数字电子技术概述—门电路
3 门电路
总的扇出系数是高、低电平状态下扇出系数中较小 的一个。
N O min( N OL , N OH )
IOLmax: 保证输出不高于VOLmax的低电平最大灌电流。 IOHmax:保证输出不低于VOHmin的高电平最大拉电流。
Digital Electronics Technology 2013-8-4
2013-8-4
电工理论与应用电子系
Digital Electronics Technology
3.3. 2 CMOS反相器的电路结构和工作原理 二、电压、电流传输特性
AB段:VI VGS (TH ) N
BC段:转折区 T1导通,T2截止 VO VOH VDD 阈值电压UTH≈VDD/2 CD段:VI VDD VGS ( TH ) P 转折区中点:电流最大 T2导通,T1截止 VO VOL 0
BC段:VGS (TH ) N VI VDD VGS (TH ) P T1 , T2同时导通 1 1 若T1 , T2参数完全对称, I VDD时,VO VDD V 2 2 CMOS反相器在使用 时应尽量避免长期工 作在BC段。
3.3. 2 CMOS反相器的电路结构和工作原理 三、输入噪声容限
1. 与非门
A B
T1 T2 T3 T4
Y
0 0 通 不 通 不 1 0 1 通 不 不 通 1 1 0 不 通 通 不 1 1 1 不 通 不 通 0
3.3.5 其他类型的CMOS门电路 2.或非门
A B
T1 T2 T3 T4
Y
0 0 通 不 通 不 1
0 1 通 不 不 通 0 1 0 不 通 通 不 0 1 1 不 通 不 通 0
(数字电子技术基础)第2章. 门电路
• 小规模集成电路(SSI-Small Scale 小规模集成电路(SSI(SSI Integration), 每片组件内包含10~100 10~100个元件 Integration), 每片组件内包含10~100个元件 10~20个等效门 个等效门) (或10~20个等效门)。 • 中规模集成电路(MSI-Medium Scale 中规模集成电路(MSI (MSIIntegration),每片组件内含100~1000 100~1000个元件 Integration),每片组件内含100~1000个元件 20~100个等效门 个等效门) (或20~100个等效门)。 • 大规模集成电路(LSI-Large Scale 大规模集成电路(LSI (LSIIntegration), 每片组件内含1000~100 000个 Integration), 每片组件内含1000~100 000个 元件( 100~1000个等效门 个等效门) 元件(或100~1000个等效门)。 • 超大规模集成电路(VLSI-Very Large Scale 超大规模集成电路(VLSI (VLSIIntegration), 每片组件内含100 000个元件 Integration), 每片组件内含100 000个元件 1000个以上等效门 个以上等效门) (或1000个以上等效门)。
•
+5V
R1
T1
T5 R3
•
(2-30)
前级
后级
灌电流的计算
饱和
I OL
5 − T5压降 − T1的be结压降 = R1
5 − 0.3 − 0.7 ≈ 1.4mA = 3
(2-31)
关于电流的技术参数
名称及符号 输入低电平电流 IiL 输入高电平电流 IiH IOL 及其极限 IOL(max) IOH 及其极限 IOH (max) 含义 输入为低电平时流入输 入端的电流-1 入端的电流 .4mA。 。 输入为高电平时流入输 入端的电流几十 几十μ 。 入端的电流几十μA。 当 IOL> IOL(max)时,输出 不再是低电平。 不再是低电平。 当 IOH >IOH(max)时, 输出 不再是高电平。 不再是高电平。
数字电子技术 (2)
杂质硅的原子图象和能带图 a) N型半导体 b) P型半导体
半导体 N型 P型
所掺杂质 施主杂质 受主杂质
多数载流子 (多子) 电子 空穴
少数载流子 (少子) 空穴 电子
特性
电子浓度nn≥空 穴浓度pn
