热能与动力工程简介

合集下载

热能与动力工程主修课程

热能与动力工程主修课程

热能与动力工程主修课程热能与动力工程是一门涉及能量转换和利用的学科,主要研究各种能源的转化与利用方式,以及动力设备的设计与运行。

这门课程是热能与动力工程专业的核心课程之一,对于培养学生的工程实践能力和解决实际问题的能力具有重要意义。

在热能与动力工程主修课程中,学生将学习各种能源如化石能源、可再生能源的特性、转化方式和利用技术。

同时,还会深入了解燃烧理论与技术、燃烧室设计、燃气轮机、蒸汽轮机和内燃机等动力设备的原理、结构和运行方式。

通过学习这些内容,学生将能够理解和分析各种能源的利用效率、环境影响和经济性,并能够设计和优化各类动力设备。

热能与动力工程主修课程的核心内容包括热力学、传热学和流体力学。

热力学是研究热能与功的转化关系和能量守恒的基础理论,通过热力学的学习,学生能够理解能量转化的基本原理和各种循环过程。

传热学是研究热量在物体之间传递的机理和规律,通过传热学的学习,学生能够掌握传热方式和传热计算方法,为热能设备的设计和优化提供理论基础。

流体力学是研究流体运动的力学性质和规律,通过流体力学的学习,学生能够理解流体在热能设备中的运动特性和流体力学计算方法。

热能与动力工程主修课程还涉及到热力设备的设计与优化、能源系统的分析与优化、能源与环境等内容。

学生将学习热力设备的设计原则和方法,了解不同能源系统的特点和优化策略,并学习能源与环境的关系和可持续发展的方法。

在热能与动力工程主修课程中,学生将进行大量的实验和实践训练。

通过实验,学生能够加深对理论知识的理解和运用,培养实验设计和数据分析的能力。

同时,学生还将进行一些工程实践项目,通过实际操作和解决实际问题,提高工程实践能力和团队合作能力。

热能与动力工程主修课程的学习对于培养学生的工程实践能力、解决实际问题的能力和创新能力具有重要意义。

毕业后,学生可以从事能源转换与利用、动力设备设计与运行、能源系统分析与优化等相关领域的工作。

同时,热能与动力工程专业的学生还具备继续攻读研究生和从事科研工作的能力。

热能与动力工程特点与问题分析

热能与动力工程特点与问题分析

热能与动力工程特点与问题分析热能与动力工程是研究热能转换与利用的科学与技术领域,其特点有以下几个方面:1. 高能效性:热能与动力工程研究的目标是提高能量转换过程的效率,以减少能源的消耗和环境污染。

