湖南省永州市2018年中考数学试题和答案解析(word版)
永州中考数学试卷真题2018
永州中考数学试卷真题20182018年永州市中考数学试卷真题回顾一、选择题1. 已知集合 A = {1, 2, 3, 4, 5},若集合 B = {3, 4, 5, 6, 7},则 A ∪ B = ________。
A. {1, 2, 3, 4, 5, 6, 7}B. {1, 2, 3, 4, 5}C. {3, 4, 5}D. {1, 2, 6, 7}2. 若 a > 1,b > 1 且 log2 a = log4 b,则 a 的值是 ________。
A. 1B. 2C. 4D. 83. 如下图所示,O 为直角三角形 ABC 的一个锐角,且tanO = 1/√3,则三角形 ABC 的邻边比为 ________。
[三角形图]A. 1:2:√3B. √3:1:2C. 2:√3:1D. √3:2:1二、填空题1. 将比例 3:5 扩大2倍,得到的比例是 ________。
2. 若 a:b = 1:3,b:c = 2:5,则 a:c = ________。
3. 已知一扇形的半径为 10 cm,圆心角为 60°,则该扇形的面积是________ 平方厘米。
三、解答题1. 如图,半径为 5 cm 的半圆 AOB,OD ⊥ AB,点 D 到 AO 的距离为 h cm。
若已知 h = 3 cm,则 AO 的长度是多少厘米?(取π = 3.14)[半圆AOD图]2. 在平面纸上,若相同大小的正方形铺满了一部分,如图所示。
其中 1/4 的正方形是红色的,1/3 是蓝色的,1/6 是黄色的。
其他未铺满的部分为白色。
求这个正方形纸上的红色、蓝色和黄色的部分分别占整个正方形的几分之几。
(结果用最简分数表示)[彩色正方形铺满图]四、解析与答案1. A ∪ B 是指将集合 A 和集合 B 中的元素合并在一起,去除重复元素后的集合。
根据题意,集合 A = {1, 2, 3, 4, 5},集合 B = {3, 4, 5, 6, 7},则合并后的集合 A ∪ B = {1, 2, 3, 4, 5, 6, 7}。
2018年湖南省永州市中考数学试卷-答案
湖南省永州市2018年初中学业水平考试数学答案解析1.【答案】A【解析】解: 2 018-的相反数是2 018.故选:A.【考点】相反数的定义.2.【答案】C【解析】解:A.是轴对称图形,故此选项错误;B.是轴对称图形,故此选项错误;C.不是轴对称图形,故此选项正确;D.是轴对称图形,故此选项错误;故选:C.【考点】轴对称图形的概念.3.【答案】C【解析】解:根据题意得:30x -≠,解得:3x ≠.故选:C.【考点】函数自变量的范围.4.【答案】B【解析】解:由图可得,几何体的主视图是:故选:B.【考点】三视图.5.【答案】C【解析】解:A.2m 与32m 不是同类项,不能合并,此选项错误;B.235 m m m =⋅,此选项错误;C.()33m m =--,此选项正确;D.()333mn m n =,此选项错误;故选:C.【考点】整式的运算.6.【答案】A【解析】解:数据从小到大排列为:44,45,45,51,52,54,所以这组数据的众数为45,中位数为14551482+=().故选:A.【考点】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.7.【答案】D【解析】解:A.对角线相等的平行四边形是矩形,所以A 选项为假命题;B.对角线互相垂直的平行四边形是菱形,所以B 选项为假命题;C.任意多边形的外角和为360︒,所以C 选项为假命题;D.三角形的中位线平行于第三边且等于第三边的一半,所以D 选项为真命题.故选:D.【考点】命题与定理.8.【答案】B【解析】解:A A ∠=∠,ADC ACB ∠=∠,ADC ACB ∴△∽△,AC AD AB AC∴=, 2 2816AC AD AB ∴=⋅=⨯=,0AC >,4AC ∴=,故选:B.【考点】相似三角形的判定和性质.2y ax bx =+9.【答案】D【解析】解:A.抛物线2y ax bx =+开口方向向上,则0a >,对称轴位于y 轴的右侧,则a 、b 异号,即0b <.所以反比例函数b y x=的图象位于第二、四象限,故本选项错误; B.抛物线2y ax bx =+开口方向向上,则0a >,对称轴位于y 轴的左侧,则a 、b 同号,即0b >.所以反比例函数b y x=的图象位于第一、三象限,故本选项错误; C.抛物线开口方向向下,则0a <,对称轴位于y 轴的右侧,则a 、b 异号,即0b >.所以反比例函数b y x=的图象位于第一、三象限,故本选项错误; D.抛物线2y ax bx =+开口方向向下,则0a <,对称轴位于y 轴的右侧,则a 、b 异号,即0b >.所以反比例函数b y x =的图象位于第一、三象限,故本选项正确; 故选:D.【考点】反比例函数的图象,二次函数的图象.10.【答案】A【解析】解:5320.50.52a b a b b a +==⨯-+=-利润总售价-总成本(),赔钱了说明0利润<0.50.50b a ∴-<,a b ∴>.故选:A.【考点】一元一次不等式组的应用.11.【答案】82.410⨯【解析】解:82.4 2.410=⨯亿.故答案为:82.410⨯【考点】科学记数法的表示方法.12.【答案】()()11x x +-【解析】解:原式()()11x x =+-.故答案为:()()11x x +-.【考点】因式分解﹣运用公式法.13.【答案】75︒【解析】解:60CEA ∠=︒,45BAE ∠=︒,18075ADE CEA BAE ∴∠=︒-∠-∠=︒,75BDC ADE ∴∠=∠=︒,故答案为75︒.【考点】三角板的性质、三角形内角和定理.14.【答案】11x x -+ 【解析】解:2211121x x x x x +⎛⎫+÷ ⎪--+⎝⎭ ()()2111 11x x x x x --+=⋅-+ ()()21 11x x x x x -=⋅-+ 11x x -=+, 故答案为:11x x -+. 【考点】分式的混合运算.15.【答案】100 【解析】解:由题意可得,30.03n=, 解得,100n =;故估计n 大约是100.故答案为:100.【考点】利用频率估计概率.16.【答案】4【解析】解:点下()1,1A ,OA ∴=A 在第一象限的角平分线上,以点O 为旋转中心,将点O 逆时针旋转到点B 的位置,45AOB ∴∠=︒,AB ∴=.. 【考点】弧长公式.17.【答案】4【解析】解:()22222216 2 2 2 2222211114log log log log log log =⋅⋅⋅=+++=+++=. 故答案为4.【考点】规律型.18.【答案】A【解析】解:输油管道所在直线符合上述要求的设计方案有4种,如图所示;故答案为4.【考点】整体﹣应用与设计.19.【答案】解:原式12122=-+=. 【考点】实数的运算. 20.【答案】解:()2112112x x x ⎧-++⎪⎨--⎪⎩<>, 解不等式①,可得3x <,解不等式②,可得1x >-,∴不等式组的解集为13x -<<,在数轴上表示出来为:【考点】解一元一次不等式组.21.【答案】解:(1)参观的学生总人数为1230%40÷=(人);(2)喜欢“瑶文化”的学生占参观总学生数的百分比为6100%15%40⨯=; (3)“德文化”的学生数为401281064----=,条形统计图如下:(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得:共有12种等可能的结果,甲同学被选中的有6种情况,∴甲同学被选中的概率是:61=122. 故答案为:40;15%;12【考点】条形统计图和扇形统计图、树状图法与列表法求概率.22.【答案】(1)证明:在ABC △中,90ACB ∠=︒,30CAB ∠=︒,60ABC ∴∠=︒.在等边ABD △中,60BAD ∠=︒,60BAD ABC ∴∠=∠=︒. E 为AB 的中点,AE BE ∴=.又AEF BEC ∠=∠,AEF BEC ∴△≌△.在ABC △中,90ACB ∠=︒,E 为AB 的中点,12CE AB ∴=,12BE AB =. CE AE ∴=,30EAC ECA ∴∠=∠=︒,60BCE EBC ∴∠=∠=︒.又AEF BEC △≌△,60AFE BCE ∴∠=∠=︒.又60D ∠=︒,60AFE D ∴∠=∠=︒.FC BD ∴∥.又60BAD ABC ∠=∠=︒,AD BC ∴∥,即FD BC ∥.∴四边形BCFD 是平行四边形.(2)解:在Rt ABC △中,30BAC ∠=︒,6AB =,132BC AB ∴==,AC ==,3BCFD S ∴=⨯=平行四边形.【考点】平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理.23.【答案】解:设小明班上参观禁毒教育基地的男生人数为x 人,女生人数为y 人,依题意得:551.55x y x y +=⎧⎨=+⎩,解得3520x y =⎧⎨=⎩, 答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【考点】二元一次方程组的应用.24.【答案】证明:(1)延长CD 交O 于G ,如图,CD AB ⊥,BC BG ∴=,BC CE =,CE BG ∴=,CBE GCB ∴∠=∠,CF BF ∴=;(2)连接OC 交BE 于H ,BC CE =,OC BE ∴⊥,在Rt OBH △中, 4cos 5BH OBH OB ∠==, 424655BH ∴=⨯=,185OH ∴==,183565OH OC ==,63645OB OM ==+ OH OB OC OM∴=,而HOB COM ∠=∠, OHB OCM ∴△∽△,90OCM OHB ∴∠=∠=︒,OC CM ∴⊥,∴直线CM 是O 的切线.【考点】切线的判定.25.【答案】解:(1)设抛物线的表达式为()214y a x =-+:,把()0,3代入得:()23014a =-+,1a =-, ∴抛物线的表达式为:221423y x x x =--+=-++(); (2)存在,如图1,作E 关于对称轴的对称点'E ,连接'E F 交对称轴于G ,此时EG FG +的值最小,()0,3E ,()'2,3E ∴,易得'E F 的解析式为:33y x =-,当1x =时,3130y =⨯-=,()1,0G ∴(3)如图2,()1,4A ,()3,0B ,易得AB 的解析式为:26y x =-+,设()2,23N m m m -++,则(),26Q m m +-,03m ≤≤(), ()()22232643NQ m m m m m ∴=+++=-+----,AD NH ∥,DAB NQM ∴∠=∠,90ADB QMN ∠=∠=︒,QMN ADB ∴△∽△,QN AB MN ∴=,243m m MN -+-∴)2255MN m ∴=-+, 50-<, ∴当2m =时,MN 有最大值;过N 作NG y ⊥轴于G ,GPN ABD ∠=∠,90NGP ADB ∠=∠=︒,NGP ADB ∴△∽△,2142PG BD NG AD ∴===, 1122PG NG m ∴==, 221323322OP OG PG m m m m m ∴=-=-++-=-++, 2113 3 222PON S OP GN m m m ∴=⋅=++⋅(-), 当2m =时,()1243322PON S =⨯++=△-. 【考点】二次函数的综合应用.26.【答案】解:(1)如图1中,HI AD ∥,HI CI AD AD∴=, 3492AD ∴=, 6AD ∴=,2ID CD CI ∴=-=,∴正方形的边长为2.(2)如图2中,设等G 落在PC 时对应的点为G ',点F 的对应的点为F '.CA CP =,CD PA ⊥,ACD PCD ∴∠=∠,A P ∠=∠,HG PA '∥,CHG A ∴∠'=∠,CG H P ∠'=∠,CHG CG H ∴∠'=∠',CH CG ∴=',3IH IG DF ∴='='=,IG DB ∥,IG CI DB CD∴=, 246DB ∴=,3DB ∴=, 3DB DF ∴='=,∴点B 与点F '重合,∴移动后的矩形与CBP △重叠部分是BGG '△,∴移动后的矩形与CBP △重叠部分的形状是三角形.(3)如图3中,如图将DMI '△绕点D 顺时针旋转90︒得到DF R '△,此时N 、’F 、R 共线.’45MDN NDF MDI NDF DF R NDR ∠=∠+∠'=∠'+∠'=∠=︒,DN DN =,DM DR =,NDM NDR ∴△≌△,MN NR NF RF NF MI ∴=='+'='+',MNG ∴'△的周长24MN MG NG MG MI NG F R I G =+'+'='+'+'+'=''=.【考点】四边形综合题、矩形的性质、正方形的性质、平行线等分线段定理、全等三角形的判定和性质.。
【2018中考数学】湖南永州市真题试卷及答案【2018数学中考真题系列】
2018年湖南省永州市中考数学试卷一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分1.(4分)﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣2.(4分)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.3.(4分)函数y=中自变量x的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=34.(4分)如图几何体的主视图是()A.B.C.D.5.(4分)下列运算正确的是()A.m2+2m3=3m5B.m2•m3=m6C.(﹣m)3=﹣m3D.(mn)3=mn3 6.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48 B.44,45 C.45,51 D.52,537.(4分)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半8.(4分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.89.(4分)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx (a≠0)的图象大致是()A.B.C.D.10.(4分)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为.12.(4分)因式分解:x2﹣1=.13.(4分)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=.14.(4分)化简:(1+)÷=.15.(4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.16.(4分)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.17.(4分)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=.18.(4分)现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有种.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.(8分)计算:2﹣1﹣sin60°+|1﹣|.20.(8分)解不等式组,并把解集在数轴上表示出来.21.(8分)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.22.(10分)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.23.(10分)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.24.(10分)如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.25.(12分)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.26.(12分)如图1,在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.2018年湖南省永州市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分1.【解答】解:﹣2018的相反数是2018.故选:A.2.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.3.【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故选:C.4.【解答】解:由图可得,几何体的主视图是:故选:B.5.【解答】解:A、m2与2m3不是同类项,不能合并,此选项错误;B、m2•m3=m5,此选项错误;C、(﹣m)3=﹣m3,此选项正确;D、(mn)3=m3n3,此选项错误;故选:C.6.【解答】解:数据从小到大排列为:44,45,45,51,52,54,所以这组数据的众数为45,中位数为(45+51)=48.故选:A.7.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项为假命题;B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;C、任意多边形的外角和为360°,所以C选项为假命题;D、三角形的中位线平行于第三边且等于第三边的一半,所以D选项为真命题.故选:D.8.【解答】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选:B.9.【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b 同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b 异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b 异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.10.【解答】解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.二、填空题(本大题共8个小题,每小题4分,共32分)11.【解答】解:2.4亿=2.4×108.故答案为:2.4×10812.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).13.【解答】解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.14.【解答】解:(1+)÷===,故答案为:.15.【解答】解:由题意可得,=0.03,解得,n=100.故估计n大约是100.故答案为:100.16.【解答】解:∵点A(1,1),∴OA==,点A在第一象限的角平分线上,∵以点O为旋转中心,将点A逆时针旋转到点B的位置,∴∠AOB=45°,∴的长为=.故答案为.【解答】解:log216=log2(2•2•2•2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.18.【解答】解:输油管道所在直线符合上述要求的设计方案有4种,如图所示;故答案为4.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.【解答】解:原式=﹣×+2=1.20.【解答】解:,解不等式①,可得x<3,解不等式②,可得x>﹣1,∴不等式组的解集为﹣1<x<3,在数轴上表示出来为:【解答】解:(1)参观的学生总人数为12÷30%=40(人);(2)喜欢“瑶文化”的学生占参观总学生数的百分比为×100%=15%;(3)“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,条形统计图如下:(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得:∵共有12种等可能的结果,甲同学被选中的有6种情况,∴甲同学被选中的概率是:=.故答案为:40;15%;.22.【解答】(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB.∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC∥BD.又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC.∴四边形BCFD是平行四边形.(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AB=3,AC=BC=3,=3×=9.∴S平行四边形BCFD23.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,依题意得:,解得,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【解答】证明:(1)延长CD交⊙O于G,如图,∵CD⊥AB,∴=,∵=,∴=,∴∠CBE=∠GCB,∴CF=BF;(2)连接OC交BE于H,如图,∵=,∴OC⊥BE,在Rt△OBH中,cos∠OBH==,∴BH=×6=,∴OH==,∵==,==,∴=,而∠HOB=∠COM,∴△OHB∽△OCM,∴∠OCM=∠OHB=90°,∴OC⊥CM,∴直线CM是⊙O的切线.25.【解答】解:(1)设抛物线的表达式为:y=a(x﹣1)2+4,把(0,3)代入得:3=a(0﹣1)2+4,a=﹣1,∴抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,∵E(0,3),∴E'(2,3),易得E'F的解析式为:y=3x﹣3,当x=1时,y=3×1﹣3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(0≤m≤3),∴NQ=(﹣m2+2m+3)﹣(﹣2m+6)=﹣m2+4m﹣3,∵AD∥NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90°,∴△QMN∽△ADB,∴,∴,∴MN=﹣(m﹣2)2+,∵﹣<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90°,∴△NGP∽△ADB,∴==,∴PG=NG=m,∴OP=OG﹣PG=﹣m2+2m+3﹣m=﹣m2+m+3,=OP•GN=(﹣m2+m+3)•m,∴S△PON当m=2时,S=×2(﹣4+3+3)=2.△PON26.【解答】解:(1)如图1中,∵HI∥AD,∴=,∴=,∴AD=6,∴ID=CD﹣CI=2,∴正方形的边长为2.(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.∵CA=CP,CD⊥PA,∴∠ACD=∠PCD,∠A=∠P,∵HG′∥PA,∴∠CHG′=∠A,∠CG′H=∠P,∴∠CHG′=∠CG′H,∴CH=CG′,∴IH=IG′=DF′=3,∵IG∥DB,∴=,∴=,∴DB=3,∴DB=DF′=3,∴点B与点F′重合,∴移动后的矩形与△CBP重叠部分是△BGG′,∴移动后的矩形与△CBP重叠部分的形状是三角形.(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.∵∠MDN=∠NDF+∠MDI′=∠NDF′+∠DF′R=∠NDR=45°,∵DN=DN,DM=DR,∴△NDM≌△NDR,∴MN=NR=NF′+RF′=NF′+MI′,∴△MNG′的周长=MN+M G′+NG′=MG′+MI′+NG′+F′R=2I′G′=4.。
2018年湖南省永州市中考数学试卷
