复数范围内实系数一元二次方程(19题)答案知识讲解

合集下载

复数集内一元二次方程的解法

复数集内一元二次方程的解法

复数集内一元二次方程的解法 实系数一元二次方程复系数一元二次方程 ∆的作用 可以用来判断根的情况不能用来判断根的情况 求根公式 适用适用 韦达定理适用 适用 一、实系数一元二次方程只有实系数一元n 次方程的虚根才成对共轭,1.判定下列方程根的情况,并解方程(1)022=++x x ,0722=++x x ,0452=+-x x(2)0122=+-x x 答:471i x ±=,05322=+-x x ,09222=+-x x 2.若关于x 的方程x 2+5x+m=0的两个虚数根x 1,x 2满足|x 1-x 2|=3,求实数m 的值.|x 1-x 2|=3,|(x 1-x 2)2|=9;则|(x 1+x 2)2-4x 1x 2|=9,即|25-4m|=9.3.已知实系数一元二次方程2x 2+rx +s=0的一个根为2i-3,求r ,s 的值.二、复系数一元二次方程虚根不一定成对,成对也不一定共轭。

1.求方程x 2-2ix-5=0的解.(当b 2-4ac ≥0时,方程的解都是实数吗?)求方程x 2-2ix-7=0的解解方程:x 2-4ix+5=0;解方程:0)2(25222=--++-i x x x x 答:i x x 5351,221-==(应用求根公式,不能用复数相等) 06)32(2=+++i x i x 答:i x x 3,221-=-=(b 2-4ac 为虚数,)2.解方程:x 2+(1+i )x +5i=0.251122=+++x x x x 答:4151,13,21i x x ±== 231122=+-+x x x x 答:4151,13,21i x x ±=-= 三、方程有实根或纯虚根的问题1.方程x 2+(m+2i )x+2+mi=0至少有一实根,求实数m 的值和这方程的解.2.已知方程x 2+mx+1+2i=0(m ∈C )有实根,求|m|的最小值.解方程关于x 的方程03)12(2=-+--i m x i x 有实数解,则实数m 满足的条件是( C )A .41-≥mB .41-≤mC .121=mD .121-=m R k ∈,方程04)3(2=++++k x i k x 一定有实根的充要条件是( D )A .4≥kB . 522-≤k 或522+≥kC .23±=kD .4-=k一元二次方程缺少常数项,必有零根(一个特殊的实根)设βα与是实系数一元二次方程0m x 2=++x 两个虚根,且3=-βα,求m 。

3实系数一元二次方程在复数范围内的解集同步练习

3实系数一元二次方程在复数范围内的解集同步练习

实系数一元二次方程在复数范围内的解集同步练习1.在复数集中解下列方程:(x+1)(x+3)+2=0.2.在复数集中解下列方程:4x²-5ax+a2=0(a∈R).3.已知实系数一元二次方程x²+x+p=0有两个虚根ɑ、β,且|ɑ−β|=√3.(1)求ɑ、β在复平面上对应的两个向量之间的夹角.(2)求实数p的值.4.已知2+i是实系数四次方程x4-2x3+2x²-10x+25=0的一个根,求此方程的其他根.5.设2-3i是实系数二次方程x²+ax+b=0的一个根,求系数a、b.6.已知关于x的方程x²-(2a+1)x+a+2=0(a∈R)有虚根,且虚根的立方是实数,求a的值,并解此方程.7.已知关于x的方程x2+(k+2i)x+2+ki=0有实根,求这个实根以及实数k的值.参考答案1.x=-2±i2..3.(1)120°【解析】: 设α=α+bi(a,b∈R),则β=a−bi,|α−β|=|2bi|=|2b|=,又因为α+β=−1,则α=,所以,因此;又因为,利用复数相减的三角形法则可得α、β之间的夹角为120°(2)p=14.方程的另三个根为2−i,【解析】: 原方程可化为(x²-4x+5)(x²+2x+5)=0,分别解方程x²-4x +5=0和x²+2x+5 =0即可5.方程另一根为2+3i,-a=(2-3i)+(2+3i),b=(2-3i)(2+3i),得α=-4,b=136.设方程的虚根为x=m+ni(m,n∈R且n≠0),由虚根的立方是实数可得,又解得或α=−1,检验△<0,当时,方程两根为;当α=−1时,方程两根为7.设方程的实根为x0,则x02+(k+2i)x0+2+ki=0.即(x02+kx0+2)+(2x0+k)i=0.∴∴x02=2,x0=±.∴或【解析】: 方程有实根,可先设出实根x0,再代入方程利用复数相等的定义求解.。

一元二次方程(全)知识点习题及答案

一元二次方程(全)知识点习题及答案

一元二次方程复习一)一元二次方程的定义)0a (0c bx ax 2≠=++是一元二次方程的一般式,只含有一个末知数、且末知数的最高次数是2的方程,叫做一元二次方程。

