得: 3x=9,解得: x=3,把x=3代入△得:3+y=5得 y=2,则方程组的解为32x y =⎧⎨=⎩ ; (2)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩ 方程组整理得:432342x y x y -=⎧⎨-=-⎩①② 由△×4-△×3得: 7x=14,解得: x=2,把x=2代入△得:4×2-3y=2得 y=2,则方程组的解为22x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(1)9(2)乙组的平均成绩为9,方差为1(3)选择乙组,理由见解析【分析】(1)根据平均数的计算公式求得平均数即可求解;(2)一组数据:123n x x x x ⋯,,,,,则它们的平均数1232n x x x x x ++++=,方差是()()()()2222212312n s x x x x x x x x ⎡⎤=-+-+-+++-⎣⎦; (3)根据一组数据的方差越大,则数据的波动就越大,进行判断即可.【详解】(1)甲组的平均成绩是:()1789710109101010910+++++++++=, (2)乙组的平均成绩是:()110879810109109910+++++++++=, 方差是:()()()()22221109897999110⎡⎤-+-+-++-=⎣⎦; (3)选择乙组,理由如下,△1.41>,且平均成绩都为9,△乙组的方差较小,应该选择乙组.【点睛】本题考查了求平均数,求方程,以及根据方差做决策,掌握平均数,方差是解题的关键.23.见解析【分析】连接BD ,勾股定理求得BD 的值,进而根据222CD BC BD +=,即可得证.【详解】解:如图,连接BD ,△20AB =,15AD =,90A ∠=︒,△25BD =,△7CD =,24BC =,△22224957662525CD BC BD +=+===,△CDB △是直角三角形,且90C ∠=︒.【点睛】本题考查了勾股定理及其逆定理,掌握勾股定理及其逆定理是解题的关键. 24.(1)500.4A y x =+,0.6B y x =(2)选择A 类(3)350元【分析】(1)A 类应缴50元月租费,每通话1分钟,付0.4元,则费用是月租费加上通话费;B 类不缴月租费,每通话1分钟,付话费0.6元,则费用是通话费与时间的乘积,通讯x 分钟,由此即可求解;(2)由(1)的结论可知,当300x =时,170A y =元,180B y =元,由此即可求解; (3)由题意可知选择A 卡的费用比选择B 卡的费用少100元,由此可列出等量关系100A B y y +=,由此即可求解.【详解】(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4Ay x =+; B 类的费用是通话费与时间的乘积,即0.6B y x =,△500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元) △A B y y <,△选择A 类.(3)解:根据题意得,100A B y y +=,△500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, △500.4500.4750350A y x =+=+⨯=(元),△小明实际话费是350元.【点睛】本题主要考查一次函数在实际中的运用,解题的关键是理解两类缴费的方式,A 类的费用是月租费加上通话费,B 类的费用是通话费与时间的乘积.25.(1)△3;△E ;F ;△(−3,3)(2)k 的值是1【分析】(1)△找到x 、y 轴距离最大为3的点即可;△先分析出直线上的点到x 、y 轴距离中有3的点,再根据“等距点”概念进行解答即可; △根据A ,B 两点为“等距点”得出点B 的坐标即可;(2)根据“等距点”概念对4k−3分类讨论,进行解答即可.【详解】(1)解:△点A (−3,1)到x 、y 轴的距离中最大值为|A|=3,故答案为:3.△△点A (−3,1)到x 、y 轴的距离中最大值为3,△与点A 的“等距点”的是E ,F ,故答案为:E ;F .△当点B 坐标中到x 、y 轴距离其中至少有一个为3的点有(3,9)、(−3,3)、(−9,−3),这些点中与A 符合“等距点”的是(−3,3).故答案为:(−3,3).(2)解:()113T k --,-,()2443T k -,两点为“等距点”, △4=−k−3或−4=−k−3,解得:k =−7或k =1,△当k =−7时,43314k -=>,△k =−7不符合题意舍去,根据“等距点”的定义知,k =1符合题意,△k 的值是1.【点睛】:本题主要考查了平面直角坐标系的知识,此题属于阅读理解类型题目,解题的关键是读懂“等距点”的定义,而后根据概念解决问题.26.(1)21【分析】(1)先找出有理化因式2,根据平方差公式求出即可;(2(3)先分母有理化,再合并即可.【详解】(1-故答案为:2;(2(3...+⋅⋅⋅1.【点睛】本题考查了分母有理化,能正确分母有理化是解此题的关键.27.(1)见解析(2)60︒【分析】(1)根据平行线的性质及等量代换得出1BNP ∠=∠,即可判定EF NP ∥; (2)过点F 作FM AB ∥,根据平行公理得出AB FM CD ∥∥,根据平行线的性质及角平分线定义得到50GFH EFH ∠=∠=︒,根据三角形外角性质求解即可.【详解】(1)证明:△AB CD ∥,50GFH EFH ∠=∠=︒△2BNP ∠=∠,△12∠=∠,△1BNP ∠=∠,△EF NP ∥;(2)解:如图,过点F 作FM AB ∥,△AB CD ∥,△AB FM CD ∥∥,△14010EFM HFM FHG ∠=∠=︒∠=∠=︒,,△50EFH EFM HFM ∠=∠+∠=︒,△FH 平分EFG ∠,△50GFH EFH ∠=∠=︒,△60FGD GHF HFG ∠=∠+∠=︒.。

北师大版八年级(上)期末数学试卷(含解析) (4套)

北师大版八年级(上)期末数学试卷(含解析) (4套)