2018年永州市中考数学试卷一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分1.(4分)﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣【解答】解:﹣2018的相反数是2018.故选:A.2.(4分)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.3.(4分)函数y=中自变量x的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=3【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故选:C.4.(4分)如图几何体的主视图是()A.B.C.D.【解答】解:由图可得,几何体的主视图是:故选:B.5.(4分)下列运算正确的是()A.m2+2m3=3m5B.m2•m3=m6C.(﹣m)3=﹣m3D.(mn)3=mn3【解答】解:A、m2与2m3不是同类项,不能合并,此选项错误;B、m2•m3=m5,此选项错误;C、(﹣m)3=﹣m3,此选项正确;D、(mn)3=m3n3,此选项错误;故选:C.6.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48 B.44,45 C.45,51 D.52,53【解答】解:数据从小到大排列为:44,45,45,51,52,54,所以这组数据的众数为45,中位数为(45+51)=48.故选:A.7.(4分)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半【解答】解:A、对角线相等的平行四边形是矩形,所以A选项为假命题;B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;C、任意多边形的外角和为360°,所以C选项为假命题;D、三角形的中位线平行于第三边且等于第三边的一半,所以D选项为真命题.故选:D.8.(4分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC 的长为()A.2 B.4 C.6 D.8【解答】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选:B.9.(4分)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b 异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.10.(4分)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关【解答】解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为 2.4×108.【解答】解:2.4亿=2.4×108.故答案为:2.4×10812.(4分)因式分解:x2﹣1=(x+1)(x﹣1).【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).13.(4分)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC= 75°.【解答】解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.14.(4分)化简:(1+)÷=.【解答】解:(1+)÷===,故答案为:.15.(4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是100.【解答】解:由题意可得,=0.03,解得,n=100.故估计n大约是100.故答案为:100.16.(4分)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.【解答】解:∵点A(1,1),∴OA==,点A在第一象限的角平分线上,∵以点O为旋转中心,将点A逆时针旋转到点B的位置,∴∠AOB=45°,∴的长为=.故答案为.17.(4分)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216= 4.【解答】解:log216=log2(2•2•2•2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.18.(4分)现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有4种.【解答】解:输油管道所在直线符合上述要求的设计方案有4种,如图所示;故答案为4.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.(8分)计算:2﹣1﹣sin60°+|1﹣|.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣×+2=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解不等式组,并把解集在数轴上表示出来.【分析】分别解不等式组的两个不等式,即可得到其公共部分,依据解集即可在数轴上表示出来.【解答】解:,解不等式①,可得x<3,解不等式②,可得x>﹣1,∴不等式组的解集为﹣1<x<3,在数轴上表示出来为:【点评】本题主要考查了解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.21.(8分)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为40人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为15%;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.【分析】(1)依据最喜欢“和文化”的学生数以及百分比,即可得到参观的学生总人数;(2)依据最喜欢“瑶文化”的学生数,即可得到其占参观总学生数的百分比;(3)依据“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,即可补全条形统计图;(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图可得最喜欢“德文化”的学生甲被选中的概率.【解答】解:(1)参观的学生总人数为12÷30%=40(人);(2)喜欢“瑶文化”的学生占参观总学生数的百分比为×100%=15%;(3)“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,条形统计图如下:(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得:∵共有12种等可能的结果,甲同学被选中的有6种情况,∴甲同学被选中的概率是:=.故答案为:40;15%;.【点评】此题考查了条形统计图和扇形统计图,树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.【分析】(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【解答】(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB.∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC∥BD.又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC.∴四边形BCFD是平行四边形.(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AB=3,AC=BC=3,∴S=3×=9.平行四边形BCFD【点评】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.(10分)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.【分析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,依题意得:,解得,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点评】考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24.(10分)如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.【分析】(1)延长CD交⊙O于G,如图,利用垂径定理得到=,则可证明=,然后根据圆周角定理得∠CBE=∠GCB,从而得到CF=BF;(2)连接OC交BE于H,如图,先利用垂径定理得到OC⊥BE,再在Rt△OBH中利用解直角三角形得到BH=,OH=,接着证明△OHB∽△OCM得到∠OCM=∠OHB=90°,然后根据切线的判定定理得到结论.【解答】证明:(1)延长CD交⊙O于G,如图,∵CD⊥AB,∴=,∵=,∴=,∴∠CBE=∠GCB,∴CF=BF;(2)连接OC交BE于H,如图,∵=,∴OC⊥BE,在Rt△OBH中,cos∠OBH==,∴BH=×6=,∴OH==,∵==,==,∴=,而∠HOB=∠COM,∴△OHB∽△OCM,∴∠OCM=∠OHB=90°,∴OC⊥CM,∴直线CM是⊙O的切线.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理和解直角三角形.25.(12分)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.【分析】(1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,先求E'F的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q (m,﹣2m+6),(0≤m≤3),表示NQ=﹣m2+4m﹣3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.【解答】解:(1)设抛物线的表达式为:y=a(x﹣1)2+4,把(0,3)代入得:3=a(0﹣1)2+4,a=﹣1,∴抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,∵E(0,3),∴E'(2,3),易得E'F的解析式为:y=3x﹣3,当x=1时,y=3×1﹣3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(0≤m≤3),∴NQ=(﹣m2+2m+3)﹣(﹣2m+6)=﹣m2+4m﹣3,∵AD∥NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90°,∴△QMN∽△ADB,∴,∴,∴MN=﹣(m﹣2)2+,∵﹣<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90°,∴△NGP∽△ADB,∴==,∴PG=NG=m,∴OP=OG﹣PG=﹣m2+2m+3﹣m=﹣m2+m+3,=OP•GN=(﹣m2+m+3)•m,∴S△PON当m=2时,S=×2(﹣4+3+3)=2.△PON【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.26.(12分)如图1,在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC 上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.【分析】(1)由HI∥AD,得到=,求出AD即可解决问题;(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.求出IG′和BD的长比较即可判定;(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.想办法证明MN=MI′+NF′,即可解决问题;【解答】解:(1)如图1中,∵HI∥AD,∴=,∴=,∴AD=6,∴ID=CD﹣CI=2,∴正方形的边长为2.(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.∵CA=CP,CD⊥PA,∴∠ACD=∠PCD,∠A=∠P,∵HG′∥PA,∴∠CHG′=∠A,∠CG′H=∠P,∴∠CHG′=∠CG′H,∴CH=CG′,∴IH=IG′=DF′=3,∵IG∥DB,∴=,∴=,∴DB=3,∴DB=DF′=3,∴点B与点F′重合,∴移动后的矩形与△CBP重叠部分是△BGG′,∴移动后的矩形与△CBP重叠部分的形状是三角形.(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.∵∠MDN=∠NDF+∠MDI′=∠NDF′+∠DF′R=∠NDR=45°,∵DN=DN,DM=DR,∴△NDM≌△NDR,∴MN=NR=NF′+RF′=NF′+MI′,∴△MNG′的周长=MN+MG′+NG′=MG′+MI′+NG′+F′R=2I′G′=4.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、平行线等分线段定理、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018年湖南省永州市中考数学试卷
2018年湖南省永州市中考数学试卷一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分1.(4.00分)(2018•永州)﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣2.(4.00分)(2018•永州)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.3.(4.00分)(2018•永州)函数y=中自变量x的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=34.(4.00分)(2018•永州)如图几何体的主视图是()A.B.C.D.5.(4.00分)(2018•永州)下列运算正确的是()A.m2+2m3=3m5B.m2•m3=m6C.(﹣m)3=﹣m3D.(mn)3=mn3 6.(4.00分)(2018•永州)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48 B.44,45 C.45,51 D.52,537.(4.00分)(2018•永州)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半8.(4.00分)(2018•永州)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.89.(4.00分)(2018•永州)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.10.(4.00分)(2018•永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关二、填空题(本大题共8个小题,每小题4分,共32分)11.(4.00分)(2018•永州)截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为.12.(4.00分)(2018•永州)因式分解:x2﹣1=.13.(4.00分)(2018•永州)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=.14.(4.00分)(2018•永州)化简:(1+)÷=.15.(4.00分)(2018•永州)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.16.(4.00分)(2018•永州)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.17.(4.00分)(2018•永州)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=.18.(4.00分)(2018•永州)现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有种.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.(8.00分)(2018•永州)计算:2﹣1﹣sin60°+|1﹣|.20.(8.00分)(2018•永州)解不等式组,并把解集在数轴上表示出来.21.(8.00分)(2018•永州)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.22.(10.00分)(2018•永州)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD 于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.23.(10.00分)(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.24.(10.00分)(2018•永州)如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.25.(12.00分)(2018•永州)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.26.(12.00分)(2018•永州)如图1,在△ABC中,矩形EFGH的一边EF在AB 上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.2018年湖南省永州市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分1.(4.00分)(2018•永州)﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2018的相反数是2018.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(4.00分)(2018•永州)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.【点评】本题考查的是轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(4.00分)(2018•永州)函数y=中自变量x的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=3【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故选:C.【点评】考查了函数自变量的范围,注意:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(4.00分)(2018•永州)如图几何体的主视图是()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.5.(4.00分)(2018•永州)下列运算正确的是()A.m2+2m3=3m5B.m2•m3=m6C.(﹣m)3=﹣m3D.(mn)3=mn3【分析】根据合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方逐一计算可得.【解答】解:A、m2与2m3不是同类项,不能合并,此选项错误;B、m2•m3=m5,此选项错误;C、(﹣m)3=﹣m3,此选项正确;D、(mn)3=m3n3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方.6.(4.00分)(2018•永州)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48 B.44,45 C.45,51 D.52,53【分析】先把原数据按由小到大排列,然后根据众数、中位数的定义求解.【解答】解:数据从小到大排列为:44,45,45,51,52,54,所以这组数据的众数为45,中位数为(45+51)=48.故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.7.(4.00分)(2018•永州)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半【分析】根据矩形的判定方法对A进行判断;根据菱形的判定方法对B进行判断;根据多边形的内角和对C进行判断;根据三角形中位线性质对D进行判断.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项为假命题;B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;C、任意多边形的外角和为360°,所以C选项为假命题;D、三角形的中位线平行于第三边且等于第三边的一半,所以D选项为真命题.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(4.00分)(2018•永州)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.8【分析】只要证明△ADC∽△ACB,可得=,即AC2=AD•AB,由此即可解决问题;【解答】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选:B.【点评】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.9.(4.00分)(2018•永州)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b 同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b 异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b 异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.【点评】此题主要考查了反比例函数的图象,以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.10.(4.00分)(2018•永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关【分析】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.【解答】解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.【点评】此题考查一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.二、填空题(本大题共8个小题,每小题4分,共32分)11.(4.00分)(2018•永州)截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为 2.4×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:2.4亿=2.4×108.