0ax 0c ax 0bx ax 222==+=+;;这三个方程都是一元二次方程。

求根公式为()0ac 4b a2ac 4b b x 22≥--±-=二))0a (0c bx ax 2≠=++。

a 是二次项系数;b 是一次项系数;c 是常数项,注意的是系数连同符号的概念。

这些系数与一元次方程的根之间有什么样的关系呢? 1、ac 4b 2-∆=当Δ>0时方程有2个不相等的实数根; 2、当Δ=0时方程有两个相等的实数根; 3、当Δ< 0时方程无实数根.4、当Δ≥0时方程有两个实数根(方程有实数根);5、ac<0时方程必有解,且有两个不相等的实数根;6、c=0,即缺常数项时,方程有2个不相等的实数根,且有一个根是0.另一个根为ab -7、当a 、b 、c 是有理数,且方程中的Δ是一个完全平方式时,这时的一元二次方程有有理数实数根。

8若1x ,2x 是一元二次方程)0a (0c bx ax 2≠=++的两个实数根, 即① a b x x 21-=+ acx x 21=∙(注意在使用根系关系式求待定的系数时必须满足 Δ≥0这个条件,否则解题就会出错。

)例:已知关于X 的方程()0m x 2m 2x 22=+--,问:是否存在实数m ,使方程的两个实数根的平方和等于56,若存在,求出m 的值,若不存在,请说明理由。

②一元二次方程)0a (0c bx ax 2≠=++可变形为()()0x x x x a 21=++的形式。

可以用求根公式法分解二次三项式。

9、以两个数x 1 x 2为根的一元二次方程(二次项系数为1)是:x 2-(x 1+ x 2)+ x 1 x 2=0 10几种常见的关于21x ,x 的对称式的恒等变形 ①()212212221x x 2x x x x -+=+②()()()()[]2122121222121213231x x 3x x x xx x x x x x x x -++=+-+=+③()2121221221x x x x x x x x +⋅=⋅+⋅④()()()2212121a x x a x x a x a x +++⋅=++⑤212121x x x x x 1x 1⋅+=+ ⑥()()22121221222122212221x x x x 2x x x x x x x 1x 1⋅-+=⋅+=+⑦()()2122122121x x 4x x x x x x -+=-=-三)例题1如果方程x 2-3x+c=0有一个根为1,求另一个根及常数项的值。

复数范围内解一元二次方程

复数范围内解一元二次方程

复数范围内解一元二次方程解一元二次方程是高中数学中的基本知识,我们首先回顾一下一元二次方程的一般形式:ax^2 + bx + c = 0其中a、b、c为已知常数,x为未知数。

现在我们要求解的是一元二次方程在复数范围内的解。

在实数范围内,一元二次方程的解可以通过判别式来确定:Δ = b^2 - 4ac根据判别式的值,可以得到三种情况:1.如果Δ>0,则方程有两个不相等的实数解。

2.如果Δ=0,则方程有两个相等的实数解。

3.如果Δ<0,则方程没有实数解。

然而,在复数范围内,一元二次方程的解是可以存在的。

我们来详细讨论一下复数范围内一元二次方程的解的情况。

首先,我们假设方程有解x = p + qi (p和q为实数,i是虚数单位,i^2 = -1)。

将x代入方程,可以得到:a(p + qi)^2 + b(p + qi) + c = 0ap^2 + 2apiq - aq^2 + bp + bqi + c = 0令实部和虚部分别相等,我们可以得到两个方程:ap^2 - aq^2 + bp + c = 0 (1)2apiq + bqi = 0 (2)根据(2)式可得。

如果aq = 0,则可以得到两种情况:1. 如果a = 0,则方程退化为一元一次方程bx + c = 0,解为x = -c/b。

2. 如果q = 0,则代入(1)式可以得到ap^2 + bp + c = 0,这是一个一元二次方程,可以像在实数范围内解一样求解。

如果bp + c = 0,则(1)式可以化简为ap^2 - aq^2 = 0,即p^2 = q^2、这也是一个一元二次方程,可以类似地求解。

现在我们考虑aq≠0,进一步讨论两种可能的情况:1. 如果ap^2 - aq^2 + bp + c = 0,则可以将这个方程视为一个关于p的一元二次方程,可以求得p的值。

