典型环节的MATLAB仿真
11自动控制原理MATLAB实验指导书
实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK 的使用MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真环境下。
2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。
3.在simulink 仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink 下的“Continuous ”,再将右边窗口中“Transfer Fen ”的图标用左键拖至新建的“untitled ”窗口。
2)改变模块参数。
在simulink 仿真环境“untitled ”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK ,即完成该模块的设置。
图1-1 SIMULINK 仿真界面 图1-2 系统方框图3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math ”右边窗口“Gain ”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。
第一章 控制系统典型环节及Matlab使用
水位高度控制系统原理图
水位高度控制系统原理方框图
长江职业学院机电汽车学院
三、按偏差调节的闭环控制
特点:通过计算被控量和给定值的差值来控制被控对象。 优点:可以自动调节由于干扰和内部参数的变化 而引起的变动。 干扰
给定值
计算比较 -
E
执行
被控对象
被控量
测量
按偏差调节的系统原理方框图
例1. 如图所示的RLC无源 网络,图中电感为L (亨利),电阻为R (欧姆),电容为C (法),试求输入电 压ui(t)与输出电压 uo(t)之间的传递函数。
L
R i
ui
C
uc
长江职业学院机电汽车学院
为了改善系统的性能,常引入图示的无源网络作为校正元件。无源网络通常由 电阻、电容、电感组成,利用电路理论可方便地求出其动态方程,对其进行拉 氏变换即可求出传递函数。这里用直接求的方法。因为电阻、电容、电感的复 阻抗分别为R、1∕Cs、Ls,它们的串并联运算关系类同电阻。
c(t ) Kr (t )
G(s) C ( s) K R( s )
长江职业学院机电汽车学院
列写微分方程的一般方法
• 例1. 列写如图所示RC网络的微分方程。
R
ur
i
C
uc
北京航空航天大学
长江职业学院机电汽车学院
解:由基尔霍夫定律得:
1 ur R i C idt
uc
1 C
实测值
执行
测量
自动控制方框图
被控对象
长江职业学院机电汽车学院
在上图中,除被控对象外的其余部分统称为控制装置,它必须以测量被控量或干扰量。 比较元件:将被控量与给定值进行比较。 执行元件:根据比较后的偏差,产生执行作用,去操 纵被控对象 参与控制的信号来自三条通道,即给定值、干扰量、被控量。
实验1典型环节的动态特性仿真分析
■ 5.仿真系统连接完成且仿真所用的参数 均正确设置后,可进行仿真操作,点击 图形仿真操作画面“Simulation”下拉 式菜单“start”选项和“stop”选项可 分别控制仿真过程的启动与停止。仿真 过程结束后,点击示波器可显示出仿真 曲线。
■ 若需要同时显示三条响应曲线时的仿真 框图可采用如下的形式,其中传递函数 的形式根据不同环节进行设置。
实验一 典型环节的动态特 性仿真分析
一、实验目的和要求
■ (1)熟悉MATLAB软件的SIMULINK工 具箱。
■ (2)通过观察典型环节在单位阶跃信 号作用下的响应曲线,熟悉它们的动态 特性。
■ (3)了解各典型环节中参数变化对其 动态特性的影响。
二、实验主要仪器和设备
■ 装有Matlab软件的计算机
五、实验数据记录
■ (1)比例环节 G(S)=
;
■ 所选的几个不同参数值分别为K1= ;K2= ; K3= ;
■ 对应的单位阶跃响应曲线(在输出曲线上标明对应 的有关参数值):
■ (2)积分环节 G(S)=
;
■ 所选的几个不同参数值分别为Ti1= ;Ti2= ; Ti3= ;
■ 对应的单位阶跃响应曲线(在输出曲线上标明对应 的有关参数值):
■ ② 令ξ=0,ωn取不同值:ωn1= ;ωn2= ;
■ 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关 参数值):
■ ③ 令ξ=0.216,ωn取不同值:ωn1= ;ωn2= ;
■ 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关 参数值):
六、实验报告