电子浓度np≤空 穴浓度pp
PN结
1. PN结的形成
—— 空穴
—— 电子 —— 受主离子 —— 施主离子
Vbe
Vbc
截止 反偏 反偏, ib=ic =0,开关断开。 放大 正偏 反偏, ic = βib, 线性放大。 饱和 正偏 正偏, ib >Ibs , 开关闭合。
Vcc Vces ib I bs RC
,
Vces 0.7V
双极型三极管开关等效电路(理想情况下)
开关 闭合
当VI为高电平VIH时, T饱和
v1 VEE v B v1 R1 R1 R2
总结: 1. V1=V1L=0V 时 ,Vbe= -2V, 此时加在b-e结上的是反向电压,T可靠截止; ic=0, Vo= Vcc =VoH=5V
2. V1=V1H=5V 时 , Vbe=1.8V>VON , T导通,
是否深度饱和? V VON ib cc 0.44 mA RB
(2) 关闭时间toff 三极管从饱和到截止所需的时间。 toff = ts +tf ts :存储时间(几个参数中最长的;饱和越深越长) tf :下降时间
toff > ton 。 开关时间一般在纳秒数量级。高频应用时需考虑。 四. MOS管的开关特性(调到3.5节前讲)
§3—3 最简单的与、或、非门电路
0V 5V
D2 D 1
+VCC (+5V) R 3kΩ
数字电路第1章数字电路概述
导线连接起来的电路;
集成电路是将元器件及导线均采用半导体工艺 集成制作在同一硅片上,并封装于一个壳体内的 电路。一块芯片上集成的元器件数量的多少,称 为集成电路的集成度。
小规模集成电路(SSI, 数十器件/片) 中规模集成电路(MSI, 数百器件/片)
JHR
第1章 数字电子技术概述
一、本章主要介绍内容
1.数字电子技术与模拟电子技术的区别,数字 信号和数字电路的基本概念。
2.半导体器件(二极管、三极管、MOS管)在 数字电路中主要工作于开关状态,重点介绍它们的 开关运用特性。 3.数字系统中信息可分为数值和文字符号两大 类。数值的计数体制常用的有二进制、十进制、十 六进制,重点介绍它们的
方法二:按位、权值进行转换。 在十进制数中,小数点左侧第一位称为个位,其 权值为100,第二位称为十位,其权值为101,依
此类推。
例如:十进制数3954代表:
3 9 5 4
(3103)+(9102)+(5101)+(4100) (31000)+(9100)+(510)+(41) 3000 + 900 + 50 + 4=3954
3.八进制数
数码:0、1、2、3、4、5、6、7、八个数码。 基数:8 计数规律: 逢八进一、借一当八
n 1
一般表达式: N 8
im
K i 8i
如 .7 ) 8 3 8 2 2 81 5 8 0 7 8 1 (325 ( 213 .875 )10
(N)10=(b2b1b0)2
则
(b2b1b0)2 =(b2×22+b1×21+b0×20)10
此式说明 (N)10÷2=b2×21+b1……余数b0
数字电子技术 门电路
2.1 2.2 概述
门电路
半导体二极管和三极管的开关特性
2.3
2.4 2. 5
最简单的与、或、非门电路
TTL门电路 CMOS门电路
2.1 概述
一、二值逻辑在电路中的表示 数字系统中所用的为二值逻辑0和1,一般用高、 低电平来表示,我们利用开关S获得高、低电平。
V cc
VI控制开关S的断、通情况。 S断开,VO为高电平;
总目录 章目录 返回 上一页 下一页
vI 8 vB vI 3.3 13.3
iB
当vI=VIH=5V时, vB=1.8V
∴ 三极管导通
∵ 深度饱和时
vB VBE 1.8 0.7 iB 0.44mA 3 RB 2.5 10
I BS VCC VCE(sat) RC 5 0.1 0.25mA 3 20 1 10
总目录 章目录 返回 上一页 下一页
例:
在反相器电路中,若VCC=5V,VEE=8V,RC=1kΩ , R1=3.3kΩ , R2=10kΩ ,三极管的电路放大系数 β =20,饱和压降VCE(sat)=0.1V,输入的高、低电 平分别为VIH=5V、VIL=0V。试计算输入高、低电 平时对应的输出电平,并说明电路参数的设计是 否合理。 解: 利用戴氏定 理将发射结 的外接电路 化简为