然后,将p代入到(2)式,可以解得q的值。

2. 如果a = 0,则方程退化为一元一次方程bp + c = 0,解为p = -c/b。

复数范围内解方程

复数范围内解方程

复数范围内解方程在数学中,方程是一个数学等式,其中包含一个或多个未知数,并要求找到使等式成立的解。

解方程是数学中的一个重要问题,它在各个领域都有广泛的应用。

本文将以复数范围内解方程为主题,介绍解方程的方法和应用。

一、复数的定义和性质复数是由实数和虚数构成的数,可以表示为a + bi 的形式,其中a 和 b 是实数,i 是虚数单位,满足 i^2 = -1。

复数具有加法、减法、乘法和除法等运算,同时也具有共轭和模的性质。

二、一元一次方程的解一元一次方程是指只含有一个未知数的一次方程,形如 ax + b = 0。

解一元一次方程的方法很简单,我们可以通过将方程两边同时加上相反数 b/a,得到 x = -b/a。

这个解是一个实数解,如果方程无解,则说明该方程在实数范围内无解。

三、一元二次方程的解一元二次方程是指含有一个未知数的二次方程,形如 ax^2 + bx + c = 0。

解一元二次方程的方法有多种,其中一种常用的方法是使用求根公式,即 x = (-b ± √(b^2 - 4ac)) / (2a)。

这个解可以是实数,也可以是复数。

当判别式 D = b^2 - 4ac 大于零时,方程有两个不相等的实数根;当D 等于零时,方程有两个相等的实数根;当D 小于零时,方程有两个共轭复数根。

四、多元方程的解多元方程是指含有多个未知数的方程。

解多元方程的方法比较复杂,常常需要利用代数的知识和技巧来求解。

一般来说,我们可以通过消元法、代入法、加减消去法等方法来求解多元方程组。

五、应用举例解方程在实际生活和科学研究中有广泛的应用。

以下是一些例子:1. 金融领域:利润和成本之间的关系可以表示为一个方程,通过解方程可以计算出最大利润或最小成本的条件。

2. 物理学:牛顿第二定律 F = ma 可以表示为一个方程,通过解方程可以计算出物体的加速度。

3. 工程学:电路中的电压和电流之间的关系可以表示为一个方程,通过解方程可以计算出电路中各个元件的电流和电压。

48、复数中的方程问题

48、复数中的方程问题

三、复数中的方程问题【教学目标】1.掌握判别式小于零的实系数一元二次方程的复数根的求法.2.掌握一元二次方程根与系数的关系并能用于解决一些方程根的问题. 3.在解决问题的过程中体会转化与分类讨论的数学思想的应用.【教学重点】一元二次方程的根的讨论.【教学难点】含字母系数的方程根的情况的讨论,13=x 的根的应用.【教学过程】一.知识整理1.实系数一元二次方程的根的情况设方程02=++c bx ax (a ,b ,R c ∈且0≠a ),判别式△ac b 42-=. (1)当△0>时,方程有两个不相等的实数根:aac b b x 2421-+-=,aac b b x 2422---=.(2)当△0=时,方程有两个相等的实数根: ab x x 221-==.(3)当△0<时,方程有两个共轭虚根: ai b ac b x 2421-+-=,ai b ac b x 2422---=.2.代数式22b a +(a ,R b ∈)的因式分解利用z z z ⋅=2||,有))((22bi a bi a b a -+++3.复系数一元二次方程根与系数的关系设方程02=++c bx ax (a ,b ,C c ∈且0≠a )的两个根为1x ,2x ,则⎪⎪⎩⎪⎪⎨⎧=⋅-=+a c x x ab x x 2121.4.方程13=x 的根方程13=x 有三个根,11=x ,i x 23212+-=,i x 23213--=.若记i 2321+-=ω,则ω有性质:13=ω(13=n ω,Z n ∈),2ωω=,012=++ωω.二.例题解析【属性】高三,复数,复数集中的因式分解,解答题,易,运算【题目】在复数范围内分解因式. (1)44b a -; (2)3212-+-x x .【解答】解:(1)))()()(())((222244bi a bi a b a b a b a b a b a -+-+=+-=-. (2)3212-+-x x ])5()1[(21)62(21222+--=+--=x x x)51)(51(21i x i x --+--=.【属性】高三,复数,复数中的方程问题,解答题,易,运算【题目】(1)若i 23+是实系数方程022=++c bx x 的根,求实数b 与c ;(2)若i 23+是方程0422=-++i c bx x 的根,求实数b 与c .【解答】解;(1)由题意,i 23-是方程的另一根,则⎪⎪⎩⎪⎪⎨⎧=-+-=-++2)23)(23(2)23()23(c i i b i i ,所以12-=b ,26=c .(2)将i 23+代入方程得04)23()23(22=-++++i c i b i ,整理得,0)220()310(=++++i b c b ,所以⎩⎨⎧=+=++02200310b c b ,解得⎩⎨⎧=-=2010c b .【属性】高三,复数,复数中的方程问题,解答题,中,运算【题目】(1)已知012=++x x ,求504030x x x ++的值. (2)若012=+-a a ,求17171aa +的值.【解答】解:(1)由012=++x x ,得i x 2321±-=,所以13=x ,所以504030x x x ++012=++=x x .(2)由012=+-a a ,得i a 2321±=,当i a 2321-=时,则ω-=a (i 2321+-=ω),13=a ,2171717)(ωωω-=-=-=a ,ωω-=-=21711a,所以1)(121717=+-=+ωωaa .同理可得,当i a 2321+=时,也有111717=+aa.【属性】高三,复数,复数中的方程问题,证明题,中,逻辑思维【题目】证明:在复数范围内,方程ii z i z i z +-=+--+255)1()1(||2(i 为虚数单位)无解.【解答】证明:原方程化简为i z i z i z 31)1()1(||2-=+--+,设yi x z +=(x ,R y ∈),代入上述方程,得i yi xi y x 312222-=--+,所以⎩⎨⎧=+=+322122y x y x ,消去y ,整理得051282=+-x x ,此方程的判断式△016584)12(2<-=⨯⨯--=,故x 无实数解.所以,原方程在复数范围内无解.【属性】高三,复数,复数中的方程问题,解答题,难,分析问题解决问题【题目】已知关于x 的二次方程02)12(2=+++-a x a x 有虚根,且此根的三次方是实数,求实数a 的值.【解答】解法一:设方程的虚根为ni m +(m ,R n ∈且0≠n ),由3)(ni m +为实数,得m n 3±=,所以方程的虚根为)31(i m ±,由根与系数的关系,得⎩⎨⎧+=+-=24)12(22a m a m ,消去m ,得 21442+=++a a a ,01342=-+a a ,解得1-=a 或41=a .解法二:设方程的虚根为1z ,则另一虚根为12z z =, 因为R z ∈31,所以()32313131z z z z ===,03231=-z z ,0))((22212121=++-z z z z z z ,因为21z z ≠,所以0222121=++z z z z ,即21221)(z z z z =+,由根与系数的关系,2)12(2+=+a a ,01342=-+a a ,解得1-=a 或41=a .三.