■ 实验报告应包含如下内容:实验目的和 要求、实验所需主要仪器与设备、实验 内容、实验步骤与方法、原始实验数据 记录和处理(数据曲线、图表等)、实 验结果分析等。报告要求书写认真,图 表规范、完整,数据记录真实,分析透 彻和结论正确。
自动实验一——典型环节的MATLAB仿真报告
自动实验一——典型环节的MATLAB仿真报告引言:典型环节的MATLAB仿真是一种常见的模拟实验方法,通过使用MATLAB软件进行建模和仿真,可以有效地研究和分析各种复杂的物理系统和控制系统。
本报告将介绍一个典型环节的MATLAB仿真实验,包括实验目的、实验原理、实验步骤、实验结果和讨论等内容。
一、实验目的本实验旨在通过MATLAB仿真实验,研究和分析一个典型环节的动态特性,深入了解其响应规律和控制方法,为实际系统的设计和优化提供理论支持。
二、实验原理典型环节是控制系统中的重要组成部分,一般包括惯性环节、惯性耦合和纯滞后等。
在本实验中,我们将重点研究一个惯性环节。
惯性环节是一种常见的动态系统,其特点是系统具有自身的动态惯性,对输入信号的响应具有一定的滞后效应,并且在输入信号发生变化时有一定的惯性。
三、实验步骤1.建立典型环节的数学模型。
根据实际情况,我们可以选择不同的数学模型描述典型环节的动态特性。
在本实验中,我们选择使用一阶惯性环节的传递函数模型进行仿真。
2.编写MATLAB程序进行仿真。
利用MATLAB软件的控制系统工具箱,我们可以方便地建立惯性环节的模型,并利用系统仿真和分析工具进行仿真实验和结果分析。
3.进行仿真实验。
选择合适的输入信号和参数设置,进行仿真实验,并记录仿真结果。
4.分析实验结果。
根据仿真结果,可以分析典型环节的动态响应特性,比较不同输入信号和控制方法对系统响应的影响。
四、实验结果和讨论通过以上步骤,我们成功地完成了典型环节的MATLAB仿真实验,并获得了仿真结果。
通过对仿真结果的分析,我们可以得到以下结论:1.惯性环节的响应规律。
惯性环节的响应具有一定的滞后效应,并且对输入信号的变化具有一定的惯性。
随着输入信号的变化速度增加,惯性环节的响应时间呈指数级减小。
2.稳态误差与控制增益的关系。
控制增益对稳态误差有重要影响,适当调整控制增益可以减小稳态误差。
3.不同输入信号的影响。
自动控制原理MATLAB实验报告
实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验原理1.比例环节的传递函数为KRKRRRZZsG200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK图形如图1所示。
2.惯性环节的传递函数为ufCKRKRsCRRRZZsG1,200,10012.021)(121121212===+-=+-=-=其对应的模拟电路及SIMULINK图形如图2所示。
图1 比例环节的模拟电路及SIMULINK图形图2惯性环节的模拟电路及SIMULINK图形3.积分环节(I)的传递函数为ufCKRssCRZZsG1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK图形如图3所示。
4.微分环节(D)的传递函数为ufCKRssCRZZsG10,100)(111112==-=-=-=ufCC01.012=<<其对应的模拟电路及SIMULINK图形如图4所示。
5.比例+微分环节(PD)的传递函数为)11.0()1()(111212+-=+-=-=ssCRRRZZsGufCCufCKRR01.010,10012121=<<===其对应的模拟电路及SIMULINK图形如图5所示。
图3 积分环节的模拟电路及及SIMULINK图形图4 微分环节的模拟电路及及SIMULINK图形6.比例+积分环节(PI)的传递函数为)11(1)(11212sRsCRZZsG+-=+-=-=ufCKRR10,100121===其对应的模拟电路及SIMULINK图形如图6所示。
三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。
典型环节的MATLAB仿真
实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink 仿真环境常规模板。
3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。
5)选择输出方式。
用鼠标点击simulink 下的“Sinks ”,就进入输出方式模块库,通常选用“Scope ”的示波器图标,将其用左键拖至新建的“untitled ”窗口。
自动控制理论实验指导书(仿真).详解
实验一典型环节的MATLAB仿真Experiment 1 MATLAB simulation of typical link一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。
3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
