《加减消元法解二元一次方程组》教学设计学习资料
解二元一次方程组《加减消元法》教学设计
第五章 解二元一次方程组 《加减消元法》教学设计一.教学目标1.会用加减消元法解二元一次方程组.2.进一步理解二元一次方程组的“消元”思想,初步体会数学中“化未知为已知”的化归思想.3.能根据方程组的特点,选择恰当的方法解二元一次方程组,培养学生的观察、分析能力。
4.通过探求二元一次方程组的解法,经历把“二元”转化为“一元”的过程,从而体会消元的思想,以及把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想。
二.教学重点会用加减消元法解二元一次方程组 三.教学难点在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想. 四、教学过程设计本节课设计了五个教学环节:第一环节:知识回顾;第二环节:讲授新知;第三环节:巩固新知;第四环节:课堂小结;第五环节:布置作业.第一环节:知识回顾:1、到目前为止,我们学了哪些方法解二元一次方程组?此方法的基本思路是什么? 代入消元法基本思路:消元;二元 ------ 一元 2、用代入法解方程组的主要步骤是什么?(1)变------用一个未知数的代数式表示另一个未知数 (2)代------把变形后的方程代入到另一个方程中,消去一个元 (3)解------分别求出两个未知数的值 (4)写------写出方程组的解 (5)检验——一般不写检验过程 第二环节:讲授新知: (1)探究引入:做一做:解下面的二元一次方程组⎩⎨⎧-=-=+11522153y x y x(学生在练习本上做,教师巡视、引导、解疑,注意发现学生在解答过程中出现的新的想法,可以让用不同方法解题的学生将他们的方法板演在黑板上,完后进行评析,并为加减消元法的出现铺路.)学生可能的解答方案1: 解1:把②变形,得:5112y x-=, ③ ① ②把③代入①,得:51135212y y -⨯+=, 解得3y =. 把3y=代入②,得2x =.所以方程组的解为23x y =⎧⎨=⎩.学生可能的解答方案2: 解2:由②得5211yx =+, ③把5y 当做整体将③代入①,得:()321121x x ++=,解得:2x =. 把2x =代入③,得:3y=.所以方程组的解为23x y =⎧⎨=⎩.(此种解法体现了整体的思想)学生可能的解答方案3:(观察发现:两个方程中一个含有5y ,而另一个是-5y ,两者互为相反数)解3:根据等式的基本性质方程①+方程②得:5x=10, 解得:2x =, 把2x =代入①,解得:3y=,所以方程组的解为23x y =⎧⎨=⎩.通过上面的练习发现,代入消元法核心是代入“消元”,通过“消元”,使“二元”转化为“一元”,从而使问题得以解决,那么(方案3)的解法又如何?它达到“消元”的目的了吗?它是如何达到的?(留些时间给学生观察,注意引导学生观察方程中某一未知数的系数,如x 的系数或y 的系数引导学生发现方程①和②中的5y 和5y -互为相反数,根据相反数的和为零(方案3)将方程①和②的左右两边相加,然后根据等式的基本性质消去了未知数y ,得到了一个关于x 的一元一次方程,从而实现了化“二元”为“一元”的目的).这就是我们这节课要学习的二元一次方程组的解法中的第二种方法——加减消元法. (2)讲授新知: 内容1:(教师板书课题)下面我们就用刚才的方法解下面的二元一次方程组.(学生试着用第三种方法解答,然后教师规范解答过程,)例1 解下列二元一次方程组(若学生先前的环节接受得好,可以让学生独立完成,教师再跟进讲授)(1)257231x y x y -=⎧⎨+=-⎩分析:观察到方程①、②中未知数x 的系数相等,可以利用两个方程相减消去未知数x .解:②-①,得:88y=- 解得:1y =-,把1-=y 代入①,得:752=+x , 解得:1=x ,所以方程组的解为⎩⎨⎧-==11y x(解答完本题后,口算检验,让学生养成进行检验的习惯,同时教师需强调以下两点: (1)注意解此题的易错点是②-①时是()()232517x y x y +--=--,方程左边去括号时注意符号.另外解题时,①-②或②-①都可以消去未知数x ,不过在①-②得到的方程中,y 的系数是负数,所以在上面的解法中选择②-①;(2)把1y =-代入①或②,最后结果是一样的,但我们通常的作法是将所求出的一个未知数的值代入系数较简单的方程中求出另一个未知数的值.内容2.随堂练习:1.方程组⎩⎨⎧=-=+83732y x y x 的解是2.用加减消元法解方程组:⎩⎨⎧=--=+17561976y x y x 应用( )A.①-②消去yB.①-②消去xC. ②- ①消去常数项D. 以上都不对3.用加减法解方程组:⎩⎨⎧=-=+810158.2103y x y x解: 把 ①+②得 18x =10.8,解得x =0.6把x =0.6代入①得3×0.6+10y =2.8 解得y =0.1 所以原方程组的解为⎩⎨⎧==1.06.0y x目的:由学生做练习,体会加减消元法的基本特点,熟悉加减消元法的基本步骤,提升学生用加减消元法解二元一次方程组的基本技能,积累解二元一次方程的活动经验.师生一起分析上面的解答过程,归纳出下面的一些规律:① ②①②在方程组的两个方程中,若某个未知数的系数是相反数,则可直接把这两个方程的两边分别相加,消去这个未知数;若某个未知数的系数相等,可直接把这两个方程的两边分别相减,消去这个未知数得到一个一元一次方程,从而求出它的解,这种解二元一次方程组的方法叫做加减消元法,简称加减法内容3:例2 解方程组 23123417x y x y +=⎧⎨+=⎩留一定的时间让学生观察此方程组,让学生说明自己观察到方程有什么特点,能不能自己解决此方程组,用什么方法解决?让学生讨论,学生可能得到的结论如下:1.x 、y 的系数既不相同也不是相反数,没有办法用加减消元法.2.是不是可以用等式的基本性质将这个方程组中的x 或y 的系数化成相等(或互为相反数)的情形,再用加减消元法,达到消元的目的.(在引导的过程中,肯定学生的好的想法.)其实,二元一次方程组中未知数的系数不一定刚好是1或-1,或同一个未知数的系数刚好相同或相反.这时就需要转化为同一个未知数系数相同或相反的情形,从而用加减消元法,达到消元的目的.由讨论得出如下过程:解:①×3,得:6936x y +=, ③ ②×2,得:3486=+y x , ④ ③-④,得:2=y . 将2=y 代入①,得:3=x .所以原方程组的解是⎩⎨⎧==23y x .内容4:议一议:根据上面几个方程组的解法,请同学们思考下面两个问题: (1)加减消元法解二元一次方程组的基本思路是什么? (2)用加减消元法解二元一次方程组的主要步骤有哪些? (由学生分组讨论、总结并请学生代表发言)(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”. (2)用加减法解二元一次方程组的一般步骤是:①变形----找出两个方程中同一个未知数系数的绝对值的最小公倍数,然后分别在两个方程的两边乘以适当的数,使所找的未知数的系数相等或互为相反数.②加减消元,得到一个一元一次方程. ③解一元一次方程.④把求出的未知数的解代入原方程组中的任一方程,求出另一个未知数的值,从而得方程组的解.⑤检验解的正确性①②过手训练:用加减消元法解方程组:⎪⎩⎪⎨⎧=+--=+9)3(5)2(46132y x y x 注意:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等).通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程右边的形式,再作如上加减消元的考虑.