课堂反馈【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】若i 23+是方程022=++c bx x (b ,R c ∈)的一个根,则=c _________.【解答】答案:26【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】已知ai +2,i b +是实系数一元二次方程02=++q px x 的两根,则=p _________,=q ____________.【解答】答案:4-,5【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】若ω是方程13=x 的一个虚根,则=-++-)1)(1(22ωωωω___________.【解答】答案:4【属性】高三,复数,复数中的方程问题,填空题,中,运算【题目】在复数范围内解方程:ii i z z z +-=++23)(||2(i 为虚数单位).【解答】解:原方程化简为i i z z z -=++1)(||2,设yi x z +=(x ,R y ∈),代入上述方程,得 i xi y x -=++1222,所以⎩⎨⎧-==+12122x y x ,解得⎪⎪⎩⎪⎪⎨⎧±=-=iy x 2321, 所以,原方程的解为i z 2321+-=或i z 2321--=.四.课堂小结1.实系数一元二次方程,在判别式小于零时,有一对共轭虚根(虚根成对).利用这一点,在已知一根的情况下,就可以知道另一根,再结合根与系数的关系,就使问题得到简化.2.由于实系数一元二次方程在复数范围必有两根,因此在复数范围内二次多项式的因式分解一定可以分到一次式的乘积.3.如果方程的系数含有虚数,则不能用△来判断方程有无实根,共轭虚根定理也不成立,但根与虚数的关系仍成立.这类题如果给出方程有实根的条件,可用复数相等的充要条件转化为实数方程组求解.所以说,复数问题实数化总是解决复数问题的基本策略.五.课后作业【属性】高三,复数,复数集中的因式分解,填空题,易,运算【题目】在复数范围内分解因式:(1)=++1622x x ____________________.(2)=+-1cos 22θx x _________________________.【解答】答案:(1))151)(151(i x i x -+++(2))sin cos )(sin cos (θθθθi x i x +---【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】设一元二次方程0122=++-b ax x (a ,R b ∈)的一个虚根是i -1,则实数=a __________,=b _________.【解答】答案:4,3【属性】高三,复数,复数开平方问题,填空题,易,运算【题目】复数i 43-的平方根为______________.【解答】答案:i -2,i +-2【属性】高三,复数,复数中的方程问题,解答题,易,运算【题目】已知方程04)4(2=-+++ai x i x (R a ∈)有实根b ,且bi a z +=,求z .【解答】解:i z 22--=.【属性】高三,复数,复数中的方程问题,选择题,中,运算【题目】方程i z z 31||+=+中z 的解是( )A .i 2321+B .i 2321+C .i 34+-D .i 34-【解答】答案:C【属性】高三,复数,复数中的方程问题,解答题,中,逻辑思维【题目】已知实数p 满足不等式0212<++x x ,试判断方程05222=-+-pz z 有无实数根,并给出证明.【解答】解;由已知212-<<-p ,所以4412<<p,所以方程05222=-+-pz z 的判别式△0)4(4)5(4422<-=--=p p ,所以原方程无褛根.【属性】高三,复数,复数中的方程问题,解答题,中,运算【题目】在复数范围内解方程x x x 23623-=+.【解答】解:把原方程化为523123--=+x x x ⇒)53)(1()1)(1(2-+=+-+x x x x x ,⇒0)64)(1(2=+-+x x x ,解得11-=x ,i x 222+=,i x 223-=.【属性】高三,复数,复数中的方程问题,解答题,难,分析问题解决问题【题目】已知关于x 的方程02=++m x x (R m ∈)的两根为α、β.(1)若3||=-βα,求m 的值; (2)若3||||=+βα,求m 的值.【解答】解:(1)因为3||=-βα,所以9||2=-βα,所以9|4)(|2=-+αββα,9|41|=-m ,解得25=m 或2-=m .(2)①当α、β为实数,即041≥-m ,41≤m 时,9|)||(|2=+βα⇒9||222=++αββα⇒9||22)(2=+-+αβαββα⇒9||221=+-m m ,当410≤≤m 时无解;当0<m 时,2-=m .②当α、β为一对共轭虚数时,即41>m 时,αβ=,由3||||=+βα,可知23||=α,则49||2==⋅=αααm .综上,2-=m 或49=m .【题目资源】【属性】高三,复数,复数集中的因式分解,解答题,易,运算【题目】1.在复数范围内分解因式 (1)164-x ; (2)522+-x x ; (3)83+x .【解答】解:(1))2)(2)(2)(2()4)(4(16224i x i x x x x x x -+-+=+-=-. (2))21)(21(2)1(52222i x i x x x x -+++=++=+-.(3))31)(31)(2()42)(2(282333i x i x x x x x x x --+-+=+-+=+=+.2.若实系数一元二次方程02=++b ax x 有一个虚根为i 2,则=a _______,=b ______.【解答】答案:0,4【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】关于复数z 的方程i zi z 212||2+=-的解集是________________.【解答】答案:}21,1{i ---【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】方程022=-+kx x 有一个根是i +1,则它的另一个根是_________.【解答】答案:i +-1【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】a 为实数,方程01822=++-a x x 的一个虚根的模是5,则=a __________.【解答】答案:9【属性】高三,复数,复数中的方程问题,选择题,易,运算【题目】方程0||2=+z z 的复数解有( )A .1个B .2个C .3个D .无数个【解答】答案:C【属性】高三,复数,复数中的方程问题,解答题,易,运算【题目】已知方程03=++b ax x (a ,R b ∈)有一个根为1.(1)求a ,b 满足的关系式;(2)若此方程的另两个根为虚数,求实数a 的取值范围.【解答】解:(1)由题意,01=++b a ,即1-=+b a .(2)由(1),1--=a b ,故方程变为013=--+a ax x ,即0)1()1(3=-+-x a x ,0)1()1)(1(2=-+++-x a x x x ,0)1)(1(2=+++-a x x x ,所以方程的另两根就是方程012=+++a x x 的两根,故△0<, 即0)1(41<+-a ,43->a .所以,实数a 的取值范围是⎪⎭⎫⎝⎛∞+-,43.【属性】高三,复数,复数中的方程问题,解答题,易,运算【题目】已知方程042=+-k x x 有一个虚数根为i 21-,求k 的值.