故答案为:2.4×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4.00分)(2018•永州)因式分解:x2﹣1=(x+1)(x﹣1).【分析】方程利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.13.(4.00分)(2018•永州)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=75°.【分析】根据三角板的性质以及三角形内角和定理计算即可;【解答】解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.【点评】本题考查三角板的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.14.(4.00分)(2018•永州)化简:(1+)÷=.【分析】根据分式的加法和除法可以解答本题.【解答】解:(1+)÷===,故答案为:.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.15.(4.00分)(2018•永州)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是100.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.03,解得,n=100.故估计n大约是100.故答案为:100.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.16.(4.00分)(2018•永州)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.【分析】由点A(1,1),可得OA==,点A在第一象限的角平分线上,那么∠AOB=45°,再根据弧长公式计算即可.【解答】解:∵点A(1,1),∴OA==,点A在第一象限的角平分线上,∵以点O为旋转中心,将点A逆时针旋转到点B的位置,∴∠AOB=45°,∴的长为=.故答案为.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了坐标与图形变化﹣旋转,求出OA=以及∠AOB=45°是解题的关键.17.(4.00分)(2018•永州)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=4.【分析】利用log2(x•y)=log2x+log2y得到log216=log22+log22+log22+log22,然后根据log22=1进行计算.【解答】解:log216=log2(2•2•2•2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.【点评】本题考查了规律型:认真观察、仔细思考,善用联想是解决这类问题的方法.18.(4.00分)(2018•永州)现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有4种.【分析】根据点A、B的可以在直线的两侧或异侧两种情形讨论即可;【解答】解:输油管道所在直线符合上述要求的设计方案有4种,如图所示;故答案为4.【点评】本题考查整体﹣应用与设计,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.(8.00分)(2018•永州)计算:2﹣1﹣sin60°+|1﹣|.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣×+2=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8.00分)(2018•永州)解不等式组,并把解集在数轴上表示出来.【分析】分别解不等式组的两个不等式,即可得到其公共部分,依据解集即可在数轴上表示出来.【解答】解:,解不等式①,可得x<3,解不等式②,可得x>﹣1,∴不等式组的解集为﹣1<x<3,在数轴上表示出来为:【点评】本题主要考查了解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.21.(8.00分)(2018•永州)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为40人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为15%;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.【分析】(1)依据最喜欢“和文化”的学生数以及百分比,即可得到参观的学生总人数;(2)依据最喜欢“瑶文化”的学生数,即可得到其占参观总学生数的百分比;(3)依据“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,即可补全条形统计图;(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图可得最喜欢“德文化”的学生甲被选中的概率.【解答】解:(1)参观的学生总人数为12÷30%=40(人);(2)喜欢“瑶文化”的学生占参观总学生数的百分比为×100%=15%;(3)“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,条形统计图如下:(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得:∵共有12种等可能的结果,甲同学被选中的有6种情况,∴甲同学被选中的概率是:=.故答案为:40;15%;.【点评】此题考查了条形统计图和扇形统计图,树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.(10.00分)(2018•永州)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD 于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.【分析】(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【解答】(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB.∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC∥BD.又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC.∴四边形BCFD是平行四边形.(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AB=3,AC=BC=3,=3×=9.∴S平行四边形BCFD【点评】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.(10.00分)(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.【分析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,依题意得:,解得,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点评】考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24.(10.00分)(2018•永州)如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.(1)延长CD交⊙O于G,如图,利用垂径定理得到=,则可证明=,【分析】然后根据圆周角定理得∠CBE=∠GCB,从而得到CF=BF;(2)连接OC交BE于H,如图,先利用垂径定理得到OC⊥BE,再在Rt△OBH中利用解直角三角形得到BH=,OH=,接着证明△OHB∽△OCM得到∠OCM=∠OHB=90°,然后根据切线的判定定理得到结论.【解答】证明:(1)延长CD交⊙O于G,如图,∵CD⊥AB,∴=,∵=,∴=,∴∠CBE=∠GCB,∴CF=BF;(2)连接OC交BE于H,如图,∵=,∴OC⊥BE,在Rt△OBH中,cos∠OBH==,∴BH=×6=,∴OH==,∵==,==,∴=,而∠HOB=∠COM,∴△OHB∽△OCM,∴∠OCM=∠OHB=90°,∴OC⊥CM,∴直线CM是⊙O的切线.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理和解直角三角形.25.(12.00分)(2018•永州)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.【分析】(1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,先求E'F的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(0≤m≤3),表示NQ=﹣m2+4m﹣3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.【解答】解:(1)设抛物线的表达式为:y=a(x﹣1)2+4,把(0,3)代入得:3=a(0﹣1)2+4,a=﹣1,∴抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,∵E(0,3),∴E'(2,3),易得E'F的解析式为:y=3x﹣3,当x=1时,y=3×1﹣3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(0≤m≤3),∴NQ=(﹣m2+2m+3)﹣(﹣2m+6)=﹣m2+4m﹣3,∵AD∥NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90°,∴△QMN∽△ADB,∴,∴,∴MN=﹣(m﹣2)2+,∵﹣<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90°,∴△NGP∽△ADB,∴==,∴PG=NG=m,∴OP=OG﹣PG=﹣m2+2m+3﹣m=﹣m2+m+3,∴S=OP•GN=(﹣m2+m+3)•m,△PON=×2(﹣4+3+3)=2.当m=2时,S△PON【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.26.(12.00分)(2018•永州)如图1,在△ABC中,矩形EFGH的一边EF在AB 上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.【分析】(1)由HI∥AD,得到=,求出AD即可解决问题;(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.求出IG′和BD的长比较即可判定;(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.想办法证明MN=MI′+NF′,即可解决问题;【解答】解:(1)如图1中,∵HI∥AD,∴=,∴=,∴AD=6,∴ID=CD﹣CI=2,∴正方形的边长为2.(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.∵CA=CP,CD⊥PA,∴∠ACD=∠PCD,∠A=∠P,∵HG′∥PA,∴∠CHG′=∠A,∠CG′H=∠P,∴∠CHG′=∠CG′H,∴CH=CG′,∴IH=IG′=DF′=3,∵IG∥DB,∴=,∴=,∴DB=3,∴DB=DF′=3,∴点B与点F′重合,∴移动后的矩形与△CBP重叠部分是△BGG′,∴移动后的矩形与△CBP重叠部分的形状是三角形.(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.∵∠MDN=∠NDF+∠MDI′=∠NDF′+∠DF′R=∠NDR=45°,∵DN=DN,DM=DR,∴△NDM≌△NDR,∴MN=NR=NF′+RF′=NF′+MI′,∴△MNG′的周长=MN+MG′+NG′=MG′+MI′+NG′+F′R=2I′G′=4.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、平行线等分线段定理、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018年湖南省永州市中考数学试卷
2018年湖南省永州市中考数学试卷一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分1.(4.00分)(2018•永州)﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣2.(4.00分)(2018•永州)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.3.(4.00分)(2018•永州)函数y=中自变量x的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=34.(4.00分)(2018•永州)如图几何体的主视图是()A.B.C.D.5.(4.00分)(2018•永州)下列运算正确的是()A.m2+2m3=3m5B.m2•m3=m6C.(﹣m)3=﹣m3D.(mn)3=mn3 6.(4.00分)(2018•永州)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48 B.44,45 C.45,51 D.52,537.(4.00分)(2018•永州)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半8.(4.00分)(2018•永州)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.89.(4.00分)(2018•永州)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.10.(4.00分)(2018•永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关二、填空题(本大题共8个小题,每小题4分,共32分)11.(4.00分)(2018•永州)截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为.12.(4.00分)(2018•永州)因式分解:x2﹣1=.13.(4.00分)(2018•永州)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=.14.(4.00分)(2018•永州)化简:(1+)÷=.15.(4.00分)(2018•永州)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.16.(4.00分)(2018•永州)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.17.(4.00分)(2018•永州)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=.18.(4.00分)(2018•永州)现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有种.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.(8.00分)(2018•永州)计算:2﹣1﹣sin60°+|1﹣|.20.(8.00分)(2018•永州)解不等式组,并把解集在数轴上表示出来.21.(8.00分)(2018•永州)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.22.(10.00分)(2018•永州)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD 于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.23.(10.00分)(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.24.(10.00分)(2018•永州)如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.25.(12.00分)(2018•永州)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.26.(12.00分)(2018•永州)如图1,在△ABC中,矩形EFGH的一边EF在AB 上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.2018年湖南省永州市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分1.(4.00分)(2018•永州)﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2018的相反数是2018.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(4.00分)(2018•永州)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.【点评】本题考查的是轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(4.00分)(2018•永州)函数y=中自变量x的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=3【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故选:C.【点评】考查了函数自变量的范围,注意:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(4.00分)(2018•永州)如图几何体的主视图是()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.5.(4.00分)(2018•永州)下列运算正确的是()A.m2+2m3=3m5B.m2•m3=m6C.(﹣m)3=﹣m3D.(mn)3=mn3【分析】根据合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方逐一计算可得.【解答】解:A、m2与2m3不是同类项,不能合并,此选项错误;B、m2•m3=m5,此选项错误;C、(﹣m)3=﹣m3,此选项正确;D、(mn)3=m3n3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方.6.(4.00分)(2018•永州)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48 B.44,45 C.45,51 D.52,53【分析】先把原数据按由小到大排列,然后根据众数、中位数的定义求解.【解答】解:数据从小到大排列为:44,45,45,51,52,54,所以这组数据的众数为45,中位数为(45+51)=48.故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.7.(4.00分)(2018•永州)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半【分析】根据矩形的判定方法对A进行判断;根据菱形的判定方法对B进行判断;根据多边形的内角和对C进行判断;根据三角形中位线性质对D进行判断.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项为假命题;B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;C、任意多边形的外角和为360°,所以C选项为假命题;D、三角形的中位线平行于第三边且等于第三边的一半,所以D选项为真命题.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(4.00分)(2018•永州)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.8【分析】只要证明△ADC∽△ACB,可得=,即AC2=AD•AB,由此即可解决问题;【解答】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选:B.【点评】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.9.(4.00分)(2018•永州)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b 同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b 异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b 异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.【点评】此题主要考查了反比例函数的图象,以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.10.(4.00分)(2018•永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关【分析】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.【解答】解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.【点评】此题考查一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.二、填空题(本大题共8个小题,每小题4分,共32分)11.(4.00分)(2018•永州)截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为 2.4×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:2.4亿=2.4×108.故答案为:2.4×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4.00分)(2018•永州)因式分解:x2﹣1=(x+1)(x﹣1).【分析】方程利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.13.(4.00分)(2018•永州)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=75°.【分析】根据三角板的性质以及三角形内角和定理计算即可;【解答】解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.【点评】本题考查三角板的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.14.(4.00分)(2018•永州)化简:(1+)÷=.【分析】根据分式的加法和除法可以解答本题.【解答】解:(1+)÷===,故答案为:.