解:将原方程组整理得:⎩⎨⎧=-=+3254123y x y x ①×5得:51015=+y x ③ ②×2得:6410-8=y x ④ ③+④得:6923=x 解得3=x把3=x 代入①得: 1233=+⨯y4-=y所以原方程组的解是:⎩⎨⎧-==43y x第三环节:巩固新知 , (—)巩固练习:1. 类型之一:用加减法解某一未知数的系数相同或是相反数的二元一次方程组:解方程组:⎩⎨⎧=--=+17561976y x y x2. 类型之二:用加减法解某一未知数的系数成整数倍数关系的二元一次方程组:解方程组:⎩⎨⎧-=-=+41241632y x y x3. 类型之三:用加减法解两个未知数的系数均不成整数倍数关系的方程组解方程组:⎩⎨⎧=+=+17431232y x y x(二)拓展练习1.已知:05)-3y (2x |2-y x |2=+++求x,y 的值 .①② ① ②① ②①②①② 解: 05)-3y (2x |2-y x |2=+++∴⎩⎨⎧=-+=-+053202y x y x①×2,得:0422=-+y x ③ ②- ③,得:01y =-,即:1y = 把1y =代入①,得:021=-+x ,即:x=1∴ 原方程组的解为:{11==y x2. 已知:关于x,y 的二元一次方程组⎩⎨⎧-=++=+2233232k y x k y x 的解满足2=+y x , 求x,y,k 的值目的:通过此题的练习,对于含参数的二元一次方程组的解法的灵活选择,摸索运算技巧,培养能力.第四环节:课堂小结① ②1.关于二元一次方程组的两种解法:代入消元法和加减消元法.比较这两种解法我们发现其实质都是消元,即通过消去一个未知数,化“二元”为“一元”.2. 用加减消元法解方程组的条件:某一未知数的系数的绝对值相等.3. 用加减法解二元一次方程组的步骤:①变:将其中一个未知数的系数化为相同(或互为相反数);②加减:通过相减(或相加)消去这个未知数,得到一个一元一次方程;③解:解这个一元一次方程,得到这个未知数的值;将求得的未知数的值代入原方程组中任何一个方程,•求得另一个未知数的值;④写:写出方程组的解;⑤检验:但不必写出检验过程第五环节:布置作业1.课本习题5.32.阅读读一读·你知道计算机是如何解方程组吗.3.预习课本下一节教学反思板书设计:。
《加减消元法—解二元一次方程组》教案(高效课堂)2022年人教版数学精品
教学过程
例、习题的意图分析
学生在解题步骤中,如果出现不规范或错误的地方,教师应该及时地给予指导,也可以提示学生,在解题时要灵活运用所学知识规律来做.
让学生在互相交流的活动中,通过总结与归纳,更加清楚地理解加减消元法,体会加减消元法在解二元一次方程组的过程中反映出来的化归思想.
教师关注:
学生的积极性是否充分地调动起来,学生的思维是否活跃,学生对加减消元法的理解是否清晰明确。
1、通过独立完成练习,检测学生是否正确掌握概念和正确判定一对数值是不是方程组的解的方法,
2、关注学生在解题时是否能够正确应用概念说明问题,关注学生数学语言的规范应用。
巩固提高训练
15分钟
创设练习评价情境
①②
用加减法解方程组
练习:解方程
1.王大伯承包了25亩土地, 今年春季改种茄子和西红柿两种大棚蔬菜, 用去了
44000元,其中种茄子每亩用了1700元,获纯利2400元,种西红柿每亩用了1800元, 获纯利2600元,问王大伯一共获纯利多少元?
2.一旅游者从下午2时步行到晚上7时,他先走平路,然后登山, 到山顶后又沿原路下山回到出发点 ,已知他走平路时每小时走4千米,爬山时每小时走3千米, 下坡时每小时走6千米,问旅游者一共走了多少路?
师:多媒体课件、 投影仪;
生:硬纸、剪刀.
教学过程
Ⅰ.提出问题,创设情境
[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?
北师大版数学八年级上册5.2加减消元法解二元一次方程组教案
1 / 7求解二元一次方程组(2)————加减消元法一、教学目标(一)教学知识点1.用加减消元法解二元一次方程组.(二)能力训练要求1.会用加减消元法解二元一次方程组.2.根据不同方程的特点,进一步体会解二元一次方程组的基本思路——消元.(三)情感与价值观要求1.进一步体会解二元一次方程组的消元思想,在化“未知为已知”的过程中,体验学习的快乐.2.根据方程组的特点,培养学生学习教学的创新、开拓的意识.二、教学重点1.掌握加减消元法解二元一次方程组的原理及一般步骤.2.能熟练地运用加减消元法解二元一次方程组.三、教学难点1.解二元一次方程组的基本思路消元即化“二元”为“一元”的思想.四、教学过程第一阶段、回顾复习[师]用代入法解二元一次方程组的基本思想是什么?[生]消元[师]用代入法解下列方程组并检验所得结果是否正确。
[生1]解:把②变形,得x=2115 y ③1 / 7把③代入①,得3×2115-y +5y=21, 解得y=-3.把y=3代入②,得x=2.所以方程组的解为⎩⎨⎧=-=3,2y x [生2]解:由②得5y=2x+11 ③把5y 当做整体将③代入①,得3x+(2x+11)=21解得x=2把x=2代入③,得5y=2×2+11y=3所以原方程的解为⎩⎨⎧==32y x [师]我们可以发现第二种解法比第一种解法简单.有没有更好的解法呢?也就是说,我们上一节课学习了用代入的方法可以消元,从而使“二元”变为“一元”.那么有没有别的消元办法也可以使“二元”变为“一元”.[生]我发现了方程①和②中的5y 和-5y 互为相反数,根据互为相反数的和为零,如果能将方程①和②的左右两边相加,根据等式的性质我们可以得到一个含有x 的等式,即一元一次方程,而5y+(-5y)=0消去了y .[师]很好.这正是我们这节课要学习的二元一次方程组的解法中的第二种方法——加减消元法.第二阶段、讲授新课[师]下面我们就用刚才这位同学的方法解上面的二元一次方程组.解:由①+②,得1 / 7(3x+5y)+(2x -5y)=21+(-11),即3x+2x=10,x=2,把x=2代入②中,得y=3.所以原方程组的解为⎩⎨⎧==3,2y x 一个方程组我们用了三种方法,从中可以发现,恰当地选择解法可以起到事半功倍的效果.回忆上一节的练习和习题,看哪些题用代入消元法解起来比较简单?哪些题我们用加减消元法简单?我们分组讨论,并派一个代表阐述自己的意见.第三阶段、自主学习1.用加减消元法求解下面的方程组:257(1)231(2)x y x y -=⎧⎨+=-⎩[师]什么是加减消元法,并用自己的语言来概括它。
《二元一次方程组的解法――加减消元法》教案
《二元一次方程组的解法——加减消元法》一、教学目标(1)知识目标:进一步了解加减消元法,并能够熟练地运用这种方法解较为复杂的二元一次方程组。
(2)能力目标:经历探索用“加减消元法”解二元一次方程组的过程,培养学生分析问题、解决问题的能力和创新意识。
(3)情感目标:在自由探索与合作交流的过程中,不断让学生体验获得成功的喜悦,培养学生的合作精神,激发学生的学习热情,增强学生的自信心。
二、教学重点难点(1)教学重点:利用加减法解二元一次方程组(2)教学难点:二元一次方程组加减消元法的灵活应用三、教学方法启发引导法、演示法四、教学准备:小黑板五、教学过程(一)复习旧知解二元一次方程组的基本思想是什么?(消元)(二)探究新知1、情境导入(利用小黑板)王老师昨天在水果批发市场买了2千克苹果和4千克梨共花了14元,李老师以同样的价格买了2千克苹果和3千克梨共花了12元,问:梨每千克的售价是多少元?凭借学生的经验估计他们会在列出二元一次方程组后马上想到用代入法解方程组,进而解决问题。
这时教师出示两种算法让学生加以比较,通过比较学生不难发现第二种算法是解决这个问题更简单的方法。