八年级(上)期末数学试卷一.选择题(本大题10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上)1.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(x2y3)2=x4y5C.(xy)2÷=(xy)3D.2xy﹣3yx=xy3.(3分)若x2+mx﹣15=(x+3)(x+n),则m的值是()A.﹣5 B.5 C.﹣2 D.24.(3分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°5.(3分)下列图形是全等图形的是()A.B.C.D.6.(3分)如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:57.(3分)如果=成立,那么下列各式一定成立的是()A.=B.=C.=D.=8.(3分)已知,则的值为()A.B.C.D.9.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.10.(3分)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.12二.填空题(本大题6小题,每小题4分,共24分.)11.(4分)三角形的三个内角度数比为1:2:3,则三个外角的度数比为.12.(4分)已知a+b=﹣3,ab=1,求a2+b2=.13.(4分)分解因式:a2﹣9=.14.(4分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥B C.若AB=6cm,AC=8cm,则△ADE的周长为.15.(4分)已知,△ABC中,AB=AC,AB的垂直平分线交AB于E,交AC所在直线于P,若∠APE=54°,则∠B=.16.(4分)把边长为a的正三角形和正方形组合镶嵌,若用2个正方形,则还需个正三角形才可以镶嵌.三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为.18.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣.19.(6分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.四.解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)先化简,再求值:,其中.21.(7分)因式分解:3x﹣12x3和﹣2m+4m2﹣2m3.22.(7分)先化简,再求值:a(a﹣4)﹣(a+6)(a﹣2),其中a=﹣.五、解答题(共3小题,满分27分)23.(9分)+=.24.(9分)如图,CD是△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB 的中点E处.(1)求∠A的度数;(2)若AC=,求△AEC的面积.25.(9分)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.2017-2018学年辽宁省丹东市八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上)1.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.【解答】解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,∴使与图中阴影部分构成轴对称图形的概率是:3÷5=.故选:C.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(x2y3)2=x4y5C.(xy)2÷=(xy)3D.2xy﹣3yx=xy【解答】解:A、2x+2y无法计算,故此选项错误;B、(x2y3)2=x4y6,故此选项错误;C、此选项正确;D、2xy﹣3yx=﹣xy,故此选项错误;故选:C.3.(3分)若x2+mx﹣15=(x+3)(x+n),则m的值是()A.﹣5 B.5 C.﹣2 D.2【解答】解:∵x2+mx﹣15=(x+3)(x+n),∴x2+mx﹣15=x2+nx+3x+3n,∴3n=﹣15,m=n+3,解得n=﹣5,m=﹣5+3=﹣2.故选:C.4.(3分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.5.(3分)下列图形是全等图形的是()A.B.C.D.【解答】解:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选:B.6.(3分)如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5【解答】解:∵O是△ABC三条角平分线的交点,AB、BC、AC的长分别12,18,24,∴S△OAB:S△OBC:S△OAC=AB:OB:AC=12:18:24=2:3:4.故选:C.7.(3分)如果=成立,那么下列各式一定成立的是()A.=B.=C.=D.=【解答】解:A、错误.应该是=;B、错误.≠;C、错误.≠;D、正确.设==k,则a=bk,c=dk,左边==k+2,右边==k+2,∴左边=右边.故选:D.8.(3分)已知,则的值为()A.B.C.D.【解答】解:,则==,故选:D.9.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选:A.10.(3分)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.12【解答】解:设正多边形的每个外角的度数为x,与它相邻的内角的度数为4x,依题意有x+4x=180°,解得x=36°,这个多边形的边数=360°÷36°=10.故选:C.二.填空题(本大题6小题,每小题4分,共24分.)11.(4分)三角形的三个内角度数比为1:2:3,则三个外角的度数比为5:4:3.【解答】解:设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,∴三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:3,故答案为:5:4:3.12.(4分)已知a+b=﹣3,ab=1,求a2+b2=7.【解答】解:∵a+b=﹣3,∴(a+b)2=9,即a2+2ab+b2=9,又ab=1,∴a2+b2=9﹣2ab=9﹣2=7.故答案为7.13.(4分)分解因式:a2﹣9=(a+3)(a﹣3).【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).14.(4分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥B C.若AB=6cm,AC=8cm,则△ADE的周长为14cm.【解答】解:∵DE∥BC∴∠DOB=∠OBC,又∵BO是∠ABC的角平分线,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴BD=OD,同理:OE=EC,∴△ADE的周长=AD+OD+OE+AE=AD+BD+AE+EC=AB+AC=14cm.故答案是:14cm.15.(4分)已知,△ABC中,AB=AC,AB的垂直平分线交AB于E,交AC所在直线于P,若∠APE=54°,则∠B=72°或18°.【解答】解:分为两种情况:①如图1,∵PE是AB的垂直平分线,∴AP=BP,∴∠A=∠ABP,∠APE=∠BPE=54°,∴∠A=∠ABP=36°,∵∠A=36°,AB=AC,∴∠C=∠ABC=(180°﹣∠A)=72°;②如图2,∵PE是AB的垂直平分线,∴AP=BP,∴∠P AB=∠ABP,∠APE=∠BPE=54°,∴∠P AB=∠ABP=36°,∴∠BAC=144°,∵AB=AC,∴∠C=∠ABC=(180°﹣∠A)=18°,故答案为:72°或18°.16.(4分)把边长为a的正三角形和正方形组合镶嵌,若用2个正方形,则还需3个正三角形才可以镶嵌.【解答】解:∵正三角形的每个内角是60°,正方形的每个内角是90°,又∵3×60°+2×90°=360°,∴用2个正方形,则还需3个正三角形才可以镶嵌.故答案为:3.三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为4.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,CD、CE即为所求;(3)△BCD的面积为×4×4﹣×1×3﹣×1×3﹣1=4,故答案为:418.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣.【解答】解:原式=(4x2+12xy+9y2)﹣(4x2﹣y2),=4x2+12xy+9y2﹣4x2+y2,=12xy+10y2,当x=,y=﹣时,原式=12×()×(﹣)+10×(﹣)2,=﹣2+2.5=.19.(6分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.【解答】解:(1)∵△ABC是等边三角形,∴∠BAC=60°,AB=A C.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=A D.∴∠BAD+∠EAB=∠BAD+∠DA C.∴∠EAB=∠DA C.在△EAB和△DAC中,∵,∴△EAB≌△DA C.∴∠AEB=∠AD C.(2)如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,又∵∠AEB=∠ADC=105°.∴∠BED=45°.四.解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)先化简,再求值:,其中.【解答】解:原式=•=•=,当a=﹣1时,原式=.21.(7分)因式分解:3x﹣12x3和﹣2m+4m2﹣2m3.【解答】解:3x﹣12x3=﹣3x(1﹣4x2)=3x(1+2x)(1﹣2x);﹣2m+4m2﹣2m3=﹣2m(m2﹣2m+1)=﹣2m(m﹣1)2.22.(7分)先化简,再求值:a(a﹣4)﹣(a+6)(a﹣2),其中a=﹣.【解答】解:原式=a2﹣4a﹣a2+2a﹣6a+12=﹣8a+12,当a=﹣时,原式=4+12=16.五、解答题(共3小题,满分27分)23.(9分)+=.【解答】解:去分母得:2(x﹣3)+6=x+3,解得:x=3检验:把x=3代入(x﹣3)(x+3)=0,则x=3是分式方程的增根,∴原方程无解.24.(9分)如图,CD是△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB 的中点E处.(1)求∠A的度数;(2)若AC=,求△AEC的面积.【解答】解:(1)∵E是AB中点,∴CE为Rt△ACB斜边AB上的中线.AE=BE=CE=AB,∵CE=CB,∴△CEB为等边三角形,∴∠CEB=60°,∵CE=AE,∴∠A=∠ACE=30°.故∠A的度数为30°;(2)∵Rt△ACB中,∠A=30°,∴tanA==,∴AC=,BC=1,∴△CEB是等边三角形,CD⊥BE,∴CD=,∵AB=2BC=2,∴AE=AB=1,∴S△ACE==,即△AEC面积为.25.(9分)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.【解答】解:(1)设每个乙种零件进价为x元,则每个甲种零件进价为(x﹣2)元.由题意得:.解得:x=10.检验:当x=10时,x(x﹣2)≠0∴x=10是原分式方程的解.每个甲种零件进价为:x﹣2=10﹣2=8答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y个,则购进甲种零件(3y﹣5)个.由题意得:解得:23<y≤25∵y为整数∴y=24或25.∴共有2种方案.方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.期末数学试卷一、填空题(每空1分,共20分)1.82=64,则8叫做64的__________.2.一个负数的平方等于121,这个负数是__________.3.当k<0时,随着k的增大,它的立方根随着__________.4.(a≥0,b__________).5.一个两位数的十位数字和个位数字之和为7,如果把这个两位数加上45,那么恰好成为十位数字和个位数字对调后的两位数,则这个两位数为__________.6.在平面直角坐标系中,每个象限内的点,不包括__________上的点.7.命题“任意两个直角都相等”的条件是__________,结论是__________,它是__________(真或假)命题.8.函数y=4x﹣3,y随x的增大而__________,它的图象与y轴的交点坐标是__________.9.如果x2=64,那么=__________.10.若是方程2x+3y=0的一个解,则8a+12b+15的值是__________.11.如图,在△ABC中,∠1=∠2,∠3=∠4,∠A=65°,则∠F=__________.12.林书豪是我国优秀篮球运动员,现在在NBA打球,在某次常规赛中,每场个人得分分别是17,8,33,14,25,32,9,27,25,10,这组数据的平均数是__________,众数是__________,中位数是__________.13.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,则点C到AB的距离CD=__________.14.如图,在四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,则△ACD是__________三角形.15.坐标平面内的点与__________是一一对应的.二、选择题把每题唯一正确的答案的序号填在括号内16.下列运算不正确的是( )A.当a≥0时,=a B.=aC.当a<0时,=﹣a D.=﹣917.下列说法不正确的是( )A.﹣2是负数B.﹣2是负数,也是有理数C.﹣2是负数,是有理数,但不是实数D.﹣2是负数,是有理数,也是实数18.下列二次根式是最简二次根式的是( )A.B.C.D.19.若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是( )A.B.C.D.20.为了考察甲、乙两种小麦,分别从中抽取5株苗测得苗高(单位:cm)甲:2,4,6,8,10;乙:1,3,5,7,9.用S甲2和S乙2分别表示两个样本的方差,则( )A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定三、解答题(每小题4分,共20分)21..22.计算:﹣﹣(﹣1)0﹣.23.对于任意数a,一定等于a吗?请举例说明.24.a+3和2a﹣15是某数的两个平方根,求a.25.设△ABC三边长为a=5,b=6,c=7,p=(a+b+c).求S△ABC=.四、解答题(每小题7分,共14分)26.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①用水量小于等于3000吨__________;②用水量大于3000吨__________.(2)某月该单位用水3200吨,水费是__________元;若用水2800吨,水费__________元.(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?27.某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元.(1)写出y与x之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?五、方程应用题28.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?六、证明题(16分)29.在下列推理过程中的括号里填上推理的依据.已知:如图,CDE是直线,∠1=105°,∠A=75°.求证:AB∥C D.证明:∵CDE为一条直线(__________)∴∠1+∠2=180°∵∠1=105°(已知)∴∠2=75°又∵∠A=75°(已知)∴∠2=∠A(__________)∴AB∥CD(__________)30.已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC,说明AD∥B C.31.如图,∠C=∠1,∠2与∠D互余,BE⊥DF,垂足为G.求证:AB∥C D.七、解答题32.如图,平面直角坐标系中,点A的坐标是(﹣4,4),点B的坐标是(2,5).(1)写出点A关于x轴对称的对称点A′的坐标;(2)求出过A′,B两点直线的一次函数的解析式;(3)在x轴上有一动点P,要使P A+PB最小,求点P的坐标.2015-2016学年辽宁省辽阳市灯塔市八年级(上)期末数学试卷一、填空题(每空1分,共20分)1.82=64,则8叫做64的算术平方根.【考点】有理数的乘方.【分析】根据有理数的乘方,算术平方根,即可解答.【解答】解:∵82=64,∴8叫做64的算术平方根.故答案为:算术平方根.【点评】本题考查了有理数的乘方、算术平方根,解决本题的关键是熟记有理数的乘方、算术平方根.2.一个负数的平方等于121,这个负数是﹣11.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:∵(﹣11)2=121,∴这个负数是﹣11,故答案为:﹣11.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.3.当k<0时,随着k的增大,它的立方根随着增大.【考点】立方根.【分析】根据立方根,即可解答.【解答】解:例如:当k=﹣8时,﹣8的立方根为﹣2,当k=﹣1时,﹣1的立方根为﹣1,﹣1>﹣2,所以当k<0时,随着k的增大,它的立方根随着增大.故答案为:增大.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.4.(a≥0,b>0).【考点】二次根式的乘除法.【分析】根据二次根式的除法法则得出=中a≥0,b>0,填上即可.【解答】解:=中a≥0,b>0.故答案为:>0.【点评】本题考查了二次根式性质和二次根式的除法法则的应用,注意:=中a≥0,b >0.5.一个两位数的十位数字和个位数字之和为7,如果把这个两位数加上45,那么恰好成为十位数字和个位数字对调后的两位数,则这个两位数为16.【考点】一元一次方程的应用.【分析】先设这个两位数的十位数字和个位数字分别为x,7﹣x,根据题意列出方程,求出这个两位数.【解答】解:设这个两位数的十位数字为x,则个位数字为7﹣x,由题意列方程得,10x+7﹣x+45=10(7﹣x)+x,解得x=1,∴7﹣x=7﹣1=6,∴这个两位数为16.故答案是:16.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.在平面直角坐标系中,每个象限内的点,不包括坐标轴上的点.【考点】点的坐标.【分析】根据坐标轴上的点不属于任何一个象限即可作答.【解答】解:在平面直角坐标系中,每个象限内的点,不包括坐标轴上的点.故答案为坐标轴.【点评】本题考查了点的坐标,建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.坐标平面内的点与有序实数对是一一对应的关系.7.命题“任意两个直角都相等”的条件是两个角都是直角,结论是相等,它是真(真或假)命题.【考点】命题与定理.【分析】任何一个命题都是由条件和结论组成.【解答】解:“任意两个直角都相等”的条件是:两个角是直角,结论是:相等.它是真命题.【点评】本题考查了命题的条件和结论的叙述.8.函数y=4x﹣3,y随x的增大而增大,它的图象与y轴的交点坐标是(0,﹣3).【考点】一次函数的性质;一次函数图象上点的坐标特征.【分析】根据一次函数的性质和y轴上点的坐标特征填空即可.【解答】解:A∵一次函数y=4x﹣3中,k=4>0,∴函数值随自变量的增大而增大,令x=0,则y=﹣3,∴此函数的图象与y轴的交点坐标是(0,﹣3).故答案为:增大,(0,﹣3).【点评】本题考查的是一次函数的性质和图象上点的坐标特征,熟知正比例函数y=kx(k≠0)中,当k>0时,y随x的增大而增大以及y轴上的点的横坐标为0是解答此题的关键.9.如果x2=64,那么=±2.【考点】立方根;平方根.【专题】计算题.【分析】根据平方根和立方根的概念求解即可.【解答】解:∵x2=64,∴x=±8,∴=±2.故答案为:±2.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.10.若是方程2x+3y=0的一个解,则8a+12b+15的值是15.【考点】二元一次方程的解.【分析】把代入方程2x+3y=0,得出2a+3b=0,再将8a+12b+15变形为4(2a+3b)+15,然后整体代入计算即可.【解答】解:把代入方程2x+3y=0,得2a+3b=0,则8a+12b+15=4(2a+3b)+15=4×0+15=15.故答案为15.【点评】本题考查了二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,注意运用整体代入的思想.11.如图,在△ABC中,∠1=∠2,∠3=∠4,∠A=65°,则∠F=122.5°.【考点】三角形内角和定理.【分析】根据三角形的内角和得到∠ABC+∠ACB=115°,由∠1=∠2,∠3=∠4,求得∠2+∠4=×115°=57.5°,根据三角形的内角和即可得到结论.【解答】解:∵∠A=65°,∴∠ABC+∠ACB=115°,∵∠1=∠2,∠3=∠4,∴∠2+∠4=×115°=57.5°,∴∠F=180°﹣(∠2+∠4)=122.5°.故答案为:122.5°.【点评】本题考查了三角形的内角和,角平分线的定义,熟记三角形的内角和是解题的关键.12.林书豪是我国优秀篮球运动员,现在在NBA打球,在某次常规赛中,每场个人得分分别是17,8,33,14,25,32,9,27,25,10,这组数据的平均数是20,众数是25,中位数是21.【考点】众数;算术平均数;中位数.【分析】要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:这组数据的平均数是(17+8+33+14+25+32+9+27+25+10)=20.将这组数据从小到大重新排列为:8,9,10,14,17,25,25,27,32,33,观察数据可知,最中间的两个数为17,25,所以中位数是(17+25)÷2=21.众数是数据中出现最多的一个数即25.故答案为20,25,21.【点评】本题考查了平均数、众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.13.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,则点C到AB的距离CD=.【考点】勾股定理;点到直线的距离.【分析】首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出点C到AB的距离.【解答】解:在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵BC=12,AC=9,∴AB===15,∵△ABC的面积=AC•BC=AB•CD,∴CD===,故答案为:.【点评】本题考查了勾股定理、三角形面积的计算方法;熟练掌握勾股定理,通过三角形面积求出CD是解决问题的关键.14.如图,在四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,则△ACD是直角三角形.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,直接根据勾股定理求出AC的长即可;在△ACD中,由勾股定理的逆定理即可判断三角形的形状.【解答】解:连接AC,∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5;∵△ACD中,AC=5,CD=12,AD=13,∴AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.故答案为:直角.【点评】本题考查的是勾股定理的逆定理,以及勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.坐标平面内的点与有序实数对是一一对应的.【考点】坐标确定位置.【分析】坐标平面内的点与有序实数对是一一对应的.【解答】解:填有序实数对.【点评】主要考查了坐标平面内的点与有序数对的关系.坐标平面内的点与有序实数对是一一对应的.二、选择题把每题唯一正确的答案的序号填在括号内16.下列运算不正确的是( )A.当a≥0时,=a B.=aC.当a<0时,=﹣a D.=﹣9【考点】算术平方根;立方根.【分析】根据算术平方根的定义,即可解答.【解答】解:当a≥0时,=a,正确;B、=a,正确;C、当a<0时,=﹣a,正确;D、=9,故错误;故选:D.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.17.下列说法不正确的是( )A.﹣2是负数B.﹣2是负数,也是有理数C.﹣2是负数,是有理数,但不是实数D.﹣2是负数,是有理数,也是实数【考点】实数.【专题】计算题.【分析】大于零的数为正数,小于零的数为负数,整数和分数统称有理数,有理数和无理数统称实数,C答案﹣2是负数正确,是有理数正确,也是实数.【解答】解:A、﹣2小于零,是负数,故A正确;B、﹣2小于零是负数,是整数,也是有理数,故B正确;C、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故C错误;D、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故D正确.故选:C.【点评】题目考查了正数、负数、有理数、实数的定义,学生要充分理解各层包含关系,解决此类问题就会迎刃而解.18.下列二次根式是最简二次根式的是( )A. B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的定义分别对每一项进行分析,即可得出答案.【解答】解:A、=5,不是最简二次根式,故本选项错误;B、是最简二次根式,故本选项错误;C、=,不是最简二次根式,故本选项错误;D、=,不是最简二次根式,故本选项错误;故选B.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.19.若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是( )A.B.C.D.【考点】解二元一次方程组;非负数的性质:绝对值.【分析】先根据非负数的性质列出关于x、y的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y的值即可.【解答】解:∵|3x+2y+7|+|5x﹣2y+1|=0,∴,①+②得,8x+8=0,解得x=﹣1,把x=﹣1代入①得,﹣3+2y+7=0,解得y=﹣2,∴方程组的解为.故选C.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.20.为了考察甲、乙两种小麦,分别从中抽取5株苗测得苗高(单位:cm)甲:2,4,6,8,10;乙:1,3,5,7,9.用S甲2和S乙2分别表示两个样本的方差,则( )A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定【考点】方差.【分析】首先计算出甲和乙的平均数,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]计算出方差即可.【解答】解:==6,==5,=[(2﹣6)2+(4﹣6)2+(6﹣6)2+(8﹣6)2+(10﹣6)2]=8,=[(1﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(9﹣5)2]=8,因此S甲2=S乙2.故选:C.【点评】此题主要考查了方差和平均数,关键是掌握方差计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].三、解答题(每小题4分,共20分)21..【考点】二次根式的加减法.【专题】计算题.【分析】解答本题只需将二次根式化为最简,然后合并同类二次根式即可得出的答案.【解答】解:原式=6﹣﹣=.【点评】本题考查二次根式的加减运算,属于基础题,比较简单,解答本题时注意先化简再合并,要细心运算,避免出错.22.计算:﹣﹣(﹣1)0﹣.【考点】二次根式的混合运算;零指数幂.【专题】计算题.【分析】先把各二次根式化为最简二次根式,然后合并即可.【解答】解:原式=3﹣﹣1﹣=﹣1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.对于任意数a,一定等于a吗?请举例说明.【考点】算术平方根.【分析】根据二次根式的性质得出即可.【解答】解:不一定,理由是:只有当a≥0时,才等于a,当a=﹣2时,=2≠a.【点评】本题考查了算术平方根的定义的应用,注意:①当a≥0时,=a,②当a≤0时,=﹣a.24.a+3和2a﹣15是某数的两个平方根,求a.【考点】平方根.【分析】根据已知得出方程a+3+2a﹣15=0,求出方程的解即可.【解答】解:∵某数的平方根是a+3和2a﹣15,∴a+3+2a﹣15=0,解得:a=4.【点评】本题考查了平方根定义的应用,注意:一个正数有两个平方根,它们互为相反数.25.设△ABC三边长为a=5,b=6,c=7,p=(a+b+c).求S△ABC=.【考点】二次根式的应用.【分析】首先计算出p的数值,进一步代入化简求得答案即可.【解答】解:∵a=5,b=6,c=7,∴p=(a+b+c)=×(5+6+7)=9,∴S△ABC===6.【点评】此题考查二次根式的实际运用,代数式求值,掌握二次根式的化简方法是解决问题的关键.四、解答题(每小题7分,共14分)26.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①用水量小于等于3000吨y=0.5x(x≤3000);②用水量大于3000吨y=0.8x﹣900 (x>3000).(2)某月该单位用水3200吨,水费是1660元;若用水2800吨,水费1400元.(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?【考点】一次函数综合题.【专题】代数综合题.。