G1
G2
总目录 章目录 返回
上一页 下一页
2.4.2 TTL反相器的特性
一、输入特性 1.输入伏安特性─即iI和vI的关系曲线
这里, iI为每个输入端上的电流。
总目录 章目录 返回 上一页 下一页
(1) 当vI=VIL=0.2V时, iI从输入端流出。
I IL VCC v BE1 VIL 1mA R1
数字电子技术逻辑门电路课件
数字电子技术-逻辑门电路
二极管与门/或门电路的缺点
(1)在多个门串接使用时,会出现低电平偏离标准数值 的情况。 (2)负载能力差。
+VCC(+5V)
R 3kΩ
D1
0V
D2
5V
D1
p
5V
D2
0.7V
+VCC(+5V) R 3kΩ
L
RL
1.4V
数字电子技术-逻辑门电路
解决办法:
将二极管与门(或门)电路和三极管非门电路组 合起来。
1
3
2T 3
Hale Waihona Puke R e21kΩ输入级
中间级
输出级
数字电子技术-逻辑门电路
TTL与非门的逻辑关系分析
1、输入全为高电平3.6V时。
T2、T3饱和导通, 由于T2饱和导通,VC2=1V。
由于T3饱和导通,输出电压为: VO=VCES3≈0.3V
T4和二极管D都截止。
实现了与非门的逻 辑功能之一: 输入全为高电平时, 输出为低电平。 A
管相当于一个闭合的开关。
D
K
V
F
IF
RL
V
F
IF
RL
数字电子技术-逻辑门电路
半导体二极管的理想开关特性
(2)加反向电压VR时,二极管截止,反向电流IS可忽略。二
极管相当于一个断开的开关。
D
K
V
R
IS
RL
V
R
RL
iD
理想二极管 伏安特性
uD
0V
数字电子技术-逻辑门电路
半导体二极管的实际开关特性
实际的硅二极管正向导通时,存在 一个0.7V的门槛电压(锗二极管为 0.3V),其伏安特性曲线为:
《数字电子技术基础》第六版--门电路-1117省名师优质课赛课获奖课件市赛课一等奖课件
S
D
B
不论D、S间有无电压, 均无法导通,不能导电
第 章 门电路
3.3.1 MOS管旳开关特征 以N沟道增强型为例研究通电情况:
数字电子技术基础 第六版
2、添加垂直电压VGS
形成电场G—B,把衬底中旳电子吸引 到上表面,除复合外,剩余旳电子在 上表面形成了N型层(反型层)为D、 S间旳导通提供了通道。
VGS(th)称为阈值电压(开启电压)
第 章 门电路
数字电子技术基础 第六版
3.3.1 MOS管旳开关特征
MOS管输入特征和输出特征
① 输入特征:直流电流为0,看进去有一种输入电 容CI,对动态有影响。
② 输出特征: iD = f (VDS) 相应不同旳VGS下得一族曲线 。
第 章 门电路
3.3.1 MOS管旳开关特征 输出特征曲线(分三个区域)
第 章 门电路
3.2.2 二极管或门 二极管构成旳门电路旳缺陷
• 电平有偏移 • 带负载能力差
数字电子技术基础 第六版
• 只用于IC内部电路
第 章 门电路
集成门电路
数字电子技术基础 第六版
集成门电路
双极型 TTL (Transistor-Transistor Logic Integrated Circuit)
第 章 门电路
数字电子技术基础 第六版
3.3.2 CMOS反相器旳电路构造和工作原理 三、输入噪声容限
噪声容限--衡量门电路旳抗干扰能力。 噪声容限越大,表白电路抗干扰能力越强。
测试表白:CMOS电路噪声容限VNH=VNL=30%VDD,且 随VDD旳增长而加大。所以能够经过提升VDD来提升噪声容限
第 章 门电路
半导体基础知识(2)
《数字电子技术基础》——集成逻辑门电路
(6)扇入扇出数。
扇入数:
--门电路输入端的个数,用NI表示。 扇出对数于:一个2输入的“或非”门,其扇入数NI=2。
--门电路在正常工作时,
所能带同类门电路的最大数目, 它表示带负载能力。
&
IOH IIH
拉电流负载:(存在高电平下限值)。
&
N OH
I
(驱动门)
OH
I
(负载门)
IH
IIH &
...