师:算法一是代入消元法,算法二就是今天我们将要学习的加减消元法。
复习加减消元法的定义:利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加或相减,以消去这个未知数,使方程只含有一个未知数而得以求解。
这种解二元一次方程组的方法叫作加减消元法,简称加减法2、例题讲评例①解方程组:⎩⎨⎧=+=+⑵y x ⑴y x 6231225 解:⑴-⑵,得2x=6x =3把x =3代入⑴得12235=+⨯y 解这个方程得y =23-∴原方程组的解为⎪⎩⎪⎨⎧==23-3y x 练习:指出下列方程组求解过程中有错误步骤,并给予订正。
练习1.解方程组: ⎩⎨⎧-=-=-⑵y x ⑴y x 445447 解:⑴-⑵,得2x =4-4,x =0把x =0代入⑴得4407=-⨯y 解这个方程得1-=y∴原方程组的解为⎩⎨⎧-==1y 0x 例②解方程组:⎩⎨⎧-=-=+⑵y x ⑴y x 11522153 解:⑴﹢⑵,得5x =10x =2把x =2代入⑴得3×2+5y=21解这个方程得y=3∴原方程组的解为⎩⎨⎧==32y x 练习:指出下列方程组求解过程中有错误步骤,并给予订正。
加减消元法
中小学教师教学(学案)设计模板消去这个未数。
练习一:1.指出下列方程组求解过程中是否有错误步骤,并给予订正:7x -4y =45x -4y =-4解:①-②,得 解 ①-②,得2x =4-4 -2x=12 x=0, x=-62.用加减法解二元一次方程组:(1)(2)(四)例题分析用加减法解方程组(想一想:怎样用加减法解下面的方程组?)解:点悟:找最小公倍数,变成某未知数系数的绝对值相等的新的方程组,从而为加减消元法解方程组创造条件. 练习二:用加减法解下列方程组。
点悟: 先化简:去分母、去括号、约分等, 然后在用加减法进行消元,可以简便计算。
(五).应用与拓展1. 是关于x 、y 的二元一次方程,求a 、b 的值。
3414542x y x y -=+=7239219x y x y -=+=-653615m n m n -=+=-⎩⎨⎧=+=+17431232y x y x 23(1)4311x y x y +=⎧⎨-=⎩21(2)329x y x y =+⎧⎨-=⎩3(1)(2)3(3)1136x y x y --+=⎧⎪⎨-+=⎪⎩812781(4)3004001500x y x y +=⎧⎨+=⎩23231358a b a b x y ++-++=+=-x y23 1.⎩出问题,探索新知除了用代入法,还有别的方法吗?想一想应怎样解方程组①②由①+②得: 5x=10由②-①得:8y=-8消去x,得 5y=5”中隐含了那些步骤?(三).归纳总结,获得新知两个二元一次方程中同一未知数的系数相反或相等时,把两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
归纳:利用加减消元法解方程组时,若同一个未知数的系数互为相反数,则可以直接消去这个未知数。
若同一个未知数系数相等,则可以直接消去这个未数。
练习一:1.指出下列方程组求解过程中是否有错误步骤,并给予订正:7x-4y=45x-4y=-4解:①-②,得2x=4- 4-2x=12x=0,x=-6(四)例题分析用加减法解方程组(想一想:怎样用加减法解下面的方程组?)解:练习二:用加减法解下列方程组。
用加减消元法解二元一次方程组教案
⽤加减消元法解⼆元⼀次⽅程组教案⽤加减消元法解⼆元⼀次⽅程组教案⼀、教学⽬标【知识与技能】在代⼊消元的基础上掌握加减消元法去解⽅程组的思想,并能正确运⽤加减消元法解⽅程组。
【过程与⽅法】通过⼩组合作、讨论的过程,学⽣的交流表达能⼒,归纳总结能⼒,以⾃学能⼒可以得到提升。
【情感态度与价值观】在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与⼈交流。
⼆、教学重难点【重点】掌握加减消元法解⽅程组。
【难点】正确的运⽤加减消元法解⽅程组。
三、教学过程(⼀)导⼊新课师:同学们,前⾯我们学习了解⽅程组,⼤家还记得是什么⽅法吗? ⽣:代⼊消元法x+y=10{2x+y=16师:⾮常正确,下⾯同学们看看⿊板上这道题如何做?师:我看同学们都做出来了,你们都是⽤什么⽅法做出来的啊?哦,是前⾯的代⼊消元法,其实这道题他有⼀个⾮常简单的⽅法,⼀下⼦就可以计算出来,下⾯我们就⼀起来探讨下⼀种新的解⽅程组的⽅法-加减法消元解⽅程组(⼆)⽣成新知出⽰例题{x+y=102x+y=16师:刚才我们解题的时候⽤的代⼊消元,那同学们你们观察观察这组⽅程他们的的y的系数有什么特点,你能不能想出什么好的解题⽅法呢?请⼤家先⾃⼰独⽴思考,然后前后4⼈为⼀⼩组,给⼤家5分钟的时间,⼤家相互讨论交流下。
学⽣独⽴思考,尝试练习、解答,初步形成⾃⼰的解决⽅案。
教师巡视,了解学⽣的学习情况,并及时指导;完成的同学,同学之间交流⼀下⾃⼰的解决问题的⽅法。
然后⼩组内展⽰各⾃解决问题的⽅案。
⽐⼀⽐谁的想法简洁,形成⼩组意见。
通过讨论学⽣可以得出如下结论:上式中y的系数相同,当⽤②-①时,可以发现变量y刚好可以消除师:⼤家都总结的⾮常到位,像这样在解⽅程组时,当x或者y的系数相同或者相反时,我们可以⽤两式相减或者相加的⽅式来消除其中⼀项,我们把这种⽅法叫做加减消元法。
师:那这个规律是不是适合于所有的题呢?下⾯我们就来拿到题来练练3x+4y=16{5x+6y=33师:请⼤家先⾃⼰在草稿本上演算⼀下,然后同桌之间相互讨论下,看看这道题应该如何解呢?我看⼤家结果已经出来了,谁来分享⼀下你的答案呢?⽣:有两种⽅法,⼀种是⽤带⼊消元,⼀种是⽤加减消元,加减消元的时候要把x或者y的系数变成⼀样的,所以①需要乘以3,②需要乘以2,这样①②的y的系数就刚还是相反数,①+②就可以消去y。
数学《加减消元法-解二元一次方程组》教案
数学《加减消元法-解二元一次方程组》教案课时安排:第一课时:引入加减消元法第二课时:解决简单的二元一次方程组第三课时:引入倍加消元法第四课时:解决复杂的二元一次方程组课堂活动:第一课时:1.引入问题:小明有 6 条红色的绳子, 8 条绿色的绳子和 10 条蓝色的绳子,共计有多少条绳子?同学们快速作答并验证答案。
2.老师通过上述问题引导学生理解加减消元法。
3.教师给出一个简单的二元一次方程组,让学生通过加减消元法来解决。
4.让学生自己找到一些二元一次方程组,让同桌分别用加减消元法来解决。
第二课时:1.老师总结昨天加减消元法的解决方法,引入倍加消元法,告诉学生在某些情况下倍加消元法可能更适合。
2.老师给出一个适合倍加消元法的问题,让同学们快速求解。
3.让一些同学将他们在昨天找到的二元一次方程组用倍加消元法来解决。
第三课时:1.老师对昨天学过的知识进行复习。
2.展示一些更复杂的二元一次方程组,让同学们思考如何用加减消元法或倍加消元法来解决,让同学们互相讨论。
3.让一些同学来解决这些问题,记录下解题过程。
第四课时:1.老师对昨天学习的内容进行总结,让同学们回顾、检验自己的学习成果。
2.老师给出几道复杂的二元一次方程组,让同学们通过加减消元法或倍加消元法来解决,让同学们互相讨论。
3.让一些同学来解决这些问题,记录下解题过程并与同学分享。
作业安排:1.课后练习,让同学们运用加减消元法和倍加消元法来解决一些二元一次方程组。
2.让同学们自己编写一些二元一次方程组,让同桌来解决。
加减消元法解二元一次方程组教学设计
加减消元法解二元一次方程组教学设计一、教学内容分析:本节课内容是人教版七年级下册第八章第二节第2课时。
本节课是在学生学习了代入消元法解二元一次方程组的基础上,继续学习的另一种消元方法——加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
