2017年陕西省初中毕业学业考试数学试题

合集下载

2017陕西中考数学试卷(含答案)

2017陕西中考数学试卷(含答案)

2017陕西中考数学试卷第Ⅰ卷(选择题 共30分)A 卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.计算:21()12--=( ) A .54-B .14-C .34- D .0 2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .3.若一个正比例函数的图象经过(3,6),(,4)A B m --两点,则m 的值为( ) A .2 B .8 C .-2 D .-84.如图,直线//a b ,Rt ABC ∆的直角顶点B 落在直线a 上.若125∠=o,则2∠的大小为( )A .55oB .75oC . 65oD .85o5.化简:x xx y x y--+,结果正确的是( ) A .1 B .2222x y x y +- C . x y x y-+ D .22x y +6.如图,将两个大小、形状完全相同的ABC ∆和A B C '''∆拼在一起,其中点A '与点A 重合,点C '落在边AB 上,连接B C '.若90ACB AC B ''∠=∠=o,3AC BC ==,则B C '的长为( )A ..6 C . 7.如图,已知直线1:24l y x =-+与直线2:(0)l y kx b k =+≠在第一象限交于点M .若直线2l 与x 轴的交点为(2,0)A -,则k 的取值范围是( )A .22k -<<B .20k -<<C . 04k <<D .02k << 8.如图,在矩形ABCD 中,2,3AB BC ==.若点E 是边CD 的中点,连接AE ,过点B 作BF AE ⊥交AE 于点F ,则BF 的长为( )A B C . D 9.如图,ABC ∆是O e 的内接三角形,30C ∠=o,O e 的半径为5.若点P 是O e 上的一点,在ABP ∆中,PB AB =,则PA 的长为( )A .5B .2C . . 10.已知抛物线224(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M '.若点M '在这条抛物线上,则点M 的坐标为( )A .(1,5)-B .(3,13)-C . (2,8)-D .(4,20)-B卷第Ⅱ卷(非选择题 共90分)二、填空题(共4小题,每小题3分,计12分)11.在实数5,π-中,最大的一个数是 . 12.请从以下两个小题中任选一个....作答,若多选,则按第一题计分. A .如图,在ABC ∆中,BD 和CE 是ABC ∆的两条角平分线.若52A ∠=o,则12∠+∠的度数为 .B .3815'≈o .(结果精确到0.01)13.已知,A B 两点分别在反比例函数3(0)m y m x =≠和255()2m y m x -=≠的图象上.若点A 与点B 关于x 轴对称,则m 的值为 .14.如图,在四边形ABCD 中,AB AD =,90BAD BCD ∠=∠=o,连接AC .若6AC =,则四边形ABCD 的面积为 .三、解答题 (共11小题,计78分.解答应写出过程)15.计算:11(|2|()2--. 16.解方程:32133x x x +-=-+. 17.如图,在钝角ABC ∆中,过钝角顶点B 作BD BC ⊥交AC 于点D .请用尺规作图法在BC 边上求作一点P ,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益.某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x (分钟)进行了调查.现把调查结果分成A B C D 、、、四组,如右下表所示;同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题: (1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在_________区间内;(3)已知该校七年级共有1 200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼.)19.如图,在正方形ABCD 中,E F 、分别为边AD 和CD 上的点,且AE CF =,连接AF CE 、交于点G .求证:AG CG =.20.某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着测倾器和皮尺来测量这个距离。

2017年陕西省中考数学试卷及答案.doc

2017年陕西省中考数学试卷及答案.doc

数学试卷第Ⅰ卷(选择题 共30分)A 卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.计算:21()12--=( )A .54-B .14-C .34- D .0 2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .3.若一个正比例函数的图象经过(3,6),(,4)A B m --两点,则m 的值为( )A .2B .8C .-2D .-84.如图,直线//a b ,Rt ABC ∆的直角顶点B 落在直线a 上.若125∠=o,则2∠的大小为( )A .55oB .75oC . 65oD .85o5.化简:x x x y x y--+,结果正确的是( ) A .1 B .2222x y x y +- C . x y x y-+ D .22x y + 6.如图,将两个大小、形状完全相同的ABC ∆和A B C '''∆拼在一起,其中点A '与点A 重合,点C '落在边AB 上,连接B C '.若90ACB AC B ''∠=∠=o ,3AC BC ==,则B C '的长为( )A .33B .6C . 32D .217.如图,已知直线1:24l y x =-+与直线2:(0)l y kx b k =+≠在第一象限交于点M .若直线2l 与x 轴的交点为(2,0)A -,则k 的取值范围是( )A .22k -<<B .20k -<<C . 04k <<D .02k <<8.如图,在矩形ABCD 中,2,3AB BC ==.若点E 是边CD 的中点,连接AE ,过点B 作BF AE ⊥交AE 于点F ,则BF 的长为( )A .3102B .3105C . 105D .3559.如图,ABC ∆是O e 的内接三角形,30C ∠=o ,O e 的半径为5.若点P 是O e 上的一点,在ABP∆中,PB AB =,则PA 的长为( )A .5B .532C . 52D .53 10.已知抛物线224(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M '.若点M '在这条抛物线上,则点M 的坐标为( )A .(1,5)-B .(3,13)-C . (2,8)-D .(4,20)-B卷第Ⅱ卷(非选择题 共90分)二、填空题(共4小题,每小题3分,计12分)11.在实数5,3,0,,6π--中,最大的一个数是 .12.请从以下两个小题中任选一个....作答,若多选,则按第一题计分. A .如图,在ABC ∆中,BD 和CE 是ABC ∆的两条角平分线.若52A ∠=o,则12∠+∠的度数为 .B . 317tan 3815'≈o .(结果精确到0.01)13.已知,A B 两点分别在反比例函数3(0)m y m x =≠和255()2m y m x -=≠的图象上.若点A 与点B 关于x 轴对称,则m 的值为 .14.如图,在四边形ABCD 中,AB AD =,90BAD BCD ∠=∠=o,连接AC .若6AC =,则四边形ABCD 的面积为 .三、解答题 (共11小题,计78分.解答应写出过程)15.计算:11(2)6|32|()2--⨯+--.16.解方程:32133x x x +-=-+. 17.如图,在钝角ABC ∆中,过钝角顶点B 作BD BC ⊥交AC 于点D .请用尺规作图法在BC 边上求作一点P ,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益.某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x (分钟)进行了调查.现把调查结果分成A B C D 、、、四组,如右下表所示;同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在_________区间内;(3)已知该校七年级共有1 200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼.)19.如图,在正方形ABCD 中,E F 、分别为边AD 和CD 上的点,且AE CF =,连接AF CE 、交于点G .求证:AG CG =.20.某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着测倾器和皮尺来测量这个距离。