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.15.(4.00分)(2018•永州)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是100.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.03,解得,n=100.故估计n大约是100.故答案为:100.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.16.(4.00分)(2018•永州)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.【分析】由点A(1,1),可得OA==,点A在第一象限的角平分线上,那么∠AOB=45°,再根据弧长公式计算即可.【解答】解:∵点A(1,1),∴OA==,点A在第一象限的角平分线上,∵以点O为旋转中心,将点A逆时针旋转到点B的位置,∴∠AOB=45°,∴的长为=.故答案为.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了坐标与图形变化﹣旋转,求出OA=以及∠AOB=45°是解题的关键.17.(4.00分)(2018•永州)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=4.【分析】利用log2(x•y)=log2x+log2y得到log216=log22+log22+log22+log22,然后根据log22=1进行计算.【解答】解:log216=log2(2•2•2•2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.【点评】本题考查了规律型:认真观察、仔细思考,善用联想是解决这类问题的方法.18.(4.00分)(2018•永州)现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有4种.【分析】根据点A、B的可以在直线的两侧或异侧两种情形讨论即可;【解答】解:输油管道所在直线符合上述要求的设计方案有4种,如图所示;故答案为4.【点评】本题考查整体﹣应用与设计,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.(8.00分)(2018•永州)计算:2﹣1﹣sin60°+|1﹣|.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣×+2=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8.00分)(2018•永州)解不等式组,并把解集在数轴上表示出来.【分析】分别解不等式组的两个不等式,即可得到其公共部分,依据解集即可在数轴上表示出来.【解答】解:,解不等式①,可得x<3,解不等式②,可得x>﹣1,∴不等式组的解集为﹣1<x<3,在数轴上表示出来为:【点评】本题主要考查了解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.21.(8.00分)(2018•永州)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为40人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为15%;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.【分析】(1)依据最喜欢“和文化”的学生数以及百分比,即可得到参观的学生总人数;(2)依据最喜欢“瑶文化”的学生数,即可得到其占参观总学生数的百分比;(3)依据“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,即可补全条形统计图;(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图可得最喜欢“德文化”的学生甲被选中的概率.【解答】解:(1)参观的学生总人数为12÷30%=40(人);(2)喜欢“瑶文化”的学生占参观总学生数的百分比为×100%=15%;(3)“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,条形统计图如下:(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得:∵共有12种等可能的结果,甲同学被选中的有6种情况,∴甲同学被选中的概率是:=.故答案为:40;15%;.【点评】此题考查了条形统计图和扇形统计图,树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.(10.00分)(2018•永州)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD 于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.【分析】(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【解答】(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB.∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC∥BD.又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC.∴四边形BCFD是平行四边形.(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AB=3,AC=BC=3,=3×=9.∴S平行四边形BCFD【点评】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.(10.00分)(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.【分析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,依题意得:,解得,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点评】考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24.(10.00分)(2018•永州)如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.(1)延长CD交⊙O于G,如图,利用垂径定理得到=,则可证明=,【分析】然后根据圆周角定理得∠CBE=∠GCB,从而得到CF=BF;(2)连接OC交BE于H,如图,先利用垂径定理得到OC⊥BE,再在Rt△OBH中利用解直角三角形得到BH=,OH=,接着证明△OHB∽△OCM得到∠OCM=∠OHB=90°,然后根据切线的判定定理得到结论.【解答】证明:(1)延长CD交⊙O于G,如图,∵CD⊥AB,∴=,∵=,∴=,∴∠CBE=∠GCB,∴CF=BF;(2)连接OC交BE于H,如图,∵=,∴OC⊥BE,在Rt△OBH中,cos∠OBH==,∴BH=×6=,∴OH==,∵==,==,∴=,而∠HOB=∠COM,∴△OHB∽△OCM,∴∠OCM=∠OHB=90°,∴OC⊥CM,∴直线CM是⊙O的切线.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理和解直角三角形.25.(12.00分)(2018•永州)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.【分析】(1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,先求E'F的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(0≤m≤3),表示NQ=﹣m2+4m﹣3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.【解答】解:(1)设抛物线的表达式为:y=a(x﹣1)2+4,把(0,3)代入得:3=a(0﹣1)2+4,a=﹣1,∴抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,∵E(0,3),∴E'(2,3),易得E'F的解析式为:y=3x﹣3,当x=1时,y=3×1﹣3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(0≤m≤3),∴NQ=(﹣m2+2m+3)﹣(﹣2m+6)=﹣m2+4m﹣3,∵AD∥NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90°,∴△QMN∽△ADB,∴,∴,∴MN=﹣(m﹣2)2+,∵﹣<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90°,∴△NGP∽△ADB,∴==,∴PG=NG=m,∴OP=OG﹣PG=﹣m2+2m+3﹣m=﹣m2+m+3,∴S=OP•GN=(﹣m2+m+3)•m,△PON=×2(﹣4+3+3)=2.当m=2时,S△PON【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.26.(12.00分)(2018•永州)如图1,在△ABC中,矩形EFGH的一边EF在AB 上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.【分析】(1)由HI∥AD,得到=,求出AD即可解决问题;(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.求出IG′和BD的长比较即可判定;(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.想办法证明MN=MI′+NF′,即可解决问题;【解答】解:(1)如图1中,∵HI∥AD,∴=,∴=,∴AD=6,∴ID=CD﹣CI=2,∴正方形的边长为2.(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.∵CA=CP,CD⊥PA,∴∠ACD=∠PCD,∠A=∠P,∵HG′∥PA,∴∠CHG′=∠A,∠CG′H=∠P,∴∠CHG′=∠CG′H,∴CH=CG′,∴IH=IG′=DF′=3,∵IG∥DB,∴=,∴=,∴DB=3,∴DB=DF′=3,∴点B与点F′重合,∴移动后的矩形与△CBP重叠部分是△BGG′,∴移动后的矩形与△CBP重叠部分的形状是三角形.(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.∵∠MDN=∠NDF+∠MDI′=∠NDF′+∠DF′R=∠NDR=45°,∵DN=DN,DM=DR,∴△NDM≌△NDR,∴MN=NR=NF′+RF′=NF′+MI′,∴△MNG′的周长=MN+MG′+NG′=MG′+MI′+NG′+F′R=2I′G′=4.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、平行线等分线段定理、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018年湖南省永州市中考数学试卷(含答案与解析)
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前湖南省永州市2018年初中学业水平考试数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分 1.﹣2 018的相反数是( )A .2 018B . 2 018-C .12 018D .12 018-2.誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是( )ABC D 3.函数13y x =-中自变量x 的取值范围是( )A .3x ≥B .3x <C .3x ≠D .3x = 4.如图几何体的主视图是( )A B CD5.下列运算正确的是( )A .23523m m m +=B .236m m m =⋅C .()33m m =-- D .()33mn mn =6.已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为( ) A .45,48B .44,45C .45,51D .52,53 7.下列命题是真命题的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .任意多边形的内角和为360°D .三角形的中位线平行于第三边,并且等于第三边的一半 8.如图,在ABC △中,点D 是边AB 上的一点,ADC ACB ∠=∠,2AD =,6BD =,则边AC 的长为( )A .2B .4C .6D .89.在同一平面直角坐标系中,反比例函数0by b x=≠()与二次函数()20y ax bx a =+≠的图象大致是 ( )10.甲从商贩A 处购买了若干斤西瓜,又从商贩B 处购买了若干斤西瓜.A 、B 两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A 、B 两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为( )A .商贩A 的单价大于商贩B 的单价B .商贩A 的单价等于商贩B 的单价C .商贩A 的单价小于商贩B 的单价D .赔钱与商贩A 、商贩B 的单价无关第Ⅱ卷(非选择题 共110分)二、填空题(本大题共8个小题,每小题4分,共32分)11.截止2 017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为__________.ABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)12.因式分解:21x -=__________.13.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC ∠=__________.14.化简:2211121x xx x x +⎛⎫+÷= ⎪--+⎝⎭__________. 15.在一个不透明的盒子中装有n 个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n 的值大约是__________.16.如图,在平面直角坐标系中,已知点()1,1A ,以点O 为旋转中心,将点A 逆时针旋转到点B 的位置,则AB 的长为__________.17.对于任意大于0的实数x 、y ,满足:()222 log x y log x log y ⋅=+,若221log =,则216log =__________.18.现有A 、B 两个大型储油罐,它们相距2 km ,计划修建一条笔直的输油管道,使得A 、B 两个储油罐到输油管道所在直线的距离都为0.5 km ,输油管道所在直线符合上述要求的设计方案有__________种.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程) 19.(本小题满分8分)计算:12|1-︒+-.20.(本小题满分8分)解不等式组()2112112x x x ⎧-++⎪⎨--⎪⎩<>,并把解集在数轴上表示出来.21.(本小题满分8分)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为__________人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为__________; (3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为__________.. 22.(本小题满分10分)如图,在ABC △中,90ACB ∠=︒,90ACB ∠=︒,以线段AB 为边向外作等边ABD △,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F . (1)求证:四边形BCFD 为平行四边形; (2)若6AB =,求平行四边形BCFD 的面积.数学试卷 第5页(共24页) 数学试卷 第6页(共24页)23.(本小题满分10分)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.24.(本小题满分10分)如图,线段AB 为O 的直径,点C ,E 在O 上,BC CE =,CD AB ⊥,垂足为点D ,连接BE ,弦BE 与线段CD 相交于点F . (1)求证:CF BF =; (2)若4cos 5ABE ∠=,在AB 的延长线上取一点M ,使4BM =,O 的半径为6.求证:直线CM 是O 的切线.25.(本小题满分12分)如图1,抛物线的顶点A 的坐标为()1,4,抛物线与x 轴相交于B 、C 两点,与y 轴交于点()0,3E .(1)求抛物线的表达式;(2)已知点()0,3F -,在抛物线的对称轴上是否存在一点G ,使得EG FG +最小,如果存在,求出点G 的坐标:如果不存在,请说明理由.(3)如图2,连接AB ,若点P 是线段OE 上的一动点,过点P 作线段AB 的垂线,分别与线段AB 、抛物线相交于点M 、N (点M 、N 都在抛物线对称轴的右侧),当MN最大时,求PON △的面积.26.(本小题满分12分)如图1,在ABC △中,矩形EFGH 的一边EF 在AB 上,顶点G 、H 分别在BC 、AC 上,CD 是边AB 上的高,CD 交GH 于点I .若4CI =,3HI =,92AD =.矩形DFGI 恰好为正方形.(1)求正方形DFGI 的边长;(2)如图2,延长AB 至P .使得AC CP =,将矩形EFGH 沿BP 的方向向右平移,当点G 刚好落在CP 上时,试判断移动后的矩形与CBP △重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG ,将正方形DFGI 绕点D 顺时针旋转一定的角度得到正方形DF G I ''',正方形DF G I '''分别与线段DG 、DB 相交于点M ,N ,求MNG '△的周长.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共24页)数学试卷 第8页(共24页)湖南省永州市2018年初中学业水平考试数学答案解析1.【答案】A【解析】解: 2 018-的相反数是2 018. 故选:A.【考点】相反数的定义. 2.【答案】C【解析】解:A.是轴对称图形,故此选项错误;B.是轴对称图形,故此选项错误;C.不是轴对称图形,故此选项正确;D.是轴对称图形,故此选项错误; 故选:C.【考点】轴对称图形的概念. 3.【答案】C【解析】解:根据题意得:30x -≠, 解得:3x ≠. 故选:C.【考点】函数自变量的范围. 4.【答案】B【解析】解:由图可得,几何体的主视图是:故选:B. 【考点】三视图. 5.【答案】C【解析】解:A.2m 与32m 不是同类项,不能合并,此选项错误;B.235 m m m =⋅,此选项错误;C.()33m m =--,此选项正确; D.()333mn m n =,此选项错误; 故选:C.【考点】整式的运算. 6.【答案】A【解析】解:数据从小到大排列为:44,45,45,51,52,54, 所以这组数据的众数为45,中位数为14551482+=().5 / 12故选:A.【考点】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数. 7.【答案】D【解析】解:A.对角线相等的平行四边形是矩形,所以A 选项为假命题;B.对角线互相垂直的平行四边形是菱形,所以B 选项为假命题;C.任意多边形的外角和为360︒,所以C 选项为假命题;D.三角形的中位线平行于第三边且等于第三边的一半,所以D 选项为真命题. 故选:D.【考点】命题与定理. 8.【答案】B【解析】解:A A ∠=∠,ADC ACB ∠=∠,ADC ACB ∴△∽△, AC ADAB AC∴=, 2 2816AC AD AB ∴=⋅=⨯=,0AC >,4AC ∴=,故选:B.【考点】相似三角形的判定和性质.2y ax bx =+ 9.【答案】D【解析】解:A.抛物线2y ax bx =+开口方向向上,则0a >,对称轴位于y 轴的右侧,则a 、b 异号,即0b <.所以反比例函数by x=的图象位于第二、四象限,故本选项错误;B.抛物线2y ax bx =+开口方向向上,则0a >,对称轴位于y 轴的左侧,则a 、b 同号,即0b >.所以反比例函数by x=的图象位于第一、三象限,故本选项错误; C.抛物线开口方向向下,则0a <,对称轴位于y 轴的右侧,则a 、b 异号,即0b >.所以反比例函数by x=的图象位于第一、三象限,故本选项错误; D.抛物线2y ax bx =+开口方向向下,则0a <,对称轴位于y 轴的右侧,则a 、b 异号,即0b >.所以反比例函数by x=的图象位于第一、三象限,故本选项正确; 故选:D.【考点】反比例函数的图象,二次函数的图象. 10.【答案】A【解析】解:5320.50.52a ba b b a +==⨯-+=-利润总售价-总成本(),赔钱了说明0利润<数学试卷 第11页(共24页)数学试卷 第12页(共24页)0.50.50b a ∴-<,a b ∴>.故选:A.【考点】一元一次不等式组的应用. 11.【答案】82.410⨯【解析】解:82.4 2.410=⨯亿. 故答案为:82.410⨯【考点】科学记数法的表示方法. 12.【答案】()()11x x +- 【解析】解:原式()()11x x =+-. 故答案为:()()11x x +-. 【考点】因式分解﹣运用公式法. 13.【答案】75︒【解析】解:60CEA ∠=︒,45BAE ∠=︒,18075ADE CEA BAE ∴∠=︒-∠-∠=︒, 75BDC ADE ∴∠=∠=︒,故答案为75︒.【考点】三角板的性质、三角形内角和定理. 14.【答案】11x x -+ 【解析】解:2211121x x x x x +⎛⎫+÷ ⎪--+⎝⎭()()211111x x x x x --+=⋅-+ ()()2111x xx x x -=⋅-+ 11x x -=+, 故答案为:11x x -+. 【考点】分式的混合运算. 15.【答案】100【解析】解:由题意可得,30.03n=, 解得,100n =;故估计n 大约是100. 故答案为:100.【考点】利用频率估计概率.7 / 1216.【答案】4【解析】解:点下()1,1A ,OA ∴=A 在第一象限的角平分线上,以点O 为旋转中心,将点O 逆时针旋转到点B 的位置,45AOB ∴∠=︒,AB ∴=.. 【考点】弧长公式. 17.【答案】4【解析】解:()22222216 2 2 2 2222211114log log log log log log =⋅⋅⋅=+++=+++=. 故答案为4. 【考点】规律型.18.【答案】A【解析】解:输油管道所在直线符合上述要求的设计方案有4种,如图所示;故答案为4.【考点】整体﹣应用与设计. 19.【答案】解:原式12122=-+=. 【考点】实数的运算.20.【答案】解:()2112112x x x ⎧-++⎪⎨--⎪⎩<>,解不等式①,可得3x <, 解不等式②,可得1x >-, ∴不等式组的解集为13x -<<,在数轴上表示出来为:【考点】解一元一次不等式组.21.