仿生功能材料

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《功能材料概论》期末小论文

浅谈仿生功能材料

摘要:随着人民生活质量的进一步改善和提高 ,人们的生活对各种科学技术的要求也不断提高,而许多科技产品的发展都需要新型材料的支持,而新型功能材料正好能为科技提供发展基础。什么是功能材料?功能材料具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,有特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。功能材料市场将很快转化为充满勃勃生机的现实市场,从而创造出巨大的社会经济效益,成为国民经济的一个支柱产业。下面我想谈谈功能材料的一个分支-----仿生功能材料

一、什么是仿生功能材料?

仿生功能材料指模仿生物的各种特点或特性而开发的材料。自然界中存在的天然生物材料有着人工材料无可比拟的优越性能。我们通过研究他们的特点特性,制造我们能使用的材料,例如研究萤火虫发明人工冷光、研究电鱼发明伏特电池;研究苍耳属植物发明尼龙搭扣、研究鲨鱼发明特质泳衣……

二、仿生功能材料的基本原理

现实生活中我们接触过许多动物与植物,例如屹立几百年而不倒的大树;几乎不发热量的冷血昆虫,而地球上所有生物都是由一些简单且廉价的无机和有机材料通过组装而形成,他们仅仅利用极少的几种元素,主要是碳、氢、氧、氮等组合而成,便能发挥出多种多样的功能,这实在令人叹服!在高分子化学世界里,我们已经制造出了聚乙烯、聚氯乙烯、聚碳酸脂、聚酰胺等人工材料,具有多种多样的功能。但是,人类所创造的材料与自然界生物体的构成材料还有很大的不同,迄今为止,再高明的材料科学家也做不出具有高强度和高韧性的动物牙釉质;海洋中长出的色彩斑斓、坚固又不被海水腐蚀的贝壳。如果我们眼光投向生物体的材料构造与形成过程,在充分的理解生物现象之后,用生物材料的观点来思考人工材料,从生物功能的角度来设计与制作适合人类生活所需的材料。

三、仿生功能材料的运用举例及原理

1、自清洁玻璃

仿生机理: 荷叶表面多尺度结构和表皮生物腊的存在是引起荷叶表面“自清洁”的原因。荷叶表面由很多密集排列的直径10~20μm 左右“乳突”所组成,它们之间存在纳米级空隙,而每一个微米级乳突上还存在很多直径200nm 左右的小乳突。形成微纳米双重结构的乳突,使空气填充其间。水在荷叶上,由于表面张力和乳突间空气的阻力的作用,水的表面总是趋向于尽可能缩小成球状,接触角可达170度左右,几乎完全不浸润。荷叶使水和尘埃在其表面的接触面积比一般材料减少了90%多,水滴极易滚动,在水滴滚动的同时,就带走了叶子上的尘埃和细菌,从而实现自清洁的功能。荷叶拥有的这种特性被称为超疏水性能。 利用荷叶的特性制成的超疏水性自清洁玻璃:

当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。即使表面上有了一些脏的东西,也会被滚动的水珠带走,由于水分子间的引力作用,水珠走过的地方不会在玻璃表面留下水痕,这样表面就具有了“自清洁”的能力。

这种自清洁玻璃冬季有很好的防结冰作用。

自洁性能测试(曝晒实验)

60

65

70

75

80

85

90

95

05

1015

时间(天)

透光率百分数(%)未处理自洁处理

超白玻璃透光率对比测试

65

70

75

80

85

9095024681012

循环次数(次)

透光率(%)自洁处理未处理

2、磷酸钙和骨胶原人造骨骼

日本物质和材料研究机构与有关大学合作开发出新的人造骨骼.是用由骨骼的无机成分磷酸钙和有机成份骨胶原组成的复合材料制成的.其强度与弹性均接近于真正的骨骼.把它移植到缺损部位能很快被吸收并长出新的骨骼来。在狗身上做实验表明. 大约3个月就可以再生出新的骨骼来。这一科研成果目前仅处于动物实验阶段,尚需进行实用化研究开发, 才能达到临床试验水平。

3、仿生增韧陶瓷材料

陶瓷材料的脆性和如何增韧是其应用的关键问题之一,也一直是研究的热点。人们提出过长纤维或晶须增韧补强、颗粒弥散强化、相变增韧等多项强韧化

措施,也取得了积极的成果,但仍没有从本质上解决陶瓷材料的脆性问题。

自然界中贝壳珍珠层的组成中虽然近95%是普通陶瓷CaCO3,但其综合力学性能优异,特别是断裂韧性,比单相CaCO3陶瓷高2~3个数量级。这说明贝壳珍珠层所具有的优异力学性能与其独特的生物结构有密切关系。贝壳珍珠层是由文石、晶片形成增强相的层状复合材料,占总质量1%~5%的有机质填充于无机相之间。层与层间的有机质具有三明治式夹心结钩,外夹憎水的丝心蛋白质和亲水的酸性蛋白质。文石晶体与有机基质交替叠层的排列方式是抗脆断的关键所在,由于有机基质层强度相对较弱,易于诱导裂纹在其中偏转,从而阻止了裂纹的穿透扩展。因此,可以把珍珠层的结构抽象为软硬相交替的多层增韧结构,正是这种结构组合赋予了贝壳珍珠层极佳的断裂韧性。

四、我国仿生功能材料发展和困难

我国非常重视功能材料的发展,在国家攻关、“ 863”、“973”、国家自然科学基金等计划中,功能材料都占有很大比例。在“九五”“十五”国防计划中还将特种功能材料列为“国防尖端”材料。这些科技行动的实施,使我国在功能材料领域取得了丰硕的成果。在“863”计划支持下,开辟了超导材料、平板显示材料、稀土功能材料、生物医用材料、储氢等新能源材料,金刚石薄膜,高性能固体推进剂材料,红外隐身材料,材料设计与性能预测等功能材料新领域,取得了一批接近或达到国际先进水平的研究成果,在国际上占有了一席之地。镍氢电池、锂离子电池的主要性能指标和生产工艺技术均达到了国外的先进水平,推动了镍氢电池的产业化;功能陶瓷材料的研究开发取得了显著进展,以片式电子组件为目标,我国在高性能瓷料的研究上取得了突破,并在低烧瓷料和贱金属电极上形成了自己的特色并实现了产业化,使片式电容材料及其组件进入了世界先进行列;高档钕铁硼产品的研究开发和产业化取得显著进展,在某些成分配方和相关技术上取得了自主知识产权;功能材料还在“两弹一星”、“四大装备四颗星”等国防工程中作出了举足轻重的贡献。

相关文档
最新文档