北师大版八年级数学上册期末测试题(附参考答案)

北师大版八年级数学上册期末测试题(附参考答案)

北师大版八年级数学上册期末测试题(附参考答案)一、选择题:本题共12个小题,每小题3分,共36分。

每小题只有一个选项符合题目要求。

1.下列各数中为无理数的是( )A.√2B.1.5C.0 D.-12.△ABC的三边长a,b,c满足(a-b)2+√2a−b−3+|c-3√2|=0,则△ABC 是( )A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形3.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,E是边BC上的中点,AD=ED=3,则BC的长为( )A.3√2B.3√3C.6 D.6√24.下列说法错误的是( )A.1的平方根是1B.4的算术平方根是2C.√2是2的平方根D.-√3是√(−3)2的平方根−√45,则实数m所在的范围是( )5.若实数m=5√15A.m<-5 B.-5<m<-4C.-4<m<-3 D.m>-36.甲、乙两位同学放学后走路回家,他们走过的路程s(km)与所用的时间t(min)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )A.前10 min,甲比乙的速度慢B.经过20 min,甲、乙都走了1.6 kmC.甲的平均速度为0.08 km/minD.经过30 min,甲比乙走过的路程少7.某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了15.若加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数表达式是( )A.y=0.12xB.y=60+0.12xC.y=-60+0.12xD.y=60-0.12x8.在同一平面直角坐标系中,一次函数y1=ax+b(a≠0)与y2=mx+n(m≠0)的图象如图所示,则下列结论错误的是( )A.y1随x的增大而增大B.b<nC.当x<2时,y1>y2D.关于x,y的方程组{ax−y=−b,mx−y=−n的解为{x=2,y=39.已知方程组{2x+y=1,kx+(k−1)y=19的解满足x+y=3,则( )A.k=-8 B.k=2C.k=8D.k=-210.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁11.如图,直线AB∥CD,GE⊥EF于点E.若∠BGE=60°,则∠EFD的度数是( )A.60°B.30°C.40°D.70°12.如图,在平面直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形P A1A2A3,正方形P A4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形P A1A2A3的顶点坐标分别为P(-3,0),A1(-2,1),A2(-1,0),A3(-2,-1),则顶点A100的坐标为( )A.(31,34) B.(31,-34)C.(32,35) D.(32,0)二、填空题:本题共6个小题,每小题3分,共18分。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列实数中,是无理数的是()A B .3-C .0.101001D .132.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b 的是()A .∠2=∠5B .∠1=∠3C .∠5=∠4D .∠1+∠5=180°3.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <4.快要到新年了,某鞋店老板要进一批新年鞋,他一定会参考下面的调查数据,他最关注的是()A .中位数B .平均数C .加权平均数D .众数5.下列各命题中,属于假命题的是()A .若a -b =0,则a =b =0B .若a -b >0,则a >bC .若a -b <0,则a <bD .若a -b≠0,则a≠b6.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是()A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩7.已知正比例函数y =kx 的函数值y 随x 的增大而减小,则一次函数y =kx -k 的图象大致是()A .B .C .D .8.如图,已知函数y =ax+b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组y ax by kx=+⎧⎨=⎩的解是()A.24xy=-⎧⎨=-⎩B.42xy=-⎧⎨=-⎩C.24xy=⎧⎨=-⎩D.42xy=-⎧⎨=⎩9.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定10.如图,∠AFD=65°,CD∥EB,则BÐ的度数为()A.115°B.110°C.105°D.65°二、填空题11.甲、乙两地7月上旬的日平均气温如图所示,则甲,乙两地这10天中日平均气温的方差S2甲与S2乙的大小关系是S2甲_______S2乙.(填“>”或“<”)12.小明某学期数学平时成绩为70分,期中考试成绩为80分,期末考试成绩为90分,计算学期总评成绩的方法:平时占30%,期中占30%,期末占40%,则小明这学期的总评成绩是________分.13.若|3x﹣0,则xy的算术平方根是_____.14.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.15.如图,已知∠1=100°,∠2=140°,那么∠3=________度.16.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于1AB2的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.17.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是____________.18.如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________三、解答题1901323(21)2-+20.解下列方程组:569745x y x y -=⎧⎨-=-⎩21.某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A ,B ,C ,D ,E 表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)这30名职工捐书本数的众数是本,中位数是本;(3)求这30名职工捐书本数的平均数是多少本?并估计该单位750名职工共捐书多少本?22.如图,已知12l l //,且3l 与1l ,2l 分别交于A ,B 两点,点P 在直线AB 上.(1)当点P 在A ,B 两点之间运动时,求1∠,2∠,3∠之间的数量关系,并说明理由.(2)如果点P 在A ,B 两点外侧运动,试探究1∠,2∠,3∠之间的数量关系(点P 与A ,B 不重合),并说明理由.23.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)若小李11月份上网20小时,他应付多少元的上网费用?(2)当x≥30,求y 与x 之间的函数关系式;(3)若小李12月份上网费用为135元,则他在该月份的上网时间是多少?24.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,将△ACB 沿CD 折叠,使点A 恰好落在BC 边上的点E 处.(1)求△BDE 的周长;(2)若∠B =37°,求∠CDE 的度数.25.某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?26.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟________米,乙在A地时距地面的高度b为________米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式(写出自变量范围);(3)登山多长时间时,甲、乙两人距地面的高度差为70米?参考答案1.A2.B3.B4.D 5.A 6.B 7.C 8.B 9.C 10.A 11.> 12.81 1314.x=2 15.6016.8 517.(0,3)18.110°【详解】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∵∠A=40°,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故答案为:110°.191.1)1=+1=.20.34xy=-⎧⎨=-⎩.【详解】解:569745x y x y -=⎧⎨-=-⎩①②,①×2-②×3,得-11x=33,解得x=-3,把x=-3代入①,得-15-6y=9,解得y=-4,故方程组的解为34x y =-⎧⎨=-⎩.21.(1)补全图形见解析;(2)6,6;(3)6本;4500本.【详解】解:(1)D 组人数=30﹣4﹣6﹣9﹣3=8.(2)众数是6本中位数是6本.故答案为6,6.(3)平均数=6(本),该单位750名职工共捐书约4500本.22.(1)123∠+∠=∠,见解析;(2)123∠-∠=∠或213∠-∠=∠,见解析.【详解】(1)123∠+∠=∠.理由如下:如图所示,过点P 作1//PQ l .12//l l ,12////l l PQ ∴,14∴∠=∠,25∠=∠.453∠+∠=∠ ,123∴∠+∠=∠.(2)123∠-∠=∠或213∠-∠=∠.理由如下:当点P 在下侧时,过点P 作1l 的平行线PQ ,如图所示,12//l l ,12////l l PQ ∴,24∴∠=∠,134∠=∠+∠,123∴∠-∠=∠.当点P 在上侧时,如图所示,12//l l ,24∴∠=∠,又413∠=∠+∠,213∴∠-∠=∠.23.(1)60元;(2)y =3x ﹣30;(3)55个小时.【详解】解:(1)根据题意,从图象上看,30小时以内的上网费用都是60元;(2)当x≥30时,设函数关系式为y =kx+b ,则30604090k b k b +=⎧⎨+=⎩,解得k 3b 30=⎧⎨=-⎩,故函数关系式为y =3x ﹣30;(3)由135=3x ﹣30解得x =55,故12月份上网55个小时.24.(1)△BDE 的周长为12;(2)∠CDE 的度数为82°.【分析】(1)由折叠的性质可知,DE=AD ,CE=AC ,则△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,先求出BE 的长,再利用勾股定理求出AB 的长即可;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,再利用三角形内角和定理求解即可.【详解】解:(1)由折叠的性质可知,DE=AD ,CE=AC ,∴△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,∵∠ACB=90°,AC=6,BC=8,∴BE=BC-CE=BC-AC=2,10AB =,∴△BDE 的周长=AB+BE=10+2=12;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,∵∠ACB=90°,∠B=37°,∴∠A=∠CED=53°,1452ECD ACB ==o ∠,∴=180=82CDE BCD CED --o o ∠∠∠.25.(1)该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)w =﹣10a+2400;(3)12月份该店需要支付这两种水果的货款最少应是1500元.【分析】(1)设该店5月份进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数星,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式;(3)根据甲种水果不超过90千克,可得出a的取值范固,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300 x yx y+=⎧⎨+=+⎩,解得10050xy=⎧⎨=⎩,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400;(3)根据题意得,a≤90,由(2)得,w=﹣10a+2400,∵﹣10<0,w随a的增大而减小,∴a=90时,w有最小值w最小=﹣10×90+2400=1500(元).答:12月份该店需要支付这两种水果的货款最少应是1500元.【点睛】本题考查了二元一次方程组的应用、以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据各数之间的关系,找出w关于a的函数关系式. 26.(1)10;30;(2)15(02)3030(211)x xyx x≤<⎧=⎨-≤≤⎩;(3)登山3分钟或10分钟或13分钟时,甲、乙两人距地面的高度差为70米.【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x<2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者作差等于70得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y 关于x 的函数关系式=70,得出关于x 的一元一次方程,解之可求出x 值.综上即可得出结论.(1)解:甲登山上升的速度是:(300-100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)解:当0≤x <2时,y=15x ;当x≥2时,y=30+10×3(x-2)=30x-30.当y=30x-30=300时,x=11.∴乙登山全程中,距地面的高度y 与登山时间x 之间的函数关系式为:15(02)3030(211)x x y x x ≤<⎧=⎨-≤≤⎩;(3)解:甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=kx+b (k≠0),把(0,100)和(20,300)代入解析式得:10020300b k b =⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩,∴甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=10x+100(0≤x≤20),当10x+100-(30x-30)=70时,解得:x=3;当30x-30-(10x+100)=70时,解得:x=10;当300-(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.。

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷及答案一、选择题(每小题3分,共18分)1.(3分)﹣的倒数是()A.B.3C.﹣3D.﹣2.(3分)在直角三角形中,斜边与较小直角边的和、差分别为8、2,则较长直角边长为()A.5B.4C.3D.23.(3分)已知点P(m,n)在第四象限,则直线y=nx+m图象大致是下列的()A.B.C.D.4.(3分)若方程(a+3)x+3y|a|﹣2=1是关于x,y的二元一次方程,则a的值为()A.﹣3B.±2C.±3D.35.(3分)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°6.(3分)已知关于x、y的方程组,则下列结论中正确的是()①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变.A.①②B.①②③C.②③D.②二、填空题。

(每小题3分,共18分)7.(3分)函数中,自变量x的取值范围是.8.(3分)的平方根是.9.(3分)若a,b,c分别是△ABC的三条边长,且a2﹣6a+b2﹣10c+c2=8b﹣50,则这个三角形的形状是.10.(3分)的整数部分是,小数部分是.11.(3分)如果二元一次方程组的解适合方程3x+y=﹣8,则k=.12.(3分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间(t)分之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有360米.其中正确的结论有.(填序号)三、解答题。