本节课学习中学生通过学习加减消元法充分体会“消元”的转化过程,为以后三元一次方程组的解法打下基础。
二、学生学情分析:我所任教的班级学生基础比较好,已经具备了一定的探索能力和思维能力,也初步养成了合作交流的习惯。
大多数学生的性格比较活泼,他们希望有展现自我才华的机会。
但是对于七年级的学生来说,他们独立分析问题的能力和灵活应用的能力还有待提高,很多时候还需要教师的点拨、引导和归纳。
因此,我遵循学生的认识规律,由浅入深,适时引导,调动学生的积极性,并适当地给予表扬和鼓励,借此增强他们的自信心。
三、教学目标:结合我班学生的实际情况,我把本节课的三维教学目标确定如下:(一)知识与技能目标:1、学会用加减消元法解二元一次方程组;2、理解加减消元法的基本思想,体会化未知为已知的化归思想。
(二)过程与方法目标:1、通过经历二元一次方程组解法的探究过程,进一步体会化“未知”为“已知”、化复杂问题为简单问题的化归思想方法;2、经历独立思考、小组交流的合作化学习过程理解加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:1、培养学生学会自主探索、尝试、比较、交流思维过程的习惯;2、通过交流学习获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,树立学习自信心。
教学重点:学会用加减法解简单的二元一次方程组。
教学难点:准确灵活地选择和运用加减消元法解二元一次方程组。
课时安排:1课时教学过程:一、复习导入1、解二元一次方程组的基本思路是什么?基本思路: 消元(二元转化为一元)2、用代入法解方程的步骤是什么?①变形:用含有一个未知数的代数式表示另一个未知数,②代入:把变形后的方程代入到另一个方程中,消去一个未知数③求解:分别求出两个未知数的值④写解:写出方程组的解二、探究新知1、问题引入你会用代入解下面的二元一次方程组?教师:如果用 变形,写成用含x 的代数式表示y ,你能做吗? 学生:123321-567xy =教师:还可以进行化简吗?学生:41107189xy -=教师:请观察,如果把变形的式子代入方程中去,解答过程会遇到什么?也就是说不是所有的方程组用代入法解答简单,那今天我们就一起学习另一种新的解答方法—加减消元法。
《加减消元法解二元一次方程组》教学设计
《加减消元法解二元一次方程组》教学设计一、教学内容分析本节课选自人教版七年级下册第八章《二元一次方程组》第二节,此前学生已经理解了二元一次方程组,能够用代入法解二元一次方程组,对消元思想有了初步的理解。
用加减法解方程组的基本策略是“消元”,即逐步减少未知数的个数,使方程组化归为一元方程。
加减法是解二元一次方程组的一种主要的,常用方法,。
本节课是对二元一次方程组解法的进一步研究,实际生活中很多问题也需要二元一次方程组来解决。
二、学情分析七年级学生已经能够熟练求解一元一次方程,并能用代入法解二元一次方程组,对消元的思想方法已具有一定的分析水平,所以学生在探索“加减法”消元时已有了思考的方向,所以对于某一字母系数相同或互为相反数的情况,学生并不会感到思维上的困难。
三、设计思想1、在教学过程中,从学生已有的知识经验出发,为学生建立数学知识间的内在联系搭建平台,使学生产生学习加减消元法解方程组的的需求。
2、通过教学活动,归纳总结,解加减法解二元一次方程组的基本思路与代入法相同,仍是“消元”化归思想。
四、教学目标(一)知识与技能1、能用加减法解二元一次方程组。
2、进一步体会解二元一次方程组的基本思想――“消元”。
(二)过程与方法1、在探究方程组解法的过程中发展学生的观察、分析、运算等基本水平。
2、通过对具体问题分析、交流、探索,理解解程的过程,培养学生用数学的意识。
(三)情感态度与价值观1、在学生了解二元一次方程组的“消元”思想,享受学习数学的乐趣,增强学习数学的信心。
2、培养学生合作交流,自主探索的良好习惯。
教学重点:用加减法解二元一次方程组。
教学难点:灵活地对方程实行变形,使之便于加减消元。
五、学法引导1、教法:以教师为主导,学生为主体的原则。
采用“探究式”教学方法,从特殊到一般,启发学生观察未知数的系数,思考不同的消元方法。
2、学法:自主学习—合作交流—归纳总结六、教具准备:电脑、投影仪教学过程设计:一、复习回顾:1、等式的基本性质(学生口答)2、知道,能够用代入法解方程组x+y=22 ①2x+y=40 ②(学生独立完成解答过程)【设计意图】复习代入消元法,解二元一次方程组,为新授课作铺垫。
2.7 解二元一次方程组(加减消元法)浙教版数学七年级下册学案
专题2.7 解二元一次方程组(加减消元法)(知识讲解)【学习目标】1. 掌握加减消元法解二元一次方程组的方法;2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;3.会对一些特殊的方程组进行特殊的求解.【要点梳理】要点一、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.特别说明:用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.要点二、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.【典型例题】类型一、解二元一次方程组➽➼加减消元法解二元一次方程组1.用加减消元法解下列方程组:(1)(2)(3)(4)【答案】(1)(2)(3)(4)【分析】(1)直接利用加法进行消元即可求解;(2)直接利用减法进行消元即可求解;(3)将方程整理后,直接利用加减消元法求解;(4)将方程整理后,直接利用加减消元法求解.解:(1)由得:将代入中得:∴原方程组的解为(2)得:将代入中得:∴原方程组的解为(3)得:③得:将代入中得:∴原方程组的解为(4);得:得:将代入中得:∴原方程组的解为【点拨】本题主要考查了加减消元法,熟练掌握加减消元法是解答此题的关键.举一反三:【变式】用加减消元法解下列方程组:(1)(2)(2)(4)【答案】(1) (2) (3) (4)【分析】(1) 利用加减消元法,将方程①+②,即可求解;(2) 利用加减消元法,将方程②-①×2,即可求解;(3) 利用加减消元法,将方程①-②,即可求解;(4) 方程组整理后,利用加减消元法求出解即可.解:(1)①+②得:9x =45,即x =5,把x =5代入①得:y =2,则方程组的解为;(2)②-①×2得:13y =65,即y =5,把y =5代入②得:x =则方程组的解为;(3)①-②得:12y =-36,即y =-3,把y =-3代入①得:x =则方程组的解为;(4)方程组整理得:①-②得:4y=28,即y=7,把y=7代入①得:x=5,则方程组的解为.【点拨】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,做题的关键是当未知数系数相等时将方程相减,未知数系数相反时将方程相加.2.解下列方程组:(1);(2).【答案】(1);(2).【分析】(1)先把方程组中的两方程化为不含括号的方程,再用加减消元法或代入消元法求解即可;(2)先把方程组中的两方程化为不含分母及括号的方程,再用加减消元法或代入消元法求解即可.解:(1)原方程组可化为:,①+②得:,解得:,把代入①得:,解得:,故此方程组的解为:;(2)原方程可化为:,①×3−②得,,解得,把代入①得:,解得:,故此方程组的解为.【点拨】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法是解答此题的关键.举一反三:【变式】解下列方程组(1);(2).【答案】(1);(2).