通过优化设计和改进工艺,可以实现高效的能量转换,并提高能源利用效率。

2. 多样性:热能与动力工程涉及的能源形式多样,包括化石能源、再生能源和核能等。

不同能源具有不同的特点和适用范围,热能与动力工程需要根据不同的能源特点进行相应的研究和应用。

3. 综合性:热能与动力工程要求综合运用热力学、流体力学、传热学、燃烧学、机械工程等多个学科的理论和方法,对能源转换和利用过程进行综合分析和优化设计。

热能与动力工程面临的问题主要包括以下几个方面:1. 能源消耗和环境污染:能源消耗和环境污染是热能与动力工程面临的主要问题之一。

随着经济的快速发展和人口的迅速增长,能源消耗不断增加,对环境造成了严重的污染和破坏。

热能与动力工程需要寻找替代能源和改进现有能源的利用方式,以减少对环境的影响。

2. 能源安全:能源安全是热能与动力工程面临的另一个重要问题。

能源的供给不稳定、能源价格的波动等因素对社会经济造成了巨大的影响。

热能与动力工程需要研究和开发具有可再生性和可持续性的能源,以解决能源供给的不稳定性和价格波动的问题。

3. 技术创新和升级:热能与动力工程需要不断进行技术创新和升级,以提高能源转换和利用的效率。

随着科技的进步和社会的发展,新的能源技术和设备不断涌现,热能与动力工程需要积极引进和应用这些新技术和设备,促进技术创新和升级。

4. 能源供给结构的调整:热能与动力工程需要进行能源供给结构的调整,以实现对多能源的合理利用和转换。

随着能源形式的多样性和能源消耗的不断增加,热能与动力工程需要研究和改进能源供给的结构和方式,以适应能源发展的需要。

热能与动力工程具有高能效性、多样性和综合性的特点,但也面临着能源消耗和环境污染、能源安全、技术创新和升级、能源供给结构的调整等问题。

热能与动力工程特点与问题分析

热能与动力工程特点与问题分析

热能与动力工程特点与问题分析热能与动力工程是工程热物理学的一个重要分支,主要涉及热能的转换与利用。

通过对热能与动力工程的特点与问题进行分析,可以更好地理解这个领域的基本概念和发展趋势。

热能与动力工程的特点主要体现在以下几个方面:1. 大量能源需求:热能与动力工程涉及到人类社会发展所需的各种能源,如化石能源(煤炭、石油、天然气)、核能、太阳能等。

随着工业化进程的加快和人口的增长,热能与动力工程在能源供应方面面临着越来越大的挑战。

2. 能源转换与利用:热能与动力工程主要研究能源的转换与利用技术,包括燃烧、热力循环、热交换等。

这些技术不仅可以将能源转化为电力或其他形式的能源,还可以实现能源的高效利用,减少能源的浪费。

3. 环境保护与可持续发展:热能与动力工程的发展必须考虑环境保护和可持续发展的问题。

随着环境问题的日益严重,热能与动力工程需要致力于开发清洁能源和减少污染物的排放,以保护环境和人类健康。

4. 多学科交叉与综合应用:热能与动力工程是一个多学科交叉的领域,涉及热物理学、力学、材料学、化学、电气工程等多个学科的知识。

热能与动力工程的实践往往需要综合运用多种技术和理论,以解决实际问题。

1. 能源供应问题:随着人口的增长和经济的发展,能源供应面临着巨大的压力。

热能与动力工程需要不断开发新的能源资源,并提高能源的利用效率,以满足社会的能源需求。

2. 环境污染问题:热能与动力工程在能源转换过程中会产生大量的废气、废水和固体废物,对环境造成污染。

热能与动力工程需要研究和应用高效的环保技术,减少污染物的排放,保护环境和生态平衡。

4. 技术创新与提升问题:热能与动力工程需要不断进行技术创新和提升,以适应社会经济的发展和环境保护的要求。

热能与动力工程需要研究和应用新的能源转换与利用技术,提高能源的利用效率和经济性。

热能与动力工程是一个关系到能源供应、环境保护和可持续发展的重要领域。

了解其特点与问题,可以促进热能与动力工程的发展,推动能源转型和可持续发展的进程。

热能与动力工程特点与问题分析

热能与动力工程特点与问题分析

热能与动力工程特点与问题分析热能与动力工程是研究热能的获取、转换和利用的工程领域。

该领域的特点与问题主要包括以下几个方面:1. 特点:热能与动力工程是一个复杂的领域,涉及多学科的知识,包括热学、热力学、流体力学、材料科学等。

其特点主要有以下几个方面:(1)多学科交叉:热能与动力工程需要综合利用多学科的知识,包括力学、热学、电学、化学等领域的专业知识,因此对工程师的综合能力要求较高。

(2)能量转换与传递:热能与动力工程涉及能量的转换与传递,包括燃烧、发电、输电、传热、传质等过程。

对能量转换与传递机制的研究是热能与动力工程的核心。

(3)能源利用与环境保护:热能与动力工程涉及能源的获取和利用,对环境产生一定的影响。

热能与动力工程需要考虑如何提高能源的利用效率,减少对环境的污染。

2. 问题:热能与动力工程在其发展过程中也面临一些问题,主要包括以下几个方面:(1)能源缺乏与供需矛盾:热能与动力工程依赖能源的支持,而当前全球能源资源日益减少,能源供需矛盾日益突出。