(5×6分+3×8分+2×9分+12分=84分)13.(6分)计算:(1);(2).14.(6分)(1)已知点P(2m﹣6,m+2),若点P在y轴上,求点P的坐标.(2)已知点Q,若点Q在过点A(2,3)且与x轴平行的直线上,AQ=3,求点Q的坐标.15.(6分)解方程组.16.(6分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x轴、y轴交于A、B两点,若正比例函数的图象l2与l1交于点C(m,4).(1)求m的值;(2)求△AOC的面积;(3)一次函数y=kx+1的图象为l3,且l1、l2、l3不能围成三角形,请写出k的值.17.(6分)如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1)(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;(2)写出点A′,B′,C′的坐标.18.(8分)如图,在平面直角坐标系中,一次函数y=2x﹣3的图象分别交x轴,y轴于点A、B,将直线AB绕点B 顺时针方向旋转45°,交x轴于点C,求直线BC的函数表达式.19.(8分)如图,圆柱形容器的高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离.20.(8分)某学校在体育周活动中组织了一次体育知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示:(1)把八年级一班竞赛成绩统计图补充完整;(2)求出下表中a、b、c的值:平均数/分中位数/分众数/分方差一班a b90106.24二班87.680c138.24(3)根据上面图表数据,请你对这次竞赛成绩的结果进行分析.(至少写两条)21.(9分)材料阅读:如图(1)所示的图形,像我们常见的学习用品—圆规,我们常把这样的图形叫做“规形图”.(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你利用此结论,解决以下两个问题:Ⅰ.如图(2),把一个三角尺DEF放置在△ABC上,使三角尺的两条直角边DE,DF恰好经过点B,C,若∠A =30°,则∠ABD+∠ACD=.Ⅱ.如图(3),BD平分∠ABP,CD平分∠ACP,若∠A=50°,∠BPC=130°,求∠BDC的度数.22.(9分)在《二元一次方程组》这一章的复习课上,王老师让同学们根据下列条件探索还能求出哪些量:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建条335米长的公路,甲队每天修建20米,乙队每天修建25米,一共用15天完成.(1)小红同学根据题意,列出了一个尚不完整的方程组请写出小红所列方程组中未知数x,y表示的意义:x表示,y表示;并写出该方程组中?处的数应是,*处的数应是;(2)小芳同学的思路是想设甲工程队一共修建了x米公路,乙工程队一共修建了y米公路.下面请你按照小芳的设想列出方程组,并求出乙队修建了多少天?23.(12分)6月份以来,猪肉价格一路上涨,为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆,10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输分别是18辆、10辆.已知一辆运输车从A市到D、E两市的运费分别为200元和800元,从B市到D、E两市的运费分别为300元和700元,从C市到D、E两市的运费分别为400元和500元.若从A、B两市都派x辆车到D市,当这28辆运输车全部派出时,①求总运费W(元)与x(辆)之间的关系式,并写出x的取值范围;②求总运费W最低时的车辆派出方案.参考答案与试题解析一、选择题。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列各组数,是勾股数的是()A .13,14,15B .0.3,0.4,0.5C .6,7,8D .5,12,132.下列说法:①-27的立方根是3;②36的算数平方根是6±;③18的立方根是12平方根是3±.其中正确说法的个数是()A .1B .2C .3D .43.点(),A x y 在第四象限,则点(),2B x y --在第几象限()A .第一象限B .第二象限C .第三象限D .第四象限4最接近的数是()A .2B .3C .4D .55.在 1.414-,π,12,2,3.212212221…(相邻两个1之间的2的个数逐次加1),3.14这些数中,无理数的个数为()个.A .5B .2C .3D .46.下列命题中,是真命题的是()A .同位角相等B .同旁内角相等,两直线平行C .平行于同一直线的两直线平行D .相等的角是对顶角7.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是()A .乙同学的成绩更稳定B .甲同学的成绩更稳定C .甲、乙两位同学的成绩一样稳定D .不能确定哪位同学的成绩更稳定8.正比例函数()0y kx k =-≠的函数值y 随x 的增大而减小,则一次函数y kx k =-的图象大致是()A .B .C .D .9.《九章算术》中记载:“今有共买牛,人出六,不足四十;人出八,余四;问人数、牛价各几何?”其大意是:今有人合伙买牛,若每人出6钱,还差40钱;若每人出8钱,多余4钱,问合伙人数、牛价各是多少?设合伙人数为x 人,牛价为y 钱,根据题意,可列方程组为()A .64084y x y x =+⎧⎨=+⎩B .64084y x y x =+⎧⎨=-⎩C .64084y x y x =-⎧⎨=-⎩D .64084y x y x =-⎧⎨=+⎩10.甲、乙两车从A 城出发前往B 城,在整个行驶过程中,汽车离开A 城的距离()km y 与行驶时间()h t 的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ;②乙车用了5h 到达B 城;③甲车出发4h 时,乙车追上甲车A .0个B .1个C .2个D .3个二、填空题11.已知点()1,3P m m ++在x 轴上,则m =________;点P 的坐标为________.12有意义,则x 的取值范围是___.13.若函数()231m y m x-=+是正比例函数,且图像在一、三象限,则m =_________.14.若一组数据1x ,2x ,…n x 的平均数是2,方差是1.则132x +,232x +,…32n x +的平均数是_______,方差是_______.15.已知一次函数y x b =-+的图象经过点()12,A y -和()23,B y ,则1y _______2y (填“>”“<”或“=”)16.如图,已知函数y ax b =+和y kx =的图象交于点P ,关于,x y 的方程组0y ax b kx y -=⎧⎨-=⎩的解是____.17.如图,ABC 中,90A ∠=︒,点D 在AC 边上,∥DE BC ,若1145∠=︒,则B ∠的度数为_______.18.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_________dm .三、解答题19.计算(1)2(23)(33)(33)+-+(2)20223125272---20.用适当的方法解下列方程组(1)231951x y x y +=-⎧⎨+=⎩(2)237324x y x y +=⎧⎨-=⎩21.中考体育测试前,我区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)扇形统计图中a =%,并补全条形统计图.(2)在这次抽测中,测试成绩的众数和中位数分别是个、个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?22.如图所示,折叠长方形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知6AB =,8BF =,求CE 的长.23.已知一次函数y kx b =+的图象经过点()1,5--,且与正比例函数2y x =的图象相交于点()2,A m .求:(1)m 的值;(2)k ,b 的值;(3)这两个函数图象与y 轴所围成的三角形的面积.24.如图,Rt △ABC 中,∠BAC =90°,AC =9,AB =12.按如图所示方式折叠,使点B 、C 重合,折痕为DE ,连接AE .求AE 与CD 的长.25.某商场去年的利润为10万元,今年的总收入比去年增加10%,总支出比去年减少了5%,今年的利润为30万元.求去年的总收入和总支出?26.已知一次函数y =kx ﹣3的图象与正比例函数y=12x 的图象相交于点(2,a ).(1)求a 的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.27.如图1,在平面直角坐标系中,(),0A m,(),4C n ,且满足()240m +=,过C 作CB x ⊥轴于B .(1)求m ,n 的值;(2)在x 轴上是否存在点P ,使得ABC 和OCP △的面积相等,若存在,求出点P 坐标,若不存在,试说明理由.(3)若过B 作BD AC ∥交y 轴于D ,且AE ,DE 分别平分CAB ∠,ODB ∠,如图2,图3,①求:CAB ODB ∠+∠的度数;②求:AED ∠的度数.参考答案1.D【分析】根据能够成为直角三角形三条边长的三个正整数,称为勾股数,即可求解【详解】解:A、不是正整数,则不是勾股数,故本选项不符合题意;B、不是正整数,则不是勾股数,故本选项不符合题意;C、222678+≠,则不是勾股数,故本选项不符合题意;D、2225+12=13,是勾股数,故本选项符合题意;故选:D【点睛】本题主要考查了勾股数的定义,熟练掌握能够成为直角三角形三条边长的三个正整数,称为勾股数是解题的关键.2.A【分析】分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.【详解】解:①-27的立方根是-3,错误;②36的算数平方根是6,错误;③18的立方根是12,正确;∴正确的说法有1个,故选:A.【点睛】本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.3.C【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B10,距离10最近的完全平方数是9和16,通过比较可知10距离9比较近,由此即可求解.解答:解:∵32=9,42=16,又∵11-9=2<16-9=5∴与最接近的数是3.故选B.5.D【分析】有理数是整数与分数的统称,无理数就是无限不循环小数,据此逐一判断即可得答案.-是有限小数,是有理数,【详解】 1.414π是无理数,1是分数,是有理数,22是无理数,3.212212221…(相邻两个1之间的2的个数逐次加1),是无限不循环小数,是无理数,3.14是有限小数,是有理数,∴无理数有π2和3.212212221…(相邻两个1之间的2的个数逐次加1),共4个,故选:D.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.熟练掌握定义是解题关键.6.C【分析】根据平行线的性质和判定,对顶角的性质,逐项判断即可求解.【详解】解:A、两直线平行,同位角相等,则原命题是假命题,故本选项错误,不符合题意;B 、同旁内角互补,两直线平行,则原命题是假命题,故本选项错误,不符合题意;C 、平行于同一直线的两直线平行,则原命题是真命题,故本选项正确,符合题意;D 、相等的角不一定是对顶角,则原命题是假命题,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了真假命题的判断,平行线的性质和判定,对顶角的性质,熟练掌握平行线的性质和判定,对顶角的性质是解题的关键.7.A【分析】根据方差的定义逐项排查即可.【详解】解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样∴乙同学的成绩更稳定.故选A .【点睛】本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.8.C【分析】因为正比例函数(0)y kx k =-≠的函数值y 随x 的增大而减小,可以判断0k >;再根据0k >判断出y kx k =-的图象的大致位置.【详解】解: 正比例函数(0)y kx k =-≠的函数值y 随x 的增大而减小,0k ∴>,∴一次函数y kx k =-的图象经过一、三、四象限.故选C .【点睛】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当0k >,0b >时,函数y kx b =+的图象经过第一、二、三象限;②当0k >,0b <时,函数y kx b =+的图象经过第一、三、四象限;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;④当0k<,0b <时,函数y kx b =+的图象经过第二、三、四象限.9.B【分析】设合伙人数为x 人,牛价为y 钱,根据“若每人出6钱,还差40钱;若每人出8钱,多余4钱,”列出方程组,即可求解.【详解】解:设合伙人数为x 人,牛价为y 钱,根据题意得:64084y x y x =+⎧⎨=-⎩.故选:B【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.10.C【分析】求出正比函数的解析式,k 值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y=kx ,∴6k=300,解得k=50,∴y 甲=50x ,∴甲车的速度为50km/h ,∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h )到达B 城,∴②错误;设y =mx b +乙,∴2m =05m 300b b +⎧⎨+=⎩,∴m 100200b =⎧⎨=-⎩,∴y =100x-200乙,∵=50100200y x y x ⎧⎨=-⎩,∴x 4200y =⎧⎨=⎩,即甲行驶4小时,乙追上甲,∴③正确;故选C .11.3-()2,0-【分析】根据x 轴上的点,纵坐标为0,求出m 值即可.【详解】解:∵点()1,3P m m ++在x 轴上,∴30m +=,解得,3m =-,则1312m +=-+=-;点P 的坐标为(-2,0);故答案为:-3,(-2,0).【点睛】本题考查了坐标轴上点的坐标特征,解题关键是明确x 轴上的点,纵坐标为0.12.2x ≥有意义,即x ﹣2≥0,解得:x≥2.故答案为:x≥2.13.2【分析】根据自变量的次数等于1,系数大于0列式求解即可.【详解】解:由题意得m+1>0,m 2-3=1,解得m=2.故答案为:2.14.89【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x 1,x 2,…xn 的平均数是2,∴数据3x 1+2,3x 2+2,…+3xn+2的平均数是3×2+2=8;∵数据x 1,x 2,…xn 的方差为1,∴数据3x 1,3x 2,3x 3,……,3xn 的方差是1×32=9,∴数据3x 1+2,3x 2+2,…+3xn+2的方差是9.故答案为:8、9.15.>【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小,判断即可.【详解】∵一次函数y x b =-+的图象经过点()12,A y -和()23,B y ,且k <0,∴k <0,∵-2<3,∴1y >2y ,故答案为:>.16.4,2x y =-⎧⎨=-⎩【分析】根据函数与方程组的关系结合交点坐标即可求得方程组的解.【详解】解:∵一次函数y=ax+b (a≠0)和y=kx (k≠0)的图象交于点P (-4,-2),∴二元一次方程组0y ax b kx y -=⎧⎨-=⎩的解是42x y =-⎧⎨=-⎩,故答案为:42x y =-⎧⎨=-⎩.17.55︒【分析】先求出∠EDC=35°,然后根据平行线的性质得到∠C=∠EDC=35°,再由直角三角形两锐角互余即可求解.【详解】解:∵∠1=145°,∴∠EDC=35°,∵DE ∥BC ,∴∠C=∠EDC=35°,又∵∠A=90°,∴∠B=90°-∠C=55°,故答案为:55°.18.25【分析】把立体几何图展开得到平面几何图,如图,然后利用勾股定理计算AB ,则根据两点之间线段最短得到蚂蚁所走的最短路线长度.【详解】解:展开图为:则AC=20dm,BC=3×3+2×3=15(dm ),在Rt △ABC 中,25AB ===(dm ).所以蚂蚁所走的最短路线长度为25dm.故答案为:25.19.(1)1+;(2)9-【分析】(1)利用完全平方公式,平方差公式展开,合并同类项即可;(2)根据幂的意义,算术平方根,立方根的定义计算.【详解】(1)2(2(3-=43(93)+--=1+(2)20221--+-=153---=9-20.(1)143x y =-⎧⎨=⎩;(2)21x y =⎧⎨=⎩【分析】(1)方程组利用加减消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1)231951x y x y +=-⎧⎨+=⎩①②②×2-①得:7y=21,解得:y=3,把y=3代入②中,解得:x=−14,∴方程组的解为:143x y =-⎧⎨=⎩;(2)237324x y x y +=⎧⎨-=⎩①②①×2-②×3得:13x=26,解得:x=2,把x=2代入①中,解得:y=1,∴方程组的解为:21x y =⎧⎨=⎩.21.(1)25,图见解析(2)5,5(3)810名【分析】(1)用1减去其他天数所占的百分比即可得到a 的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)根据众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.(1)解:扇形统计图中a=1-30%-15%-10%-20%=25%,设引体向上6个的学生有x 人,由题意得20,25%10%x =,解得x=50.条形统计图补充如下:故答案为:5;(2)解:由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5.故答案为:5,5.(3)解:50401800810200+⨯=(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.22.83【分析】由翻折的性质可得:AD AF BC ==,DE EF =,在Rt ABF 中,由勾股定理,可得10AF ==,从而得到2FC =,然后设CE x =,6EF DE x ==-,在Rt ECF △中,由勾股定理,即可求解.【详解】解:由翻折的性质可得:AD AF BC ==,DE EF =,在Rt ABF 中,10AF ==,∴2FC BC BF =-=,设CE x =,6EF DE x ==-,在Rt ECF △中,222EF EC CF =+,即()2246x x +=-,解得83x =,∴CE 的长为83.23.(1)4m =;(2)3k =,2b =-;(3)2【分析】(1)把(2,m )代入正比例函数解析式即可得到m 的值;(2)把(-1,-5)、(2,4)代入y=kx+b 中可得关于k 、b 的方程组,然后解方程组求出k 、b 即可;(3)先利用描点法画出图象,再求出两直线与y 轴的交点坐标,然后根据三角形面积公式求解.【详解】解:(1)将()2,m 代入2y x =得,4m =.(2)由(1)得,交点坐标为()2,4,将()1,5--,()2,4代入y kx b =+中,得524k b k b -+=-⎧⎨+=⎩,解得32k b =⎧⎨=-⎩,∴3k =,2b =-.(3)由(2)得,直线的表达式为32y x =-,令0x =,则2y =-,所以直线32y x =-与y 轴的交点坐标问为()0,2-,又∵两直线的交点坐标为()2,4,∴12222s =⨯⨯=.【点睛】本题考查了一次函数的综合题:用待定系数法求一次函数的解析式,一次函数与坐标轴的交点问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.24.AE =7.5,CD =758【分析】在Rt △ABC 中由于∠BAC =90°,AC =9,AB =12,所以根据勾股定理可求出BC 的长,由折叠可知,ED 垂直平分BC ,E 为BC 中点,BD =CD ,根据直角三角形斜边上的中线等于斜边的一半可求出AE 的长,设BD =CD =x ,则AD =12﹣x .在Rt △ADC 中由AD 2+AC 2=CD 2即可求出x 的值,故可得出结论.【详解】解:在Rt △ABC 中,∠BAC =90°,AC =9,AB =12,由勾股定理得:AB 2+AC 2=BC 2.∴BC 2=92+122=81+144=225=152,∴BC =15∵由折叠可知,ED 垂直平分BC ,∴E 为BC 中点,BD =CD∴AE =12BC =7.5(直角三角形斜边上的中线等于斜边的一半).设BD =CD =x ,则AD =12﹣x .在Rt △ADC 中,∴AD 2+AC 2=CD 2(勾股定理).即92+(12﹣x )2=x 2,解得x =758,∴CD =758.【点睛】本题考查的是图形折叠的性质,熟知图形折叠不变性的性质及勾股定理是解答此题的关键.25.去年的总收入为4103元,总支出为3803元【分析】设去年的总收入为x 万元,总支出为y 万元,根据利润=总收入-总支出,列出方程,构成方程组求解.【详解】解:设去年的总收入为x 万元,总支出为y 万元,依题意得:x-1000(1+10)(1-5)=3000y x y =⎧⎪⎨-⎪⎩,解得410x=3380=3y ⎧⎪⎪⎨⎪⎪⎩,答:去年的总收入为4103元,总支出为3803元.【点睛】本题考查了二元一次方程组的应用题,根据利润=总收入-总支出,列出符合题意的方程是解题的关键.26.(1)a =1;(2)y =2x ﹣3;(3)详见解析.【分析】(1)直接把点(2,a )代入正比例函数的解析式y =12x 可求出a ;(2)将求得的交点坐标代入到直线y =kx ﹣3中即可求得其表达式;(3)利用与坐标轴的交点及两图像交点即可确定两条直线的解析式.【详解】(1)∵正比例函数y =12x 的图象过点(2,a ),∴a =1;(2)∵一次函数y =kx ﹣3的图象经过点(2,1)∴1=2k ﹣3,∴k =2,∴y =2x ﹣3;(3)函数图象如下图:【点睛】本题考查了两条直线相交或平行问题:若直线y =k 1x+b 1与直线y =k 2x+b 2相交,则交点坐标同时满足两个解析式.也考查了待定系数法求函数解析式.27.(1)4m =-,4n =;(2)存在,()8,0N 或()8,0-;(3)①90︒;②45︒【分析】(1)根据非负数的和为零,则每一个数为零,列等式计算即可;(2)设点P 的坐标为(n ,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;(3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;②作EM AC ∥,利用平行线的性质,角的平分线的定义,计算即可.【详解】解:(1)∵()240m +=,∴m+4=0,n-4=0,∴4m =-,4n =.(2)存在,设点P 的坐标为(n ,0),则OP=|n|,∵A (-4,0),C (4,4),∴B (4,0),AB=4-(-4)=8,∵12ABCS AB CB = ,12OCP CB OP = △S ,且ABC 和OCP △的面积相等,∴12AB CB 12CB OP = ,∴OP=AB=8,∴|n|=8,∴n=8或n=-8,∴()8,0P 或()8,0P -;(3)①∵AC BD ∥,∴CAB OBD ∠=∠,又∵90OBD ODB ∠+∠=︒,∴90CAB ODB ∠+∠=︒.②作EM AC ∥,如图,∵AC BD ∥,∴AC EM BD ∥∥,∴CAE AEM ∠=∠,BDE DEM ∠=∠,∴AED CAE BDE ∠=∠+∠,∵AE ,DE 分别平分CAB ∠,ODB ∠,∴12CAE CAB ∠=∠,12BDE ODB ∠=∠,∴11()904522AED AEM DEM CAB ODB ∠=∠+∠=∠+∠=⨯︒=︒,即45AED ∠=︒.。