【答案】解:(1)参观的学生总人数为1230%40÷=(人);数学试卷 第15页(共24页)数学试卷 第16页(共24页)(2)喜欢“瑶文化”的学生占参观总学生数的百分比为6100%15%40⨯=; (3)“德文化”的学生数为401281064----=,条形统计图如下:(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得:共有12种等可能的结果,甲同学被选中的有6种情况, ∴甲同学被选中的概率是:61=122. 故答案为:40;15%;12【考点】条形统计图和扇形统计图、树状图法与列表法求概率. 22.【答案】(1)证明:在ABC △中,90ACB ∠=︒,30CAB ∠=︒,60ABC ∴∠=︒.在等边ABD △中,60BAD ∠=︒,60BAD ABC ∴∠=∠=︒. E 为AB 的中点,AE BE ∴=. 又AEF BEC ∠=∠, AEF BEC ∴△≌△.在ABC △中,90ACB ∠=︒,E 为AB 的中点,12CE AB ∴=,12BE AB =.CE AE ∴=,30EAC ECA ∴∠=∠=︒, 60BCE EBC ∴∠=∠=︒.又AEF BEC △≌△,60AFE BCE ∴∠=∠=︒.又60D ∠=︒,60AFE D ∴∠=∠=︒.FC BD ∴∥.又60BAD ABC ∠=∠=︒,AD BC ∴∥,即FD BC ∥.∴四边形BCFD 是平行四边形.(2)解:在Rt ABC △中,30BAC ∠=︒,6AB =,9 / 12132BC AB ∴==,AC ==,3BCFD S ∴=⨯=平行四边形.【考点】平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理.23.【答案】解:设小明班上参观禁毒教育基地的男生人数为x 人,女生人数为y 人,依题意得:551.55x y x y +=⎧⎨=+⎩,解得3520x y =⎧⎨=⎩,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人. 【考点】二元一次方程组的应用.24.【答案】证明:(1)延长CD 交O 于G ,如图,CD AB ⊥,BC BG ∴=,BC CE =,CE BG ∴=,CBE GCB ∴∠=∠,CF BF ∴=;(2)连接OC 交BE 于H ,BC CE =,OC BE ∴⊥, 在Rt OBH △中, 4cos 5BH OBH OB ∠==, 424655BH ∴=⨯=,185OH ∴==,数学试卷 第19页(共24页)数学试卷 第20页(共24页)183565OH OC ==,63645OB OM ==+ OH OBOC OM∴=,而HOB COM ∠=∠, OHB OCM ∴△∽△,90OCM OHB ∴∠=∠=︒,OC CM ∴⊥,∴直线CM 是O 的切线.【考点】切线的判定.25.【答案】解:(1)设抛物线的表达式为()214y a x =-+:, 把()0,3代入得:()23014a =-+,1a =-,∴抛物线的表达式为:221423y x x x =--+=-++();(2)存在,如图1,作E 关于对称轴的对称点'E ,连接'E F 交对称轴于G ,此时EG FG +的值最小,()0,3E ,()'2,3E ∴,易得'E F 的解析式为:33y x =-, 当1x =时,3130y =⨯-=,()1,0G ∴ (3)如图2,()1,4A ,()3,0B ,易得AB 的解析式为:26y x =-+,设()2,23N m m m -++,则(),26Q m m +-,03m ≤≤(), ()()22232643NQ m m m m m ∴=+++=-+----,11 / 12AD NH ∥,DAB NQM ∴∠=∠,90ADB QMN ∠=∠=︒,QMN ADB ∴△∽△,QN AB MN∴=,243m m MN -+-∴= )2255MN m ∴=-+, 50-<, ∴当2m =时,MN 有最大值;过N 作NG y ⊥轴于G ,GPN ABD ∠=∠,90NGP ADB ∠=∠=︒,NGP ADB ∴△∽△,2142PG BD NG AD ∴===, 1122PG NG m ∴==, 221323322OP OG PG m m m m m ∴=-=-++-=-++, 2113 3 222PON S OP GN m m m ∴=⋅=++⋅(-), 当2m =时,()1243322PON S =⨯++=△-. 【考点】二次函数的综合应用.26.【答案】解:(1)如图1中,HI AD ∥,HI CI AD AD∴=, 3492AD ∴=, 6AD ∴=,2ID CD CI ∴=-=,∴正方形的边长为2.(2)如图2中,设等G 落在PC 时对应的点为G ',点F 的对应的点为F '.数学试卷 第23页(共24页)数学试卷 第24页(共24页)CA CP =,CD PA ⊥,ACD PCD ∴∠=∠,A P ∠=∠,HG PA '∥,CHG A ∴∠'=∠,CG H P ∠'=∠,CHG CG H ∴∠'=∠',CH CG ∴=',3IH IG DF ∴='='=,IG DB ∥,IG CI DB CD∴=, 246DB ∴=,3DB ∴=, 3DB DF ∴='=,∴点B 与点F '重合,∴移动后的矩形与CBP △重叠部分是BGG '△,∴移动后的矩形与CBP △重叠部分的形状是三角形.(3)如图3中,如图将DMI '△绕点D 顺时针旋转90︒得到DF R '△,此时N 、’F 、R 共线.’45MDN NDF MDI NDF DF R NDR ∠=∠+∠'=∠'+∠'=∠=︒,DN DN =,DM DR =,NDM NDR ∴△≌△,MN NR NF RF NF MI ∴=='+'='+',MNG ∴'△的周长24MN MG NG MG MI NG F R I G =+'+'='+'+'+'=''=.【考点】四边形综合题、矩形的性质、正方形的性质、平行线等分线段定理、全等三角形的判定和性质.。
2018年湖南省永州市中考数学试卷
2018年湖南省永州市中考数学试卷一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分1.(4分)﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣2.(4分)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.3.(4分)函数y=中自变量x的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=34.(4分)如图几何体的主视图是()A.B.C.D.5.(4分)下列运算正确的是()A.m2+2m3=3m5B.m2•m3=m6C.(﹣m)3=﹣m3D.(mn)3=mn3 6.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48 B.44,45 C.45,51 D.52,537.(4分)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半8.(4分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.89.(4分)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx (a≠0)的图象大致是()A.B.C.D.10.(4分)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为.12.(4分)因式分解:x2﹣1=.13.(4分)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=.14.(4分)化简:(1+)÷=.15.(4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.16.(4分)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.17.(4分)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=.18.(4分)现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有种.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.(8分)计算:2﹣1﹣sin60°+|1﹣|.20.(8分)解不等式组,并把解集在数轴上表示出来.21.(8分)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.22.(10分)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.23.(10分)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.24.(10分)如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.25.(12分)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.26.(12分)如图1,在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.2018年湖南省永州市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分1.(4分)﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2018的相反数是2018.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(4分)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.【点评】本题考查的是轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(4分)函数y=中自变量x的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=3【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故选:C.【点评】考查了函数自变量的范围,注意:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(4分)如图几何体的主视图是()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.5.(4分)下列运算正确的是()A.m2+2m3=3m5B.m2•m3=m6C.(﹣m)3=﹣m3D.(mn)3=mn3【分析】根据合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方逐一计算可得.【解答】解:A、m2与2m3不是同类项,不能合并,此选项错误;B、m2•m3=m5,此选项错误;C、(﹣m)3=﹣m3,此选项正确;D、(mn)3=m3n3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方.6.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48 B.44,45 C.45,51 D.52,53【分析】先把原数据按由小到大排列,然后根据众数、中位数的定义求解.【解答】解:数据从小到大排列为:44,45,45,51,52,54,所以这组数据的众数为45,中位数为(45+51)=48.故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.7.(4分)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半【分析】根据矩形的判定方法对A进行判断;根据菱形的判定方法对B进行判断;根据多边形的内角和对C进行判断;根据三角形中位线性质对D进行判断.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项为假命题;B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;C、任意多边形的外角和为360°,所以C选项为假命题;D、三角形的中位线平行于第三边且等于第三边的一半,所以D选项为真命题.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(4分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.8【分析】只要证明△ADC∽△ACB,可得=,即AC2=AD•AB,由此即可解决问题;【解答】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选:B.【点评】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.9.(4分)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx (a≠0)的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b 同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b 异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b 异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.【点评】此题主要考查了反比例函数的图象,以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.10.(4分)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关【分析】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.【解答】解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.【点评】此题考查一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为 2.4×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:2.4亿=2.4×108.故答案为:2.4×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)因式分解:x2﹣1=(x+1)(x﹣1).【分析】方程利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.13.(4分)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=75°.【分析】根据三角板的性质以及三角形内角和定理计算即可;【解答】解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.【点评】本题考查三角板的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.14.(4分)化简:(1+)÷=.【分析】根据分式的加法和除法可以解答本题.【解答】解:(1+)÷===,故答案为:.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.15.(4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是100.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.03,解得,n=100.故估计n大约是100.故答案为:100.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.【分析】由点A(1,1),可得OA==,点A在第一象限的角平分线上,那么∠AOB=45°,再根据弧长公式计算即可.【解答】解:∵点A(1,1),∴OA==,点A在第一象限的角平分线上,∵以点O为旋转中心,将点A逆时针旋转到点B的位置,∴∠AOB=45°,∴的长为=.故答案为.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了坐标与图形变化﹣旋转,求出OA=以及∠AOB=45°是解题的关键.17.(4分)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=4.【分析】利用log2(x•y)=log2x+log2y得到log216=log22+log22+log22+log22,然后根据log22=1进行计算.【解答】解:log216=log2(2•2•2•2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.【点评】本题考查了规律型:认真观察、仔细思考,善用联想是解决这类问题的方法.18.(4分)现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有4种.【分析】根据点A、B的可以在直线的两侧或异侧两种情形讨论即可;【解答】解:输油管道所在直线符合上述要求的设计方案有4种,如图所示;故答案为4.【点评】本题考查整体﹣应用与设计,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.(8分)计算:2﹣1﹣sin60°+|1﹣|.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣×+2=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解不等式组,并把解集在数轴上表示出来.【分析】分别解不等式组的两个不等式,即可得到其公共部分,依据解集即可在数轴上表示出来.【解答】解:,解不等式①,可得x<3,解不等式②,可得x>﹣1,∴不等式组的解集为﹣1<x<3,在数轴上表示出来为:【点评】本题主要考查了解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.21.(8分)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为40人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为15%;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.【分析】(1)依据最喜欢“和文化”的学生数以及百分比,即可得到参观的学生总人数;(2)依据最喜欢“瑶文化”的学生数,即可得到其占参观总学生数的百分比;(3)依据“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,即可补全条形统计图;(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图可得最喜欢“德文化”的学生甲被选中的概率.【解答】解:(1)参观的学生总人数为12÷30%=40(人);(2)喜欢“瑶文化”的学生占参观总学生数的百分比为×100%=15%;(3)“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,条形统计图如下:(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得:∵共有12种等可能的结果,甲同学被选中的有6种情况,∴甲同学被选中的概率是:=.故答案为:40;15%;.【点评】此题考查了条形统计图和扇形统计图,树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.【分析】(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【解答】(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB.∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC∥BD.又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC.∴四边形BCFD是平行四边形.(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AB=3,AC=BC=3,∴S=3×=9.平行四边形BCFD【点评】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.(10分)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.【分析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,依题意得:,解得,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点评】考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24.(10分)如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.(1)延长CD交⊙O于G,如图,利用垂径定理得到=,则可证明=,【分析】然后根据圆周角定理得∠CBE=∠GCB,从而得到CF=BF;(2)连接OC交BE于H,如图,先利用垂径定理得到OC⊥BE,再在Rt△OBH中利用解直角三角形得到BH=,OH=,接着证明△OHB∽△OCM得到∠OCM=∠OHB=90°,然后根据切线的判定定理得到结论.【解答】证明:(1)延长CD交⊙O于G,如图,∵CD⊥AB,∴=,∵=,∴=,∴∠CBE=∠GCB,∴CF=BF;(2)连接OC交BE于H,如图,∵=,∴OC⊥BE,在Rt△OBH中,cos∠OBH==,∴BH=×6=,∴OH==,∵==,==,∴=,而∠HOB=∠COM,∴△OHB∽△OCM,∴∠OCM=∠OHB=90°,∴OC⊥CM,∴直线CM是⊙O的切线.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理和解直角三角形.25.(12分)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.【分析】(1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,先求E'F的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(0≤m≤3),表示NQ=﹣m2+4m﹣3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.【解答】解:(1)设抛物线的表达式为:y=a(x﹣1)2+4,把(0,3)代入得:3=a(0﹣1)2+4,a=﹣1,∴抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,∵E(0,3),∴E'(2,3),易得E'F的解析式为:y=3x﹣3,当x=1时,y=3×1﹣3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(0≤m≤3),∴NQ=(﹣m2+2m+3)﹣(﹣2m+6)=﹣m2+4m﹣3,∵AD∥NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90°,∴△QMN∽△ADB,∴,∴,∴MN=﹣(m﹣2)2+,∵﹣<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90°,∴△NGP∽△ADB,∴==,∴PG=NG=m,∴OP=OG﹣PG=﹣m2+2m+3﹣m=﹣m2+m+3,=OP•GN=(﹣m2+m+3)•m,∴S△PON当m=2时,S=×2(﹣4+3+3)=2.△PON【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.26.(12分)如图1,在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.【分析】(1)由HI∥AD,得到=,求出AD即可解决问题;(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.求出IG′和BD的长比较即可判定;(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.想办法证明MN=MI′+NF′,即可解决问题;【解答】解:(1)如图1中,∵HI∥AD,∴=,∴=,∴AD=6,∴ID=CD﹣CI=2,∴正方形的边长为2.(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.∵CA=CP,CD⊥PA,∴∠ACD=∠PCD,∠A=∠P,∵HG′∥PA,∴∠CHG′=∠A,∠CG′H=∠P,∴∠CHG′=∠CG′H,∴CH=CG′,∴IH=IG′=DF′=3,∵IG∥DB,∴=,∴=,∴DB=3,∴DB=DF′=3,∴点B与点F′重合,∴移动后的矩形与△CBP重叠部分是△BGG′,∴移动后的矩形与△CBP重叠部分的形状是三角形.(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.∵∠MDN=∠NDF+∠MDI′=∠NDF′+∠DF′R=∠NDR=45°,∵DN=DN,DM=DR,∴△NDM≌△NDR,∴MN=NR=NF′+RF′=NF′+MI′,∴△MNG′的周长=MN+MG′+NG′=MG′+MI′+NG′+F′R=2I′G′=4.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、平行线等分线段定理、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.。