2017年陕西省中考数学试卷有答案

2017年陕西省中考数学试卷有答案

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前陕西省2017年初中毕业学业考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:21()12--=( ) A .54- B .14- C .34- D .02.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )ABCD 3.若一个正比例函数的图象经过(3,6)A -,(,4)B m -两点,则m 的值为( ) A .2B .8C .2-D .8-4.如图,直线a b ∥,Rt ABC △的直角顶点B 落在直线a 上.若125∠=,则2∠的大小为( ) A .55 B .75 C .65D .85 5.化简:x yx y x y--+,结果正确的是 ( )A .1B .2222x y x y +-C .x yx y-+D .22x y +6.如图,将两个大小、形状完全相同的ABC △和A B C '''△拼在一起,其中点A '与点A 重合,点C '落在边AB 上,连接B C '.若90ACB AC B ''∠=∠=,3AC BC ==,则B C '的长为 ( )A. B .6 C.D7.如图,已知直线1l :24y x =-+与直线2l :(0)y kx b k =+≠在第一象限交于点M .若直线2l 与x 轴的交点为(2,0)A -,则k 的取值范围是( )A .22k -<<B .20k -<<C .04k <<D .02k <<8.如图,在矩形ABCD 中,2AB =,3BC =.若点E 是边CD 的中点,连接AE ,过点B 作BF AE ⊥交AE 于点F ,则BF 的长为( ) A.B .CD9.如图,ABC △是O 的内接三角形,30C ∠=,O 的半径为5.若点P 是O 上的一点,在ABP △中,PB AB =,则PA 的长为( ) A.5 BC .D .10.已知抛物线224(0)y x mx m=-->的顶点M 关于坐标原点O 的对称点为M '.若点M '在这条抛物线上,则点M 的坐标为( ) A .(1,5)-B .(3,13)-C .(2,8)-D .(4,20)-第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题3分,共12分.把答案填写在题中的横线上) 11.在实数5-,0,π,最大的一个数是 .12.请从以下两个小题中任选一个作答,若多选,则按第一题计分. A .如图,在ABC△中,BD和CE 是ABC △的两条角平分线.若52A ∠=,则12∠+∠的度数为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)B15'≈ .(结果精确到0.01)13.已知A ,B 两点分别在反比例函数3(0)m y m x =≠和255()2m y m x -=≠的图象上.若点A 与点B 关于x 轴对称,则m 的值为 .14.如图,在四边形ABCD 中,AB AD =,90BAD BCD ∠=∠=,连接AC .若6AC =,则四边形ABCD 的面积为 .三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分5分)计算:11(2|()2--.16.(本小题满分5分)解方程:32133x x x +-=-+.17.(本小题满分5分)如图,在钝角ABC △中,过钝角顶点B 作BD BC ⊥交AC 于点D .请用尺规作图法在BC 边上求作一点P ,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)18.(本小题满分5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益.某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x (分钟)进行了调查.现把调查结果分成A ,B ,C ,D 四组,如下.请你根据以上提供的信息,解答下列问题: (1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在 区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼.) 19.(本小题满分7分)如图,在正方形ABCD 中,E ,F 分别为边AD 和CD 上的点,且AE CF =,连接AF ,CE 交于点G .求证:AG CG =.20.(本小题满分7分)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方案如下:如图,首先,小军站在“聚贤亭”的A 处,用侧倾器测得“乡思柳”顶端M 点的仰角为23,此时测得小军的眼睛距地面的高度AB 为1.7米;然后,小军在A 处蹲下,用测倾器测得“乡思柳”顶端M 点的仰角为24,这时测得小军的眼睛距地面的高度AC 为1米.请你利用以上所测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN 的长(结果精确到1米).(参考数据:sin 230.3907≈,cos230.9205≈,tan 230.4245≈,sin 240.4067≈,cos240.9135≈,tan 240.4452≈.)21.(本小题满分7分)在精准扶贫中,某村的李师傅在县政府的扶技下,去年下半年,他对家里的3个温室大棚进行整修改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜.今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”. 最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜.他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售数学试卷 第5页(共20页) 数学试卷 第6页(共20页)现假设李师傅今年下半年香瓜种植的大棚数为x 个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y 元.根据以上提供的信息,请你解答下列问题: (1)求出y 与x 之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22.(本小题满分7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A ),豆沙粽子(记为B ),肉粽子(记为C ).这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘子中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.(本小题满分8分)如图,已知O 的半径为5,PA 是O 的一条切线,切点为A ,连接PO 并延长,交O 于点B ,过点A 作AC PB ⊥交O 于点C ,交PB 于点D ,连接BC .当30P ∠=时, (1)求弦AC 的长; (2)求证:BC PA ∥.24.(本小题满分10分)在同一直角坐标系中,抛物线1C :223y ax x =--与抛物线2C :2y x mx n =++关于y 轴对称,2C 与x 轴交于A ,B 两点,其中点A 在点B 的左侧. (1)求抛物线1C ,2C 的函数表达式;(2)求A ,B 两点的坐标;(3)在抛物线1C 上是否存在一点P ,在抛物线2C 上是否存在一点Q ,使得以AB 为边,且以A ,B ,P ,Q 四点为顶点的四边形是平行四边形?若存在,求出P ,Q 两点的坐标;若不存在,请说明理由.25.(本小题满分12分) 问题提出(1)如图1,ABC △是等边三角形,12AB =.若点O 是ABC △的内心,则OA 的长为 ; 问题探究(2)如图2,在矩形ABCD 中,12AB =,18AD =.如果点P 是AD 边上一点,且3AP =,那么BC 边上是否存在一点Q ,使得线段PQ 将矩形ABCD 的面积平分?若存在,求出PQ 的长;若不存在,请说明理由. 问题解决(3)某城市街角有一草坪,草坪是由ABM △草地和弦AB 与其所对的劣弧围成的草地组成,如图3所示.管理员王师傅在M 处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水.于是,他让喷灌龙头的转角正好等于AM B ∠(即每次喷灌时喷灌龙头由MA 转到MB ,然后再转回,这样往复喷灌.),同时,再合理设计好喷灌龙头喷水的射程就可以了.如图3,已测出24m AB =,10m MB =,AMB △的面积为296m ;过弦AB 的中点D 作DE AB ⊥交AB 于点E ,又测得8m DE =.请你根据以上提供的信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)图1图2图3-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)陕西省2017年初中毕业学业考试数学答案解析2.【答案】B【解析】从正面看下边是一个较大的矩形,上边是一个较小的矩形. 【提示】根据从正面看得到的图形是主视图,可得答案. 【考点】简单组合体的三视图 3.【答案】A【解析】设正比例函数解析式为:y kx =,将点6(3)A -,代入可得:36k =-,解得:2k =-,∴函数解析式为:2y x =-,将()4B m -,代入可得:24m -=-,解得2m =, 【提示】运用待定系数法求得正比例函数解析式,把点B 的坐标代入所得的函数解析式,即可求出m 的值.【考点】正比例函数图象上点的坐标特征 4.【答案】C 【解析】∵12513180ABC ∠=︒∠+∠+∠=︒,,∴31801180259065ABC ∠=-∠-∠=︒-︒-︒=︒.∵a b ∥,∴2365∠=∠=︒.【提示】由余角的定义求出3∠的度数,再根据平行线的性质求出2∠的度数,即可得出结论.