2.2 TTL集成逻辑门电路
2.2.1 TTL与非门电路 2.2.2 TTL集电极开路门和三态门电路 2.2.3 TTL集成电路的系列产品
2.2.1 TTL与非门电路
输入级和输出级均采用晶体三极管,称为晶体三极 管-晶体三极管逻辑电路,简称TTL电路。
1.电路结构
R1
R2
R4 +UCC
A B
D1
T1 D2
T3
T2
D3
F
T4 R3
输入级 中间级 输出级
(1)输入级。
对输入变量实现“与”运算,
输入级相当于一个与门。
A
(2)中间级。
B D1
实现放大和倒相功能。向后级
提供两个相位相反的信号,分
别驱动T3、T4管。
(3)输出级。
R1 T1 D2
输入级
R2 T2
R3 中间级
R4 +UCC T3
D3 F
1.二极管的开关特性
(1)静态特性。
iD /mA
阳极
阴极
0.5 0.7 uD/V
(VT)
(a) 电路符号
(b)特性曲线
二极管当作开关来使用正是利用了二极管的单向导电性。
数字电子技术基础:第三章 逻辑门电路
逻辑符号
C
vI /vO
TG
vO /vI
C
C
υo/ υI
2. CMOS传输门电路的工作原理
vI /vO
5V到+5V
C
+5V
TP +5V vO /vI
5V TN
5V
C
设TP:|VTP|=2V, TN:VTN=2V
I的变化范围为-5V到+5V。
c=0=-5V, c =1=+5V
1)当c=0, c =1时 GSN= -5V (-5V到+5V)=(0到-10)V
在由于电路具有互补对称的性质,它的开通时间与关 闭时间是相等的。平均延迟时间:<10 ns。
动态功耗
CMOS反相器的PD与f和 2 VDD
CMOS反相器从一个稳定状态转变到另一个稳定状态时所产生的功耗
PD=PC+PT
分布电容CL充放电引起的功耗: PC CL fVD2D
CMOS管瞬时交替导通引起的功耗:PT CPD fVD2D
74标准系列 74LS系列
74AS系列
74LVC 74VAUC 低(超低)电压 速度更加快 与TTL兼容 负载能力强 抗干扰 功耗低
74ALS
3.1 概述
门电路:实现基本逻辑/复合逻辑运算的单元电路
逻辑状态的描述—— 正逻辑:高电平→1,低电平→0 负逻辑:高电平→0,低电平→1
缺点:功耗较大/速度较慢
VDD VIH(min) I OH(total) I IH(total)
… …
I0H(total) &1
+V DD RP
&
&1
IIH(total) &
数字电子技术基础ppt课件
R
vo K合------vo=0, 输出低电平
vi
K
只要能判
可用三极管 代替
断高低电 平即可
在数字电路中,一般用高电平代表1、低 电平代表0,即所谓的正逻辑系统。
2.2.2 二极管与门
VCC
A
D1
FY
B
D2
二极管与门
A
B
【 】 内容 回顾
AB Y 00 0 01 0 100 11 1
&
Y
2.2.2 二极管或门
一般TTL门的扇出系数为10。
三、输入端负载特性
输入端 “1”,“0”?