湖南永州-解析版
湖南省永州市2018年中考数学试卷一、填空题(本大题共8小题,每小题3分,共24分)1、(2018•永州)的倒数是2018.考点:倒数。
专题:计算题。
分析:根据倒数的意义,乘积为1的两个数互为倒数.所以求一个数的倒数即用1除以这个数,所得的商即是.解答:解:的倒数为:1÷=2018,故答案为:2018.点评:此题考查的知识点是倒数,关键是要明确倒数的意义,要求一个数的倒数即用1除以这个数.2、(2018•永州)根据第六次全国人口普查公布的数据,按标准时间2018年11月1日0时登记的大陆人口约为1339000000人,将1339000000用科学记数法表示为 1.339×109人.考点:科学记数法—表示较大的数。
专题:推理填空题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1 339 000 000人=1.339×109人.故答案为:1.339×109人.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、因式分解:m2﹣m=m(m﹣1).考点:因式分解-提公因式法。
专题:计算题。
分析:式子的两项含有公因式m,提取公因式即可分解.解答:解:m2﹣m=m(m﹣1)故答案是:m(m﹣1).点评:本题主要考查了提取公因式分解因式,正确确定公因式是解题的关键.4、(2018•永州)永州市新田县的龙家大院至今已有930多年历史,因该村拥有保存完好的“三堂九井二十四巷四十八栋”明清建筑,而申报为中国历史文化名村.如图是龙家大院的一个窗花图案,它具有很好的对称美,这个图案是由:①正六边形;②正三角形;③等腰梯形;④直角梯形等几何图形构成,在这四种几何图形中既是轴对称图形又是中心对称图形的是①(只填序号).考点:中心对称图形;轴对称图形。
【精校】2018年湖南省永州市中考真题数学
2018年湖南省永州市中考真题数学一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分)1. -2018的相反数是( )A.2018B.-2018C.1 2018D.-1 2018解析:只有符号不同的两个数叫做互为相反数.答案:A.2.誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是( )A.B.C.D.解析:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误.答案:C.3.函数y=13x中自变量x的取值范围是( )A.x≥3B.x<3C.x≠3D.x=3解析:根据分式的意义,分母不等于0,可以求出x的范围.根据题意得:x-3≠0,解得:x≠3.答案:C.4.如图几何体的主视图是( )A.B.C.D.解析:依据从该几何体的正面看到的图形,即可得到主视图.答案:B.5.下列运算正确的是( )A.m2+2m3=3m5B.m2·m3=m6C.(-m)3=-m3D.(mn)3=mn3解析:根据合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方逐一计算可得.答案:C.6.已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为( )A.45,48B.44,45C.45,51D.52,53解析:数据从小到大排列为:44,45,45,51,52,54,所以这组数据的众数为45,中位数为12(45+51)=48.答案:A.7.下列命题是真命题的是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半解析:A、对角线相等的平行四边形是矩形,所以A选项为假命题;B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;C、任意多边形的外角和为360°,所以C选项为假命题;D、三角形的中位线平行于第三边且等于第三边的一半,所以D选项为真命题.答案:D.8.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为( )A.2B.4C.6D.8解析:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC,∴AC2=AD·AB=2×8=16,∵AC>0,∴AC=4.答案:B.9.在同一平面直角坐标系中,反比例函数y=bx(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是( ) A.B.C.D.解析:直接利用二次函数图象经过的象限得出a ,b 的值取值范围,进而利用反比例函数的性质得出答案. 答案:D.10.甲从商贩A 处购买了若干斤西瓜,又从商贩B 处购买了若干斤西瓜.A 、B 两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A 、B 两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为( ) A.商贩A 的单价大于商贩B 的单价 B.商贩A 的单价等于商贩B 的单价 C.商版A 的单价小于商贩B 的单价 D.赔钱与商贩A 、商贩B 的单价无关 解析:利润=总售价-总成本=2a b×5-(3a+2b)=0.5b-0.5a ,赔钱了说明利润<0 ∴0.5b-0.5a <0, ∴a >b. 答案:A.二、填空题(本大题共8个小题,每小题4分,共32分)11.截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为_____.解析:2.4亿=2.4×108.答案:2.4×108.12.因式分解:x 2-1=_____. 解析:原式=(x+1)(x-1). 答案:(x+1)(x-1).13.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=_____.解析:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°-∠CEA-∠BAE=75°,∴∠BDC=∠ADE=75°.答案:75°.14.化简:2211121x xx x x+⎛⎫+÷⎪--+⎝⎭=_____.解析:根据分式的加法和除法可以解答本题.答案:11 xx-+.15.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.解析:由题意可得,3n=0.03,解得,n=100.故估计n大约是100.答案:100.16.如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则»AB的长为_____.解析:由点A(1,1),可得=点A在第一象限的角平分线上,那么∠AOB=45°,再根据弧长公式计算即可.17.对于任意大于0的实数x、y,满足:log2(x·y)=log2x+log2y,若log22=1,则log216=_____. 解析:log216=log2(2·2·2·2)=log22+log22+log22+log22=1+1+1+1=4.答案:4.18.现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B 两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有_____种.解析:输油管道所在直线符合上述要求的设计方案有4种,如图所示.答案:4.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.计算:2-1°解析:原式利用负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.答案:原式=12-+2=1.20.解不等式组()2112112x xx-++⎧⎪⎨--⎪⎩<>,并把解集在数轴上表示出来.解析:分别解不等式组的两个不等式,即可得到其公共部分,依据解集即可在数轴上表示出来.答案:()2112112x xx-++⎧⎪⎨--⎪⎩<>,解不等式①,可得x<3,解不等式②,可得x>-1,∴不等式组的解集为-1<x<3,在数轴上表示出来为:21.永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为_____人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为_____;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为_____.解析:(1)依据最喜欢“和文化”的学生数以及百分比,即可得到参观的学生总人数;(2)依据最喜欢“瑶文化”的学生数,即可得到其占参观总学生数的百分比;(3)依据“德文化”的学生数为40-12-8-10-6=4,即可补全条形统计图;(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图可得最喜欢“德文化”的学生甲被选中的概率.答案:(1)参观的学生总人数为12÷30%=40(人);(2)喜欢“瑶文化”的学生占参观总学生数的百分比为640×100%=15%;(3)“德文化”的学生数为40-12-8-10-6=4,条形统计图如下:(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得:∵共有12种等可能的结果,甲同学被选中的有6种情况,∴甲同学被选中的概率是:61 122.22.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB 的中点,连接CE 并延长交线段AD 于点F.(1)求证:四边形BCFD 为平行四边形; (2)若AB=6,求平行四边形BCFD 的面积. 解析:(1)在Rt △ABC 中,E 为AB 的中点,则CE=12AB ,BE=12AB ,得到∠BCE=∠EBC=60°.由△AEF ≌△BEC ,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC ∥BD ,又因为∠BAD=∠ABC=60°,所以AD ∥BC ,即FD ∥BC ,则四边形BCFD 是平行四边形. (2)在Rt △ABC 中,求出BC ,AC 即可解决问题.答案:(1)证明:在△ABC 中,∠ACB=90°,∠CAB=30°, ∴∠ABC=60°.在等边△ABD 中,∠BAD=60°, ∴∠BAD=∠ABC=60°. ∵E 为AB 的中点, ∴AE=BE.又∵∠AEF=∠BEC , ∴△AEF ≌△BEC.在△ABC 中,∠ACB=90°,E 为AB 的中点, ∴CE=12AB ,BE=12AB. ∴CE=AE ,∴∠EAC=∠ECA=30°, ∴∠BCE=∠EBC=60°. 又∵△AEF ≌△BEC , ∴∠AFE=∠BCE=60°. 又∵∠D=60°, ∴∠AFE=∠D=60°. ∴FC ∥BD.又∵∠BAD=∠ABC=60°, ∴AD ∥BC ,即FD ∥BC.∴四边形BCFD 是平行四边形.(2)解:在Rt △ABC 中,∵∠BAC=30°,AB=6,∴BC=12AB=3,∴S 平行四边形BCFD =3×23.在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.解析:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.答案:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,依题意得:551.55 x yx y+=⎧⎨=+⎩,解得3520 xy=⎧⎨=⎩,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.24.如图,线段AB为⊙O的直径,点C,E在⊙O上,»»BC CE=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=45,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.解析:(1)延长CD交⊙O于G,如图,利用垂径定理得到»»BC BG=,则可证明»»CE BG=,然后根据圆周角定理得∠CBE=∠GCB,从而得到CF=BF;(2)连接OC交BE于H,如图,先利用垂径定理得到OC⊥BE,再在Rt△OBH中利用解直角三角形得到BH=245,OH=185,接着证明△OHB∽△OCM得到∠OCM=∠OHB=90°,然后根据切线的判定定理得到结论.答案:(1)延长CD交⊙O于G,如图,∵CD ⊥AB ,∴»»BC BG =, ∵»»BC CE =, ∴»»CEBG =, ∴∠CBE=∠GCB , ∴CF=BF ;(2)连接OC 交BE 于H ,如图,∵»»BCCE =, ∴OC ⊥BE ,在Rt △OBH 中,cos ∠OBH=45BH OB =, ∴BH=45×6=245, ∴185=,∵183565OHOC ==,63645OB OM ==+, ∴OH OBOCOM=, 而∠HOB=∠COM , ∴△OHB ∽△OCM , ∴∠OCM=∠OHB=90°, ∴OC ⊥CM ,∴直线CM 是⊙O 的切线.25.如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,-3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.解析:(1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点Eˊ,连接EˊF交对称轴于G,此时EG+FG的值最小,先求EˊF的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=-2x+6,设N(m,-m2+2m+3),则Q(m,-2m+6),(0≤m≤3),表示NQ=-m2+4m-3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.答案:(1)设抛物线的表达式为:y=a(x-1)2+4,把(0,3)代入得:3=a(0-1)2+4,a=-1,∴抛物线的表达式为:y=-(x-1)2+4=-x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点Eˊ,连接EˊF交对称轴于G,此时EG+FG的值最小,∵E(0,3),∴Eˊ(2,3),易得EˊF的解析式为:y=3x-3,当x=1时,y=3×1-3=0,∴G(1,0).(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=-2x+6,设N(m,-m2+2m+3),则Q(m,-2m+6),(0≤m≤3),∴NQ=(-m2+2m+3)-(-2m+6)=-m2+4m-3,∵AD∥NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90°,∴△QMN∽△ADB,∴QN AB MN BD=,∴243 m mMN-+-=∴MN=-5(m-2)2+5,∵-5<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90°,∴△NGP∽△ADB,∴2142 PG BDNG AD===,∴PG=12NG=12m,∴OP=OG-PG=-m2+2m+3-12m=-m2+32m+3,∴S△PON=12OP·GN=12(-m2+32m+3)·m,当m=2时,S△PON=12×2(-4+3+3)=2.26.如图1,在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=92.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.解析:(1)由HI∥AD,得到HI CIAD AD=,求出AD即可解决问题;(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.求出IG′和BD的长比较即可判定;(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.想办法证明MN=MI′+NF′,即可解决问题.答案:(1)如图1中,∵HI∥AD,∴HI CI AD AD=,∴3492AD =,∴AD=6,∴ID=CD-CI=2,∴正方形的边长为2.(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.∵CA=CP,CD⊥PA,∴∠ACD=∠PCD,∠A=∠P,∵HG′∥PA,∴∠CHG′=∠A,∠CG′H=∠P,∴∠CHG′=∠CG′H,∴CH=CG′,∴IH=IG′=DF′=3,∵IG∥DB,∴IG CI DB CD=,∴246 DB=,∴DB=3,∴DB=DF′=3,∴点B与点F′重合,∴移动后的矩形与△CBP重叠部分是△BGG′,∴移动后的矩形与△CBP重叠部分的形状是三角形.(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.∵∠MDN=∠NDF+∠MDI′=∠NDF′+∠DF′R=∠NDR=45°,∵DN=DN,DM=DR,∴△NDM≌△NDR,∴MN=NR=NF′+RF′=NF′+MI′,∴△MNG′的周长=MN+MG′+NG′=MG′+MI′+NG′+F′R=2I′G′=4.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2018年湖南省永州市中考数学试卷(解析版)
2018年湖南省永州市中考数学试卷一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分1.(4分)﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣2.(4分)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.3.(4分)函数y=中自变量x的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=34.(4分)如图几何体的主视图是()A.B.C.D.5.(4分)下列运算正确的是()A.m2+2m3=3m5B.m2•m3=m6C.(﹣m)3=﹣m3D.(mn)3=mn3 6.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48 B.44,45 C.45,51 D.52,537.(4分)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半8.(4分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.89.(4分)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx (a≠0)的图象大致是()A.B.C.D.10.(4分)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为.12.(4分)因式分解:x2﹣1=.13.(4分)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=.14.(4分)化简:(1+)÷=.15.(4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.16.(4分)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.17.(4分)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=.18.(4分)现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有种.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.(8分)计算:2﹣1﹣sin60°+|1﹣|.20.(8分)解不等式组,并把解集在数轴上表示出来.21.(8分)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.22.(10分)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.23.(10分)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.24.(10分)如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.25.(12分)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.26.(12分)如图1,在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.2018年湖南省永州市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分1.(4分)﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2018的相反数是2018.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(4分)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.