北师大版数学八年级上册期末考试试卷有答案

北师大版数学八年级上册期末考试试卷有答案

北师大版数学八年级上册期末考试试题一、选择题(每小题3分,共30分,每小题只有一项符合题目要求)1.(3分)数4的算术平方根是()A.2 B.﹣2 C.±2 D.2.(3分)下列实数中的无理数是()A.0 B.C.πD.1.01010101…3.(3分)与最接近的整数是()A.9 B.8 C.7 D.64.(3分)下列等式成立的是()A.3+4=7B.=C.÷=2D.=3 5.(3分)下列命题是假命题的是()A.对顶角相等B.两直线平行,同位角相等C.内错角相等,两直线平行D.三角形的外角大于内角6.(3分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)7.(3分)用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3 8.(3分)将一副直角三角板(∠A=∠FDE=90°,∠F=45°,∠C=60°,点D在边AB上)按图中所示位置摆放,两条斜边为EF,BC,且EF∥BC,则∠ADF等于()A.70°B.75°C.80°D.85°9.(3分)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b 相交于点P,根据图象可知,关于x的方程x+5=ax+b的解是()A.x=5 B.x=15 C.x=20 D.x=2510.(3分)如图,正方形ABCD的边长为1,其面积标记为S1,以AB为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S7的值为()A.B.C.D.二、填空题(本大题4个小题,每小题4分,共16分)11.(4分)实数2﹣的倒数是.12.(4分)点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b的值等于.13.(4分)如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a 的值为.14.(4分)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.三、解答题(本大题共6个小题,满分54分)15.(10分)(1)计算:﹣+﹣|2﹣3|;(2)计算:÷3×.16.(10分)(1)解方程组:;(2)解方程组:.17.(8分)某校开展了“学习新思想,做好接班人”主题阅读活动月.请根据统计图表中的信息,解答下列问题:(1)被抽查的学生人数是人,表中m=;(2)被抽查的学生阅读文章篇数的中位数是,众数是;(3)若该校共有1600名学生,请估计该校学生在主题阅读活动月内文章阅读的篇数为4篇的有多少人?阅读篇数 3 4 5 6 7及以上人数20 25 m 15 1018.(6分)大学生运动会将在成都召开,大批的大学生报名参与志愿者服务工作.某大学计划组织本校大学生志愿者乘车去了解比赛场馆情况,若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位.求计划调配36座新能源客车多少辆?该大学共有多少名大学生志愿者?19.(10分)如图,平面直角坐标系中,△ABC的顶点坐标分别为A(4,1),B(3,4),C(1,2).(1)画出△ABC关于y轴对称的△A1B1C1,并写出顶点C1的坐标;(2)若点P在x轴上,且满足PA+PC1最小,求点P的坐标及PA+PC1的最小值.20.(10分)已知,△ABC和△DCE都是等边三角形,点B,C,E三点不在一条直线上(如图1).(1)求证:BD=AE;(2)若∠ADC=30°,AD=4,CD=5,求BD的长;(3)若点B,C,E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为3和5,求AD的长.一、填空题(每小题4分,共20分)21.(4分)计算•(﹣)+•(﹣)的结果是.22.(4分)某小组数学综合练习得分如表:得分130 140 145人数 5 3 2 则该小组的平均得分是分.23.(4分)如图,线段AB,BC的垂直平分线l1,l2相交于点O,若∠B=50°,则∠AOC =.24.(4分)如图,点A(﹣2,0),直线l:y=与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,则点A3的坐标是.25.(4分)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,CD交AB于点F,若AE=,AD=2,则△ACF的面积为.二、解答题(本大题有3个小题,共30分)26.(8分)某商场在二楼到一楼之间设有自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,甲离一楼地面的高度y甲(米)与下行时间x(秒)满足函数关系y=﹣x+6;乙走步行楼梯,乙离一楼地面的高度y乙(米)与下行时间x(秒)的函甲数关系如图所示.(1)求y乙关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面?27.(10分)阅读理解:已知实数x,y满足3x﹣y=5…①,2x+3y=7…②,求x﹣4y和7x+5y 的值.仔细观察两个方程未知数的系数之间的关系,本题可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.利用“整体思想”,解决下列问题:(1)已知二元一次方程组,则x﹣y=,x+y=;(2)买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,求购买5支铅笔、5块橡皮5本日记本共需多少元?(3)对于实数x,y,定义新运算:x*y=ax+by+c,其中a,b,c是常数,等式右边是实数运算.已知3*5=15,4*7=28,求1*1的值.28.(12分)表格中的两组对应值满足一次函数y=kx+b,函数图象为直线l1,如图所示.将函数y=kx+b中的k与b交换位置后得一次函数y=bx+k,其图象为直线l2.设直线l1交y轴于点A,直线l1交直线l2于点B,直线l2交y轴于点C.x ﹣2 4y ﹣4 2 (1)求直线l2的解析式;(2)若点P在直线l1上,且△BCP的面积是△ABC的面积的(1+)倍,求点P的坐标;(3)若直线y=a分别与直线l1,l2及y轴的三个交点中,其中一点是另两点所成线段的中点,求a的值.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)数4的算术平方根是()A.2 B.﹣2 C.±2 D.【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.(3分)下列实数中的无理数是()A.0 B.C.πD.1.01010101…【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是整数,属于有理数,故本选项不合题意;B、,是整数,属于有理数,故本选项不合题意;C、π是无理数,故本选项符合题意;D、1.01010101…是循环小数,属于有理数,故本选项不合题意;故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.3.(3分)与最接近的整数是()A.9 B.8 C.7 D.6【分析】由于64<66<81,于是8<<9,64与66的距离小于66与81的距离,可得答案.【解答】解:∵82=64,92=81,∴8<<9,又∵8.52>66,∴与最接近的整数是8.故选:B.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.(3分)下列等式成立的是()A.3+4=7B.=C.÷=2D.=3 【分析】根据二次根式的加、乘、除法法则及二次根式的性质逐一判断即可得.【解答】解:A.3与4不是同类二次根式,不能合并,此选项计算错误;B.×=,此选项计算错误;C.÷=×=3,此选项计算错误;D.=3,此选项计算正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的加、乘、除法法则及二次根式的性质.5.(3分)下列命题是假命题的是()A.对顶角相等B.两直线平行,同位角相等C.内错角相等,两直线平行D.三角形的外角大于内角【分析】对各个命题逐一判断后找到错误的即可确定假命题.【解答】解:A、对顶角相等,是真命题;B、两直线平行,同位角相等,是真命题;C、内错角相等,两直线平行,是真命题;D、三角形的一个外角大于和它不相邻的任何一个内角,原命题是假命题;故选:D.【点评】此题主要考查了命题与定理,熟练利用相关定理以及性质进而判定举出反例即可判定出命题正确性.6.(3分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.【解答】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=2,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=>0,∴y随x的增大而增大,选项D不符合题意.故选:B.【点评】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,根据点的坐标,利用一次函数图象上点的坐标特征求出k值是解题的关键.7.(3分)用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【分析】方程组利用加减消元法变形即可.【解答】解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.【点评】此题考查了解二元一次方程组,熟练掌握加减消元法是解本题的关键.8.(3分)将一副直角三角板(∠A=∠FDE=90°,∠F=45°,∠C=60°,点D在边AB上)按图中所示位置摆放,两条斜边为EF,BC,且EF∥BC,则∠ADF等于()A.70°B.75°C.80°D.85°【分析】依据平行线的性质,即可得到∠BGD的度数,再根据三角形外角的性质,即可得到∠ADG的度数.【解答】解:如图所示,CB与FD交点为G,∵EF∥BC,∴∠F=∠BGD=45°,又∵∠ADG是△BDG的外角,∠B=30°,∴∠ADG=∠B+∠BGD=30°+45°=75°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.9.(3分)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b 相交于点P,根据图象可知,关于x的方程x+5=ax+b的解是()A.x=5 B.x=15 C.x=20 D.x=25【分析】两直线的交点坐标为两直线解析式所组成的方程组的解,即可得出答案.【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20,25),∴方程x+5=ax+b的解为x=20,故选:C.【点评】此题考查了一次函数与一元一次方程,关键是掌握一元一次方程与一次函数的关系,从图象上看,一元一次方程的解,相当于已知两条直线交点的横坐标的值.10.(3分)如图,正方形ABCD的边长为1,其面积标记为S1,以AB为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S7的值为()A.B.C.D.【分析】根据题意求出S2=()1,S3=()2,S4=()3,…,根据规律解答.【解答】解:由题意得:S1=12=1,S2=(1×)2=()1,S3=(×)2==()2,S4=(××)2==()3,…,则S n=()n﹣1,∴S7=()6,故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣1”.二、填空题(本大题4个小题,每小题4分,共16分)11.(4分)实数2﹣的倒数是2+.【分析】利用倒数的定义,以及分母有理化性质计算即可.【解答】解:实数2﹣的倒数是==2+.故答案为:2+.【点评】此题考查了分母有理化,以及倒数,熟练找到有理化因式也是解本题的关键.12.(4分)点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b的值等于﹣4.【分析】把P(a,b)代入一次函数解析式得到b=3a+2,则3a﹣b=﹣2,即可求解.【解答】解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,∴3a﹣b=﹣2,∴6a﹣2b=2×(﹣2)=﹣4,故答案为:﹣4.【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.13.(4分)如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a 的值为3.【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,结合点P在第一象限,可得关于a的方程,求解即可.【解答】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P在第一象限,点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.【点评】本题考查了角平分线的作法及其性质在坐标与图形性质问题中的应用,明确题中的作图方法及角平分线的性质是解题的关键.、14.(4分)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.三、解答题(本大题共6个小题,满分54分)15.(10分)(1)计算:﹣+﹣|2﹣3|;(2)计算:÷3×.【分析】(1)直接利用二次根式的性质化简,再利用二次根式的加减运算法则计算即可;(2)直接利用二次根式的乘除运算法则计算得出答案.【解答】解:(1)原式=﹣+2+2﹣3=2;(2)÷3×=3××=×=1.【点评】此题主要考查了实数运算以及二次根式的混合运算,正确化简二次根式是解题关键.16.(10分)(1)解方程组:;(2)解方程组:.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)把①代入②得:3(y+1)+y=7,解得:y=1,把y=1代入①得:x=1+1=2,则方程组的解为;(2)②×5﹣①×2得:21y=20,解得:y=,把y=代入②得:2x+5×=8,解得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17.