A
ui
RP
R1 b1
c1
T1
D1
•
R2
•
T2
•
R3
VCC
•
R4
T4 D2
•
Y
T5
•
简化电路
R1
VCC
ui
A ui
T1
be
RP
2
be 0
RP
5
RP较小时
ui
RP RP R1
(Vcc Von )
当RP<<R1时, ui ∝ RP
•
R4
T4 D2
•
Y
T5
•
TTL非门的内部结构
•
R1
R2
A
b1 c1
T1
•
T2
D1
•
R3
VCC
•
R4
T4 D2
•
Y
T5
•
前级输出为 高电平时
•
R2
R4
VCC
T4 D2
《数字电子技术基础》第3章 门电路
导通
TP vI vO
TN
vo=―1” 截止
vI=1
VDD
截止
T1 vI
vO T2
vo=―0” 导通
静态下,无论vI是高电平还是低电平,T1、T2总有 一个截止,因此CMOS反相器的静态功耗极小。
二、电压传输特性和电流传输特性
T1导通T2截止
电 压 传 输 特 性
T1T2同时导通
T2导通T1截止
噪声电压作用时间越短、电源电压越高,交流噪声容 限越大。
三、动态功耗
反相器从一种稳定状态突然变到另一种稳定状态的过
程中,将产生附加的功耗,即为动态功耗。
动态功耗包括:负载电容充放电所消耗的功率PC和 PMOS、NMOS同时导通所消耗的瞬时导通功耗PT。 在工作频率较高的情况下,CMOS反相器的动态功耗 要比静态功耗大得多,静态功耗可忽略不计。
VNL VIL (max) VOL (max)
测试表明:CMOS电路噪声容限 VNH=VNL=30%VDD,且随VDD的增加而加大。
噪声容限--衡量门电路的抗干扰能力。 噪声容限越大,表明电路抗干扰能力越强。
§3.3.3 CMOS反相器的静态输入输出特性
一、输入特性 因为MOS管的栅极和衬底之间存在着以SiO2 为介质的输入电容,而绝缘介质非常薄,极易被
S1
输 入v I 信 号 输 vo 出 信 号
S2
图3.1.3 互补开关电路
互补开关电路由于两个开关总有一个是断开的, 流过的电流为零,故电路的功耗非常低,因此在数字 电路中得到广泛的应用
3.1 概述
4. 数字电路的概述 (1)优点: 在数字电路中由于采 用高低电平,并且高低电 平都有一个允许的范围, 如图3.1.1所示,故对元器 件的精度和电源的稳定性 的要求都比模拟电路要低, 抗干扰能力也强。
数字电子技术第二章门电路讲解
Vcc
R
Vo Vcc
Vi
K
只要能判断高 低电平即可
1
可用三极
0
管代替 0V
K开------Vo=1, 输出高电平 K合------Vo=0, 输出低电平
2.1半导体二极管门电路 半导体二极管的结构和外特性 (Diode)
• 二极管的结构: PN结 + 引线 + 封装构成
P
N
2.1.1二极管的开关特性:
③ 截止区:条件VBE = 0V, iB = 0, iC = 0, c—e间“断开” 。
iC f (VCE )
三、双极型三极管的基本开关电路
只要参数合理:
VI=VIL时,T截止,VO=VOH VI=VIH时,T导通,VO=VOL
四、三极管的开关等效电路
截止状态
饱和导通状态
五、动态开关特性
从二极管已知, PN结存在电容效 应。
(2)输出的高低电平受输入端数目的影响
输入端越多,VOL 越高,VOH 也更低 (3)使T2、T4的VGS 达到开启电压时, 对应的VI 值不同
解决方法
或非门 缓冲器 与非门
Y ABC ABC A B C
二 漏极开路的门电路(OD门)
1.可将输出并联使用,实现线与 或用作电平转换、驱动器
二、电压传输特性
CD段:转折区 VI VTH 1.4V , 所以VB1 2.1V T2 ,T5同时导通,T4截止,所以VO迅速 VOL 0 DE段:饱和区 VI继续,而VO不变 VO VOL
• 需要说明的几个问题: ①T2的输出VC 2和Ve2变化方向相反,故称倒相级。