【考点】平行线的性质 【考点】分式的运算 【考点】等腰直角三角形的性质,勾股定理数学试卷 第9页(共20页) 数学试卷 第10页(共20页)【考点】两条直线的相交问题,一次函数【解析】如图,连接BE.12AE BF ,∴12AE BF ,先求出【考点】矩形的性质,勾股定理,三角形的面积公式 3302PB ︒=⨯【提示】连接OAOB OP ..,根据圆周角定理求得30APB C ∠=∠=︒,进而求得30PAB APB ∠=∠=︒,120ABP ∠=︒,根据垂径定理得到OB AP AD PD ⊥=,,60OBP OBA ∠=∠=︒,即可求得AOB △是等边三角形,从而求得5AB OA ==,解直角三角形求得PD ,即可求得PA .【考点】圆周角定理,垂径定理,垂直平分线的判定和性质,解直角三角形 10.【答案】C 【解析】2222222424()4y x mx x mx m m x m m =--=-+--=---.∴点2(4)M m m --,.∴点2)4(M m m '-+,.∴222244m m m +-=+.解得2m =±∵0m >,∴2m =∴8(2)M -,. 【提示】先利用配方法求得点M 的坐标,然后利用关于原点对称点的特点得到点M '的坐标,然后将点M '的坐标代入抛物线的解析式求解即可.【考点】二次函数的顶点式,关于原点对称的点的坐标第Ⅱ卷【考点】实数大小的比较 12.【答案】64︒数学试卷 第11页(共20页)数学试卷 第12页(共20页)【考点】三角形的内角和,角平分线的性质,三次根式,锐角三角函数的计算 【考点】反比例函数图象上点的坐标特征 14.【答案】18【解析】如图,作AM BC AN CD ⊥⊥.,交CD 的延长线于点N ;∵90BAD BCD ∠=∠=︒∴四边形AMCN 为矩形,90MAN ∠=︒;∵90BAD ∠=︒,∴BAM DAN ∠=∠;在ABM ADN △与△中,B A M D A N A M B A N D A B A D ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABM ADN AAS △≌△,∴AM AN =(设为λ);A B M A D N △与△的面积相等;∴四边形ABCD 的面积=正方形AMCN 的面积;由勾股定理得:222AC AM MC =+,而6AC =;∴2223618λλ==,.【提示】作辅助线;证明ABM ADN △≌△,得到AM AN ABM ADN =,△与△的面积相等;求出正方形AMCN 的面积即可解决问题.【考点】全等三角形的判定及其性质,正方形的判定及其性质 三、解答题 【考点】二次根式,绝对值和负指数幂的运算 16.【答案】6x =-【解析】去分母得,2()()(323)33()x x x x +--=-+,去括号得,2269269x x x x ++-+=-,移项,系数化为1,得6x =-,经检验,6x =-是原方程的解.【提示】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论. 【考点】解分式方程17.【答案】如图,点P 即为所求.数学试卷 第13页(共20页) 数学试卷 第14页(共20页)【解析】根据题意可知,作BDC ∠的平分线交BC 于点P 即可. 【考点】尺规作图,角平分线的性质18.【答案】(1)本次调查的总人数为105%200÷=,则2030~分钟的人数为20065%130⨯=(人),D 项目的百分比为15%10%650%(%2)-++=,补全图形如下:(2)由于共有200个数据,其中位数是第100101,个数据的平均数,则其中位数位于C 区间内;(3)120065%20%02()10⨯+=(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【解析】(1)先根据A 区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C 区间人数及D 区间百分比可得答案; (2)根据中位数的定义求解可得; (3)利用样本估计总体思想求解可得.【考点】频数分布直方图,扇形统计图,中位数和样本估计总体19.【答案】证明:∵四边形ABCD 是正方形,∴90ADF CDE AD CD ∠==︒=,.∵AE CF =,∴DE DF =,在A D F △和CDE △中AD CD ADF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩,∴()ADF CDE SAS △≌△,∴DAF DCE ∠=∠,在A G E C G △和△中,G A EG C A G EC G F A E C F ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AGE CGF AAS △≌△,∴AG CG =.【提示】根据正方向的性质,可得90ADF CDE AD CD ∠==︒=,,根据全等三角形的判定与性质,可得答案.【考点】正方形的性质,全等三角形的判定与性质 tan23x ︒,在tan24x ︒,tan24tan23 1.7x x ︒-︒=-答:“聚贤亭”与“乡思柳”之间的距离AN 的长约为34米.【考点】解直角三角形的实际应用——仰角问题 21.【答案】(1)750068000y x =+数学试卷 第15页(共20页) 数学试卷 第16页(共20页)个大棚中,香瓜至少种植5个大棚.【提示】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论; (2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论. 【考点】一次函数和不等式的实际应用22.【答案】(1)12(2)3)()C CA ,、,、【考点】列表法与画树状图法求概率 23.【答案】(1)连接OA ,∵PA 是O 的切线,∴90PAO ∠=︒∵30P ∠=︒,∴60AOD ∠=︒,∵AC PB ⊥,PB 过圆心O ,∴AD DC =在Rt ODA △中,sin 602AD OA =︒=∴2AC AD ==(2)∵30AC PB P ⊥∠=︒,,∴60PAC ∠=︒,∵60AOP ∠=︒∴120BOA ∠=︒,∴60BCA ∠=︒,∴PAC BCA ∠=∠∴BC PA ∥【解析】(1)连接OA ,由于PA 是O 的切线,从而可求出60AOD ∠=︒,由垂径定理可知:AD DC =,由锐角三角函数即可求出AC 的长度.(2)由于60AOP ∠=︒,所以120BOA ∠=︒,从而由圆周角定理即可求出60BCA ∠=︒,从而可证明BC PA ∥【考点】切线的性质,圆周角定理,锐角三角函数,解直角三角形,平行线的判定24.【答案】(1)1C 的函数表示式为223y x x =--,2C 的函数表达式为223y x x =+-(2)()(3)010A B -,,, (3)存在满足条件的点P Q 、,其坐标为()(2525)()()2323P Q P Q ----,,,或,,,. 【解析】(1)∵12C C 、关于y 轴对称,∴12C C 与的交点一定在y 轴上,且12C C 与的形状、大小均相同,∴13a n ==-,,∴1C 的对称轴为1x =,∴2C 的对称轴为1x =-,∴2m =,∴1C 的函数表示式为223y x x =--,2C 的函数表达式为223y x x =+-;(2)在2C 的函数表达式为223y x x =+-中,令0y =可得2230x x +-=,解得31x x =-=或, ∴()(3)010A B -,,,; (3)存在.∵AB 的中点为(10)-,,且点P 在抛物线1C 上,点Q 在抛物线2C 上,∴AB 只能为平行四边形的一边,∴PQ AB ∥且PQ AB =,由(2)可知(134)AB =--=,∴4PQ =,设22()3P t t t --,,则22()(4)23423Q t t t t t t +-----,或,,①当2()423Q t t t +--,时,则数学试卷 第17页(共20页)数学试卷 第18页(共20页)22234())243(t t t t --=+++-,解得2t =-,∴2234435t t --=+-=,∴()(2)525P Q -,,,;②当2()423Q t t t ---,时,则22234())243(t t t t --=-+--,解得2t =,∴2234433t t --=--=-,∴2323()()P Q ---,,,,综上可知存在满足条件的点P Q 、,其坐标为()(2525)()()2323P Q P Q ----,,,或,,,. 【提示】(1)由对称可求得,a n 的值,则可求得两函数的对称轴,可求得m 的值,则可求得两抛物线的函数表达式;(2)由2C 的函数表达式可求得,A B 的坐标;(3)由题意可知AB 只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q 点坐标,代入2C 的函数表达式可求得P Q 、的坐标.【考点】二次函数的综合应用,待定系数法,对称的性质,函数图象与坐标轴的交点,平行四边形的性质 25.【答案】(1)(2)存在,PQ =(3)喷灌龙头的射程至少为19.71米【解析】(1)如图1,过O 作OD AC D ⊥于,则1112622AD AC ==⨯=,∵O 是内心,ABC △是等边三角形,∴11603022OAD BAC ∠=∠=⨯︒=︒,在Rt AOD △中,cos cos 30ADOAD ∠=︒=,∴6OA =÷=96AB MN =,MN ∥,∴喷灌龙头的射程至少为19.71米.AD数学试卷 第19页(共20页) 数学试卷 第20页(共20页)(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt AOD △中,22212)8(r r =+-,解得:13r =根据三角形面积计算高MN 的长,证明ADC ANM △∽△,列比例式求DC 的长,确定点O AMB 在△内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.【考点】等边三角形的内切圆,垂径定理,矩形的性质,勾股定理,相似三角形的判定和性质。