电力电子电路典型环节的MATLAB仿真毕业设计论文
可修改可编辑教学单位电子电气工程系学生学号200895014075编号DQ2012DQ075 本科毕业设计题目学生姓名专业名称指导教师2010年月日电力电子电路典型环节的MATLAB仿真摘要:本文主要研究了电力电子电路典型环节的MATLAB仿真,首先介绍了MATLAB软件及其图形仿真界面Simulink的基础应用知识,然后介绍了用于电力电子仿真的SimPowerSystems中的各种模块库,完成了对整流电路、斩波电路典型环节的建模与仿真,并且给出了仿真结果波形。
通过MATLAB/SIMULINK软件来建立各电路的仿真模型,并且对各个模块和系统内部的参数进行设置,例如仿真算法、电子器件的选择和电源幅值和频率等,最终实现电力电子系统在MATLAB中的仿真。
仿真结果和理论分析结果相一致,验证了仿真建模的有效性和正确性。
最后,本文对研究成果进行了总结,并提出了进一步改进建议。
关键词:Matlab/Simulink,仿真,整流电路,斩波电路Abstract:This paper mainly studies the MATLAB simulation of the typical session to the power electronic circuit, This article first introduces the MATLAB software and the application of knowledge based on graphical interface Simulink simulation, and then introduced the various modules of SimPowerSystems library for the power electronic simulation, also completed Modeling and Simulation to the typical session of rectifier circuit and Chopper circuit, and show the results of the simulation waveform.Established various electric circuits through MATLAB/SIMULINK software the simulation model, and set the establishment to each module and the interior parameter of system, for example simulation algorithm, electronic device choice and electrical source peak-to-peak value and frequency and so on, finally realized simulation that the electric power electronics alternating-current circuit in MATLAB. Simulation result and theoretical analysis result consistent, has confirmed the simulation modelling validity and the accuracy.Finally, this paper summarizes the research results and makes suggestions for further improvement.Keywords:Matlab/Simulink , Simulation, Rectifier circuit, Choppercircuit目录第1章概述 (5)1.1国内外研究概况 (5)1.2本课题的研究内容 (5)1.3本课题的研究目的与意义 (6)第2章MATLAB/SIMULIK基础知识 (7)2.1MATLAB介绍 (7)2.1.1 MATLAB主要组成部分 (7)2.1.2 MATLAB的系统开发环 (8)2.2SIMULINK仿真基础 (9)2.2.1 SIMULINK启动 (10)2.2.2 SIMULINK的模块库介绍 (11)2.2.3 电力系统模块库的介绍 (12)2.2.4 SIMULINK的仿真步骤 (13)第3章整流电路的SIMULINK仿真设计 (15)3.1单相桥式整流电路的仿真 (15)3.1.1 单相桥式全控整流电路的工作原理 (15)3.1.2 建立仿真模型 (15)3.1.3 设置模型参数 (17)3.1.4 模型仿真 (18)3.2三相桥式整流电路的仿真 (21)3.2.1 三相桥式全控整流电路的工作原理 (21)3.2.2 建立仿真模型 (22)3.2.3 设置模型参数 (23)第4章斩波电路的SIMULINK仿真设计 (26)4.1降压斩波电路的仿真 (26)4.1.1 降压变换器的工作原理 (26)4.1.2 建立仿真模型 (27)4.1.3 设置模型参数 (28)4.1.4 模型仿真 (28)4.2升压斩波电路的仿真 (30)4.2.1 升压变换器的工作原理 (30)4.2.2 建立仿真模型 (30)4.2.3 设置模型参数 (31)4.2.4 模型仿真 (32)第5章仿真调试 (34)5.1模型仿真应注意的问题 (34)5.1.1 模型建立和仿真参数的设置 (34)5.1.2 仿真运行和观测仿真结果 (35)结论 (37)参考文献 (38)致谢 (40)第1章概述1.1 国内外研究概况电力电子技术综合了微电子、电路、自动控制等多学科知识,是电能变换与控制的核心技术,在工业、能源、交通、国防等各个领域发挥着越来越重要的作用。
比例积分微分环节matlab仿真
比例积分微分环节matlab仿真
在MATLAB中,可以使用函数simulink来进行比例、积分和微分环节的仿真。
下面是一个使用simulink进行比例、积分和微分环节仿真的示例:
1. 打开MATLAB软件并创建一个新的模型文件。
2. 在模型文件中,选择从Simulink库中拖拽和放置一个"比例"块、一个"积分"块和一个"微分"块。
3. 连接这些块,将输入信号连接到比例块的输入端口,然后将比例块的输出端口连接到积分块的输入端口,以此类推连接微分块。
4. 设置比例、积分和微分的参数。
比例块可以设置比例因子,积分块可以设置积分常数和初始条件,微分块可以设置初始条件。
5. 添加一个作为输入信号的信号源,例如一个正弦波。
6. 添加一个作为输出信号的信号显示器,例如作用为查看仿真结果。
7. 设置仿真时间和仿真步长。
8. 运行仿真。
这样,你就可以通过调整比例尺度、积分常数和微分初始条件来观察系统响应的变化,并通过信号显示器来查看仿真结果。
典型环节频域特性的仿真实验
实验题目:典型环节频域特性的仿真实验一、实验目的:1、加深了解系统频率特性的概念。
2、学习使用Matlab软件绘制Nyquist图、Bode图的基本方法。
3、掌握典型环节的频率特性。
二、实验设备:Matlab三、实验内容:用Matlab绘制典型环节(比例、积分、微分、惯性、二阶)的Nyquis图、Bode图,研究频率特性。
四、实验步骤:1.绘制比例环节传递函数g(s)=K的频率特性图。
运行Matlab,进入命令窗口,键入命令:num=[1];den=[0,0,2];G1=tf(num,den)nyquist(G1) (回车)则显示传递函数g(s)=2,及对应的Nyquist图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明频率ω的变化情况。
再键入命令:gridbode(G1) (回车)则显示对应的Bode图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明纵、横坐标。
2.绘制积分环节传递函数g(s)=1/Ts 的频率特性图。
运行Matlab,进入命令窗口,键入命令:num=[1];den=[0,3,0];G1=tf(num,den)nyquist(G1) (回车)则显示传递函数g(s)=1/4s ,及对应的Nyquist图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明频率ω的变化情况。
再键入命令:gridbode(G1) (回车)则显示对应的Bode图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明纵、横坐标。
3.绘制微分环节传递函数g(s)=Ts 的频率特性图。
运行Matlab,进入命令窗口,键入命令:gridbode(G1) (回车)则显示对应的Bode图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明纵、横坐标。
五、仿真和实验结果记录比例环节Nyquist图曲线(K=2)比例环节Bode图曲线积分环节Nyquist图曲线(T=3)积分环节Bode图曲线微分环节Nyquist图曲线(T=3)微分环节Bode图曲线惯性环节Nyquist图曲线(T=5) 惯性环节Bode图曲线二阶环节Nyquist图曲线(ξ=0.9)二阶环节Bode图曲线六、实验结果分析。
实验一 典型环节的MATLAB仿真