(8分)某校开展了“学习新思想,做好接班人”主题阅读活动月.请根据统计图表中的信息,解答下列问题:(1)被抽查的学生人数是100人,表中m=30;(2)被抽查的学生阅读文章篇数的中位数是5篇,众数是5篇;(3)若该校共有1600名学生,请估计该校学生在主题阅读活动月内文章阅读的篇数为4篇的有多少人?阅读篇数 3 4 5 6 7及以上人数20 25 m 15 10【分析】(1)先由6篇的人数及其所占百分比求得总人数,总人数减去其他篇数的人数求得m的值;(2)根据中位数和众数的定义求解;(3)用总人数乘以样本中4篇的人数所占比例即可得.【解答】解:(1)被调查的总人数为15÷15%=100(人),m=100﹣(20+25+15+10)=30;故答案为:100,30.(2)由于共有100个数据,其中位数为第50、51个数据的平均数,而第50、51个数据均为5篇,所以中位数为5篇,出现次数最多的是5篇,所以众数为5篇.故答案为:5篇,5篇.(3)该校学生在主题阅读活动月内文章阅读的篇数为4篇的有:1600×=400(人).【点评】本题考查的是扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.(6分)大学生运动会将在成都召开,大批的大学生报名参与志愿者服务工作.某大学计划组织本校大学生志愿者乘车去了解比赛场馆情况,若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位.求计划调配36座新能源客车多少辆?该大学共有多少名大学生志愿者?【分析】设计划调配36座新能源客车x辆,该大学共有y名大学生志愿者,根据“若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位”,即可得出关于x,y 的二元一次方程组,解之即可得出结论.【解答】解:设计划调配36座新能源客车x辆,该大学共有y名大学生志愿者,依题意得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名大学生志愿者.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.(10分)如图,平面直角坐标系中,△ABC的顶点坐标分别为A(4,1),B(3,4),C(1,2).(1)画出△ABC关于y轴对称的△A1B1C1,并写出顶点C1的坐标;(2)若点P在x轴上,且满足PA+PC1最小,求点P的坐标及PA+PC1的最小值.【分析】(1)依据轴对称的性质,即可得到△ABC关于y轴对称的△A1B1C1,即可得到顶点C1的坐标;(2)作点C1关于x轴的对称点C',设直线AC'交x轴于点P,则C'的坐标为(﹣1,﹣2),利用待定系数法即可得到直线AC'的解析式,进而得出点P的坐标;过点A作x轴的垂线,过点C'作y轴的垂线,交于点D,则∠ADC'=90°,再根据勾股定理进行计算即可得出PA+PC1的最小值.【解答】解:(1)如图所示,△A1B1C1即为所求,顶点C1的坐标为(﹣1,2);(2)作点C1关于x轴的对称点C',设直线AC'交x轴于点P,则C'的坐标为(﹣1,﹣2),设直线AC'的解析式为y=kx+b,则,解得,∴直线AC'的解析式为y=x﹣,令y=0,则x=,∴点P的坐标为(,0),过点A作x轴的垂线,过点C'作y轴的垂线,交于点D,则∠ADC'=90°,在Rt△AC'D中,AC'==,∴PA+PC1的最小值为.【点评】本题主要考查了利用轴对称变换作图以及最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.20.(10分)已知,△ABC和△DCE都是等边三角形,点B,C,E三点不在一条直线上(如图1).(1)求证:BD=AE;(2)若∠ADC=30°,AD=4,CD=5,求BD的长;(3)若点B,C,E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为3和5,求AD的长.【分析】(1)根据等边三角形的性质和全等三角形的判定和性质解答即可;(2)根据等边三角形的性质和全等三角形的判定和性质以及勾股定理解答即可;(3)根据等边三角形的性质和全等三角形的判定和性质以及勾股定理解答即可.【解答】证明:(1)∵△ABC和△DCE是等边三角形,∴BC=AC,DC=EC,∠ACB=∠DCE=60°,∴∠ABC+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD与△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE;(2)∵△DCE等式等边三角形,∴∠CDE=60°,CD=DE=5,∵∠ADC=30°,∴∠ADE=∠ADC+∠CDE=30°+60°=90°,在Rt△ADE中,AD=4,DE=5,∴,∴BD=;(3)如图2,过A作AH⊥CD于H,∵点B,C,E三点在一条直线上,∴∠BCA+∠ACD+∠DCE=180°,∵△ABC和△DCE都是等边三角形,∴∠BCA=∠DCE=60°,∴∠ACD=60°,∴∠CAH=30°,在Rt△ACH中,CH=AC=,AH=CH=,∴DH=CD﹣CH=5﹣,在Rt△ADH中,AD=.【点评】此题考查全等三角形的判定和性质,关键是根据等边三角形的性质、全等三角形的判定和性质解答.一、填空题(每小题4分,共20分)21.(4分)计算•(﹣)+•(﹣)的结果是5.【分析】利用因式分解得方法得到原式=(﹣)(+),然后利用平方差公式计算.【解答】解:原式=(﹣)(+)=()2﹣()2=8﹣3=5.故答案为5.【点评】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(4分)某小组数学综合练习得分如表:得分130 140 145人数 5 3 2 则该小组的平均得分是136分.【分析】根据算术平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:根据题意得:=136(分),答:该小组的平均得分是136分.故答案为:136.【点评】本题考查的是算术平均数的求法,熟练掌握运算公式是解题的关键.23.(4分)如图,线段AB,BC的垂直平分线l1,l2相交于点O,若∠B=50°,则∠AOC =100°.【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【解答】解:如图,连接OB,∵OD垂直平分AB,∴OA=OB,∴∠ABO=∠A,∴∠AOB=180°﹣2∠ABO,∵OE垂直平分BC,∴OC=OB,∴∠CBO=∠C,∴∠COB=180°﹣2∠CBO,∵∠AOB+∠BOC+∠AOC=360°,∴∠AOC=360°﹣(180°﹣2∠CBO+180°﹣2∠ABO)=2(∠CBO+∠ABO)=2∠ABC =2×50°=100°,故答案为:100°.【点评】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.24.(4分)如图,点A(﹣2,0),直线l:y=与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,则点A3的坐标是(,).【分析】先根据解析式求得B的坐标,即可求得AB=1,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的纵坐标为,A2的纵坐标为,A3的纵坐标为.【解答】解:∵直线l:y=x+与x轴交于点B,∴B(﹣1,0),∴OB=1,∵A(﹣2,0),∴OA=2,∴AB=1,∵△ABA1是等边三角形,∴A1(﹣,),把y=代入y=x+,求得x=,∴B1(,),∴A1B1=2,∴A2(﹣,+×2),即A2(﹣,),把y=代入y=x+,求得x=,∴B2(,),∴A2B2=4,∴A3(,+×4),即A3(,),故答案为:(,).【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律.25.(4分)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,CD交AB于点F,若AE=,AD=2,则△ACF的面积为3﹣.【分析】连接BD,作FM⊥DE于M,FN⊥BD于N.想办法求出△ABC的面积.再求出FA与FB的比值即可解决问题.【解答】解:如图,连接BD,作FM⊥DE于M,FN⊥BD于N.∵∠ECD=∠ACB=90°,∴∠ECA=∠DCB,∵CE=CD,CA=CB,∴△ECA≌△DCB,∴∠E=∠CDB=45°,AE=BD=,∵∠EDC=45°,∴∠ADB=∠ADC+∠CDB=90°,在Rt△ADB中,AB==,∴AC=BC=,∴S△ABC=××=,∵FD平分∠ADB,FM⊥DE于M,FN⊥BD于N,∴OM=ON,∵====,∴S△AFC=×=3﹣,故答案为:3﹣.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、勾股定理、角平分线的性质等知识,解题的关键是学会利用面积法确定线段之间的关系,属于中考选择题中的压轴题.二、解答题(本大题有3个小题,共30分)26.(8分)某商场在二楼到一楼之间设有自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,甲离一楼地面的高度y甲(米)与下行时间x(秒)满足函数关系y=﹣x+6;乙走步行楼梯,乙离一楼地面的高度y乙(米)与下行时间x(秒)的函甲数关系如图所示.(1)求y乙关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面?【分析】(1)根据题意和图象,即可求y乙关于x的函数解析式;(2)根据已知条件,结合(1)即可说明甲、乙两人谁先到达一楼地面.【解答】解:(1)由图象可知:y乙是x的一次函数,设函数解析式为y乙=kx+b,由图象知:y乙=kx+b过(5,5)和(15,3),∴,解得,∴y乙关于x的函数解析式为y乙=﹣x+6;(2)令y甲=﹣x+6中y甲=0,则0=﹣x+6,得x=20,令y乙=﹣x+6中y乙=0,则0=﹣x+6;得x=30,∵20<30,甲先到达一楼地面.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.27.(10分)阅读理解:已知实数x,y满足3x﹣y=5…①,2x+3y=7…②,求x﹣4y和7x+5y 的值.仔细观察两个方程未知数的系数之间的关系,本题可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.利用“整体思想”,解决下列问题:(1)已知二元一次方程组,则x﹣y=﹣1,x+y=5;(2)买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,求购买5支铅笔、5块橡皮5本日记本共需多少元?(3)对于实数x,y,定义新运算:x*y=ax+by+c,其中a,b,c是常数,等式右边是实数运算.已知3*5=15,4*7=28,求1*1的值.【分析】(1)由方程组的两式相减与相加即可得出结果;(2)设的消毒液单价为m元,测温枪的单价为n元,防护服的单价为p元,由题意列出方程组,即可得出结果;(3)由定义新运算列出方程组,求出a﹣b+c=﹣11,即可得出结果.【解答】解:(1),由①﹣②得:x﹣y=﹣1,①+②得:3x+3y=15,∴x+y=5,故答案为:﹣1,5;(2)设铅笔单价为m元,橡皮的单价为n元,日记本的单价为p元,由题意得:,由①×2﹣②得:m+n+p=6,∴5m+5n+5p=5×6=30,答:购买5支铅笔、5块橡皮5本日记本共需30元;(3)由题意得:,由①×3﹣②×2可得:a+b+c=﹣11,∴1*1=a+b+c=﹣11.【点评】本题考查了三元一次方程组的应用、定义新运算、“整体思想”等知识;熟练掌握“整体思想”,找出等量关系列出方程组是解题的关键.28.(12分)表格中的两组对应值满足一次函数y=kx+b,函数图象为直线l1,如图所示.将函数y=kx+b中的k与b交换位置后得一次函数y=bx+k,其图象为直线l2.设直线l1交y轴于点A,直线l1交直线l2于点B,直线l2交y轴于点C.x ﹣2 4y ﹣4 2 (1)求直线l2的解析式;(2)若点P在直线l1上,且△BCP的面积是△ABC的面积的(1+)倍,求点P的坐标;(3)若直线y=a分别与直线l1,l2及y轴的三个交点中,其中一点是另两点所成线段的中点,求a的值.【分析】(1)由待定系数法可求出答案;(2)过点B作BH⊥y轴于点H,则△ABH为等腰直角三角形,由三角形面积的比求出BP的长,分两种情况,由等腰直角三角形的性质可求出点P的坐标;(3)设直线y=a与直线l1,l2及y轴的交点分别为D,E,F,求出F(0,a),D(a+2,a),E(,a).分三种情况得出a的方程,解方程即可得出答案.【解答】解:(1)直线l1的解析式为y=kx+b,把(﹣2,﹣4),(4,2)分别代入得,,解得,∴直线l1的解析式为y=x﹣2,由题意可得直线l2的解析式为y=﹣2x+1.(2)令y=x﹣2中,x=0,则y=﹣2,故A(0,﹣2),令y=﹣2x+1中,x=0,则y=1,故C(0,1),过点B作BH⊥y轴于点H,则△ABH为等腰直角三角形,∴AH=BH=1,AB=,∴===1+,∴=1+,∴BP=(1+)•=2+,①过点P1作P1H1⊥y轴于H1,则△AP1H1为等腰直角三角形,∴AP1+,∴AP1=2,∴P1H1=,∴P1的横坐标为﹣,代入直线解析式得y=﹣2﹣,故P1(﹣,﹣2﹣);②过点P2作P2H2⊥y轴于H2,则△AP2H2为等腰直角三角形,∴AP2﹣=2+,∴AP2=2+2,∴P2H2==2+,∴P2的横坐标为2+,代入直线解析式得y=,故P2(2+,);综合以上可得点P的坐标为(﹣,﹣2﹣)或(2+,);(3)设直线y=a与直线l1,l2及y轴的交点分别为D,E,F,则F(0,a),令y=x﹣2中,y=a,则x﹣2=a,解得x=a+2,∴D(a+2,a),代入直线y=﹣2x+1中,则﹣2x+1=a,解得,x=,∴E(,a).①若点F是DE的中点时,D1F1=﹣a﹣2,E1F1=,∴﹣a﹣2=,解得a=﹣5;②若点D是EF的中点时,D2F2=a+2,E2F2=,∴2(a+2)=,解得a=﹣;③若点E是FD的中点时,D3F3=a+2,E3F3=,∴a+2=2×,解得a=﹣;综合以上可得,a的值为﹣5或﹣或﹣.【点评】此题属于一次函数综合题,考查了待定系数法,等腰直角三角形的性质,一次函数与坐标轴的交点,熟练掌握等腰直角三角形的判定与性质是解本题的关键.。