【点评】本题考查的是轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(4分)函数y=中自变量x的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=3【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故选:C.【点评】考查了函数自变量的范围,注意:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(4分)如图几何体的主视图是()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.5.(4分)下列运算正确的是()A.m2+2m3=3m5B.m2•m3=m6C.(﹣m)3=﹣m3D.(mn)3=mn3【分析】根据合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方逐一计算可得.【解答】解:A、m2与2m3不是同类项,不能合并,此选项错误;B、m2•m3=m5,此选项错误;C、(﹣m)3=﹣m3,此选项正确;D、(mn)3=m3n3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方.6.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48 B.44,45 C.45,51 D.52,53【分析】先把原数据按由小到大排列,然后根据众数、中位数的定义求解.【解答】解:数据从小到大排列为:44,45,45,51,52,54,所以这组数据的众数为45,中位数为(45+51)=48.故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.7.(4分)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半【分析】根据矩形的判定方法对A进行判断;根据菱形的判定方法对B进行判断;根据多边形的内角和对C进行判断;根据三角形中位线性质对D进行判断.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项为假命题;B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;C、任意多边形的外角和为360°,所以C选项为假命题;D、三角形的中位线平行于第三边且等于第三边的一半,所以D选项为真命题.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(4分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.8【分析】只要证明△ADC∽△ACB,可得=,即AC2=AD•AB,由此即可解决问题;【解答】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选:B.【点评】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.9.(4分)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx (a≠0)的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b 同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b 异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b 异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.【点评】此题主要考查了反比例函数的图象,以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.10.(4分)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关【分析】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.【解答】解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.【点评】此题考查一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为 2.4×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:2.4亿=2.4×108.故答案为:2.4×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)因式分解:x2﹣1=(x+1)(x﹣1).【分析】方程利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.13.(4分)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=75°.【分析】根据三角板的性质以及三角形内角和定理计算即可;【解答】解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.【点评】本题考查三角板的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.14.(4分)化简:(1+)÷=.【分析】根据分式的加法和除法可以解答本题.【解答】解:(1+)÷===,故答案为:.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.15.(4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是100.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.03,解得,n=100.故估计n大约是100.故答案为:100.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.【分析】由点A(1,1),可得OA==,点A在第一象限的角平分线上,那么∠AOB=45°,再根据弧长公式计算即可.【解答】解:∵点A(1,1),∴OA==,点A在第一象限的角平分线上,∵以点O为旋转中心,将点A逆时针旋转到点B的位置,∴∠AOB=45°,∴的长为=.故答案为.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了坐标与图形变化﹣旋转,求出OA=以及∠AOB=45°是解题的关键.17.(4分)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=4.【分析】利用log2(x•y)=log2x+log2y得到log216=log22+log22+log22+log22,然后根据log22=1进行计算.【解答】解:log216=log2(2•2•2•2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.【点评】本题考查了规律型:认真观察、仔细思考,善用联想是解决这类问题的方法.18.(4分)现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有4种.【分析】根据点A、B的可以在直线的两侧或异侧两种情形讨论即可;【解答】解:输油管道所在直线符合上述要求的设计方案有4种,如图所示;故答案为4.【点评】本题考查整体﹣应用与设计,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.(8分)计算:2﹣1﹣sin60°+|1﹣|.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣×+2=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解不等式组,并把解集在数轴上表示出来.【分析】分别解不等式组的两个不等式,即可得到其公共部分,依据解集即可在数轴上表示出来.【解答】解:,解不等式①,可得x<3,解不等式②,可得x>﹣1,∴不等式组的解集为﹣1<x<3,在数轴上表示出来为:【点评】本题主要考查了解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.21.(8分)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为40人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为15%;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.【分析】(1)依据最喜欢“和文化”的学生数以及百分比,即可得到参观的学生总人数;(2)依据最喜欢“瑶文化”的学生数,即可得到其占参观总学生数的百分比;(3)依据“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,即可补全条形统计图;(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图可得最喜欢“德文化”的学生甲被选中的概率.【解答】解:(1)参观的学生总人数为12÷30%=40(人);(2)喜欢“瑶文化”的学生占参观总学生数的百分比为×100%=15%;(3)“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,条形统计图如下:(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得:∵共有12种等可能的结果,甲同学被选中的有6种情况,∴甲同学被选中的概率是:=.故答案为:40;15%;.【点评】此题考查了条形统计图和扇形统计图,树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.【分析】(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【解答】(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB.∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC∥BD.又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC.∴四边形BCFD是平行四边形.(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AB=3,AC=BC=3,∴S=3×=9.平行四边形BCFD【点评】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.(10分)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.【分析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,依题意得:,解得,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点评】考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24.(10分)如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.(1)延长CD交⊙O于G,如图,利用垂径定理得到=,则可证明=,【分析】然后根据圆周角定理得∠CBE=∠GCB,从而得到CF=BF;(2)连接OC交BE于H,如图,先利用垂径定理得到OC⊥BE,再在Rt△OBH 中利用解直角三角形得到BH=,OH=,接着证明△OHB∽△OCM得到∠OCM=∠OHB=90°,然后根据切线的判定定理得到结论.【解答】证明:(1)延长CD交⊙O于G,如图,∵CD⊥AB,∴=,∵=,∴=,∴∠CBE=∠GCB,∴CF=BF;(2)连接OC交BE于H,如图,∵=,∴OC⊥BE,在Rt△OBH中,cos∠OBH==,∴BH=×6=,∴OH==,∵==,==,∴=,而∠HOB=∠COM,∴△OHB∽△OCM,∴∠OCM=∠OHB=90°,∴OC⊥CM,∴直线CM是⊙O的切线.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理和解直角三角形.25.(12分)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.【分析】(1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,先求E'F的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(0≤m≤3),表示NQ=﹣m2+4m﹣3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.【解答】解:(1)设抛物线的表达式为:y=a(x﹣1)2+4,把(0,3)代入得:3=a(0﹣1)2+4,a=﹣1,∴抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,∵E(0,3),∴E'(2,3),易得E'F的解析式为:y=3x﹣3,当x=1时,y=3×1﹣3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(0≤m≤3),∴NQ=(﹣m2+2m+3)﹣(﹣2m+6)=﹣m2+4m﹣3,∵AD∥NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90°,∴△QMN∽△ADB,∴,∴,∴MN=﹣(m﹣2)2+,∵﹣<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90°,∴△NGP∽△ADB,∴==,∴PG=NG=m,∴OP=OG﹣PG=﹣m2+2m+3﹣m=﹣m2+m+3,=OP•GN=(﹣m2+m+3)•m,∴S△PON=×2(﹣4+3+3)=2.当m=2时,S△PON【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.26.(12分)如图1,在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.【分析】(1)由HI∥AD,得到=,求出AD即可解决问题;(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.求出IG′和BD的长比较即可判定;(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.想办法证明MN=MI′+NF′,即可解决问题;【解答】解:(1)如图1中,∵HI∥AD,∴=,∴=,∴AD=6,∴ID=CD﹣CI=2,∴正方形的边长为2.(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.∵CA=CP,CD⊥PA,∴∠ACD=∠PCD,∠A=∠P,∵HG′∥PA,∴∠CHG′=∠A,∠CG′H=∠P,∴∠CHG′=∠CG′H,∴CH=CG′,∴IH=IG′=DF′=3,∵IG∥DB,∴=,∴=,∴DB=3,∴DB=DF′=3,∴点B与点F′重合,∴移动后的矩形与△CBP重叠部分是△BGG′,∴移动后的矩形与△CBP重叠部分的形状是三角形.(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.∵∠MDN=∠NDF+∠MDI′=∠NDF′+∠DF′R=∠NDR=45°,∵DN=DN,DM=DR,∴△NDM≌△NDR,∴MN=NR=NF′+RF′=NF′+MI′,∴△MNG′的周长=MN+MG′+NG′=MG′+MI′+NG′+F′R=2I′G′=4.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、平行线等分线段定理、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018 年湖南省永州市中考数学试卷一、选择题(本大题共10 个小题 . 每个小题只有一个正确选项. 每小题 4 分 . 共40 分1.(4 分)﹣ 2018 的相反数是()A.2018B.﹣ 2018 C.D.﹣2.(4 分)誉为全国第三大露天碑林的“浯溪碑林” . 摩崖上铭刻着 500 多方古今名家碑文 . 其中悬针篆文具有较高的历史意义和研究价值 . 下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.3.(4 分)函数 y=中自变量x的取值范围是()A.x≥3B.x<3C.x≠3D.x=34.(4 分)如图几何体的主视图是()A.B.C.D.5.(4 分)下列运算正确的是()2352363333A.m+2m=3m B.m? m=m C.(﹣ m) =﹣m D.( mn) =mn6.( 4 分)已知一组数据 45.51.54.52.45.44.则这组数据的众数、中位数分别为()A.45.48 B.44.45C.45.51D.52.537.(4 分)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边. 并且等于第三边的一半8.(4 分)如图 . 在△ ABC中. 点 D 是边 AB上的一点 . ∠ADC=∠ACB.AD=2.BD=6则.边 AC的长为()A.2B.4C.6D.89.(4 分)在同一平面直角坐标系中. 反比例函数 y= (b≠0)与二次函数 y=ax2 +bx ( a≠ 0)的图象大致是()A.B.C.D.10.(4 分)甲从商贩 A 处购买了若干斤西瓜 . 又从商贩 B 处购买了若干斤西瓜. A、B 两处所购买的西瓜重量之比为3:2. 然后将买回的西瓜以从A、B 两处购买单价的平均数为单价全部卖给了乙. 结果发现他赔钱了 . 这是因为()A.商贩 A 的单价大于商贩 B 的单价B.商贩 A 的单价等于商贩 B 的单价C.商版 A 的单价小于商贩 B 的单价D.赔钱与商贩 A、商贩 B 的单价无关二、填空题(本大题共8个小题.每小题 4分.共 32分)11.( 4 分)截止 2017 年年底 . 我国 60 岁以上老龄人口达 2.4 亿. 占总人口比重达 17.3%.将 2.4 亿用科学记数法表示为.12.( 4 分)因式分解: x2﹣1=.13.(4 分)一副透明的三角板 . 如图叠放 . 直角三角板的斜边AB、CE相交于点 D.则∠ BDC=.14.( 4 分)化简:( 1+)÷=.15.(4 分)在一个不透明的盒子中装有 n 个球 . 它们除了颜色之外其它都没有区别 . 其中含有 3 个红球 . 每次摸球前 . 将盒中所有的球摇匀 . 然后随机摸出一个球 . 记下颜色后再放回盒中.通过大量重复试验 . 发现摸到红球的频率稳定在 0.03.那么可以推算出n 的值大约是.16.( 4 分)如图 . 在平面直角坐标系中 . 已知点 A(1.1 ) . 以点 O为旋转中心 . 将点 A 逆时针旋转到点 B 的位置 . 则的长为.17(.4 分)对于任意大于 0 的实数 x、y. 满足:log(2 x? y)=log 2x+log 2y. 若 log 22=1.则 log 216=.18.( 4 分)现有 A、B 两个大型储油罐 . 它们相距 2km.计划修建一条笔直的输油管道 . 使得 A、 B 两个储油罐到输油管道所在直线的距离都为0.5km. 输油管道所在直线符合上述要求的设计方案有种.三、解答题(本大题共8 个小题 . 解答题要求写出证明步骤或解答过程)19.( 8 分)计算: 2﹣1﹣ sin60 °+|1 ﹣| .20.( 8 分)解不等式组. 并把解集在数轴上表示出来.21.( 8 分)永州植物园“清风园”共设 11 个主题展区.为推进校园文化建设 . 某校九年级(1)班组织部分学生到“清风园”参观后 . 开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项 . 根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息 . 回答下列问题.( 1)参观的学生总人数为人;( 2 )在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛. 最喜欢“德文化”的学生甲被选中的概率为.22.(10 分)如图 . 在△ ABC中. ∠ACB=90° . ∠CAB=30° . 以线段 AB为边向外作等边△ ABD.点 E 是线段 AB的中点 . 连接 CE并延长交线段 AD于点 F.(1)求证:四边形 BCFD为平行四边形;(2)若 AB=6.求平行四边形 BCFD的面积.23.( 10 分)在永州市青少年禁毒教育活动中. 某班男生小明与班上同学一起到禁毒教育基地参观 . 以下是小明和奶奶的对话. 请根据对话内容 . 求小明班上参观禁毒教育基地的男生和女生的人数.24.(10 分)如图 . 线段 AB为⊙ O的直径 . 点 C.E 在⊙ O上. =.CD⊥ AB.垂足为点D.连接 BE.弦 BE与线段 CD相交于点F.( 1)求证: CF=BF;( 2)若 cos∠ABE= . 在 AB的延长线上取一点 M.使 BM=4.⊙O的半径为 6.求证:直线 CM是⊙ O的切线.25.( 12 分)如图 1. 抛物线的顶点 A 的坐标为( 1.4 ). 抛物线与 x 轴相交于 B、C两点 . 与 y 轴交于点 E( 0.3 ).( 1)求抛物线的表达式;( 2)已知点 F(0. ﹣3). 在抛物线的对称轴上是否存在一点G.使得 EG+FG最小 .如果存在 . 求出点 G的坐标:如果不存在 . 请说明理由.(3)如图 2. 连接 AB.若点 P 是线段 OE上的一动点 . 过点 P 作线段 AB的垂线 . 分别与线段 AB、抛物线相交于点 M、N(点 M、N 都在抛物线对称轴的右侧) . 当 MN 最大时 . 求△ PON的面积.26.( 12 分)如图 1. 在△ ABC中. 矩形 EFGH的一边 EF在 AB上. 顶点 G、H 分别在BC、AC上.CD 是边 AB上的高 .CD 交 GH于点 I .若 CI=4.HI=3.AD= .矩形DFGI 恰好为正方形.(1)求正方形 DFGI的边长;(2)如图 2. 延长 AB至 P.使得 AC=CP将.矩形 EFGH沿 BP的方向向右平移 . 当点G刚好落在 CP上时 . 试判断移动后的矩形与△ CBP重叠部分的形状是三角形还是四边形 . 为什么?( 3)如图 3. 连接 DG.将正方形 DFGI 绕点 D 顺时针旋转一定的角度得到正方形DF′G′I ′ . 正方形 DF′G′I ′分别与线段 DG、DB相交于点 M.N.求△ MNG′的周长.2018 年湖南省永州市中考数学试卷参考答案与试题解析一、选择题(本大题共10 个小题 . 每个小题只有一个正确选项. 每小题 4 分 . 共40 分1.(4 分)﹣ 2018 的相反数是()A.2018B.﹣ 2018 C.D.﹣【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣ 2018 的相反数是 2018.故选: A.【点评】本题主要考查的是相反数的定义. 掌握相反数的定义是解题的关键.2.(4 分)誉为全国第三大露天碑林的“浯溪碑林” . 摩崖上铭刻着 500 多方古今名家碑文 . 其中悬针篆文具有较高的历史意义和研究价值 . 