以图 1 所示的系统为例说明基本设计步骤如下: 1)进入线性系统模块库构建传递函数。点击 simulink 下的“Continuous” 再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。 2)改变模块参数。在 simulink 仿真环境“untitled”窗口中双击该图标即 可改变传递函数。其中方括号内的数字分别为传递函数的分子、分母各次幂由高 到低的系数数字之间用空格隔开设置完成后选择 OK即完成该模块的设 置。 3)建立其它传递函数模块。按照上述方法在不同的 simulink 的模块库中 建立系统所需的传递函数模块。例比例环节用“Math”右边窗口“Gain”的图 标。 4)选取阶跃信号输入函数。用鼠标点击 simulink 下的“Source”将右边窗 口中“Step”图标用左键拖至新建的“untitled”窗口形成一个阶跃函数输入模
图 2 系统方框图
块。 5)选择输出方式。用鼠标点击 simulink 下的“Sinks”就进入输出方式模 块库通常选用“Scope”的示波器图标将其用左键拖至新建的“untitled”窗 口。 6)选择反馈形式。为了形成闭环反馈系统需选择“Math” 模块库右边 窗口“Sum”图标并用鼠标双击将其设置为需要的反馈形式改变正负号。 7)连接各元件用鼠标划线构成闭环传递函数。 8)运行并观察响应曲线。用鼠标单击工具栏中的“运行”按钮便能自动运行仿真环境下 的系统框图模型。运行完之后用鼠标双击“Scope”元件即可看到响应曲线。 三、实验原理 1比例环节的传递函数为
1. 比例环节
和
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
MATLAB实验一典型环节的MATLAB仿真
单位阶跃响应波形
(2)形
结果分析:
由以上单位阶跃响应波形图知,惯性环节使得输出波形在开始时以指数曲线上升,上升速度与时间常数(惯性环节中s的系数)有关。
3.积分环节 实验结果:
SIMULINK仿真模型
单位阶跃响应波形
结果分析:
SIMULINK仿真模型
单位阶跃响应波形
(2)比例环节 实验结果:
SIMULINK仿真模型
单位阶跃响应波形
结果分析:
由以上阶跃响应波形图知,比例环节使得输出量与输入量成正比,既无失真也无延迟,响应速度快,能对输入立即作出响应,因此系统易受外界干扰信号的影响,从而导致系统不稳定。
2.惯性环节 实验结果:
要求:正文用小四宋体,1.5倍行距,图表题用五号宋体,图题位于图下方,表题位于表上方。
积分环节的输出量反映了输入量随时间的积累,积分作用随着时间而逐渐增强,其反映速度较比例环节迟缓。
4.微分环节 的实验结果:
SIMULINK仿真模型
单位阶跃响应波形
结果分析:
由上图的单位阶跃响应波形图知,微分环节的输出反映了输入信号的变化速度,即微分环节能预示输入信号的变化趋势,但是若输入为一定值,则输出为零。,
曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容
按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其
单位阶跃响应波形。
1比例环节 和 ;
2惯性环节 和
3积分环节
4微分环节
5比例+微分环节(PD) 和
6比例+积分环节(PI) 和
三、实验结果分析
1.(1)比例环节 实验结果:
实验一典型环节的MATLAB仿真
典型环节的MATLAB仿真1、 实验目的:1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。
①比例环节 G1(S)=-1和G2(S)=-2②惯性环节 G1(S)=-「1/(S+1)」和G2(S)=-「1/(0.5S+1)」③积分环节 G1(S)=-(1/S)和G2(S)=-(1/(0.5S)④微分环节 G1(S)=-0.5S和G2(S)=-S⑤比例微分环节 G1(S)=-(2+S)和G2(S)=-(1+2S)⑥比例积分环节(PI)G1(S)=-(1+1/S)和G2(S)=-「2(1+1/2S)」2、 实验步骤及结果启动MATLAB 6.0,进入Simulink后新建文档,分别在各文档绘制各典型环节的结构框图。
双击各传递函数模块,在出现的对话框内设置相应的参数。
然后点击工具栏的按钮或simulation菜单下的start命令进行仿真,双击示波器模块观察仿真结果。
在仿真时设置各阶跃输入信号的幅度为1,开始时间为0(微分环节起始设为0.5,以便于观察)传递函数的参数设置为框图中的数值,自己可以修改为其他数值再仿真观察其响应结果。
1、 比例环节G1(S)=-1和G2(S)=-2:2、 惯性环节G1(S)=-「1/(S+1)」和G2(S)=-「1/(0.5S+1)」3、 积分环节G1(S)=-(1/S)和G2(S)=-(1/(0.5S)4、 微分环节G1(S)=-0.5S和G2(S)=-S5、 比例微分环节: G1(S)=-(2+S)和G2(S)=-(1+2S)6、 比例积分:G1(S)=-(1+1/S)和G2(S)=-「2(1+1/2S)」四、实验结果分析:比较前后两个阶跃曲线的区别与联系,作出相应的实验分析结果。
自动控制原理实验报告