如何有效利用有限的能源资源,保证能源供给是热能与动力工程亟待解决的问题。

(2)能源利用效率低下:全球能源利用效率普遍较低,大量能源被浪费。

热能与动力工程需要借助科技手段提高能源利用效率,减少能源浪费。

(4)能源安全问题:能源是国家经济发展的重要基础,因此能源安全是一个国家关注的重点问题。

热能与动力工程需要根据不同国家和地区的能源安全需求,制定相应的能源政策和技术措施,确保能源的安全供应。

热能与动力工程是一个复杂的领域,具有多学科交叉、能量转换与传递、能源利用与环境保护等特点。

热能与动力工程在能源缺乏、能源利用效率低下、环境污染与可持续发展、能源安全等方面也面临一些问题,需要研究人员和工程师共同努力解决。

热能与动力工程专业介绍及描述

热能与动力工程专业介绍及描述

热能与动力工程专业介绍及描述热能与动力工程专业又名能源与动力工程,热能与动力工程专业培养具备热能工程、传热学、流体力学、动力机械、动力工程等方面基础知识,能在国民经济和部门从事动力机械如热力发动机、流体机械、水力机械的动力工程如热电厂工程、水电动力工程、制冷及低温工程、空调工程的设计、制造、运行、管理、实验研究和安装、开发、营销等方面的高级工程技术人才。

该专业学生主要学习动力工程及工程热物理的基础理论,具有进行动力机械与热工设备设计、运行、实验研究的基本能力。

热能动力及控制工程电厂方向、流体机械与制冷低温工程、内燃机及汽车工程1、专业基本课程该专业所有方向均要学习的课程:传热学、工程热力学、流体力学;理论力学、材料力学、电工电子、工程制图、机械设计基础、工程材料基础、控制工程、测试技术。

2、不同方向专业课:1热能动力及控制工程电厂方向:锅炉原理、热力涡轮机械原理、发电厂系统及设备、加热炉2流体机械与制冷低温工程:流体机械原理、容积式压缩机原理、制冷原理与装置、低温原理与装置3内燃机及汽车工程:内燃机原理、内燃机构造、汽车构造、汽车理论华北电力大学:热能与动力工程在我们学校主要针对火力发电厂,目前看还不错,毕竟是电力行业。

我们学校的电力系统及其自动化更好,毕业进供电局什么的,应该说比电厂好。

河北科技大学:我们学校的热能专业主攻的是制冷方向,不是人们第一印象的电厂、内燃机方向。

我在那里生活了四年,不好很客观的说。

如果你的弟弟、妹妹成绩比较好的话建议去西安交通大学吧,那里的热能专业方向比较全而且在全国里,那里应该是数一数二的。

东北大学:客观讲,学科实力在全国应该属于二流水平,和清华,浙大,上交,西交差一些。

但是整体而言,应该是不错的学科,是辽宁省重点学科。

就业形势很好,真的,本科生平均能找三份工作可以挑选。

这个专业对口的主要是钢铁行业,就业单位比如宝钢,赛迪等各大钢铁企业和设计院。

在钢铁行业,东北大学的热能还是响当当的,这些是别的学校的热能比不了的。

高考专业介绍10——热能与动力工程(热力发动机方向)

高考专业介绍10——热能与动力工程(热力发动机方向)

热能与动力工程(热力发动机方向)什么是热力发动机汽车是人类最伟大的发明之一,给大家的出行、货物的流动来了诸多的便利。

热力发动机是汽车的心脏,汽车的行驶离不开热力发动机。

热力发动机简称内燃机,大体由两大机构五大体系组成。

两大机构是曲柄连杆机构和配气机构。

曲柄连杆机构由气缸体、汽缸盖、活塞、连杆、曲轴和飞轮等组成,是发动机产生动力,并将活塞的直线往复运动变成曲轴旋转运动,对外输出动力的装置。

配气机构由进气门、排气门、气门弹簧、挺杆,凸轮轴和正时齿轮等组成,其作用是将新鲜气体及时充入气缸、并将燃烧产生的废气及时排出气缸。

五大系统是指燃料供给系、冷却系、润滑系、点火系和启动系。

因使用的燃料不同,燃料供给系可分为汽油机燃料供给系和柴油机燃料供给系。

汽油机燃料供给系统用的是电喷式燃料供给系,它由燃油箱、汽油泵、汽油滤清器、空气滤清器、进排气管和电子喷射器组成,其作用是向气缸内攻击可燃混合气,并控制进入气缸内可燃混合气的数量,以调节发动机输出的功率和转速,最后,将燃烧后的废气排出气缸。

柴油机燃料供给系由燃油箱、输油泵、喷油泵、柴油滤清器、进排气管等组成,其作用是向气缸内供给纯空气并在规定时刻向缸内喷入定量柴油,以调节发动机输出功率和转速,最后,将燃烧后的废气排出气缸。