2.3 CMOS门电路
2.3.1MOS管的开关特性氧化物层 金属层
数字电子技术基础第二章门电路课件
IF
外加的正向电压有一 部分降落在PN结区,方 向与PN结内电场方向相 反,削弱了内电场。于是, 内电场对多数载流子扩散 运动的阻碍减弱,扩散电 流加大。扩散电流远大于 漂移电流,可忽略漂移电 流的影响,PN结呈现低 阻性。
数字电子技术基础第二章门电路课件
反向截至
PN结 P 外电场 NN
数字电子技术基础第二章门电路课件
• PN节的动态开关特性
– 动态开关特性是指二极管由导通到截止,或由截止到 导通,瞬变状态下的特性
v
动态时,加到两边的电压突
t
然反向时,电流的变化要稍
微滞后,这是因为PN结要建
i
立起足够的电荷梯度后才有
扩散运动
t
数字电子技术基础第二章门电路课件
三极管的开关特性
数字电路中,三极管作为开关使用, 它工作在饱和区和截 止区,对应电路的两个状态
R 1A
0
&
B
&
&
Y
C
&
数字电子技术基础第二章门电路课件
【例3】 三层楼房,楼道只有一盏灯。试设计该楼道灯控制电 路。要求:在每一层均可控制开关。
开关—A、B、C
合——“1” 开——“0”
灯—Y
亮——“1” 灭——“0”
A、B、C Y
000
0
001
010
1
100
011
101 0
110 111 1
CB A Y 0 00 0 001 1 010 1 011 0 10 0 1 10 1 0 110 0 111 1
数字电子技术基础第二章门电路课件
组合逻辑电路设计
(1)根据设计要求,定义输入、输出逻辑变量,并给输 入、输出逻辑变量赋值,即用0和1表示信号的有关 状态;
数字电子技术
数字电子技术数字电子技术是一个复杂而广泛的领域,它在现代电子技术中扮演着重要的角色。
数字电子技术涉及使用数字信号处理技术以实现各种电子系统的设计、开发和维护。
数字电子技术的广泛应用包括计算机、通信、数字音频、视频和图像处理,控制系统和各种数字产品等。
本文将对数字电子技术的概念、原理、应用和未来发展进行探讨。
一、数字电子技术概述1.1 数字电子技术的概念数字电子技术(Digital Electronics)是利用逻辑门的开关功能和二进制数码的表示方法,来进行数字信号的处理、存储、传输和操作的一种电子技术。
数字电子技术也被称为数字电路技术或者数字逻辑技术。
数字电子技术可以将模拟信号转化为数字信号,并通过数字信号处理技术来实现各种电子系统的设计、开发和维护。
数字电子技术是现代电子技术的基础,它不仅改变了我们的生活方式,而且为我们带来了无限的创新空间。
1.2 数字电子技术的原理数字电子技术的原理主要包括逻辑门、二进制数码和时序控制等。
数字电路的逻辑门是指具有特定逻辑功能的电子元件,例如与门、或门、非门、异或门等。
逻辑门可以将一个或多个输入的信号转换为一个输出信号。
二进制数码是一种仅包含两个数字(0和1)的数学表示方法,用于表达数字、字符、声音、图像和其他数据类型。
时序控制是指通过时钟信号来控制数字电路元件的时序运行,保证系统的稳定性和可靠性。
二、数字电子技术的应用2.1 计算机计算机是数字电子技术最广泛的应用之一。
通过数字电子技术,计算机可以在很短的时间内进行大量的数据处理和计算。
计算机技术的发展促进了信息技术的快速发展。
计算机系统包括计算机硬件和计算机软件两个方面。
计算机硬件是由数字电路元件组成的,例如中央处理器、内存、输入输出接口、总线等等。
计算机软件是指用各种编程语言编写的程序,例如操作系统、应用软件、编译器等等。
2.2 通信数字电子技术也被广泛应用于通信领域。
数字通信是指通过数字信号传输技术,将信息发送到另一个地方。
数字电子技术逻辑门电路
• 引言 • 逻辑门电路基础知识 • 逻辑门电路的工作原理 • 逻辑门电路的应用 • 逻辑门电路的实现方式 • 结论
01
引言
主题简介