《自动控制原理》实验报告姓名:学号:专业:班级:时段:成绩:工学院自动化系实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验原理1.比例环节的传递函数为K R K R R RZ ZsG 200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK 图形如图1-3所示。
三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。
① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+=s s G 和15.01)(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1图1-3 比例环节的模拟电路及SIMULINK 图形⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=四、实验结果及分析① 仿真模型及波形图1)(1=s G 和2)(1=s G② 仿真模型及波形图11)(1+=s s G 和15.01)(2+=s s G 11)(1+=s s G 15.01)(2+=s s G③ 积分环节ss G 1)(1=④微分环节⑤比例+微分环节(PD)⑥比例+积分环节(PI)五、分析及心得体会实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和ω对二阶系统性能的影响。
n3.熟练掌握系统的稳定性的判断方法。
二、基础知识及MATLAB函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。
自动控制原理MATLAB仿真实验
传递函数及方框图的建立(典型环节)一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK 的使用MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真环境下。
2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。
3.在simulink 仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink 下的“Continuous ”,再将右边窗口中“Transfer Fen ”的图标用左键拖至新建的“untitled ”窗口。
2)改变模块参数。
在simulink 仿真环境“untitled ”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK ,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math ”右边窗口“Gain ”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。
5)选择输出方式。
用鼠标点击simulink 下的“Sinks ”,就进入输出方式模块库,通常选用“Scope ”的示波器图标,将其用左键拖至新建的“untitled ”窗口。
matlab仿真实例
峰值时间tp=32s 上升时间tr=10.3s 调整时间ts=3.9e+003s
超调量σ%=96.7%
图一
图二
图三
4)修改参数,分别实现ξ=1和ξ=2的响应曲线,并记录:
ξ=1:
程序: >> zeta=1;
>> wn=sqrtm(10)
wn =
3.1623
>> sys=tf(10,[1,2*wn*zeta,10]);
>> step(sys)
>> title('ξ=1响应曲线' )
(图见下页)
ξ=2:
程序:
>> zeta=2;
程序:
>> sys=tf(10,[1,2,10]);step(sys)
>> sys=tf(10,[1,2,10]);
>>step(sys)
>>hold on
>>sys=tf([1,0.5,10],[1,2,10]);
>>step(sys)
>>gtext('\leftarrow G(s)');
>>gtext('\leftarrow G2(s)');
G(s)=0.01/(s^2+0.002*s+0.01)的峰值时间tp上升时间tr调整时间ts超调量
σ%。
G(s)=120/(s^2+12*s+120):
程序:
>> sys=tf(120,[1,12,120]);
>> step(sys)
利用matlab进行仿真的案例
利用matlab进行仿真的案例利用Matlab进行仿真可以涉及多个领域的案例,下面列举10个案例:1. 汽车碰撞仿真:利用Matlab中的物理仿真库,可以模拟汽车碰撞的过程,分析碰撞时车辆的变形、撞击力等参数。
可以根据不同的碰撞角度和速度,评估不同碰撞条件下的安全性能。