2017年陕西省中考数学试卷(含答案解析)

2017年陕西省中考数学试卷(含答案解析)

2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.02.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m 的值为()A.2 B.8 C.﹣2 D.﹣84.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°5.(3分)化简:﹣,结果正确的是()A.1 B.C. D.x2+y26.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<28.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.510.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.tan38°15′≈.(结果精确到0.01)13.(3分)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为.14.(3分)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣)×+|﹣2|﹣()﹣1.16.(5分)解方程:﹣=1.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.20.(7分)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种产量(斤/每棚)销售价(元/每斤)成本(元/每棚)项目香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.24.(10分)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n 关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D 作DE⊥AB交于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)2017年陕西省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•陕西)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.0【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=﹣1=﹣,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)(2017•陕西)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上边是一个较小的矩形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)(2017•陕西)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣8【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)(2017•陕西)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)(2017•陕西)化简:﹣,结果正确的是()A.1 B.C. D.x2+y2【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)(2017•陕西)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴解得∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)(2017•陕西)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD 的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.【分析】根据S△ABE =S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE =S矩形ABCD=3=•AE•BF,∴BF=.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)(2017•陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.5【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)(2017•陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)(2017•陕西)在实数﹣5,﹣,0,π,中,最大的一个数是π.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>>0>>﹣5,故实数﹣5,,0,π,其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)(2017•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为64°.B.tan38°15′≈ 2.03.(结果精确到0.01)【分析】A:由三角形内角和得∠ABC+∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB);B:利用科学计算器计算可得.【解答】解:A、∵∠A=52°,∴∠ABC+∠ACB=180°﹣∠A=128°,∵BD平分∠ABC、CE平分∠ACB,∴∠1=∠ABC、∠2=∠ACB,则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=64°,故答案为:64°;B、tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)(2017•陕西)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为1.【分析】设A(a,b),则B(a,﹣b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m的值.【解答】解:设A(a,b),则B(a,﹣b),依题意得:,所以=0,即5m﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x轴,y轴对称的点的坐标.根据题意得=0,即5m﹣5=0是解题的难点.14.(3分)(2017•陕西)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为18.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)(2017•陕西)计算:(﹣)×+|﹣2|﹣()﹣1.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣+2﹣﹣2=﹣2﹣=﹣3【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)(2017•陕西)解方程:﹣=1.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)(2017•陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)(2017•陕西)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在C区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2017•陕西)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)(2017•陕西)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)(2017•陕西)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:产量(斤/每棚)销售价(元/每斤)成本(元/每棚)品种项目香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥4,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)(2017•陕西)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)(2017•陕西)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA是⊙O的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA•sin60°=∴AC=2AD=5(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)(2017•陕西)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B 的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(2,﹣3),Q(﹣2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q(﹣2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)(2017•陕西)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为4;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D。