【解答】解:由042=+-k x x ,得x x k 42+-=,将i x 21-=代入,得i k 47-=.【属性】高三,复数,复数中的方程问题,填空题,中,运算【题目】设α、β是方程072=+-m x x 的两个虚根,且8||||=+βα,则实数=m ________.【解答】答案:16由题意,α、β是共轭虚数,所以8||2=α,4||=α,于是16||2==αβα,即16=m .【属性】高三,复数,复数中的方程问题,解答题,中,运算【题目】已知关于x 的方程0)1(2)21(2=--++i a x i ax 有实根,求实数a 的值.【解答】解:设方程实根为0x ,则0)1(2)21(020=--++i a x i ax ,即0)22()2(0020=++-+i a x a x ax,所以⎩⎨⎧=+=-+020020a x a x ax ,所以a x -=0,所以 033=-a a ,解得0=a 或3=a 或3-=a .【属性】高三,复数,复数中的方程问题,解答题,中,逻辑思维【题目】若虚数z 满足83=z ,求322++z z 的值.【解答】解:由已知,0)42)(2(282333=++-=-=-z z z z z ,因z 为虚数,故0422=++z z ,所以1322-=++z z .【属性】高三,复数,复数中的方程问题,解答题,中,逻辑思维【题目】在复数范围内解关于x 的方程06||52=+-x x .【解答】解:若x 为实数,则原方程可化为0)3|)(|2|(|=--x x ,解得2±=x ,3±=x . 若x 为虚数,设bi a x +=(a ,R b ∈且0≠b ),原方程化为065)(222=++-+b a bi a ,所以⎪⎩⎪⎨⎧==++--020652222ab b a b a ,因为0≠b .故0=a ,06||52=-+b b ,0)1|)(|6|(|=-+b b ,1±=b .所以,原方程的解为2,2-,3,3-,i ,i -.【属性】高三,复数,复数中的方程问题,解答题,中,运算【题目】解关于z 的方程iz z 2110||-=-.【解答】解:原方程可化为i z z 42||+=-,设bi a z +=(a ,R b ∈),则原方程可化为i bi a ba 42)(22+=--+⇒⎪⎩⎪⎨⎧==-+4222b a b a ,解得3=a ,4=b . 所以,原方程的解i z 43+=.【属性】高三,复数,复数中的方程问题,解答题,中,运算【题目】方程0)2()(tan 2=+-+-i x i x θ中,θ为锐角,若实数a 是方程的一个解,求θ与a 的值.【解答】解:由题意,0)2()(tan 2=+-+-i a i a θ,0)1(2tan 2=+--⋅-i a a a θ, 所以⎩⎨⎧=+=-⋅-0102tan 2a a a θ,解得1-=a ,1tan =θ.所以,4πθ=,1-=a .【属性】高三,复数,复数中的方程问题,解答题,中,逻辑思维【题目】已知复数w 满足i w w )23(4-=-,|2|5-+=w wz ,求一个以z 为根的实系数一元二次方程.【解答】解:由i w w )23(4-=-,所以i i w 34)21(+=+,i w -=2,所以i i iz +=-+-=3||25,故另一根为i -3,设所作方程为02=+-q px x ,则6)3()3(=-++=i i p ,10)3)(3(=-+=i i q ,所以所求方程为01062=+-x x .【属性】高三,复数,复数中的方程问题,解答题,难,逻辑思维【题目】关于x 的实系数方程03222=-++a a ax x 至少有一个模为1的根,求实数a 的值.【解答】解:①当根x 为实数时,0)(8922≥--a a a ,082≥+a a ,8-≤a 或0≥a .由1||=x ⇒1±=x .当1=x 时,0222=++a a ,a 无实数解;当1-=x 时,0242=+-a a ,解得22±=a .②当根x 为虚数时,08<<-a ,1||=x ⇒1=⋅x x ,即122=-a a ,022=--a a ,解得1-=a 或2=a (舍去). 综上,1-=a ,或22-=a 或22+=a .【属性】高三,复数,复数中的方程问题,解答题,难,逻辑思维【题目】若C z ∈,关于x 的一元二次方程0342=++-i zx x 有实根,求复数z 的模的最小值.【解答】解:i x zx 342++=,当0=x 时,此等式不成立,故0≠x .所以,i xxx z 34++=,23825282534||222222=+⋅≥++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=xx xx x x x z所以,当2225xx =,5±=x 时,||z 取最小值23.【属性】高三,复数,复数中的方程问题,解答题,难,分析问题解决问题【题目】已知△ABC 顶点为直角坐标分别为)4,(a A ,),0(b B ,)0,(c C .若虚数aix +=2(0>a )是实系数一元二次方程052=+-cx x 的根,且A ∠是钝角,求b 的取值范围.【解答】解:由已知,虚数ai x -=2也是实系数一元二次方程052=+-cx x 的根,所以⎩⎨⎧=-+=-++5)2)(2()2()2(ai ai cai ai ,解得1=a ,4=c ,则A 、C 的坐标为)4,1(A ,())0,4C , 所以)4,1(--=b AB ,)4,3(-=AC ,因A ∠是钝角,故0413<-=⋅b AC AB ,又当AB ,AC 共线时,316=b .所以b 的取值范围是⎪⎭⎫⎝⎛∞+⎪⎭⎫⎝⎛,316316,413 .【属性】高三,复数,复数中的方程问题,解答题,难,逻辑思维【题目】已知关于x 的方程022=++a x x (R a ∈)有两个根α、β,求||||βα+的最小值.【解答】解:① 当△044≥-=a 即1≤a 时,α、β是实数,=+2|)||(|βα||222αββα++)|(|24||22)(2a a -+=+-+=αβαββα.当10≤≤a 时,2|)||(|βα+恒为4;当0<a 时,4|)||(|2>+βα. 即1≤a 时,||||βα+的最小值为2.② 当△044<-=a ,即1>a 时,α、β是一对共轭虚数,故αβαβα2||2||||==+22>=a .综上,||||βα+的最小值为2,取得最小值时a 的取值范围是]1,0[.【属性】高三,复数,复数中的方程问题,解答题,难,数学探究【题目】已知复数1z ,2z 满足条件2||1<z ,2||2<z ,是否存在非零实数m ,使得mz z 121=+和mz z 121=⋅同时成立?若存在,求出m 的取值范围;若不存在,说明理由.【解答】解:据题意,得⎪⎪⎩⎪⎪⎨⎧=⋅=+m z z m z z 112121,即⎪⎪⎩⎪⎪⎨⎧=⋅=+m z z m z z 112121,故1z ,2z 是方程0112=+-m x m x 的两个根.(1)当△0≥即41≤m 且0≠m 时,1z ,R z ∈2,记mx mx x f 11)(2+-=,则2||1<z ,2||2<z ⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧≠≤<<->>-04122120)2(0)2(m m m f f 且,解得43-<m .(2)当△0<,即41>m 时,1z 、2z 为一对共轭虚数,则mz z z 1||2121==,由2||1<z ,得41<m,所以41>m .综上,当43-<m 或41>m 时,mz z 121=+和mz z 121=⋅同时成立.。