2. 电力系统仿真:利用Matlab中的电力系统仿真工具,可以模拟电力系统的运行情况,包括电压、电流、功率等参数的变化。
可以用于分析电力系统的稳定性、短路故障等问题,并进行相应的优化设计。
3. 通信系统仿真:利用Matlab中的通信系统仿真工具箱,可以模拟无线通信系统的传输过程,包括信号的发送、接收、调制解调等环节。
可以用于评估不同调制方式、编码方式等对通信系统性能的影响。
4. 智能控制仿真:利用Matlab中的控制系统仿真工具,可以模拟各种控制系统的运行情况,包括PID控制、模糊控制、神经网络控制等。
可以用于设计、优化和评估各种控制算法的性能。
5. 雷达系统仿真:利用Matlab中的雷达仿真工具,可以模拟雷达系统的工作原理和性能,包括发射、接收、信号处理等过程。
可以用于评估雷达系统的探测能力、跟踪精度等指标,并进行系统参数的优化设计。
6. 气候变化模拟:利用Matlab中的气候模型,可以模拟气候系统的变化过程,包括温度、降水、风速等参数的变化。
可以用于研究气候变化对生态环境、农业生产等方面的影响,以及制定相应的应对策略。
7. 人体生理仿真:利用Matlab中的生理仿真工具箱,可以模拟人体的生理过程,包括心血管系统、呼吸系统、神经系统等。
可以用于研究不同疾病、药物对人体的影响,以及评估各种治疗方案的效果。
8. 金融市场仿真:利用Matlab中的金融工具箱,可以模拟金融市场的价格变化过程,包括股票、期货、汇率等。
可以用于研究不同投资策略、风险管理方法等对投资收益的影响,并进行相应的决策分析。
9. 电子器件仿真:利用Matlab中的电子器件仿真工具,可以模拟各种电子器件的工作原理和性能,包括二极管、晶体管、集成电路等。
实验一典型环节及其阶跃响应仿真
实验⼀典型环节及其阶跃响应仿真利⽤simulink进⾏仿真的步骤:1.打开Matlab软件;2.在Command Window命令⾏>>后输⼊simulink并回车或点击窗⼝上部图标直接进⼊simulink界⾯;3.在simulink界⾯上点击File-New-Modle就可以在新的界⾯上建⽴系统的仿真模型了;4.在左⾯的器件模型库中找到所需模型,⽤⿏标将器件模型拖到建⽴的界⾯上,然后⽤⿏标将它们⽤连线连起来,系统的仿真模型就建⽴起来了;5.点击界⾯上部的图标‘’进⾏仿真,双击⽰波器就可以看到仿真结果。
实验要⽤到的元件模型的图标及解释如下:阶跃信号:在simulink-source中可以找到,双击可以设定阶跃时间。
sum:在simulink-math operations中可以找到,双击可以改变器属性以实现信号相加还是相减;⽐例环节:在simulink-math operations中可以找到,双击可以改变器属性以改变⽐例系数;积分环节:在simulink-continues中可以找到;传函的⼀般数学模型表达形式:在simulink-continues中可以找到,双击可以对传递函数进⾏更改(通过设定系数)。
⽰波器:在simulink-sinks中可以找到。
实验⼀典型环节及其阶跃响应⼀、实验⽬的1.通过观察典型环节在单位阶跃信号作⽤下的动态特性,熟悉各种典型环节的响应曲线。
2.定性了解各参数变化对典型环节动态特性的影响。
3.初步了解MATLAB 中SIMULINK 的使⽤⽅法。
⼆、SIMULINK 实例1.掌握⽐例、积分、⼀阶惯性、实际微分、⽐例+微分、⽐例+积分环节的动态特性。
[例题]:观察实际微分环节的动态特性(1)连接系统,如上图所⽰:(2)参数设置:在simulation/paramater 中将仿真时间(Stop Time )设置为10秒,⽤⿏标双击实际微分环节,设Kd=1,Td=1(3)仿真:simulation/start,仿真结果如图1-1所⽰。
自动控制原理MATLAB仿真实验指导书(4个实验)
自动控制原理MATLAB仿真实验实验指导书电子信息工程教研室实验一典型环节的MA TLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MA TLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。
图1-1 SIMULINK仿真界面图1-2 系统方框图3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型环节的MATLAB仿真
实验一典型环节的MATLAB仿真
一、实验目的
1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用
方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环
节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用
MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的
软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真
和调试。
1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,
按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真
环境下。
2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常
规模板。
3.在simulink仿真环境下,创建所需要的系统。
图1-1 图1-2 以图1-2所示的系统为例,说明基本设计步骤如下:
1)进入线性系统模块库,构建传递函数。
点击simulink 下的“Continuous ”,再将右边窗口中“Transfer Fen ”的图标用左键拖至新建的“untitled ”窗口。
2)改变模块参数。
在simulink 仿真环境“untitled ”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK ,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math ”右边窗口“Gain ”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。
5)选择输出方式。
用鼠标点击simulink 下的“Sinks ”,就进入输出方式模块库,通常选用“Scope ”的示波器图标,将其用左键拖至新建的“untitled ”窗口。
6)选择反馈形式。
为了形成闭环反馈系统,需选择“Math ” 模块库右边窗口“Sum ”图标,并用鼠标双击,将其设置为需要的反馈形式(改变正负号)。
7)连接各元件,用鼠标划线,构成闭环传递函数。
8)运行并观察响应曲线。
用鼠标单击工具栏中的“”按钮,便能自动运行仿真环境下的系统框图模型。
运行完之后用鼠标双击“Scope ”元件,即可看到响应曲线。
三、实验原理
1.比例环节的传递函数为
K R K R R R
Z Z s G 200,1002)(211
212==-=-=-
=
其对应的模拟电路及SIMULINK 图形如图1-3所示。
2.惯性环节的传递函数为
uf
C K R K R s C R R R
Z Z s G
1,200,100
1
2.021)(1211212
12===+-=+-=-
=
其对应的模拟电路及SIMULINK 图形如图1-4所示。
3.积分环节(I)的传递函数为
uf C K R s
s C R Z Z s G 1,1001.011)(111112==-=-=-
=
其对应的模拟电路及SIMULINK 图形如图1-5所示。
4.微分环节(D)的传递函数为
uf
C K R s s C R Z Z s G 10,100)(11111
2
==-=-=-
=
uf C C 01.012=<<
其对应的模拟电路及SIMULINK 图形如图1-6所示。
图1-4 惯性环节的模拟
图1-5 积分环节的模拟电
5.比例+微分环节(PD)的传递函数为
)1
1.0(
)1
(
)
(
1 1
1
2
1
2+
-
=
+
-
=
-
=s
s
C
R
R
R
Z
Z
s
G
uf
C
C
uf
C
K
R
R01
.0
10
,
100
1
2
1
2
1
=
<<
=
=
=
其对应的模拟电路及SIMULINK图形如图1-7所示。
6.比例+积分环节(PI)的传递函数为
)
1
1(
1
)
(
1
1
2
1
2
s
R
s
C
R
Z
Z
s
G+
-
=
+
-
=
-
=
uf
C
K
R
R10
,
100
1
2
1
=
=
=
其对应的模拟电路及SIMULINK图形如图1-8所示。
图1-7 比例+微分环节的模
图1-8 比例+积分环节的模
四、实验内容
按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。
1 比例环节1)(1=s G 和2)(1=s G ;
2 惯性环节11)(1+=
s s G 和1
5.01)(2+=s s G
3 积分环节s
s G 1)(1=
4 微分环节s s G =)(1
5 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G
6 比例+积分环节(PI )s s G 11)(1+=和s
s G 211)(2+=
、
五、实验报告
1.画出各典型环节的SIMULINK仿真模型。
2. 记录各环节的单位阶跃响应波形,并分析参数对响应曲线的影响。
3. 写出实验的心得与体会。
六、预习要求
1.熟悉各种控制器的原理和结构,画好将创建的SIMULINK图形。
2.预习MATLAB中SIMULINK的基本使用方法。