2017年陕西省中考数学试卷

2017年陕西省中考数学试卷

2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. 计算:(−12)2−1=()A.−54B.−14C.−34D.02. 如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A. B. C. D.3. 若一个正比例函数的图象经过A(3, −6),B(m, −4)两点,则m的值为()A.2B.8C.−2D.−84. 如图,直线a // b,Rt△ABC的直角顶点B落在直线a上,若∠1=25∘,则∠2的大小为( )A.55∘B.75∘C.65∘D.85∘5. 化简:xx−y −yx+y,结果正确的是()A.1B.x2+y2x2−y2C.x−yx+yD.x2+y26. 如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.3√2 A.3√3 B.6D.√217. 如图,已知直线l1:y=−2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(−2, 0),则k的取值范围是()A.−2<k<2B.−2<k<0C.0<k<4D.0<k<28. 如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连结AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3√102B.3√105C.√105D.3√559. 如图,△ABC是⊙O的内接三角形,∠C=30∘,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.5√32C.5√2D.5√310. 已知:抛物线y=x2−2mx−4(m>0)的顶点M关于原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为( )A.(1, −5)B.(3, −13)C.(2, −8)D.(4, −20)二、填空题(本大题共4小题,每小题3分,共12分)在实数−5,−√3,0,π,√6中,最大的一个数是________.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52∘,则∠1+∠2的度数为________.B.√173tan38∘15′≈________.(结果精确到0.01)已知A,B两点分别在反比例函数y=3mx (m≠0)和y=2m−5x(m≠52)的图象上,若点A与点B关于x轴对称,则m的值为________.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90∘,连接AC.若AC=6,则四边形ABCD的面积为________.三、解答题(本大题共11小题,共78分)计算:(−√2)×√6+|√3−2|−(12)−1.解方程:x+3x−3−2x+3=1.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如表所示,同时,将调查结果绘制成下面两幅不完整的统计图.D30∼40请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在________区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00∼7:40之间的锻炼)如图,在正方形ABCD中,E,F分别为边AD和CD上的点,且AE=CF,连结AF,CE交于点G.求证:AG=CG.某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M 点的仰角为23∘,此时测得小军的眼睛距地面的高度AB 为1.7米,然后,小军在A 处蹲下,用侧倾器测得“乡思柳”顶端M 点的仰角为24∘,这时测得小军的眼睛距地面的高度AC 为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN 的长(结果精确到1米).(参考数据:sin 23∘≈0.3907,cos 23∘≈0.9205,tan 23∘≈0.4245,sin 24∘≈0.4067,cos 24∘≈0.9135,tan 24∘≈0.4452.)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x 个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y 元.根据以上提供的信息,请你解答下列问题: (1)求出y 与x 之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A ),豆沙粽子(记为B ),肉粽子(记为C ),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子. 根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.如图,已知⊙O 的半径为5,PA 是⊙O 的一条切线,切点为A ,连接PO 并延长,交⊙O 于点B ,过点A 作AC ⊥PB 交⊙O 于点C 、交PB 于点D ,连接BC ,当∠P =30∘时,(1)求弦AC 的长;(2)求证:BC // PA .在同一直角坐标系中,抛物线C 1:y =ax 2−2x −3与抛物线C 2:y =x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧. (1)求抛物线C 1,C 2的函数表达式;(2)求A 、B两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.问题提出(1)如图①,△ABC 是等边三角形,AB =12,若点O 是△ABC 的内心,则OA 的长为________; 问题探究(2)如图②,在矩形ABCD 中,AB =12,AD =18,如果点P 是AD 边上一点,且AP =3,那么BC 边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.̂于点E,如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交AB又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)参考答案与试题解析2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.【答案】C【考点】有理数的混合运算【解析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】原式=14−1=−34,2.【答案】B【考点】简单组合体的三视图【解析】根据从正面看得到的图形是主视图,可得答案.【解答】从正面看下边是一个较大的矩形,上边是一个较小的矩形,3.【答案】A【考点】反比例函数图象上点的坐标特征一次函数图象上点的坐标特点坐标与图形性质【解析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】设正比例函数解析式为:y=kx,将点A(3, −6)代入可得:3k=−6,解得:k=−2,∴正比例函数解析式为:y=−2x,将B(m, −4)代入y=−2x,可得:−2m=−4,解得m=2,4.【答案】C【考点】平行线的性质【解析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:如图,∵∠1=25∘,∠1+∠ABC+∠3=180∘,∴∠3=180−∠1−∠ABC=180∘−25∘−90∘=65∘.∵a // b,∴∠2=∠3=65∘.故选C.5.【答案】B【考点】分式的加减运算【解析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】原式=x2+xy−xy+y2x2−y2=x2+y2x2−y2.6.【答案】A【考点】勾股定理【解析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90∘,根据勾股定理计算.【解答】∵∠ACB=∠AC′B′=90∘,AC=BC=3,∴AB=√AC2+BC2=3√2,∠CAB=45∘,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45∘,AB′=AB=3√2,∴∠CAB′=90∘,∴B′C=√CA2+B′A2=3√3,7.