【分析】(1)先将原方程组变形,再利用加减消元法求解即可;(2)先将原方程组进行整理,然后利用加减消元法求解即可.解:(1)原方程组变形得,,由①×3得,6x+9y=6③,③+②得,10x=5,解得x=,将x=代入①得,1+3y=2,解得y=,∴原方程组的解为;(2)原方程组整理得,,由①×3得,15x+3y=108③,③-②得,14x=112,解得x=8,将x=8代入①得,40+y=36,解得y=-4,∴原方程组的解为.【点拨】本题主要考查了利用加减消元法解二元一次方程组,掌握基本步骤是解题的关键.类型二、解二元一次方程组➽➼用适合的方法解二元一次方程3.解方程组:(1) (用代入消元法);(2) (用加减消元法)【答案】(1) (2)【分析】(1)把②代入①,得,求出y,再把y=3代入①求出x即可;(2)①×2-②得出16x=10,求出x,再把x代入①求出y即可.(1)解:,把②代入①,得,解得:,把代入②,得x=1﹣5×3,即y=-14,所以原方程组的解是;(2)解:,①×3+②,得14x=28,解得:x=2,把x=2代入①,得=9,解得:y=-1,所以原方程组的解是.【点拨】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.举一反三:【变式】解下列二元一次方程组:(1) ;(2)【答案】(1);(2).【分析】(1)把①变形为代入②求出x的值,再把x的值代入求出y的值即可;(2)原方程组可化为,再运用加减消元法解方程组即可.解:(1)由①得,,③把③代入②,得,解得,把代入③,得,所以原方程组的解为(2) 原方程组可化为,得,解得,把代入①,得,解得,所以原方程组的解为【点拨】本题考查了解二元一次方程组的应用,能把二元一次方程组转化成一元一次方程是解此题的关键.类型二、解二元一次方程组➽➼纠错问题4.用消元法解方程组时,两位同学的解法如下.解法一:由,得.______解法二:由,得,③_______把代入,得.________(1) 反思:上述两个解题过程中有无计算错误?若有误,请在错误处的横线上打“”,并改正.(2) 请选择一种你喜欢的方法,完成解答.【答案】(1) ,,,(2) ,【分析】(1)解法一的左边两个整式相减结果是,所以计算过程有误,正确的结果是.(2) 利用二元一次方程组的解法加减消元和代入消元,可以消去一个未知数,最后解一元一次方程求出结果.(1)解:解法一有错误,解法二正确由,得“”改正:由,得故答案为:,,,(2)解:由得解得把代入,得解得∴原方程组的解:【点拨】本题考查了二元一次方程组解法,二元一次方程组的解法有代入法和加减法,掌握两种解法的步骤是解题的关键.举一反三:【变式】用加减法解方程组其解题过程如下:,得,解得.把号代入①,得,解得.所以这个方程组的解为.上述解题过程是否正确?若不正确,请写出正确的解题过程.【答案】不正确,见分析【分析】①-②,指的是方程①的左边-方程②的左边=方程①的右边-方程②的右边,即(3x-4y)-(3x-2y)=4-8,整理得,由此可判断题目的解题过程错误,再按照加减法解方程组的方法步骤求解即可.解:不正确,正确的解题过程如下:①-②,得,解得.将代入①,得,解得.所以原方程组的解为【点拨】本题考查了加减法解二元一次方程组的知识,在用加减消元法解方程组时,要特别注意两式相减时符号的变化,就像本题,属于解方程组时的易错点.类型四、解二元一次方程组➽➼整体消元法解二元一次方程组5.先阅读,再解方程组.解方程组时,设,,则原方程组变为,整理,得,解这个方程组,得,即.解得.请用这种方法解下面的方程组:.【答案】【分析】根据举例,结合换元法a=x+y,b=x-y,可得方程组;解方程,可以得到a,b的值,代入所设,组成关于x,y的方程组,解方程组即可.解:设,,则原方程组变为,解得,所以,解得.【点拨】此题考查二元一次方程组的解法,解题关键在于可以根据举例的换元法,结合加减消元法进行解答.举一反三:【变式1】阅读探索解方程组解:设a1x,b+2=y,原方程组可变为解方程组得,即,所以.此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:(2)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为_______.【答案】(1);(2).【分析】(1)设=x,=y,可得出关于x、y的方程组,即可求出x、y的值,进而可求出a、b的值;(2)设5(m+3)=x,3(n-2)=y,根据已知方程组的解确定出m、n的值即可.解:(1)设=x,=y,原方程组可变形为,解得:,即,解得:.(2)设5(m+3)=x,3(n-2)=y,原方程组可变形为:,∵关于x,y的方程组的解为,∴,解得:.故答案为【点拨】本题考查解二元一次方程组,正确理解并熟练掌握换元法是解题关键.【变式2】若关于x,y 的二元一次方程组的解是,则关于x, y 的方程组的解是多少? 此题解法上的技巧是什么? 试根据两个方程组的特点加以分析并求解.【答案】试题分析:本题主要的就是考查了学生对二元一次方程组的解法的理解掌握及运用的情况,观察两个方程的特点,用整体代入的思想即可求出解.解:根据题意,由整体思想得,,①+②得,2x=8,∴x=4;把x=4代入①得4+y=7,∴y=3;∴原方程组的解是.类型五、解二元一次方程组➽➼同解原理6.若关于x,y的二元一次方程组和有相同的解,求:(1)这两个方程组的解;(2)代数式的值.【答案】(1);(2)【分析】(1)由两个方程组同解可得,解方程组可得答案;(2)把代入两个系数未知的方程可得:,解方程组求解的值,即可得到答案.解:(1)由题意得:①+②得:把代入①得:所以这两个方程组的解是:(2)把代入可得:,③④得:把代入③得:所以:【点拨】本题考查的是同解方程,二元一次方程组的解法,代数式的值,乘方符号的确定,掌握以上知识是解题的关键.举一反三:【变式1】已知方程组和方程组的解相同,求(2a+b)2015的值.【答案】1.【分析】由两个方程组中不含a、b的两个方程可组成一个新的方程组,可求得x、y的值,再代入含有a、b的两个方程,可得到关于a、b的方程组,可求得a、b的值,代入计算即可.解:方程组与有相同的解,∴由①、③可得方程组,解得,再把代入②、④可得方程组,解得,∴(2a+b)2015=(2-1)2015=1.【点拨】本题主要考查方程组的解法,利用方程组的解相同求得方程组中x、y的值是解题的关键.【变式2】已知关于x、y的方程组的解和的解相同,求代数式的平方根.【答案】【分析】重新组合二元一次方程组,并解出x、y的值,再把x、y的值代入新的方程组,求出a、b的值,代入再求的平方根解:①×2+②×3得,13x=39,x=3,把x=3代入①得,y=1,∴此方程组的解为,把x=3,y=1,代入,,解得:,故【点拨】本题主要考查了二元一次方程组的解,掌握用加减消元法解方程组,重新组合新的方程组是解题关键.。
加减消元法解二元一次方程组--教案
4、回代——把求得的值代回方程中,求另一个未知数的值;
5、联——用“﹛”把两个未知数的值联立起来。
提示强调:①当某一个未知数的系数的绝对值相等时,若符号不同,用加法消元,若符号相同,用减法消元;
②当某一个未知数的系数成倍数关系时,将系数较小的方程两边都乘这个倍数,把该未知数变为相等或互为相反数,再用加减法解方程组;
③当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,把该未知数的系数化为绝对值相等的数,再用加减消元法求解。
(五)课堂练习
用加减法解下列方程组
(六)课堂小结
1、本节课主要学习了用加减法解二元一次方程组,到现在我们学习了那些解二元一次方程组的方法?