复数的乘法与除法第2课时复数的除法及实系数一元二次方程在复数范围内的解集课件

复数的乘法与除法第2课时复数的除法及实系数一元二次方程在复数范围内的解集课件
答] 怎样理解和应用复数代数形式的除法法则?
提示:(1)复数代数形式的除法是复数代数形式的乘法的逆 运算.
(2)复数除法的运算法则不必死记,在实际运算时,只需把 商ac++dbii看作分数,分子、分母同乘以分母的共轭复数 c-di,把 分母变为实数,化简后,就可以得到运算结果.
知识点二 实系数一元二次方程
解析:本题考查复数的乘法与除法. 31+0ii=31+0ii3-3-ii=10+1030i=1+3i. ∴复数31+0ii对应的点的坐标为(1,3).
3.复数 z 满足(z-i)(2-i)=5,则 z=( D )
A.-2-2i
B.-2+2i
C.2-2i
D.2+2i
解析:由题意可得,z-i=2-5 i=2-52i+2+i i=2+i, 所以 z=2+2i.
于是 ω-u2=2(x+1)+1+2 x-3≥2 2x+1·1+2 x-3=1. 当且仅当 2(x+1)=1+2 x,即 x=0 时等号成立. ∴ω-u2 的最小值为 1,此时 z=±i.
该题涉及复数的基本概念和四则运算以及均值不等式等知识. 只要概念清楚,运算熟练,按常规思路顺其自然不难求解.注意: 解决后面的问题时,可以使用前面已经得到的结论.
[变式训练 3] 设 z2=8+6i,求 z3-16z-10z0.
解:z3-16z-10z0=z4-16zz2-100=z2-8z2-164
=6i2-z 164=-20z0=-z2·0z0
z
200 z =- |z|2
.
∵|z|2=|z2|=|8+6i|=10,
又由 z2=8+6i,得 z=±(3+i),∴ z =±(3-i),
类型三 复数运算的综合应用
[例 3] 设 z 是虚数,ω=z+1z是实数,且-1<ω<2. (1)求|z|的值及 z 的实部的取值范围; (2)设 u=11- +zz,求证:u 为纯虚数; (3)求 ω-u2 的最小值. [分析] (1)ω 是实数可得到哪些结论?(ω 的虚部为 0 或 ω= ω )(2)u 为纯虚数可得到哪些结论?(u 的实部为 0 且虚部不为 0, 或 u=- u )