逻辑门电路是数字电子技术中的 基本单元,用于实现逻辑运算和
信号处理功能。
逻辑门电路由输入端和输出端组 成,根据输入信号的状态(高电 平或低电平)决定输出信号的状
基于CMOS的逻辑门电路实现方式
总结词
CMOS(Complementary Metal-Oxide Semiconductor)是一种常见的数字逻辑门电路实现方式,它利用互 补的NMOS和PMOS晶体管作为开关元件,具有功耗低、抗干扰能力强等优点。
详细描述
基于CMOS的逻辑门电路通常由输入级、中间级和输出级三部分组成。输入级由NMOS和PMOS晶体管组成,用 于接收输入信号;中间级由NMOS和PMOS晶体管组成,用于放大和传递信号;输出级由NMOS和PMOS晶体管 组成,用于驱动负载并输出信号。
04
逻辑门电路的应用
逻辑门电路在计算机中的应用
计算机的基本组成
逻辑门电路是计算机的基本组成单元,用于实现计算机内部的逻 辑运算和数据处理。
中央处理器(CPU)
CPU中的指令执行和数据处理都离不开逻辑门电路,它控制着计算 机的运算速度和性能。
存储器
存储器中的每个存储单元都是由逻辑门电路构成的,用于存储二进 制数据。
逻辑门电路在数字通信中的应用
数据传输
01
逻辑门电路用于实现数字信号的编码、解码和调制解调,确保
数据在通信信道中可靠传输。
信号处理
02
逻辑门电路用于信号的逻辑运算、比较和转换,实现数字信号
的处理和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 概述
•门电路:实现基本运算、复合运算的单元电 路,如与门、与非门、或门 ······
门电路中以高/低电平表 示逻辑状态的1/0
获得高、低电平的基本原理
高/低电平都允许 有一定的变化范 围
正逻辑:
高电平表示为1,低电平表示为0
负逻辑: 高电平表示为0,低电平表示为1
2.2.1半导体二极管开关特性
半导体二极管的结构和外特性(Diode)
• 二极管的结构: PN结 + 引线 + 封装构成 P N
2.2.1二极管的开关特性:
高电平:VIH=VCC 低电平:VIL=0
• VI=VIH D截止,VO=VOH=VCC
VI=VIL D导通,VO=VOL=0.7V
2.2.1二极管的开关特性:
<0.7V 24.13V
1.4V
0.7V
0.2V
vI 全为高电平 (3.6V)
T1 倒置放大
T2 导通
T3 导通
T4 截止
vO 低电平0.2V)
需要说明的几个问题:
⑴ T2的输 VC2出 和 Ve2变化方,故 向称 相倒 反相级。
⑵ 输出级在稳T4态 和T下 5总, 有一个导通止 、。 一个截
既 能 降 低 功 耗带 又负 提载 高能 了力 ,。 称 推 拉 式
只要电路参数合理,
VI=VIL时,T截止,VO=VOH。 VI=VIH时,T饱和,VO=VOL
2.4 TTL门电 路
TTL: (Transister-Transister-Logic的缩写)
双极型三极管输入-双极型三极管输出的逻辑电路。
2.4.1 TTL反相器
一、电路组成及工作原理 1. 电路组成
V CC
0 A
Rb
vcc
Rc Y
1
T
非逻辑真值表
输入A
0
输出Y
1
2.3.3 非门电路 ─ 三极管反相器
当输入为逻辑1时:
1
A
Rb
V CC
Rc
0.3v
Y
T
0
非逻辑真值表
输入A
0 1
输出Y
1 0
2.3.3、三极管反相器
实际应用中,为保证VI=VIL时T可靠截止,常 在 输入接入负压。
1
A
Y= A
非逻辑符号
规定3V左右为1 0V左右为0
A BY 0 00 0 10 1 00 1 11
2.3.2. 二极管或门
设VCC = 5V 加到A,B的 VIH=3V
VIL=0V
AB
灯
不通 不通 不亮
A
二极管导通时 VDF=0.7V 不通 通
亮
B
通 不通
亮
通通
亮
A BY
A BY