【答案】D【考点】一次函数图象上点的坐标特点 两直线平行问题 相交线 两直线垂直问题 两直线相交非垂直问题【解析】首先根据直线l 2与x 轴的交点为A(−2, 0),求出k 、b 的关系;然后求出直线l 1、直线l 2的交点坐标,根据直线l 1、直线l 2的交点横坐标、纵坐标都大于0,求出k 的取值范围即可. 【解答】∵ 直线l 2与x 轴的交点为A(−2, 0), ∴ −2k +b =0, ∴ {y =−2x +4y =kx +2k解得{x =4−2kk+2y =8k k+2∵ 直线l 1:y =−2x +4与直线l 2:y =kx +b(k ≠0)的交点在第一象限,∴{4−2kk+2>08kk+2>0解得0<k <2. 8.【答案】 B【考点】 矩形的性质 勾股定理【解析】本题考查矩形的性质、勾股定理、三角形的面积公式等知识. 【解答】解:如图,连结BE .∵ 四边形ABCD 是矩形,∴ AB =CD =2,BC =AD =3,∠D=90∘,在Rt △ADE 中,AE =√AD 2+DE 2=√32+12=√10, ∵ S △ABE =12S 矩形ABCD =3=12⋅AE ⋅BF , ∴ BF =3√105. 故选B . 9.【答案】 D【考点】三角形的外接圆与外心 等腰三角形的性质【解析】连接OA 、OB 、OP ,根据圆周角定理求得∠APB =∠C =30∘,进而求得∠PAB =∠APB =30∘,∠ABP =120∘,根据垂径定理得到OB ⊥AP ,AD =PD ,∠OBP =∠OBA =60∘,即可求得△AOB 是等边三角形,从而求得PB =OA =5,解直角三角形求得PD ,即可求得PA . 【解答】连接OA 、OB 、OP , ∵ ∠C =30∘,∴ ∠APB =∠C =30∘, ∵ PB =AB ,∴ ∠PAB =∠APB =30∘ ∴ ∠ABP =120∘, ∵ PB =AB ,∴ OB ⊥AP ,AD =PD , ∴ ∠OBP =∠OBA =60∘, ∵ OB =OA ,∴ △AOB 是等边三角形, ∴ AB =OA =5,则Rt △PBD 中,PD =cos 30∘⋅PB =√32×5=5√32,∴ AP =2PD =5√3, 10.【答案】 C【考点】二次函数的性质关于原点对称的点的坐标【解析】先利用配方法求得点M 的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可. 【解答】解:∵ y =x 2−2mx −4=x 2−2mx +m 2−m 2−4=(x −m)2−m 2−4, ∴ 顶点M 的坐标为M(m, −m 2−4), ∴ 点M′(−m, m 2+4).∴ m 2+2m 2−4=m 2+4, 解得m =±2, ∵ m >0, ∴ m =2,∴M(2, −8).故选C.二、填空题(本大题共4小题,每小题3分,共12分)【答案】π【考点】实数大小比较【解析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得:π>√6>0>−√3>−5,故实数−5,−√3,0,π,√6其中最大的数是π.故答案为:π.【答案】64∘,2.03【考点】计算器—数的开方三角形内角和定理计算器—三角函数【解析】A:由三角形内角和得∠ABC+∠ACB=180∘−∠A=128∘,根据角平分线定义得∠1+∠2=12∠ABC+1 2∠ACB=12(∠ABC+∠ACB);B:利用科学计算器计算可得.【解答】A、∵∠A=52∘,∴∠ABC+∠ACB=180∘−∠A=128∘,∵BD平分∠ABC、CE平分∠ACB,∴∠1=12∠ABC、∠2=12∠ACB,则∠1+∠2=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=64∘,故答案为:64∘;B、√173tan38∘15′≈2.5713×0.7883≈2.03,故答案为:2.03.【答案】1【考点】反比例函数图象上点的坐标特征关于x轴、y轴对称的点的坐标【解析】设A(a, b),则B(a, −b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m的值.【解答】设A(a, b),则B(a, −b),依题意得:{b=3ma−b=2m−5a,所以3m+2m−5a=0,即5m−5=0,解得m=1.【答案】18【考点】全等三角形的性质与判定【解析】作辅助线;证明△ABM≅△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90∘∴四边形AMCN为矩形,∠MAN=90∘;∵∠BAD=90∘,∴∠BAM=∠DAN;在△ABM与△ADN中,{∠BAM=∠DAN∠AMB=∠ANDAB=AD,∴△ABM≅△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,三、解答题(本大题共11小题,共78分)【答案】原式=−√12+2−√3−2=−2√3−√3=−3√3【考点】负整数指数幂二次根式的混合运算二次根式的乘法二次根式的加减混合运算零指数幂、负整数指数幂【解析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】原式=−√12+2−√3−2=−2√3−√3=−3√3【答案】去分母得,(x+3)2−2(x−3)=(x−3)(x+3),去括号得,x2+6x+9−2x+6=x2−9,移项,系数化为1,得x=−6,经检验,x=−6是原方程的解.【考点】解分式方程【解析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】去分母得,(x+3)2−2(x−3)=(x−3)(x+3),去括号得,x2+6x+9−2x+6=x2−9,移项,系数化为1,得x=−6,经检验,x=−6是原方程的解.【答案】如图,点P即为所求.【考点】角平分线的性质作图—基本作图【解析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】如图,点P即为所求.【答案】本次调查的总人数为10÷5%=200,则20∼30分钟的人数为200×65%=130(人),D项目的百分比为1−(5%+10%+65%)=20%,补全图形如下:C1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【考点】用样本估计总体频数(率)分布直方图扇形统计图中位数【解析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】本次调查的总人数为10÷5%=200,则20∼30分钟的人数为200×65%=130(人),D项目的百分比为1−(5%+10%+65%)=20%,补全图形如下:由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【答案】 证明略 【考点】全等三角形的性质 正方形的性质 全等三角形的判定【解析】 此题暂无解析 【解答】 此题暂无解答 【答案】“聚贤亭”与“乡思柳”之间的距离AN 的长约为34米.【考点】解直角三角形的应用-仰角俯角问题 【解析】作BD ⊥MN ,CE ⊥MN ,垂足分别为点D 、E ,设AN =x 米,则BD =CE =x 米,再由锐角三角函数的定义即可得出结论. 【解答】如图,作BD ⊥MN ,CE ⊥MN ,垂足分别为点D 、E , 设AN =x 米,则BD =CE =x 米, 在Rt △MBD 中,MD =x ⋅tan 23∘, 在Rt △MCE 中,ME =x ⋅tan 24∘, ∵ ME −MD =DE =BC ,∴ x ⋅tan 24∘−x ⋅tan 23∘=1.7−1, ∴ x =0.7tan 24∘−tan 23∘,解得x ≈34.【答案】 由题意得,y =(2000×12−8000)x +(4500×3−5000)(8−x) =7500x +68000(0<x <8),由题意得,7500x +68000≥100000, ∴ x ≥4415,∵ x 为整数,∴ 李师傅种植的8个大棚中,香瓜至少种植5个大棚.【考点】一次函数的应用 【解析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论. 【解答】 由题意得,y =(2000×12−8000)x +(4500×3−5000)(8−x) =7500x +68000(0<x <8),由题意得,7500x +68000≥100000, ∴ x ≥4415,∵ x 为整数,∴ 李师傅种植的8个大棚中,香瓜至少种植5个大棚. 