复数范围内解一元二次方程

复数范围内解一元二次方程

复数范围内解一元二次方程实系数一元二次方程ax+bx+c=0在实数范围内的解的情况:ax+bx+c=a(x +x)+c=a[x+x+()]+c-=a(x+)+=0,即(x+)=。

设Δ=b-4ac(判别式),当Δ>0时,方程有两个不等的实数解:x=。

当Δ=0时,方程有两个相等的实数解:x=。

当Δ<0时,方程无实数解。

方程的根与系数的关系:x+x=-,xx=。

实系数一元二次方程ax+bx+c=0在复数范围内的解的情况:ax+bx+c=a(x+x)+c=a[x+x+()]+c-=a(x+)+=0,即(x+)=。

设Δ=b-4ac(判别式),当Δ>0时,方程有两个不等的实数根:x=。

当Δ=0时,方程有两个相等的实数根:x=。

当Δ<0时,方程有两个共轭虚数根:x=。

注意:实系数一元二次方程在复数范围内求解时,①由于求根公式仍可使用,故方程的根与系数的关系也仍成立;②若Δ<0,则意味着方程有一对共轭的虚数根。

二下面对两道例题进行解算。

例1:已知实系数一元二次方程2x+rx+s=0的一个根为-3+2i,求r,s的值。

解:由题设得方程另一根为-3-2i,由韦达定理得s=2(-3+2i)(-3-2i)=2 6,r=-2(-3+2i-3-2i)=12。

例2:若关于x的方程x+5x+m=0的两个虚数根x,x满足|x-x|=3 ,求实数m的值。

解:方法一:方程x+5x+m=0有两个虚根,则有Δ=25-4m<0,m>。

又|x-x|=|-|==3,4m-25=9,m=。

方法二:|x-x|=3,|x-x|=9,即|(x-x)|=9,|(x+x)-4xx|=9。

又x+x=-5,xx=m,|25-4m|=9。

又25-4m<0,4m-25=9,m=。

三上面我们解决了实系数一元二次方程求解问题,那么对于至少有一个系数是虚数的一元二次方程又应该如何求解呢?例1:求方程x-2ix-5=0的解。

解:配方,得(x-i)-4=0,即(x-i)=4,x=2+i,x=-2+i。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数范围内实系数一元二次方程(19题)(答案)
1
、若实系数一元二次方程的一个根是13+,则这个方程可以是 228039
x x -+= . 2、复数集内分解221x x ++=
2(x x
3、已知1x 与2x 是方程: 20(0)ax bx c a ++=≠在复数集中的两根,则下
列等式成立的是( C )
(A) 1x 与2x 共轭 (B) 240b ac ∆=-≥ (C)1212,b c x x x x a a
+=-=, (D)12||x x -=212214)(x x x x -+ 4、判断下列命题的真假,并说明理由;
(1)在复数范围内,方程20(,,ax bx c a b c ++=∈R ,且0)a ≠总
有两个根.( √ )
(2)若12i +是方程20x px q ++=的一个根,则这个方程的另
一个根是12i -.( ⨯ )
(3)若方程20x px q ++=有两个共轭虚根,则p 、q 均为实数.( √)
5、已知复数z ,解方程3i 13i z z -⋅=+.
解:设i()z x y x y =+∈R ,,则方程可化为(3)(3)i 13i x y y x -+-=+.
由复数相等,有3133x y y x -=⎧⎨-=⎩,,解得543.4
x y ⎧=-⎪⎪⎨⎪=-⎪⎩,. ∴53i 44z =--. 6、适合方程20z z i --=的复数z
12
i
7、适合方程2560z z -+=的复数z ;
若z R ∈,则2
5602,32,3z z z z z z -+=⇒==⇒=±=±
若z 为虚数, 设(,,0)z a bi a b R b =+∈≠
,则2()60a bi +-=
222226026020a b a b abi ab ⎧⎪--=-+-=⇒⎨=⎪⎩
2222606056010a b b b b b a ⎧⎪--=⇒⇒--=⇒+-=⇒=±⎨=⎪⎩
所以,方程的解为2,2,3,3,,i i ---。

8、解方程210x ix i -+-=
(1)x R ∈ (2)x C ∈
解:(1)1x = (2)11x orx i ==-
9、已知复数Z 满足84Z Z i +=-,且Z 是关于x 的实系数一元二次方程2250x mx ++=的一个根,求m 的值。