(四)牛刀小试
1、填空题
⑴已知方程组 两个方程,只要两边就可以消去未知数。
⑵已知方程组 两个方程,只要两边就可以消去未知数。
2.选择题
⑴用加减法解方程组 应用()
A①-②消去yB ①-②消去xC ②-①消去常数项
D 以上都不对
⑵方程组 消去y后所得的方程是()
A6x=8B6x=18C6x=5Dx=18
8.2.2加减消元-----解二元一次方程组
教学目标:
1、知识技能目标
掌握加减消元法的基本步骤,熟练运用加减消元法解简单的二元一次方程组
2、能力目标:
能够熟练运用加减消元法解二元一次方程组,训练学生的运算技巧,养成检验的习惯。
3、情感态度及价值目标:
通过研究解决问题的方法,培养学生合作交流意识和探究精神,进而体会数学的独特魅力。
问题7:例3用加减法解方程组
提问:同学们,观察这个方程组,能直接进行加减消元吗?那这个方程组怎么来解,我们分成小组来讨论研究学习。
小学数学《加减消元法》教案
加减消元法(1)一、教学目标 (一)知识与技能:1.会用加减消元法解简单的二元一次方程组;2.理解加减消元法的基本思想,体会化未知为已知的化归思想.(二)过程与方法:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、和交流让学生理解加减消元法解二元一次方程组的步骤.(三)情感态度与价值观:通过交流学习获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣.二、教学重点、难点重点:用加减消元法解二元一次方程组.难点:灵活运用加减消元法的技巧,把二元转化为一元. 三、教学过程 忆一忆1.解二元一次方程组的基本思路是什么? 消元: 二元 → 一元2.用代入法解二元一次方程组的主要步骤是什么?等式的性质1: 等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2: 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 思考我们熟悉的方程组:⎩⎨⎧=+=+②①16210y x y x ,这个方程组的两个方程中,y 的系数有什么关系? 利用这种关系你能发现新的消元方法吗?这两个方程中未知数y 的系数相等,②-①可消去未知数y . ②左边-①左边=②右边-①右边 2x +y -(x +y )=16-10 解这个方程得 x =6 把x =6代入①,得 y =4所以这个方程组的解是⎩⎨⎧==46y x①-②也能消去未知数y ,求得x 吗?联系前面的解法,想一想怎样解方程组⎩⎨⎧=-=+②①810158.2103y x y x解:①+②,得 18x =10.8x =0.6把x =0.6代入①,得 3×0.6+10y =2.8y =0.1 所以这个方程组的解是⎩⎨⎧==1.06.0y x当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.例3 用加减法解方程组⎩⎨⎧=-=+②①33651643y x y x分析:这两个方程中没有同一个未知数的系数相反或相等,直接加减这两个方程不能消元. 我们对方程变形,使得这两个方程中某个未知数的系数相反或相等.解:①×3,得 9x +12y =48 ③ ②×2,得 10x -12y =66 ④ ③+④,得 19x =114x =6 (把x =6代入②可以解得y 吗?)把x =6代入①,得 3×6+4y =16y =-21 所以这个方程组的解是⎪⎩⎪⎨⎧-==216y x如果用加减法消去x 应如何解?解得的结果一样吗? 解:①×5,得 15x +20y =80 ③ ②×3,得 15x -18y =99 ④ ③-④,得 38y =-19y =-21 把y =-21代入①,得 3x +4×(-21)=16 x =6所以这个方程组的解是⎪⎩⎪⎨⎧-==216y x练习1.用加减法解下列方程组: (1) ⎩⎨⎧-=-=+②①12392y x y x (2) ⎩⎨⎧=+=+②①15432525y x y x解:(1)①+②,得 4x =8 x =2把x =2代入①,得 2+2y =9y =3.5 所以这个方程组的解是⎩⎨⎧==5.32y x解:(2)①×2,得 10x +4y =50 ③③-②,得 7x =35x =5把x =5代入②,得 3×5+4y =15y =0 所以这个方程组的解是⎩⎨⎧==05y x(3) ⎩⎨⎧=+=+②①523852y x y x (4) ⎩⎨⎧-=-=+②①223632y x y x解:(3)①×3,得 6x +15y =24 ③②×2,得 6x +4y =10 ④ ③-④,得 11y =14,解得 y =1114 把y =1114代入①,得 2x +5×1114=8,解得 x =119 所以这个方程组的解是 ⎪⎪⎩⎪⎪⎨⎧==1114119y x解:(4)①×2,得 4x +6y =12 ③②×3,得 9x -6y =-6 ④ ③+④,得 13x =6,解得 x =136 把x =136代入①,得 2×136+3y =6,解得 y =1322 所以这个方程组的解是 ⎪⎪⎩⎪⎪⎨⎧==1322136y x课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗? 四、教学反思从本节课的授课过程来看,灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织学生活动等. 调动了学生学习的积极性,充分发挥了学生的主体作用. 课堂拓展了学生的学习空间,给学生充分发表意见的自由度.加减消元法(2)一、教学目标(一)知识与技能:1.会用加减法解二元一次方程组;2.分析实际问题,列解二元一次方程组解决实际问题.(二)过程与方法:通过“找等量关系”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;使学生在解决问题的过程中进一步体验方程是刻画现实世界的一个有效的模型,感受方程的作用.(三)情感态度与价值观:学生在充分经历自学、探究、交流、当堂练习等活动中,获得成功的体验,调动主动学习的积极性,感受数学学习的乐趣. 二、教学重点、难点重点:分析问题,寻找等量关系,列解二元一次方程组解决实际问题. 难点:寻找实际问题中的两个等量关系. 复习巩固解下列几个方程组,你会选择用代入法还是加减法去求解?为什么? (1)⎩⎨⎧-==+②①32123x y y x (2)⎩⎨⎧=+-=-②①1026456y x y x (3)⎩⎨⎧=+=-②①1062735y x y x(1)代入法⎩⎨⎧-==11y x (2)加减法⎩⎨⎧==21y x (3)加减法⎩⎨⎧==12y x例4 2台大收割机和5台小收割机同时工作2h 共收割小麦3.6hm 2,3台大收割机和2台小收割机同时工作5h 共收割小麦8hm 2.1台大收割机和1台小收割机每小时各收割小麦多少公顷?分析:如果1台大收割机和1台小收割机每小时各收割小麦 x hm 2和 y hm 2,那么2台大收割机和5台小收割机同时工作1h 共收割小麦________hm 2,3台大收割机和2台小收割机同时工作1小时共收割小麦________公顷.解:设1台大收割机和1台小收割机每小时各收割小麦 x hm 2和 y hm 2.