规定2.3V以上为1 0 0 0
0V 0V 0V
⑶ D1抑 制 负 向 干 扰
二、电压传输特性
vo = f (vi)
A ABB 段 段: :截截 止 V止 I区 V0I区 .6V0,.6 VV,B1 V 1.3BV1 1.3V
T T11导 导通 通T, 2T, ,2 T,5T 截 5截 止止 T, 4导T, 4通 导 V通 O HV VO CCHVV R2CCVBV E4R2VDV 2 BE 34.4VVD2 3.4V B BCC 段 段: :线线 性0性 .7区 V0.7区 V VIV 1.I3V1.3V T T2 2导 导通 通且且工工 作作 在,T在 5放 截 ,T大 5放 止 截区 T, 大 4导 止通 区 T, 4导 V, I 通 VV, OI VO C CD 段 段 D: : 转V 转 折 IV IV 区 T折 V HT 1 H .4区 V 1 .,4 V 所 , 所 以 VB1 V 以 2 B 1 .1V 2 .1 V T T 22,,T T 55 同 同 时 时 导T4导 通 T 截 4截 , 止 通 所 止 , 所 以 V , O迅 , V 以 O 迅 速 V 速 OL V 0 OL 0 D DE 段 段 E: : 饱V 饱 和 IV 继 I继 区 和 续 , 续 , 区 而 VO不 V 而 O 不 变,V 变 OV OL
A 1 YA A 1 YA
(a)
(b)
输入级 中间级 输出级
2. TTL反相器的工作原理
(1)当输入为低电平
0.9V 0.导通
3.6V
T2 截止 T3 截止 T4 导通 vO 高电平
(3.6V)
2. TTL反相器的工作原理
当输入为高电平(vI = 3.6 V)
3.6V
导截通止
D
3V
0V
3V
R
0V
相当于
S
开关闭合
R
相当于
S
开关断开
R
2.2 .2 BJT的开关特性
1.三极管的基本开关电路
只要参数合理: VI=VIL时,T截止,VO=VOH; VI=VIH时,T导通,VO=VOL.
3、三极管的开关等效电路
截止状态
饱和导通状态
截止状态等效电路
饱和导通等效电路
简化等效电路
3V(1.8V以上) 0.3V(0.8V以下)
2.2 二极管、三极管的开关特性
数字电路中,二极管、三极管工作在开关状态:
• 正向导通时:导通电阻很小,两端相当于短路; • 反向截止时:等效电阻很大,两端相当于开路。 • 管子开关特性表现在正向导通和反向截止状态之
间的转换过程(即动态特性):
当脉冲信号的频率很高时,开关状态的变化速度很快, 每秒可达百万次,这就要求器件的开关转换速度要在微秒 甚至纳秒内完成。
正与 = 负或 正或 = 负与 正与非 = 负或非
正或非 = 负与非
正逻辑 (与门)
AB Y
00
0
01
0
10
0
11 1
高电平VH用逻辑 1表示,低电平 VL用逻辑0表示
负逻辑 (或门)
AB Y
11
1
10
1
01
1
00
0
高电平VH用逻辑 0表示,低电平 VL用逻辑1表示
2.3.3 三极管反相器
当输入为逻辑0时:
0 11
0V 3V 2.3V 3V 0V 2.3V
0V左右为0
1 01 1 11
3V 3V 2.3V
Y=A+B
≥1 Y=A+B
(d)
二极管构成的门电路的缺点 •电平有偏移 •带负载能力差
只用于IC内部电路
正逻辑与负逻辑
电平关系
AB Y VL VL VL VL VH VL VH VL VL VH VH VH
4、动态开关特性
从二极管已知, PN结存在电容效应。 在饱和与截止两个状 态之间转换时,iC的 变化将滞后于VI,则 VO的变化也滞后于VI。
2.3.1二极管与门
设VCC = 5V 加到A,B的 VIH=3V
VIL=0V 二极管导通时 VDF=0.7V
A
& Y=A·B
B
A BY 0V 0V 0.7V 0V 3V 0.7V 3V 0V 0.7V 3V 3V 3.7V