机动车冷却系一般采用水冷却式。

水冷却式由水泵、散热器、风扇、节温器和水套(在机体内)等组成,其作用是利用冷却水的循环将高泵、滤清器、油道、油底壳等组成。

其作用是将润滑油分送至各个相对运动零件的摩擦面,以减小摩擦力,减缓机件磨损,并清洗、冷却摩擦表面。

点火系是汽油机特有的。

汽油机点火系由电源(蓄电池和发电机)、点火线圈、分电器和火花塞等组成,其作用是按规定时刻及时点燃气缸内被压缩的可燃混合气。

起动系由起动机和起动继电器等组成,使静止的发动机起动并转入自行运转状态。

发动机结构复杂,但是核心的功能只有一个,就是将燃料燃烧产生的热能转化为动能,带动汽车行驶。

热能与动力工程专业(大类)培养方案(080501)

热能与动力工程专业(大类)培养方案(080501)
The major of Thermal Energy & Power Engineering offers five academic directions including Power Station Thermal Energy & Power Engineering, Thermal Heat Engine, Thermal Energy Engineering, Refrigeration air-conditioning& Cryogenic Engineering and Thermal Process Automation. This major is committed to cultivating advanced engineering talents with inter-disciplinary knowledge in engineering design, products research and development, technology management in fields correlated with thermal energy and power engineering, e.g. thermal energy engineering, power machinery, power engineering, thermal process automation, refrigeration and air-conditioning.
二、培养目标(Ⅱ、Academic Objectives) 本专业主要培养能量转换与利用和动力工程领域具有宽厚基础理论,扎实专业知识和基本技能,
较强实践和创新能力,较高文化素质和良好职业道德的复合型高级工程技术人才,以满足社会对能 源动力领域的科研、设计、教学、工程技术、经营管理等各方面的人才需求。

热能与动力工程专业介绍

热能与动力工程专业介绍

热能与动力工程专业介绍(工学、能源动力类、专业代码:080501)一、专业简介(一)培养目标本专业以能源工业为特色,培养德智体美全面发展,具有较扎实的理论基础和专业技术知识,较好的综合素质与较强的工程技术应用能力,受到工程师的基本训练。

热力发电厂方向,主要从事热能与动力工程设备和系统的设计、运行、管理、技术研究与开发,节能等方面的应用型高级技术人才。

风能与动力工程方向,主要从事现代风力发电场的运行、管理、规划、设计与施工、风能资源测量与评估等方面的应用型高级技术人才。

(二)专业内容热力发电厂方向,是将常规能源(化石燃料、天然气、石油)在锅炉内燃烧产生的化学能转化成热能,通过工质推动热动力设备做功,将热能转化为机械能,带动发电机将机械能转化为电能。

风能与动力工程方向,是将空气的动能通过风力机转化成机械能,带动风力发电机将机械能转化为电能。

(三)专业特色本专业以能源工业为特色,认真贯彻党的教育方针,坚持专业建设以社会需求为导向的办学思想,凸显能源资源特色,以应用型人才培养为目标,构建知识、能力与创新的课程体系,为宁夏及周边区域能源资源建设提供所需的应用型人力资源。

二、主干课程热力发电厂方向:工程热物理、热能动力主要课程:流体力学、工程热力学、传热学、电工电子技术、电厂锅炉、汽轮机原理、热力发电厂、换热器设计、理论力学、材料力学、热工自动化仪表、泵与风机、机械设计基础等。

风能与动力工程方向:风能动力主要课程:流体力学、空气动力学、电工电子技术,理论力学、材料力学、自动控制理论,风力机原理,风电机组设计制造,风电场电气工程、风资源测量与评估、电机学、风力发电场、机械设计基础等。

三、就业方向毕业生可在大型能源企业和相关公司,如热力发电厂、风力发电场、汽轮机厂、锅炉制造厂、风力机设备制造厂等,从事系统的设计、运行、管理、技术研究与开发,新能源利用等方面的工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热能与动力工程简介热能与动力工程简介热能与动力工程培养具备热能工程、传热学、流体力学、动力机械、动力工程等方面基础知识,能在国民经济和部门,从事动力机械(如热力发动机、流体机械、水力机械)的动力工程(如热电厂工程、水电动力工程、制冷及低温工程、空调工程)的设计、制造、运行、管理、实验研究和安装、开发、营销等方面的高级工程技术人才。