根据两种工作方式中的相等关系,得方程组 ⎩⎨⎧=+=+8)23(56.3)52(2y x y x去括号,得 ⎩⎨⎧=+=+②①810156.3104y x y x②-①,得 11x =4.4 解这个方程,得 x =0.4把x =0.4代入① ,得 y =0.2 因此,这个方程组的解是 ⎩⎨⎧==2.04.0y x答:1台大收割机和1台小收割机每小时各收割小麦0.4hm 2和0.2hm 2.练习2.一条船顺流航行,每小时行20km ;逆流航行,每小时行16km .求轮船在静水中的速度与水的流速.解:设轮船在静水中的速度为 x km /h ,水的流速为y km /h .列方程组得⎩⎨⎧=-=+②①1620y x y x①+②,得 2x =36,解得 x =18 ①-②,得 2y =4,解得 y =2 所以这个方程组的解是 ⎩⎨⎧==218y x答:轮船在静水中的速度为18km /h ,水的流速2km /h .3.运输360t 化肥,装载了6节火车车厢与15辆汽车;运输440t 化肥,装载了8节火车车厢与10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?解:设每节火车车厢与每辆汽车平均各装 x t 和 y t .列方程组得⎩⎨⎧=+=+②①440108360156y x y x①×2,得 12x +30y =720 ③ ②×3,得 24x +30y =1320 ④ ④-③,得 12x =600,解得 x =50把x =50代入①,得 6×50+15y =360,解得 y =4 所以这个方程组的解是 ⎩⎨⎧==450y x答:每节火车车厢与每辆汽车平均各装50t 和4t .课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗? 四、教学反思从本节课的授课过程来看,灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织学生活动等. 调动了学生学习的积极性,充分发挥了学生的主体作用. 课堂拓展了学生的学习空间,给学生充分发表意见的自由度.。
北师大版八年级数学上册《用加减消元法解二元一次方程组》教案
北师大版八年级数学上册《用加减消元法解二元一次方程组》教案 一、教学目标 知识与技能:了解并会用加减消元法解二元一次方程组。
过程与方法:了解解二元一次方程组的消元思想,体会数学中“化未知为已知”的化归思想。
情感态度与价值观:初步体验二元一次方程组解法的多样性和选择性。
二、教学重点会用加减消元法解二元一次方程组。
三、教学难点掌握解二元一次方程组的“消元”思想。
四、教学过程设计(一)课前探究预习教材,探究如何用加减消元法解二元一次方程组(二)课中展示怎样解下面的二元一次方程组呢?⎩⎨⎧=-=+11-52125y 3x y x分析:观察方程组中的两个方程,未知数y 的系数互为相反数,把这两个方程两边分别相加,就可以消去未知数y ,得到一个一元一次方程;(3x + 5y )+(2x - 5y )=21 + (-11)①左边 + ②左边 = ①左边 + ②左边3X+5y +2x - 5y =105x+0y =105x=10解:由①+②得: 5x=10 x =2把x =2代入①,得y =3所以原方程组的解是⎩⎨⎧==23x y应用新知例 1 解下列方程组.⎩⎨⎧-=+=-13275y 2x y x 分析:观察方程组中的两个方程,未知数x 的系数相等,都是2.把这两个方程两边分别相减,就可以消去未知数x ,同样得到一个一元一次方程.解:把 ②-①得:8y =-8y =-1把y =-1代入①,得2x -5╳(-1)=7解得:x =1所以原方程组的解是⎩⎨⎧-==11x y5. 例2.用加减消元法解下列各方程组⎩⎨⎧=+=+1743123y 2x y x分析:(1)用加减消元法解方程组时,若哪个未知数系数的绝对值正好相等,就可先消哪个未知数;若两个未知数的系数绝对值均不等,则可选定一个未知数,通过变形使其绝对值相等,再进行消元.(2)运用加减消元法解方程组的条件是方程组中两个方程的某个未知数的系数的绝对值相等,当方程组中两方程不具备这种特点时,必须用等式性质2来改变方程组中方程的形式,即得到与原方程组同解的且某未知数系数的绝对值已经相等的新的方程组,从而为加减消元法解方程组创造条件.①×3得6x+9y=36 ③②×2得6x+8y=34 ④③-④得y=2把y =2代入①,得解得:x =3所以原方程组的解是⎩⎨⎧-==11x y(四)小结梳理加减消元法解方程组基本思路:加减消元----二元---一元主要步骤有:变形----同一个未知数的系数相同或互为相反数加减----消去一个元求解----分别求出两个未知数的值写解----写出方程组的解(五)后测达标完成教材随堂练习(六)拓展延伸。
消元解二元一次方程组教案实用
消元解二元一次方程组教案实用一、教学目标1.知识与技能1.1理解二元一次方程组的解的概念。
1.2学会利用加减消元法解二元一次方程组。
2.过程与方法2.1通过观察、操作,培养解决实际问题的能力。
2.2通过小组合作,提高合作解决问题的能力。
3.情感态度与价值观3.1培养学生独立思考、勇于创新的精神。
3.2增强学生解决实际问题的信心。
二、教学重难点1.重点:理解二元一次方程组的解的概念,掌握加减消元法解二元一次方程组。
2.难点:灵活运用加减消元法解题。
三、教学过程1.导入新课1.1利用生活中的实际问题引入二元一次方程组的概念。
例如:小明和小红一共收集了30个邮票,小明有20个,小红有多少个?2.探索新知2.1引导学生回顾一元一次方程的解法,让学生尝试解二元一次方程组。
例如:求解方程组:\[\begin{cases}x+y=5\\2xy=1\end{cases}\]2.2学生尝试解题,教师巡回指导,发现学生不会解的情况,引导学生观察两个方程之间的关系。
3.引导学生发现消元法3.1教师引导学生将两个方程相加或相减,消去一个未知数。
例如:将第一个方程乘以2,得到:\[\begin{cases}2x+2y=10\\2xy=1\end{cases}\]然后将两个方程相减,消去y,得到:\[\begin{cases}2x+2y=10\\3y=9\end{cases}\]3.2学生根据消元法,求解出y的值,再将y的值代入其中一个方程求解x的值。
例如:如何选择相加或相减,如何确定消去哪个未知数等。
5.练习巩固5.1让学生独立完成教材上的练习题,巩固所学知识。
5.2教师选取一些典型题目进行讲解,帮助学生理解消元法。
6.小组合作6.1将学生分成小组,每组选取一道二元一次方程组题目进行讨论。
6.2各小组成员分别阐述自己的解题思路,共同找出最优解法。
7.1教师邀请几名学生分享自己的解题过程和心得体会。
7.2教师对学生的表现进行评价,鼓励学生继续努力。
七年级数学下册(加减消元法解二元一次方程)教案 (新版)新人教版 教案
消元---二元一次方程组的解法
练习和归纳: 解方程组:1、⎩
⎨
⎧==+115y -3x 33
y 2x
2、⎩⎨
⎧=+=+7
2y 3x 15y 2x
3、思考:已知a 、b 满足方程组
,则a+b=
六、小结归纳:
上面这些方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些?
特点:同一个未知数的系数相同或互为相反数
基本思路:加减消元:二元变一元 主要步骤:加减消去一个元 求解分别求出两个未知数的值 写解写出原方程组的解
七、作业:教材第98页第3题。
学生分组讨论后请代表板演过程,然后教师和学生一起分析有没
有过错,或写的好的地方在哪?