【答案】 由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:24=12, 即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是12;由题意可得,出现的所有可能性是:∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:316.【考点】 概率公式列表法与树状图法【解析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率; (2)根据题意可以写出所有的可能性,从而可以解答本题. 【解答】 由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:24=12, 即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是12; 由题意可得,出现的所有可能性是:∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:316.【答案】连接OA,∵PA是⊙O的切线,∴∠PAO=90∘∵∠P=30∘,∴∠AOD=60∘,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA⋅sin60∘=5√32∴AC=2AD=5√3∵AC⊥PB,∠P=30∘,∴∠PAC=60∘,∵∠AOP=60∘∴∠BOA=120∘,∴∠BCA=60∘,∴∠PAC=∠BCA∴BC // PA【考点】切线的性质【解析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60∘,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60∘,所以∠BOA=120∘,从而由圆周角定理即可求出∠BCA=60∘,从而可证明BC // PA 【解答】连接OA,∵PA是⊙O的切线,∴∠PAO=90∘∵∠P=30∘,∴∠AOD=60∘,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA⋅sin60∘=5√32∴AC=2AD=5√3∵AC⊥PB,∠P=30∘,∴∠PAC=60∘,∵∠AOP=60∘∴∠BOA=120∘,∴∠BCA=60∘,∴∠PAC=∠BCA∴BC // PA【答案】∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=−3,∴C1的对称轴为x=1,∴C2的对称轴为x=−1,∴m=2,∴C1的函数表示式为y=x2−2x−3,C2的函数表达式为y=x2+2x−3;在C2的函数表达式为y=x2+2x−3中,令y=0可得x2+2x−3=0,解得x=−3或x=1,∴A(−3, 0),B(1, 0);存在.∵AB只能为平行四边形的一边,∴PQ // AB且PQ=AB,由(2)可知AB=1−(−3)=4,∴PQ=4,设P(t, t2−2t−3),则Q(t+4, t2−2t−3)或(t−4, t2−2t−3),①当Q(t+4, t2−2t−3)时,则t2−2t−3=(t+4)2+2(t+4)−3,解得t=−2,∴t2−2t−3=4+4−3=5,∴P(−2, 5),Q(2, 5);②当Q(t−4, t2−2t−3)时,则t2−2t−3=(t−4)2+2(t−4)−3,解得t=2,∴t2−2t−3=4−4−3=−3,∴P(2, −3),Q(−2, −3),综上可知存在满足条件的点P、Q,其坐标为P(−2, 5),Q(2, 5)或P(2, −3),Q(−2, −3).【考点】二次函数综合题【解析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=−3,∴C1的对称轴为x=1,∴C2的对称轴为x=−1,∴m=2,∴C1的函数表示式为y=x2−2x−3,C2的函数表达式为y=x2+2x−3;在C2的函数表达式为y=x2+2x−3中,令y=0可得x2+2x−3=0,解得x=−3或x=1,∴A(−3, 0),B(1, 0);存在.∵AB只能为平行四边形的一边,∴PQ // AB且PQ=AB,由(2)可知AB=1−(−3)=4,∴PQ=4,设P(t, t2−2t−3),则Q(t+4, t2−2t−3)或(t−4, t2−2t−3),①当Q(t+4, t2−2t−3)时,则t2−2t−3=(t+4)2+2(t+4)−3,解得t=−2,∴t2−2t−3=4+4−3=5,∴P(−2, 5),Q(2, 5);②当Q(t−4, t2−2t−3)时,则t2−2t−3=(t−4)2+2(t−4)−3,解得t=2,∴t2−2t−3=4−4−3=−3,∴P(2, −3),Q(−2, −3),综上可知存在满足条件的点P、Q,其坐标为P(−2, 5),Q(2, 5)或P(2, −3),Q(−2, −3).【答案】4√3存在,如图2,连接AC、BD交于点O,连接PO并延长交BC于Q,则线段PQ将矩形ABCD的面积平分,∵点O为矩形ABCD的对称中心,∴CQ=AP=3,过P作PM⊥BC于点M,则PM=AB=12,MQ=18−3−3=12,由勾股定理得:PQ=√PM2+MQ2=√122+122=12√2;如图3,作射线ED交AM于点C∵AD=DB,ED⊥AB,AB̂是劣弧,∴AB̂所在圆的圆心在射线DC上,假设圆心为O,半径为r,连接OA,则OA=r,OD=r−8,AD=12AB=12,在Rt△AOD中,r2=122+(r−8)2,解得:r=13,∴OD=5,过点M作MN⊥AB,垂足为N,∵S△ABM=96,AB=24,∴12AB⋅MN=96,12×24×MN=96,∴MN=8,NB=6,AN=18,∵CD // MN,∴△ADC∽△ANM,∴DCMN=ADAN,∴DC8=1218,∴DC=163,∴OD<CD,∴点O在△AMB内部,∴连接MO并延长交AB̂于点F,则MF为草坪上的点到M点的最大距离,∵在AB̂上任取一点异于点F的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF>MG,过O作OH⊥MN,垂足为H,则OH=DN=6,MH=3,∴OM=√MH2+OH2=√32+62=3√5,∴MF=OM+r=3√5+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.【考点】圆的综合题【解析】(1)构建Rt△AOD中,利用cos∠OAD=cos30∘=ADOA,可得OA的长;(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt△AOD中,r2=122+(r−8)2,解得:r=13根据三角形面积计算高MN的长,证明△ADC∽△ANM,列比例式求DC的长,确定点O在△AMB内部,利用勾股定理计算OM,则最大距离FM的长可利用相加得出结论.【解答】如图1,过O作OD⊥AC于D,则AD=12AC=12×12=6,∵O是内心,△ABC是等边三角形,∴∠OAD=12∠BAC=12×60∘=30∘,在Rt△AOD中,cos∠OAD=cos30∘=ADOA,∴OA=6÷√32=4√3,故答案为:4√3;存在,如图2,连接AC、BD交于点O,连接PO并延长交BC于Q,则线段PQ将矩形ABCD的面积平分,∵点O为矩形ABCD的对称中心,∴CQ=AP=3,过P作PM⊥BC于点M,则PM=AB=12,MQ=18−3−3=12,由勾股定理得:PQ=√PM2+MQ2=√122+122=12√2;如图3,作射线ED交AM于点C∵AD=DB,ED⊥AB,AB̂是劣弧,∴AB̂所在圆的圆心在射线DC上,假设圆心为O,半径为r,连接OA,则OA=r,OD=r−8,AD=12AB=12,在Rt△AOD中,r2=122+(r−8)2,解得:r=13,∴OD=5,过点M作MN⊥AB,垂足为N,∵S△ABM=96,AB=24,∴12AB⋅MN=96,12×24×MN=96,∴MN=8,NB=6,AN=18,∵CD // MN,∴△ADC∽△ANM,∴DCMN =ADAN,∴DC8=1218,∴DC=163,∴OD<CD,∴点O在△AMB内部,∴连接MO并延长交AB̂于点F,则MF为草坪上的点到M点的最大距离,∵在AB̂上任取一点异于点F的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF>MG,过O作OH⊥MN,垂足为H,则OH=DN=6,MH=3,∴OM=√MH2+OH2=√32+62=3√5,∴MF=OM+r=3√5+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.。