目录业务培养目标业务培养要求主干学科主要课程主要专业实验知识结构要求就业方向修业年限开设院校业务培养目标业务培养要求主干学科主要课程主要专业实验知识结构要求就业方向修业年限•开设院校展开编辑本段业务培养目标考虑学生在宽厚基础上的专业发展,将热能与动力工程专业分成以下四个专业方向:(1)以热能转换与利用系统为主的热能动力工程及控制方向(含能源环境工程、新能源开发和研究方向);(2)以内燃机及其驱动系统为主的热力发动机及汽车工程方向;(3)以电能转换为机械功为主的流体机械与制冷低温工程方向;(4)以机械功转换为电能为主的火力火电和水利水电动力工程方向。

即工程热物理过程及其自动控制、动力机械及其自动化、流体机械及其自动控制、电厂热能工程及其自动化四个二级学科。

编辑本段业务培养要求本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练;具有进行动力机械与热工设备设计、运行、实验研究的基本能力。

毕业生应获得以下几方面的知识和能力:1.具有较扎实的自然科学基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力;2.较系统地掌握本专业领域宽广的技术理论基础知识,主要包括工程力学、机械学、工程热物理、流体力学、电工与电子学、控制理论、市场经济及企业管理等基础知识;3.获得本专业领域的工程实践训练,具有较强的计算机和外语应用能力;4.具有本专业领域内某个专业方向所必要的专业知识,了解其科学前沿及发展趋势;5.具有较强的自学能力、创新意识和较高的综合素质。

培养目标本专业主要培养能源转换与利用和热力环境保护领域具有扎实的理论基础,较强的实践、适应和创新能力,较高的道德素质和文化素质的高级人才,以满足社会对该能源动力学科领域的科研、设计、教学、工程技术、经营管理等各方面的人才需求。

学生应具备宽广的自然科学、人文和社会科学知识,热学、力学、电学、机械、自动控制、系统工程等宽厚理论基础、热能动力工程专业知识和实践能力,掌握计算机应用与自动控制技术方面的知识。

毕业生能从事能源与动力工程及相关方面的研究、教学、开发、制造、安装、检修、策划、管理和营销等工作。

也可在本专业或其它相关专业继续深造,攻读硕士、博士学位。

编辑本段主干学科动力工程与工程热物理、机械工程编辑本段主要课程工程力学、机械设计基础、机械制图、电工与电子技术、工程热力学、流体力学、传热学、控制理论、测试技术等主要实践性教学环节:包括军训、金工、电工、电子实习、认识实习、生产实习、社会实践、课程设计、毕业设计(论文)等,一般应安排40周以上。

授予学位:工学学士硕士编辑本段主要专业实验传热学实验、工程热力学实验、动力工程测试技术实验等编辑本段知识结构要求工具性知识比较系统地掌握一门外语,掌握外文科技写作知识。

掌握计算机软、硬件技术的基本知识,具有在本专业与相关领域的计算机应用与开发能力;掌握通过网络获取信息的知识、方法与工具。

能够进行中外文文献检索。

自然科学知识掌握高等数学、大学物理、工程化学、生命科学、环境科学等方面的知识。

学科技术基础知识掌握工程制图、工程数学、理论力学、材料力学、机械设计基础、金属工艺学、电工学、电子技术基础、工程流体力学、工程热力学、传热学、计算机原理与应用、自动控制原理等方面的知识(对水利水电动力工程方向,工程热力学、传热学知识要求可适当降低)。

专业知识根据本专业人才培养目标和培养规格,因专业方向的不同而有所差别。

(1)热能动力及控制工程方向(含能源环境工程方向)主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。

(2)热力发动机及汽车工程方向掌握内燃机(或透平机)原理、结构、设计、测试、燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。

(3)制冷低温工程与流体机械方向掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。

使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。

(4)水利水电动力工程方向掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。

也就是说,本专业学生应具有如下知识和能力,并根据培养规格的不同而有所侧重:(1)具有较扎实的自然科学基础,熟练掌握高等数学、工程数学、大学物理、工程化学等基础性课程的基本理论和应用方法;具有较好的人文、艺术和社会科学基础及正确应用本国语言、文字的表达能力。