北师大版八年级上册数学期末考试试卷带答案

北师大版八年级上册数学期末考试试卷带答案

北师大版八年级上册数学期末考试试题一、单选题1.下列四组数中,是勾股数的是()A .5,12,13B .23,24,25C .1D .7,24,262.点()2021,2022A --在()A .第一象限B .第二象限C .第三象限D .第四象限3.下列计算正确的是()A 4=-B =C4=D 5=4.下列各数:0.456,32π,3.14,0.80108,0.1010010001…(邻两个1之间0的个数逐次加1))A .4个B .3个C .2个D .1个5.古代数学问题:甲袋中装有金币9枚(每枚金币重量相同),乙袋中装有银币11枚(每枚银币重量相同),称重两袋重量相等;两袋互相交换1枚,甲袋比乙袋轻了13两(袋子重量忽略不计).问:每枚金币、银币的重量各为多少?设一枚金币的重量为x 两,一枚银币的重量为y 两,则可列方程组为()A .91191113x y x y y x =⎧⎨-=-+⎩B .91191113x y x y y x =⎧⎨-=--⎩C .91181013x yx y y x =⎧⎨+=++⎩D .91181013x yx y y x =⎧⎨+=+-⎩6.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60708090100人数4812115则该办学生成绩的众数和中位数分别是()A .70分,80分B .80分,80分C .90分,80分D .80分,90分7.如图,不能判断1l //2l 的条件是()A .∠1=∠3B .∠2+∠4=180°C .∠4=∠5D .∠2=∠38.已知函数y =ax ﹣3和y =kx 的图象交于点P (2,﹣1),则关于x ,y 的二元一次方程组3y ax y kx =-⎧⎨=⎩的解是()A .21x y =-⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .21x y =⎧⎨=⎩D .21x y =-⎧⎨=⎩9.关于函数21y x =-+,下列结论正确的是()A .图象必经过点()2,1-B .图象经过第一、二、三象限C .当12x >时,0y <D .y 随x 的增大而增大10.一次函数y=mx+n 与y=mnx (mn≠0),在同一平面直角坐标系的图象是()A .B .C .D .二、填空题11.9的算术平方根是.12.已知2x ﹣3y =1,用含x 的代数式表示y ,则y =____.13.甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:测试项目测试成绩甲乙面试9095综合知识测试8580根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.14.若点P (m+3,m+1)在x 轴上,则点P 的坐标为________.15.一个零件的形状如图所示,按规定∠A 等于90°,∠B ,∠D 应分别是20°和30°,聪明的李叔叔通过量得∠BCD 的度数就断定这个零件是否合格,那么∠BCD =_______时这个零件合格.16.如图,在一次夏令营活动中,小明从营地A 出发,沿北偏东60︒方向走了到达B地,然后再沿北偏西30︒方向走了50m 到达目的地C ,则A 、C 两地之间的距离为_______m .17.已知点P (1,2)关于x 轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为_________________.18.我们经过探索知道22221131122++=,22221171236++=,2222111313412++=,L,若已知22111(1)n a n n =++++++= _______(用含n 的代数式表示,其中n 为正整数).三、解答题19-.20.解方程组:244523x y x y -=-⎧⎨-=-⎩21.如图,在Rt ABC 中,90B Ð=°,4AB =,3BC =,AD CD =,求CD 的长.22.已知21a -的算术平方根是3,2a b -+的立方根是2,求4a b -的平方根.23.为了让青少年学生走向操场,走进自然,走到阳光下,积极参加体育锻炼.我校启动了“学生阳光体育短跑运动”,可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格:次数12345小明的成绩(秒)13.313.413.3______13.3小亮的成绩(秒)13.2______13.113.513.3(2)请写出小明的成绩的中位数和众数,小亮成绩的中位数;(3)分别计算他们成绩的平均数和方差,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?24.学校计划向某花卉供应商家定制一批花卉来装扮校园(花盆全部为同一型号),该商家委托某货运公司负责这批花卉的运输工作.该货运公司有甲、乙两种专门运输花卉的货车,已知1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;3辆甲型货车和1辆乙型货车满载一次可运输1900盆花卉.(1)求1辆甲型货车满载一次可运输多少盆花卉,1辆乙型货车满载一次可运输多少盆花卉?(2)学校计划定制6500盆花卉,该货运公司将同时派出甲型货车m 辆、乙型货n 辆来运输这批花卉(两种型号的车都要有),一次性运输完毕,并且每辆货车都满载,请问有哪几个运输方案?25.如图,一次函数y kx b =+的图象经过点()0,3A 和点()2,0B ,以线段AB 为边在第一象限内作等腰直角ABC ,且90BAC ∠=︒.(1)求一次函数的表达式;(2)求出点C 的坐标.26.阅读下列一段文字,然后回答问题.已知在平面内两点()111,P x y 、()222,P x y ,其两点间的距离12PP =且当两点间的连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -.(1)已知A 、B 两点在平行于y 轴的直线上,点A 的纵坐标为4,点B 的纵坐标为1-,试求A 、B 两点之间的距离;(2)已知一个三角形各顶点坐标为(1,6)D 、(2,2)E -、(4,2)F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标以及PD PF +的最短长度.27.如图,在平面直角坐标系中,有一个△ABC ,顶点(1,3)A -,(2,0)B ,(3,1)C --.(1)画出△ABC 关于y 轴的对称图形111A B C ∆(不写画法)点A 关于x 轴对称的点坐标为_____________;点B 关于y 轴对称的点坐标为_____________;点C 关于原点对称的点坐标为_____________;(2)若网格上的每个小正方形的边长为1,求△ABC 的面积.28.如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.参考答案1.A 2.C 3.D 4.B 5.D 6.B 7.D 8.B 9.C 10.C 11.312.2133x -【分析】先移项,再化y 的系数为1即可解题.【详解】解:231x y -= ,321y x ∴=-解得:2133 y x =-故答案为:21 33 x-.13.乙【详解】解:甲候选人的最终成绩为:32 9085883232⨯+⨯=++,乙候选人的最终成绩为:32 9580893232⨯+⨯=++,∵8889<,∴乙将被录取.故答案为:乙14.(2,0)【详解】解:∵点P(m+3,m+1)在x轴上,∴m+1=0,解得m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故答案为:(2,0).15.140°【分析】延长DC交AB于E,根据三角形的一个外角等于与它不相邻的两个内角的和,即可计算出∠BCD的度数.【详解】解:延长DC交AB于E,∵∠BCD=∠B+∠CEB,CEB A D∠=∠+∠∴∠BCD=∠B+∠D+∠A∵∠A等于90°,∠B,∠D应分别是20°和30°,∴∠BCD=20°+30°+90°=140°,故答案为:140°.16.100【分析】根据题意点C位于点B的西偏北60゜方向,再根据平行线的性质可得点A位于点B的西偏南30゜方向,从而可得AB⊥BC,由勾股定理即可求得AC的长.【详解】如图所示,∠CBH=30゜,∠DAB=60゜∴∠BAE=90゜-∠DAB=30゜,∠CBF=90゜-∠CBH=60゜∵FB∥AE∴∠FBA=∠BAE=30゜∴∠ABC=∠CBF+∠FBA=60゜+30゜=90゜BC=在Rt△ABC中,AB=,50mAC==由勾股定理得:100(m)故答案为:10017.y=﹣5x+5.【分析】由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5,则y=﹣5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.故答案为y=﹣5x+5.考点:一次函数图象与几何变换.18.221n n n ++【分析】先求出1a ,2a ,3a ,L ,n a 的值,代入原式利用算数平方根和公式()111n n 1n n 1=-++进行化简与计算,即可求解.【详解】解:∵221222113311222a ⎛⎫=++== ⎪⎝⎭,222222117712366a ⎛⎫=++== ⎪⎝⎭,2232221113131341212a ⎛⎫=++== ⎪⎝⎭,()()22211111(1)1n n n a n n n n ⎡⎤++=++=⎢⎥++⎢⎥⎣⎦,++ ()()11371326121n n n n ++=++++ ()1111111126121n n =+++++++++ ()1111126121n n n =⨯++++++ ()11111223341n n n =+++++⨯⨯⨯+ 11111111223341n n n =+-+-+-++-+ 111n n =+-+221n n n +=+故答案为:221n nn ++.19-【分析】先分别将二次根式全部化简为最减二次根式,然后相加减即可得出答案.【详解】解:原式=--=-【点睛】本题主要是考查了二次根式的加减,再进行二次根式的加减运算之前,一定要把二次根式化为最简二次根式,然后将同类二次根式相加减.20.125x y ⎧=⎪⎨⎪=⎩【分析】方程组利用加减消元法求出解即可;【详解】244523x y x y -=-⎧⎨-=-⎩解:①×2得428x y -=-③③-②得315y =,解得5y =将5y =代入①得254x -=-解得12x =∴原方程组的解为125x y ⎧=⎪⎨⎪=⎩【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.258【分析】设CD=AD=x ,则BD=4-x ,在Rt △DBC 中由勾股定理建立方程可求得x 的值,从而求得CD 的长.【详解】设CD=AD=x ,则BD=AB -AD=4-x∵BC=3∴在Rt △DBC 中,由勾股定理得:222CD BD BC -=即222(4)3x x --=解方程得:258x =即258AD =22.3±【分析】根据21a -的算术平方根是3可列式221=3a -,进而求得a 的值;再根据2a b -+的立方根是2可列式32=2a b -+,进而求得b 的值,再进行4a b -的平方根计算即可.【详解】解∵221=3a -,∴=5a ,∵32=2a b -+,∴=-1b ,∴4a b -的平方根为:3===±.【点睛】此题考查算数平方根、立方根、平方根的定义和求法,熟练掌握定义是解此题的关键.23.(1)13.2,13.4;(2)小明:中位数13.3,众数13.3,小亮:中位数13.3;(3)小明的成绩比较稳定,因此对小亮的建议要加强稳定性训练,而小明应该加强爆发力训练,提高训练成绩.【分析】(1)从统计图中可得到每次百米训练的成绩,从而填入表格即可;(2)根据中位数、众数的意义求出结果即可;(3)计算两人的平均数、方差,再比较得出结论.【详解】解:(1)从统计图可知,小明第4次的成绩为13.2,小亮第2次的成绩为13.4,故答案为:13.2,13.4;补全的表格如下:次数12345小明13.313.413.313.213.3小亮13.213.413.113.513.3(2)小明5次成绩的中位数是13.3,众数为13.3;小亮5次成绩的中位数是13.3;(3)x 小明13.213.3313.413.35+⨯+==x 小亮13.113.213.313.413.513.35++++==∴2S 小明()()()()()22222113.213.313.313.313.313.313.313.313.413.35⎡⎤=-+-+-+-+-⎣⎦0.004=2S 小亮()()()()()22222113.113.313.213.313.313.313.413.313.513.35⎡⎤=-+-+-+-+-⎣⎦0.02=∵x 小明x =小亮∴2S 小明2S <小亮∴小明的成绩比较稳定,因此对小亮的建议要加强稳定性训练,而小明应该加强爆发力训练,提高训练成绩.【点睛】本题考查折线统计图、加权平均数、中位数、众数以及方差的意义和计算方法,明确各个统计量的意义是正确解答的前提.24.(1)甲型货车每辆可装载500盆花卉,乙型货车每辆可装载400盆花卉(2)共有三种运输方案:①1辆甲型货车,15辆乙型货车;②5辆甲型货车,10辆乙型货车;③9辆甲型货车,5辆乙型货车【分析】(1)设1辆甲型货车满载一次可运输x 盆花卉,1辆乙型货车满载一次可运输y 盆花卉,根据题目中已知的两种数量关系,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据(1)所求结果,可得5004006500m n +=,结合m ,n 为正整数,即可得出各运输方案.(1)解:设1辆甲型货车满载一次可运输x 盆花卉,1辆乙型货车满载一次可运输y 盆花卉,依题意得:3170031900x y x y +=⎧⎨+=⎩,解得500400x y =⎧⎨=⎩.答:甲型货车每辆可装载500盆花卉,乙型货车每辆可装载400盆花卉.(2)由题意得:5004006500m n +=,∴6545n m -=.∵m ,n 为正整数,∴115m n =⎧⎨=⎩或510m n =⎧⎨=⎩或95m n =⎧⎨=⎩.