师生共同归纳方程特点和解题
过程,而且特别强调整体性及去括号的注意事项。
通过练习强化使
得当堂学习有所得,这
样相对不容易忘记。
七、教学评价设计 1、课堂理解度多少? 2、作业反馈情况如何?。
加减消元法解二元一次方程组教案
加减消元法解二元一次方程组教案加减消元法解二元一次方程组教案「篇一」二元一次方程组的解法(加减消元法)说课稿尊敬的各位老师,各位同学:大家好!我今天说课的题目是《二元一次方程组的解法》,选自沪教版九年义务教育课本六年级下册第六章第九节,本节两个课时,我今天阐述的是第二课时,用加减消元法解二元一次方程组。
下面我将从教材分析、教法分析、学法分析、教学过程及教学评价等几个方面进行阐述。
一、教材分析1、教材的地位和作用本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
教材的编写目的是通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程;理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础.2、教学目标通过对新课程标准的研究与学习,我把本节课的三维教学目标确定如下:知识与技能目标:会用加减消元法解简单的二元一次方程组;理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,同时体会到数学与日常生活的密切联系,认识到数学的价值。
3、教学重、难点由于六年级的学生年龄较小,在学习解二元一次方程组的过程中往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。
而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下: 重点:用加减消元法解决二元一次方程组难点:在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想为讲清楚重、难点,让学生达到本节设定的目标,我再从教法学法上谈谈。
二、教法分析考虑到学生已经掌握了用代入消元法解二元一次方程组,懂得其基本思路是把二元一次方程组转化为一元一次方程。
加减消元法解二元一次方程组教案及反思
2、解方程组:
3x+5y=21①
2x-5y=-11②
第三站—感悟之旅
思考:(1)未知数x的系数有什么关系?你有何想法吗?想一想怎样解方程组。
(2)从上面的解答过程中,你发现了二元一次方程组的新解法吗?
3、归纳:通过将两个方程相加(或相减)消去一个未知数,将方程组转化为一元一次方程来解的.这种解法叫做加减消元法,简称加减法.
x=0x =-6
(四)知识应用、拓展升华
用加减法解下列方程组
思考:能不能选择消y呢?
练习:(1) (2)
(四)课堂小结:
1、二元一次方程组(加减消元法)一元一次方程
2、加减消元法的一般步骤
3、思想方法:转化思想、消元思想
(五)作业:
1、必做题:P103习题8.2第3题(1)(2);P118, 复习题8第2题。
x+y=22
2x+y=40
比比看,看谁写得又对又快
(二)尝试发现、探究新知
第一站—发现之旅
1、解方程组:X+y=22
2x+y=40
思考:还有别的方法吗?认真观察此方程组中各个未知数的系数有什么特点,并分组讨论还有没有其他的解法,并尝试一下能否求出它的解。
练习:解方程组:2x-5y=7①
2x+3y=-1 ②
3、情感态度与价值观:让学生在探究中感受数学知识的实际用价值,养成良好的学习习惯。
三、重点:加减消元法解二元一次方程组。
四、难点:如何运用加减法进行消元。
五、教学方法:本节课采用“探索---发现---比较”的教学法。
六、教学过程:
(一)温故而知新
1、解二元一次方程组的基本思路是什么?
加减消元法解二元一次方程的教学设计
《用加减法解二元一次方程组》教学设计舜王街道箭口初中邬劲涛【一】教材分析在学习本节课之前,学生已经学过代人消元法解二元一次方程组,理解“消元”是核心,化归是目标,因此本节课再学习加减消元法就有了理论基础。
【【二】、教学目的:1.使学生掌握用加减法解二元一次方程组的步骤。
2.熟练运用加减法解二元一次方程组。
3.培养学生分析问题、解决问题的能力。
【三】、教学重点、难点和关键(一)重点:使学生学会用加减法解二元一次方程组。
(二)难点:灵活运用加减消元法的技巧(三)关键:如何“消元”,把“二元”转化为“一元”【四】、教学方法:讨论法、讲练结合法【五】、教具准备:投影仪【六】、教学步骤(一)、创设情境,复习导入1.用代入法解二元一次方程组的基本思想是什么?2.用代入法解下列方程组,并检验所得结果是否正确3x+5y=5 ①2x-5y=11 ②学生活动:口答第1题,在练习本上完成第2题,一个同学说出结果。
上面的方程组中,我们用代入法消去了一个未知数,将“二元”转化为“一元”,从而得到了方程组的解。
对于二元一次方程组,是否存在其它方法,也可以消去一个未知数,达到化“二元”为“一元”的目的呢?这就是我们这节课将要学习的内容。
【教法说明】由练习导入新课,既复习了旧知识,又引出了新课题,教学过程中还可以进行代入法和加减法的对比,训练学生根据题目的特点选取适当的方法解题。
(二)、探索新知,讲授新课上题的两个方程中,未知数y的系数有什么特点?(互为相反数),如果把两个方程的左边与左边相加,右边与右边相加,就可以消掉y,得到一个一元一次方程,进而求得二元一次方程组的解。
解:①+②,得5x=10∴ x=2把x=2代入①,∴y=3∴ x=2y=3学生活动:比较用这种方法得到的x、y值是否与用代入法得到的相同(相反)上面方程组的两个方程中,因为y的系数互为相反数,所以我们把两个方程相加,就消去了y。
)思考:联系上面的解法,想一想怎样解方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7.2二元一次方程组的解法
——加减消元法教学设计
福建省晋江市第一中学许清海一、教学内容解析:
本节课内容节选自华师大版七年级数学下册第7章第二节第2课时。
是在学生学习了代入消元法解二元一次方程组的基础上,继续学习的另一种消元方法——加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
教材的编写目的是让学生通过学习加减消元法充分体会“化未知为已知”的转化过程,体会代数的一些特点和优越性。
对于学生理解并掌握方程思想、转化思想、消元法等重要的数学思想方法有着重要的意义。
理解并掌握解二元一次方程组的基本方法,为以后函数等知识的学习打下基础。
本节内容的教学重点:探索并掌握加减消元法解二元一次方程组,体会消元化归思想。
二、教学目标设置:
通过对新课程标准的的学习,结合我班学生的实际情况,我把本节课的三维教学目标确定如下:
(一)知识与技能目标:
1、学会用加减消元法解二元一次方程组;
2、灵活的对方程进行恒等变形使之便于加减消元;
3、理解加减消元法的基本思想,体会化未知为已知的化归思想。
(二)过程与方法目标:
1、通过经历二元一次方程组解法的探究过程,进一步体会化“未知”为“已知”、化复杂问题为简单问题的化归思想方法;
2、经历个体思考探究、小组交流、全班交流的合作化学习过程理解根据加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:
1、培养学生学会自主探索、尝试、比较,养成与他人合作、交流思维过程的习惯;
2、通过交流学习获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,品尝成功的喜悦,树立学习自信心;
3、通过知识的学习形成辩证唯物主义观以解决问题。
三、学生学情分析:
我所任教的班级学生基础比较好,他们已经具备了一定的探索能力和思维能力,也初步养成了合作交流的习惯。
大多数学生的好胜心比较强,性格比较活泼,他们希望有展现自我才华的机会,但是对于七年级的学生来说,他们独立分析问题的能力和灵活应用的能力还有待提高,很多时候还需要教师的点拨、引导和归纳。
因此,我遵循学生的认识规律,由浅入深,适时引导,调动学生的积极性,并适当地给予表扬和鼓励,借此增强他们的自信心。
本节内容的教学难点:灵活运用加减消元法的技巧,把“二元”转化为“一元”。
四、教学策略分析:
1、深究教材定教法:在深究教材章节内容后,围绕着确定的教学目标,我根据所要教的内容和七年级学生的年龄特征和认知特点,在教学中我主要采取了“先学后教,问题教学,分层探究,当堂训练”的教法掌握重点,突破难点。
2、因材施教定学法:英国教育学家斯宾塞说过:“教课应该从具体开始,而以抽象结束。
”因此,在教学中,我先让学生以导学案和课本文本进行预习,以便学生在自学时有明确自学探索方向,知道要解决什么问题,课堂要求学生自主探究、合作学习。
对于问题,分组交流,相互补充,教师参与小组讨论,解答疑问。
五、教学过程:
=-=+8313y y
⎪⎪⎩⎪⎪⎨
⎧=-=+1213
183121
n m n m。