34Z i =+ 6m =-
10、如果虚数z 满足38z =,那么3222z z z +++的值是_____. 分析:若设i(0)z a b b =+≠,代入求值,过程复杂,不易求解,但运用整体代入的思维策略则显得简洁明快.
解:∵328(2)(24)0z z z z =∴-++=,
. ∵z 是虚数,∴z ≠2.
∴2240z z ++=,即2222z z ++=-.
故3222826z z z +++=-=.
说明:该题也可通过设z=x+yi(x 、y ∈R)求解,但过程繁复.
可见,从整体出发利用条件,解题思路流畅,运算量小,
11、已知关于x 的方程2(4)30()x i x pi p ++++=∈R 有实根,则p 的值
是 .p =1或3
12、已知关于x 的方程2(4)30()x i x pi p ++++=∈R 有纯虚根,则p 的
值是 .2±
13、关于x 的方程2(4)30x i x pi ++++=无实根,求实数p 的取值范围; (,1)(1,3)(3,)-∞+∞U U
14、实系数方程230x mx -+=的两虚根为,αβ,则αβ+=
15、已知关于x 的方程230()x kx k ++=∈R 有两个虚根α和β,且
||αβ-=k 的值是 2± .
16、已知关于x 的方程250x x a ++=的两根12,x x ,且12||3x x -=,则实
数a 的值是 1742
or .
17、已知关于x 的方程2220()x kx k k k ++-=∈R 有一个模为1的虚根,
则k 的值是 .1-
18、已知关于x 的方程:22230x ax a a ++-=至少有一个模为1的根α,
求实数a 的值.
【解】
如果α∈R ,则0∆≥,∴(,8][0,)a ∈-∞-+∞U ,又∵∈R ,∴α=1或-1 当α=1时,代入得:a 2+2a+2=0不可能.
当α= -1时,代入得:a 2-4a+2=0∴2a =如果α是虚数,则0∆<,∴(8,0)a ∈-,并且|α|=1, 则α也是此方程的根,于是:αα=2
2a a -
但是αα=|α|2
=1,∴
2a a -=1,解得:a=2(舍去)或者a=-1 所以,所求的2a =,或者-1
19、已知m C ∈,关于x 的方程2340x mx i +++=有实数根,求复数m 的模的最小值。

解法一:设m a bi(a,b R )=+∈,设方程的实根为t ,代入方程得: 222
3034034040
t at t (a bi )t i t at (bt )i bt ⎧++=++++=⇒++++=⇒⎨+=⎩ 22222125061644
a (t )t t m a
b t m t b t ⎧=-+⎪⎪≠∴⇒=+=+
+≥∴≥⎨⎪=-⎪⎩
Q 当且仅当t =时,取等号。

即4min m =
解法二:设方程的实根为t ,代入方程得:
2343400t tm i t ,m t i t t +++=≠∴=---Q 2222223425616164m (t )()t ,m m
t t
⇒=--+=++≥∴≥∴≥ 当且仅当t =时,取等号。

即4min m =
点评:本例将m 转化为关于t 的函数,利用函数的性质从而求出m 的模 的最小值。

复数范围内实系数一元二次方程(19题)
1、若实系数一元二次方程的一个根是
13+,则这个方程可以是 .
2、复数集内分解221x x ++=
3、已知1x 与2x 是方程: 20(0)ax bx c a ++=≠在复数集中的两根,则下
列等式成立的是
(A) 1x 与2x 共轭 (B) 240b ac ∆=-≥ (C)1212,b c x x x x a a
+=-=, (D)12||x x -=212214)(x x x x -+
4、判断下列命题的真假,并说明理由;
(1)在复数范围内,方程20(,,ax bx c a b c ++=∈R ,且0)a ≠总 有两个根.( )
(2)若12i +是方程20x px q ++=的一个根,则这个方程的另 一个根是12i -.( )
(3)若方程20x px q ++=有两个共轭虚根,则p 、q 均为实数.( )
5、已知复数z ,解方程3i 13i z z -⋅=+.
6、适合方程20z z i --=的复数z ;
7、适合方程2560z z -+=的复数z ;
8、解方程210x ix i -+-=
(1)x R ∈ (2)x C ∈
9、已知复数Z 满足84Z Z i +=-,且Z 是关于x 的实系数一元二次方程2250x mx ++=的一个根,求m 的值。

10、如果虚数z 满足38z =,那么3222z z z +++的值是_____.
11、已知关于x 的方程2(4)30()x i x pi p ++++=∈R 有实根,则p 的值
是 .
12、已知关于x 的方程2(4)30()x i x pi p ++++=∈R 有纯虚根,则p 的
值是 .
13、关于x 的方程2(4)30x i x pi ++++=无实根,求实数p 的取值范围;
14、实系数方程230x mx -+=的两虚根为,αβ,则αβ+= ;
15、已知关于x 的方程230()x kx k ++=∈R 有两个虚根α和β,且
||αβ-=k 的值是 .
16、已知关于x 的方程250x x a ++=的两根12,x x ,且12||3x x -=,则实
数a 的值是 .
17、已知关于x 的方程2220()x kx k k k ++-=∈R 有一个模为1的虚根,则k 的值是 .
18、已知关于x 的方程:22230x ax a a ++-=至少有一个模为1的根α,
求实数a 的值.
19、已知m C ∈,关于x 的方程2340x mx i +++=有实数根,求复数m 的模的最小值。

相关文档
最新文档