∴共有三种运输方案:①1辆甲型货车,15辆乙型货车;②5辆甲型货车,10辆乙型货车;③9辆甲型货车,5辆乙型货车.【点睛】本题考查了二元一次方程组以及二元一次方程的整数解应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出二元一次方程并求出整数解.25.(1)332y x =-+;(2)(3)5,【分析】(1)用待定系数法,将A B 、两点坐标代入解析式,解出k b 、的值,回代入解析式即可.(2)过点C 向y 轴做垂线,交点为D ;由题意可知Rt AOB Rt CDA ≌,从而得出CD 与AD 的值,进而求出点C 的坐标.【详解】解:(1)将A B 、两点坐标代入解析式有302b k b=⎧⎨=+⎩解得332b k =⎧⎪⎨=-⎪⎩332y x ∴=-+.(2)如图过点C 向y 轴做垂线,交点为D ,由题意知AC AB =,90ADC ∠=︒90CAB ∠=︒90DAC OAB OAB OBA∠+∠=︒=∠+∠DAC OBA∴∠=∠在Rt AOB 和Rt CDA 中ADC BOA DAC OBA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩Rt AOB Rt CDA ∴ ≌()AAS 23AD OB CD OA ∴====、∴点C 的横坐标为3,纵坐标为5∴点C 的坐标为(3)5,.【点睛】本题考查了一次函数解析式,三角形全等,点坐标.解题的关键在于构造直角三角形,求线段长度来表示点坐标.26.(1)5;(2)能,理由见解析;(3)13,04⎛⎫ ⎪⎝⎭【分析】(1)根据文字提供的计算公式计算即可;(2)根据文字中提供的两点间的距离公式分别求出DE 、DF 、EF 的长度,再根据三边的长度即可作出判断;(3)画好图,作点F 关于x 轴的对称点G ,连接DG ,则DG 与x 轴的交点P 即为使PD+PF 最短,然后有待定系数法求出直线DG 的解析式即可求得点P 的坐标,由两点间距离也可求得最小值.【详解】(1)∵A 、B 两点在平行于y 轴的直线上∴AB=4(1)5--=即A 、B 两点间的距离为5(2)能判定△DEF 的形状由两点间距离公式得:5DE ==,5DF ==,4(2)6EF =--=∵DE=DF∴△DEF 是等腰三角形(3)如图,作点F 关于x 轴的对称点G ,连接DG ,则DG 与x 轴的交点P 即为使PD+PF 最小由对称性知:点G 的坐标为(4,2)-,且PG=PF∴PD+PF=PD+PG≥DG即PD+PF 的最小值为线段DG 的长设直线DG 的解析式为(0)y kx b k =+≠,把D 、G 的坐标分别代入得:642k b k b +=⎧⎨+=-⎩解得:83263k b ⎧=-⎪⎪⎨⎪=⎪⎩即直线DG 的解析式为82633y x =-+上式中令y=0,即826033x -+=,解得134x =即点P 的坐标为13,04⎛⎫ ⎪⎝⎭由两点间距离得:DG=22(41)(26)96473DG =-+--=+=所以PD+PF 的最小值为73【点睛】本题是材料阅读题,考查了等腰三角形的判定,待定系数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问题转化为两点间线段最短问题.27.(1)见解析;(-1,-3)、(-2,0)(3,1)(2)9.【分析】(1)根据关于y 轴对称的对应点的坐标特征,即横坐标相反,纵坐标相同,即可得出对应点的111A B C 、、的坐标,然后连接三点即可画出△ABC 关于y 轴的对称图形.根据关于x 轴、y 轴、原点对称的对应点的坐标特征即可解决.(2)将三角形ABC 面积转化为CDA CBF ABE CDEF △△△矩形S -S -S -S 求解即可.【详解】解:(1)∵三角形各点坐标为:(1,3)A -,(2,0)B ,(3,1)C --.∴关于y 轴对称的对应点的坐标为()()()1111,3-2,03-1A B C 、、,,依次连接个点.由关于x 轴对称的点的坐标特征可知,A 点关于x 轴对称的对应点的坐标为(-1,-3),由关于y 轴对称的点的坐标特征可知,B 点关于y 轴对称的对应点的坐标为(-2,0),由关于原点对称的点的坐标特征可知,C 点关于原点对称的对应点的坐标为(3,1).(2)分别找到点D (-3,3)、E (2,3)、F (2,-1),由图可知,四边形CDEF 为矩形,且CDEF 矩形S =20,ABC CDA CBF ABE CDEF △△△△矩形S =S -S -S -S =20-4-52-92=9.所以△ABC 的面积为9.28.AED ACB ∠=∠,理由见解析【分析】首先判断∠AED 与∠ACB 是一对同位角,然后根据已知条件推出DE ∥BC ,得出两角相等.【详解】解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠4.∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、解答题
17.计算:
(1)
(2)
18.解方程组
(1) (2)
19.如图,在平面直角坐标系中,已知 , , , , , .
(1)在图中作出△ABC关于 轴对称的△ ;
(2)写出点 的坐标:;
(3)△ 的面积是多少?
20.某学校为了了解本校1200名学生的课外阅读的情况,现从个年级随机抽取了部分学生,对他们一周的课外阅读时间进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:
【解析】
【分析】
直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.
【详解】
A、 ,此选项错误错误,不符合题意;
B、 ,此选项错误错误,不符合题意;
C、 ,此选项错误错误,不符合题意;
D、 ,此选项正确,符合题意;
故选:D.
【点睛】
本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.
(1)求点A和点B的坐标;
(2)当0<t<3时,求m关于t的函数关系式;
(3)当m=3.5时,请直接写出点P的坐标.
答案与解析
一、选择题
1.在给出的一组数 , , , , , 中,是无理数的有( )
A.1个B.2个C.3个D.5个
【答案】B
【解析】
【分析】
分别根据无理数、有理数的定义即可判定选择项.
【详解】0.3,3.14, 是有限小数,是有理数;
,是分数,是有理数;
, 是无理数,共2个,
故选:B.
【点睛】本题主要考查了无理数的定义.初中范围内学习的无理数有:含 的数等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.
2.下列各式中计算正确的是( )
A. B. C. D.
【答案】D
4.下列命题是真命题的是( )
A. 同位角相等B. 两直线平行,同旁内角相等
C. 同旁内角互补D. 平行于同一直线的两条直线平行
【答案】D
【解析】
【分析】
利用平行线的性质及判定定理进行判断即可.
【详解】A、两直线平行,同位角才相等,错误,是假命题;
B、两直线平行,同旁内角互补,不是相等,错误,是假命题;
方差为 ×[(1-4)2+(2-4)2+(4-4)2+(5-4)2+(8-4)2]=6,
极差为8-1=7,
故选:B.
【点睛】本题主要考查方差,解题的关键是掌握ห้องสมุดไป่ตู้均数、中位数、方差和极差的概念.
7.如图,两直线 和 在同一坐标系内图象的位置可能是( )
A. B.
C. D.
【答案】D
【解析】
【分析】
根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.
2020-2021学年第一学期期末测试
北师大版八年级数学试题
一、选择题
1.在给出的一组数 , , , , , 中,是无理数的有( )
A.1个B.2个C.3个D.5个
2.下列各式中计算正确的是( )
A. B. C. D.
3.满足下列条件的三角形中,不是直角三角形的是有( )
A.三内角之比为3:4:5B.三边长的平方之比为1:2:3
A.36°B.72°C.50°D.46°
【答案】B
【解析】
【分析】
由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.
【详解】解:由折叠的性质得:∠D=∠C=36°,
根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,
则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+72°,
则∠1﹣∠2=72°.
A.平均数是5B.中位数是4C.方差是30D.极差是6
7.如图,两直线 和 在同一坐标系内图象的位置可能是( )
A. B.
C D.
8.在直角坐标系中,△ABC的顶点A(﹣1,5),B(3,2),C(0,1),将△ABC平移得到△A'B'C',点A、B、C分别对应A'、B'、C',若点A'(1,4),则点C′的坐标( )
8.在直角坐标系中,△ABC的顶点A(﹣1,5),B(3,2),C(0,1),将△ABC平移得到△A'B'C',点A、B、C分别对应A'、B'、C',若点A'(1,4),则点C′的坐标( )
A.(﹣2,0)B.(﹣2,2)C.(2,0)D.(5,1)
【答案】C
【解析】
【分析】
根据点A 平移规律,求出点C′的坐标即可.
B、三边符合勾股定理的逆定理,所以是直角三角形;
C、设三条边为 ,则有 ,符合勾股定理的逆定理,所以是直角三角形;
D、设三个内角的度数为 ,根据三角形内角和公式 ,求得 ,所以各角分别为30°,60°,90°,所以此三角形是直角三角形;
故选:A.
【点睛】本题考查了三角形内角和定理和勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
【详解】
①甲的速度为120 3=40(千米/小时),故正确;
② 时,乙的速度为50 1=50(千米/小时), 后,乙的速度为(120-50) (3-1)=35(千米/小时),故错误;
③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;
④由①②③得:甲的函数表达式为: ,
乙的函数表达式为:当 时, ,当 时, ,
故选:B.
【点睛】此题考查了翻折变换(折叠问题),以及外角性质,熟练掌握折叠的性质是解本题的关键.
10.甲、乙两名运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米;④甲、乙两名运动员相距5千米时,t=0.5或t=2或t=5.其中正确的个数有( )
【答案】C
【解析】
把 代入方程组 ,得 ,
解得 .
故选C.
6.一组数据1,4,5,2,8,它们的数据分析正确的是( )
A.平均数是5B.中位数是4C.方差是30D.极差是6
【答案】B
【解析】
【分析】
根据平均数、中位数、方差和极差的概念分别计算可得.
【详解】解:将数据重新排列为1、2、4、5、8,
则这组数据的平均数为 =4,中位数为4,
A.(﹣2,0)B.(﹣2,2)C.(2,0)D.(5,1)
9.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是( )
A.36°B.72°C.50°D.46°
10.甲、乙两名运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米;④甲、乙两名运动员相距5千米时,t=0.5或t=2或t=5.其中正确的个数有( )
A. 1个B. 2个C. 3个D. 4个
【答案】B
【解析】
【分析】
①甲的速度为120 3=40,即可求解;
②t≤1时,乙的速度为50 1=50,t>1后,乙的速度为(120-50) (3-1)=35,即可求解;
③行驶1小时时,甲走了40千米,乙走了50千米,即可求解;
④甲的函数表达式为: ,乙的函数表达式为: 时, , 时, ,即可求解.
【详解】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),
∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),
故选:C.
【点睛】本题考查平移变换,坐标与图形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
9.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是( )
C.三边长之比为3:4:5D.三内角比为1:2:3
4.下列命题是真命题的是( )
A.同位角相等B.两直线平行,同旁内角相等
C.同旁内角互补D.平行于同一直线的两条直线平行
5.已知 是方程组 的解,则a、b的值分别为( )
A.2 , 7B.-1 , 3C.2 , 3D.-1 , 7
6.一组数据1,4,5,2,8,它们的数据分析正确的是( )
【详解】根据一次函数的系数与图象的关系依次分析选项可得:
A、由图可得, 中, , , 中, , ,不符合;
B、由图可得, 中, , , 中, , ,不符合;
C、由图可得, 中, , , 中, , ,不符合;
D、由图可得, 中, , , 中, , ,符合;
故选:D.
【点睛】本题考查了一次函数的图象问题,解答本题注意理解:直线 所在的位置与 的符号有直接的关系.
3.满足下列条件的三角形中,不是直角三角形的是有( )
A. 三内角之比为3:4:5B. 三边长的平方之比为1:2:3
C. 三边长之比为3:4:5D. 三内角比为1:2:3
【答案】A
【解析】
【分析】
根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.
【详解】A、设三个内角的度数为 ,根据三角形内角和公式 ,求得 ,所以各角分别为45°,60°,75°,故此三角形不是直角三角形;
(2)求三角形GED的面积.
22.已知百合酒店 三人间和双人间客房标价为:三人间为每人每天200元,双人间为每人每天300元,为吸引客源,促进旅游,在“十⋅一”黄金周期间酒店进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间客房.
相关文档
最新文档