下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解: A、是轴对称图形 . 故此选项错误;B、是轴对称图形 . 故此选项错误;C、不是轴对称图形 . 故此选项正确;D、是轴对称图形 . 故此选项错误;故选: C.【点评】本题考查的是轴对称图形的概念:轴对称图形的关键是寻找对称轴. 图形两部分沿对称轴折叠后可重合.3.(4 分)函数 y=中自变量x的取值范围是()A.x≥3B.x<3C.x≠3D.x=3【分析】根据分式的意义 . 分母不等于 0. 可以求出 x 的范围.【解答】解:根据题意得: x﹣3≠0.解得: x≠3.故选: C.【点评】考查了函数自变量的范围 . 注意:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时 . 自变量可取全体实数;(2)当函数表达式是分式时 . 考虑分式的分母不能为 0;(3)当函数表达式是二次根式时 . 被开方数非负.4.(4 分)如图几何体的主视图是()A.B.C.D.【分析】依据从该几何体的正面看到的图形. 即可得到主视图.【解答】解:由图可得 . 几何体的主视图是:故选: B.【点评】本题主要考查了三视图 . 解题时注意:视图中每一个闭合的线框都表示物体上的一个平面 . 而相连的两个闭合线框常不在一个平面上.5.(4 分)下列运算正确的是()2352363333A.m+2m=3m B.m? m=m C.(﹣ m) =﹣m D.( mn) =mn【分析】根据合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方逐一计算可得.23不是同类项 . 不能合并 . 此选项错误;【解答】 解: A 、m 与 2m235此选项错误;B 、m? m=m.33C 、(﹣ m ) =﹣m. 此选项正确;333D 、(mn ) =mn . 此选项错误;故选: C .【点评】 本题主要考查整式的运算 . 解题的关键是掌握合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方.6.( 4 分)已知一组数据 45.51.54.52.45.44. 则这组数据的众数、 中位数分别为()A .45.48B .44.45C .45.51D .52.53【分析】 先把原数据按由小到大排列 . 然后根据众数、中位数的定义求解.【解答】 解:数据从小到大排列为: 44.45.45.51.52.54.所以这组数据的众数为 45. 中位数为 (45+51)=48.故选: A .【点评】本题考查了众数: 一组数据中出现次数最多的数据叫做众数. 也考查了中位数.7.(4 分)下列命题是真命题的是()A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .任意多边形的内角和为 360°D .三角形的中位线平行于第三边 . 并且等于第三边的一半【分析】根据矩形的判定方法对 A 进行判断;根据菱形的判定方法对 B 进行判断;根据多边形的内角和对 C 进行判断;根据三角形中位线性质对 D 进行判断.【解答】 解: A 、对角线相等的平行四边形是矩形 . 所以 A 选项为假命题;B 、对角线互相垂直的平行四边形是菱形 . 所以 B 选项为假命题;C 、任意多边形的外角和为 360° . 所以 C 选项为假命题;D、三角形的中位线平行于第三边且等于第三边的一半. 所以 D 选项为真命题.故选: D.【点评】本题考查了命题与定理:判断一件事情的语句 . 叫做命题.许多命题都是由题设和结论两部分组成 . 题设是已知事项 . 结论是由已知事项推出的事项 . 一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的 . 这样的真命题叫做定理.8.(4 分)如图 . 在△ ABC中. 点 D 是边 AB上的一点 . ∠ADC=∠ACB.AD=2.BD=6则.边 AC的长为()A.2B.4C.6D.8【分析】只要证明△ ADC∽△ ACB.可得2= . 即 AC=AD? AB.由此即可解决问题;【解答】解:∵∠ A=∠A. ∠ADC=∠ACB.∴△ ADC∽△ ACB.∴=.2∴ AC=AD? AB=2×8=16.∵AC>0.∴AC=4.故选: B.【点评】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题 . 属于中考常考题型.9.(4 分)在同一平面直角坐标系中. 反比例函数 y= (b≠0)与二次函数 y=ax2 +bx ( a≠ 0)的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出 a.b 的值取值范围 . 进而利用反比例函数的性质得出答案.【解答】解:A、抛物线 y=ax2+bx 开口方向向上 . 则 a> 0. 对称轴位于 y 轴的右侧 . 则 a、b 异号 . 即 b< 0.所以反比例函数 y= 的图象位于第二、四象限 . 故本选项错误;B、抛物线 y=ax2+bx 开口方向向上 . 则 a>0. 对称轴位于 y 轴的左侧 . 则 a、b 同号 . 即 b>0.所以反比例函数 y= 的图象位于第一、三象限 . 故本选项错误;C、抛物线 y=ax2+bx 开口方向向下 . 则 a<0. 对称轴位于 y 轴的右侧 . 则 a、b 异号 . 即 b>0.所以反比例函数 y= 的图象位于第一、三象限 . 故本选项错误;D、抛物线 y=ax2+bx 开口方向向下 . 则 a<0. 对称轴位于 y 轴的右侧 . 则 a、b 异号 . 即 b>0.所以反比例函数 y= 的图象位于第一、三象限 . 故本选项正确;故选: D.【点评】此题主要考查了反比例函数的图象 . 以及二次函数的图象 . 要熟练掌握二次函数 . 反比例函数中系数与图象位置之间关系.10.(4 分)甲从商贩 A 处购买了若干斤西瓜 . 又从商贩 B 处购买了若干斤西瓜. A、B 两处所购买的西瓜重量之比为3:2. 然后将买回的西瓜以从A、B 两处购买单价的平均数为单价全部卖给了乙. 结果发现他赔钱了 . 这是因为()A.商贩 A 的单价大于商贩 B 的单价B.商贩 A 的单价等于商贩 B 的单价C.商版 A 的单价小于商贩 B 的单价D.赔钱与商贩 A、商贩 B 的单价无关【分析】本题考查一元一次不等式组的应用. 将现实生活中的事件与数学思想联系起来 . 读懂题列出不等式关系式即可求解.【解答】解:利润 =总售价﹣总成本 =× 5﹣(3a+2b)=0.5b﹣0.5a.赔钱了说明利润< 0∴0.5b ﹣ 0.5a < 0.∴a> b.故选: A.【点评】此题考查一元一次不等式组的应用 . 解决本题的关键是读懂题意 . 找到符合题意的不等关系式.二、填空题(本大题共8个小题.每小题 4分.共 32分)11.( 4 分)截止 2017 年年底 . 我国 60 岁以上老龄人口达 2.4 亿. 占总人口比重达 17.3%.将 2.4 亿用科学记数法表示为 2.4 ×108.【分析】科学记数法的表示形式为a×10n的形式 . 其中 1≤|a| < 10.n 为整数.确定n 的值时 . 要看把原数变成 a 时 . 小数点移动了多少位 .n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时.n 是正数;当原数的绝对值< 1 时.n 是负数.【解答】解: 2.4 亿 =2.4 × 108.故答案为: 2.4 ×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式 . 其中 1≤|a| < 10.n 为整数 . 表示时关键要正确确定 a 的值以及 n 的值.212.( 4 分)因式分解: x ﹣1=(x+1)(x﹣1).【解答】解:原式 =( x+1)( x﹣ 1).故答案为:( x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法 . 熟练掌握平方差公式是解本题的关键.13.(4 分)一副透明的三角板 . 如图叠放 . 直角三角板的斜边 AB、CE相交于点 D. 则∠ BDC= 75° .【分析】根据三角板的性质以及三角形内角和定理计算即可;【解答】解:∵∠ CEA=60° . ∠BAE=45° .∴∠ ADE=180°﹣∠ CEA﹣∠ BAE=75° .∴∠ BDC=∠ADE=75° .故答案为 75°.【点评】本题考查三角板的性质 . 三角形内角和定理等知识 . 解题的关键是熟练掌握基本知识 . 属于中考基础题.14.( 4 分)化简:( 1+)÷=.【分析】根据分式的加法和除法可以解答本题.【解答】解:(1+)÷===.故答案为:.【点评】本题考查分式的混合运算 . 解答本题的关键是明确分式的混合运算的计算方法.15.(4 分)在一个不透明的盒子中装有 n 个球 . 它们除了颜色之外其它都没有区别 . 其中含有 3 个红球 . 每次摸球前 . 将盒中所有的球摇匀 . 然后随机摸出一个球 . 记下颜色后再放回盒中.通过大量重复试验 . 发现摸到红球的频率稳定在 0.03.那么可以推算出n 的值大约是100.【分析】在同样条件下 . 大量反复试验时 . 随机事件发生的频率逐渐稳定在概率附近. 可以从比例关系入手 . 列出方程求解.【解答】解:由题意可得 . =0.03.解得 .n=100 .故估计 n 大约是 100.故答案为: 100.【点评】此题主要考查了利用频率估计概率 . 大量反复试验下频率稳定值即概率.用到的知识点为:概率 =所求情况数与总情况数之比.16.( 4 分)如图 . 在平面直角坐标系中 . 已知点 A(1.1 ) . 以点 O为旋转中心 . 将点 A 逆时针旋转到点 B 的位置 . 则的长为.【分析】由点 A(1.1 ). 可得 OA== . 点 A 在第一象限的角平分线上. 那么∠ AOB=45° . 再根据弧长公式计算即可.【解答】解:∵点 A(1.1 ).∴ OA== . 点 A 在第一象限的角平分线上.∵以点 O为旋转中心 . 将点 A 逆时针旋转到点 B 的位置 .∴∠ AOB=45° .∴的长为=.故答案为.【点评】本题考查了弧长公式: l=(弧长为l.圆心角度数为n.圆的半径为R). 也考查了坐标与图形变化﹣旋转. 求出 OA=以及∠ AOB=45°是解题的关键.17.(4 分)对于任意大于 0 的实数 x、y. 满足:log(2 x? y)=log 2x+log 2y. 若 log 22=1.则log 216= 4 .【分析】利用 log 2(x? y)=log 2x+log 2y 得到 log 2 16=log 2 2+log 22+log 2 2+log 22. 然后根据 log 22=1 进行计算.【解答】解: log 216=log 2(2? 2? 2? 2)=log 2 2+log 22+log 2 2+log 22=1+1+1+1=4.故答案为 4.【点评】本题考查了规律型:认真观察、仔细思考 . 善用联想是解决这类问题的方法.18.( 4 分)现有 A、B 两个大型储油罐 . 它们相距 2km.计划修建一条笔直的输油管道 . 使得 A、 B 两个储油罐到输油管道所在直线的距离都为0.5km. 输油管道所在直线符合上述要求的设计方案有4种.【分析】根据点 A、 B 的可以在直线的两侧或异侧两种情形讨论即可;【解答】解:输油管道所在直线符合上述要求的设计方案有 4 种. 如图所示;故答案为 4.【点评】本题考查整体﹣应用与设计 . 解题的关键是理解题意 . 灵活运用所学知识解决问题 . 属于中考常考题型.三、解答题(本大题共8 个小题 . 解答题要求写出证明步骤或解答过程)19.( 8 分)计算: 2﹣1﹣ sin60 °+|1 ﹣| .【分析】原式利用负整数指数幂法则. 特殊角的三角函数值 . 以及绝对值的代数意义计算即可求出值.【解答】解:原式 = ﹣×+2=1.【点评】此题考查了实数的运算 . 熟练掌握运算法则是解本题的关键.20.( 8 分)解不等式组. 并把解集在数轴上表示出来.【分析】分别解不等式组的两个不等式 . 即可得到其公共部分 . 依据解集即可在数轴上表示出来.【解答】解:.解不等式① . 可得x<3.解不等式② . 可得x>﹣ 1.∴不等式组的解集为﹣ 1<x<3.在数轴上表示出来为:【点评】本题主要考查了解一元一次不等式组 . 解一元一次不等式组时 . 一般先求出其中各不等式的解集 . 再求出这些解集的公共部分 . 利用数轴可以直观地表示不等式组的解集.21.( 8 分)永州植物园“清风园”共设 11 个主题展区.为推进校园文化建设 . 某校九年级(1)班组织部分学生到“清风园”参观后 . 开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项 . 根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息 . 回答下列问题.( 1)参观的学生总人数为40人;( 2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为15% ;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛. 最喜欢“德文化”的学生甲被选中的概率为.【分析】(1)依据最喜欢“和文化”的学生数以及百分比. 即可得到参观的学生总人数;(2)依据最喜欢“瑶文化”的学生数 . 即可得到其占参观总学生数的百分比;(3)依据“德文化”的学生数为 40﹣12﹣8﹣10﹣6=4. 即可补全条形统计图;(4)设最喜欢“德文化”的 4 个学生分别为甲乙丙丁 . 画树状图可得最喜欢“德文化”的学生甲被选中的概率.【解答】解:(1)参观的学生总人数为 12÷ 30%=40(人);( 2)喜欢“瑶文化”的学生占参观总学生数的百分比为×100%=15%;( 3)“德文化”的学生数为40﹣ 12﹣8﹣10﹣6=4. 条形统计图如下:( 4)设最喜欢“德文化”的 4 个学生分别为甲乙丙丁 . 画树状图得:∵共有 12 种等可能的结果 . 甲同学被选中的有 6 种情况 .∴甲同学被选中的概率是:= .故答案为: 40; 15%;.【点评】此题考查了条形统计图和扇形统计图. 树状图法与列表法求概率.用到的知识点为:概率 =所求情况数与总情况数之比.22.(10 分)如图 . 在△ ABC中. ∠ACB=90° . ∠CAB=30° . 以线段 AB为边向外作等边△ ABD.点 E 是线段 AB的中点 . 连接 CE并延长交线段 AD于点 F.(1)求证:四边形 BCFD为平行四边形;(2)若 AB=6.求平行四边形 BCFD的面积.【分析】(1)在 Rt △ ABC中.E 为 AB的中点 . 则 CE= AB.BE= AB.得到∠ BCE=∠EBC=60°.由△ AEF≌△ BEC.得∠ AFE=∠BCE=60°.又∠ D=60° . 得∠ AFE=∠D=60 度.所以 FC∥BD.又因为∠ BAD=∠ABC=60° . 所以 AD∥BC.即 FD∥BC.则四边形BCFD是平行四边形.(2)在 Rt △ABC中. 求出 BC.AC即可解决问题;【解答】(1)证明:在△ ABC中. ∠ACB=90° . ∠CAB=30° .∴∠ ABC=60°.在等边△ ABD中. ∠BAD=60° .∴∠ BAD=∠ABC=60°.∵E 为 AB的中点 .∴AE=BE.又∵∠ AEF=∠BEC.∴△ AEF≌△ BEC.在△ ABC中 . ∠ACB=90° .E 为 AB的中点 .∴CE= AB.BE= AB.∴CE=AE.∴∠ EAC=∠ECA=30° .∴∠ BCE=∠EBC=60°.又∵△ AEF≌△ BEC.∴∠ AFE=∠BCE=60°.又∵∠ D=60° .∴∠ AFE=∠D=60°.∴FC∥BD.又∵∠ BAD=∠ABC=60° .∴AD∥BC.即 FD∥BC.∴四边形 BCFD是平行四边形.(2)解:在 Rt△ABC中. ∵∠ BAC=30° .AB=6.∴BC= AB=3.AC= BC=3 .∴ S 平行四边形BCFD=3×=9.【点评】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识 . 解题的关键是正确寻找全等三角形解决问题 . 属于中考常考题型.23.( 10 分)在永州市青少年禁毒教育活动中. 某班男生小明与班上同学一起到禁毒教育基地参观 . 以下是小明和奶奶的对话. 请根据对话内容 . 求小明班上参观禁毒教育基地的男生和女生的人数.【分析】设小明班上参观禁毒教育基地的男生人数为x 人 . 女生人数为 y 人. 根据“男生人数 +女生人数 =55、男生人数 =1.5 ×女生人数 +5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x 人. 女生人数为 y 人.依题意得:.解得.答:小明班上参观禁毒教育基地的男生人数为35 人. 女生人数为 20 人.【点评】考查了二元一次方程组的应用.分析题意 . 找到关键描述语 . 找到合适的等量关系是解决问题的关键.24.(10 分)如图 . 线段 AB为⊙ O的直径 . 点 C.E 在⊙ O上. =.CD⊥ AB.垂足为点D.连接 BE.弦 BE与线段 CD相交于点F.( 1)求证: CF=BF;( 2)若 cos∠ABE= . 在 AB的延长线上取一点 M.使 BM=4.⊙O的半径为 6.求证:直线 CM是⊙ O的切线.【分析】( 1)延长 CD交⊙ O于 G.如图 . 利用垂径定理得到= . 则可证明=.然后根据圆周角定理得∠CBE=∠ GCB从.而得到 CF=BF;(2)连接 OC交 BE于 H.如图 . 先利用垂径定理得到 OC⊥BE.再在 Rt△OBH中利用解直角三角形得到BH= .OH= . 接着证明△ OHB∽△ OCM得到∠ OCM=∠OHB=90° . 然后根据切线的判定定理得到结论.【解答】证明:(1)延长 CD交⊙ O于 G.如图 .∵CD⊥AB.∴= .∵= .∴= .∴∠ CBE=∠GCB.∴CF=BF;(2)连接 OC交 BE于 H.如图 .∵= .∴OC⊥BE.在Rt△ OBH中.cos ∠OBH= = .∴BH= ×6= .∴OH==.∵== .==.∴= .而∠ HOB=∠COM.∴△ OHB∽△ OCM.∴∠ OCM=∠OHB=90° .∴OC⊥CM.∴直线 CM是⊙ O的切线.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理和解直角三角形.25.( 12 分)如图 1. 抛物线的顶点 A 的坐标为( 1.4 ). 抛物线与 x 轴相交于 B、C两点 . 与 y 轴交于点 E( 0.3 ).( 1)求抛物线的表达式;( 2)已知点 F(0. ﹣3). 在抛物线的对称轴上是否存在一点 G.使得 EG+FG最小 . 如果存在 . 求出点 G的坐标:如果不存在 . 请说明理由.(3)如图 2. 连接 AB.若点 P 是线段 OE上的一动点 . 过点 P 作线段 AB的垂线 . 分别与线段 AB、抛物线相交于点 M、N(点 M、N 都在抛物线对称轴的右侧) . 当 MN 最大时 . 求△ PON的面积.【分析】(1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题 . 作 E 关于对称轴的对称点 E'. 连接 E'F 交对称轴于 G.此时 EG+FG的值最小 . 先求 E'F 的解析式 . 它与对称轴的交点就是所求的点G;2( 3)如图 2. 先利用待定系数法求AB的解析式为:y=﹣2x+6. 设 N(m.﹣m+2m+3).2则 Q(m.﹣2m+6). (0≤m≤3). 表示 NQ=﹣m+4m﹣3. 证明△ QMN∽△ ADB.列比例式可得MN的表达式 . 根据配方法可得当m=2时.MN有最大值 . 证明△NGP∽△ ADB. 同理得 PG的长 . 从而得 OP的长 . 根据三角形的面积公式可得结论 . 并将 m=2代入计算即可.【解答】解:(1)设抛物线的表达式为: y=a(x﹣1)2+4.2把( 0.3 )代入得: 3=a( 0﹣ 1) +4.22∴抛物线的表达式为: y=﹣( x﹣1) +4=﹣x +2x+3;如图 1. 作 E 关于对称轴的对称点E'. 连接 E'F 交对称轴于 G.此时 EG+FG的值最小.∵E(0.3 ).∴E' (2.3 ).易得 E'F 的解析式为: y=3x﹣3.当x=1 时 .y=3 × 1﹣3=0.∴G( 1.0 )(3)如图 2. ∵A(1.4 ).B (3.0 ).易得 AB的解析式为: y=﹣2x+6.2设 N(m.﹣ m+2m+3). 则 Q(m.﹣2m+6). (0≤m≤ 3) .2∴ NQ=(﹣ m+2m+3)﹣(﹣∵ AD∥NH.∴∠ DAB=∠NQM.∵∠ ADB=∠QMN=90° .∴△ QMN∽△ ADB.22m+6) =﹣ m+4m﹣3.∴.∴.∴MN=﹣(m﹣2)2+ .∵﹣<0.∴当 m=2时.MN有最大值;过N 作 NG⊥y 轴于 G.∵∠ GPN=∠ABD.∠NGP=∠ADB=90° .∴△ NGP∽△ ADB.∴= =.∴PG= NG= m.22∴ OP=OG﹣PG=﹣ m+2m+3﹣m=﹣ m+ m+3.2∴ S△PON= OP? GN= (﹣ m+m+3)? m.当m=2时 .S △PON= × 2(﹣ 4+3+3)=2.【点评】本题主要考查的是二次函数的综合应用 . 解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题 . 根据比例式列出关于 m的方程是解题答问题(3)的关键.26.( 12 分)如图 1. 在△ ABC中. 矩形 EFGH的一边 EF在 AB上. 顶点 G、H 分别在BC、AC上.CD 是边 AB上的高 .CD 交 GH于点 I .若 CI=4.HI=3.AD= .矩形DFGI恰好为正方形.(1)求正方形 DFGI的边长;(2)如图 2. 延长 AB至 P.使得 AC=CP将.矩形 EFGH沿 BP的方向向右平移 . 当点G刚好落在 CP上时 . 试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形 . 为什么?( 3)如图 3. 连接 DG.将正方形 DFGI 绕点 D 顺时针旋转一定的角度得到正方形DF′G′I ′ . 正方形 DF′G′I ′分别与线段 DG、DB相交于点 M.N.求△ MNG′的周长.【分析】(1)由 HI∥AD.得到= . 求出 AD即可解决问题;( 2)如图 2 中. 设等 G落在 PC时对应的点为 G′ . 点 F 的对应的点为 F′.求出IG′和 BD的长比较即可判定;( 3)如图 3 中. 如图将△ DMI′绕点 D逆时针旋转 90°得到△ DF′R. 此时 N、F′、R共线.想办法证明 MN=MI′ +NF′ . 即可解决问题;【解答】解:(1)如图 1 中.∵HI∥AD.∴= .∴= .∴AD=6.∴ID=CD﹣CI=2.∴正方形的边长为2.( 2)如图 2 中. 设等 G落在 PC时对应的点为 G′ . 点 F 的对应的点为F′.∵CA=CP.CD⊥PA.∴∠ ACD=∠PCD.∠A=∠P.∵HG′∥ PA.∴∠ CHG′=∠ A. ∠CG′H=∠ P.∴∠ CHG′=∠CG′H.∴CH=CG′ .∴I H=IG′=DF′=3.∵IG∥DB.∴= .∴= .∴DB=3.∴DB=DF′=3.∴点 B 与点 F′重合 .∴移动后的矩形与△ CBP重叠部分是△ BGG′ . ∴移动后的矩形与△ CBP重叠部分的形状是三角形.( 3)如图 3 中. 如图将△ DMI′绕点 D顺时针旋转 90°得到△ DF′R. 此时 N、F’、R共线.∵∠ MDN=∠NDF’+∠MDI′=∠NDF′ +∠DF′R=∠NDR=45° .∵DN=DN.DM=DR.∴△ NDM≌△ NDR.∴MN=NR=NF′+RF′=NF′ +MI′ .∴△ MNG′的周长 =MN+MG′+NG′=MG′ +MI′+NG′ +F′R=2I′G′=4.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、平行线等分线段定理、全等三角形的判定和性质等知识. 解题的关键是灵活运用所学知识解决问题 . 学会利用旋转法添加辅助线. 构造全等三角形解决问题. 属于中考压轴题.。