(2)掌握一门外国语,具有较好的听、说、读、写能力,能较顺利地阅读本专业的外文书籍和资料。

若外语为英语应达到国家四级以上水平(含四级)。

(3)系统地掌握本专业必需的技术基础理论,主要包括力学理论(理论力学、材料力学、流体力学),热学理论(热力学、传热学等),机械设计基本理论,电工与电子基本理论,自动控制理论,能源动力工程基础理论等。

(4)熟悉本专业领域内1~2个专业方向或有关方面的专业知识,了解其学科前沿和发展趋势。

(5)具有本专业必需的制图、计算、测试、调研、查阅文献和基本工艺、操作、运行等基本技能。

(6)具有一定计算机相关知识和较强的计算机应用能力,较熟练使用计算机工具,解决工程中的有关问题。

(7)具有较强的自学能力、分析能力和创新意识。

编辑本段就业方向毕业生可在大型企业、相关公司以及相关的研究所、设计院、高等院校和管理部门从事热能工程方面的研究与设计、产品开发、制造、试验、管理、教学等工作。

主要就业方向为发电厂、内燃机厂、汽车制造厂、物流调控、锅炉厂、大型机械厂、造船厂等等编辑本段修业年限四年编辑本段开设院校青岛科技大学大连海事大学哈尔滨工业大学长安大学西北大学北京交通大学河北工业大学武汉大学湖南大学北京航空航天大学西南交通大学河北科技大学天津大学郑州大学合肥工业大学德州学院中国科学技术大学安徽工业大学同济大学新疆大学南京航空航天大学天津理工大学天津商业大学天津城市建设学院广西大学四川大学西南财经大学中山大学华南理工大学西北工业大学南昌大学东南大学中国矿业大学南京理工大学南京师范大学河海大学苏州大学重庆大学中国石油大学(华东)吉林大学中南大学哈尔滨工程大学上海交通大学山东大学华中科技大学武汉理工大学华东理工大学东北大学大连理工大学太原理工大学北京理工大学北京科技大学南京工程学院常州大学江苏科技大学南京林业大学江苏大学南京工业大学扬州大学景德镇陶瓷学院重庆理工大学沈阳航空航天大学大连海洋大学沈阳化工大学沈阳理工大学辽宁科技大学辽宁石油化工大学沈阳农业大学西华大学中国计量学院山西大学中国民航大学中北大学太原科技大学广东工业大学广东海洋大学广东石油化工学院上海理工大学上海工程技术大学上海海洋大学上海海事大学上海应用技术学院上海电力学院西安交通大学西北农林科技大学昆明理工大学西安理工大学西藏大学陕西理工学院湘潭大学长沙理工大学南华大学东北电力大学长春工程学院吉林建筑工程学院吉林化工学院中南林业科技大学邵阳学院佳木斯大学哈尔滨理工大学长江大学武汉工程大学湖北汽车工业学院哈尔滨商业大学郑州轻工业学院河南科技大学河南农业大学河南理工大学华北水利水电学院集美大学中原工学院兰州理工大学兰州交通大学青岛大学内蒙古科技大学北京工业大学内蒙古工业大学青岛理工大学山东建筑大学山东交通学院山东科技大学山东理工大学山东农业大学烟台大学中国农业大学中国政法大学北京石油化工学院华北电力大学(保定)河北联合大学(原河北理工大学,华北煤炭医学院)河北农业大学燕山大学河北工程大学河北建筑工程学院辽宁工程技术大学华北电力大学(北京)中国石油大学(北京)南昌工程学院江西蓝天学院平顶山学院运城学院贵州大学仲恺农业工程学院中国矿业大学(北京)武汉科技大学重庆科技学院重庆交通大学沈阳工程学院辽宁科技学院华中科技大学文华学院山西大学工程学院中国矿业大学徐海学院河南理工大学万方科技。

..南京林业大学南方学院江苏大学京江学院南京师范大学泰州学院哈尔滨工业大学(威海)河南城建学院河北科技大学理工学院华北电力大学科技学院河北联合大学轻工学院河北工业大学城市学院河北工程大学科信学院宁夏理工学院太原理工大学现代科技学院辽宁石油化工大学顺华。

.. 兰州理工大学技术工程。

..北京理工大学珠海学院长沙理工大学城南学院东莞理工学院城市学院南京工业大学浦江学院西安交通大学城市学院仲恺农业工程学院。

相关文档
最新文档