2017年陕西省中考数学试卷含答案解析(Word版)

2017年陕西省中考数学试卷含答案解析(Word版)

2017 年陕西省中考数学试卷、选择题(本大题共 10小题,每小题 3分,共 30 分)1.计算:( 12)21 =()513A .B .C .D .0444【答案】 C .【解析】试题分析:原式 = 1﹣ 1= 3 ,故选 C .44考点:有理数的混合运算.2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是(D .答案】 B . 解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选 考点:简单组合体的三视图.答案】 A . 【解析】考点:一次函数图象上点的坐标特征.3.若一个正比例函数的图象经过 A (3,﹣ 6), B (m ,﹣4)两点,m 的值为( )A .2B .8C .﹣ 2D .﹣ 8A .B .C .B .4.如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠ 1=25°,则∠ 2的大小为A.55°B.75°C.65°D.85°答案】C.解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣25 °=65°.∵a∥b,∴∠ 2=∠3=65°.故考点:平行线的性质.5.化简:xyx,xy 结果正确的是(A.12xB . 2xy2yC.xyxyD.x2y2答案】B.解析】试题分析:原式22x xy xy y22xyx22xy .故选B.考点:分式的加减法.6.如图,将两个大小、形状完全相同的△ABC 和△ A′B′C′拼在一起,其中点A′与点A 重合,点C′落在边AB 上,连接B′C.若∠ ACB=∠AC′B=90°,AC=BC=3,则B′C 的长为(A.3 3 B.6 C.3 2 D.21【答案】A .【解析】试题分析:∵∠ ACB=∠AC′B′=90°,AC=BC=3,∴AB= AB2 BC2=3 2 ,∵△ABC 和△A′B′C′大小、形状完全相同,∴∠ C′AB′=∠CAB=45°,AB ∴∠CAB′=90°,∴ B′C= CA2 B'A2=3 3,故选A.考点:勾股定理.7.如图,已知直线l1:y=﹣2x+4 与直线l2:y=kx+b(k≠0)在第一象限交于点l2与x轴的交点为A(﹣2,0),则k 的取值范围是()A.﹣2<k<2 B.﹣2< k< 0 C.0<k< 4<2答案】D.解析】∠CAB=45°,′=AB=3 2 ,M.若直线D.0<k考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.8.如图,在矩形 ABCD 中, AB=2,BC=3.若点 E 是边 CD 的中点,连接 AE ,过点 B 作答案】 B . 【解析】考点:相似三角形的判定与性质;矩形的性质.9.如图,△ ABC 是⊙O 的内接三角形,∠ C=30°,⊙ O 的半径为 5,若点 P 是⊙ O 上的一 点,在△ ABP 中, PB=AB ,则 PA 的长为()A . 3 10 23 10 5C .10D .35 5【答案】 D . 【解析】试题分析:连接 OA 、OB 、 OP ,∵∠ C=30°,∴∠ APB =∠ C=30°,∵ PB=AB ,∴∠ PAB=∠APB=30°∴∠ ABP=120°,∵ PB=AB ,∴ OB ⊥AP ,AD=PD ,∴∠ OBP=∠OBA=60°,∵ OB=OA ,∴△AOB 是等边三角形,∴ AB=OA=5,则 Rt △PBD 中,PD =cos30°?PB= ×5=AP=2PD=5 3 ,故选 D .考点:三角形的外接圆与外心;等腰三角形的性质.10.已知抛物线 y x 2 2mx 4 ( m > 0)的顶点 M 关于坐标原点 O 的对称点为 M ′,若 点 M ′在这条抛物线上,则点 M 的坐标为( ) ﹣20) 【答案】 C . 【解析】试题分析: y x 2 2mx 4=(x m )2 m 2 4 ,∴点 M ( m ,﹣ m 2﹣ 4),∴点 M ′(﹣ m ,m 2+4),∴ m 2+2m 2﹣ 4=m 2+4.解得 m=±2.∵m >0,∴ m=2,∴ M ( 2,﹣ 8).故选 C . 考点:二次函数的性质.A .5B . 53 2C . 5 2A .(1,﹣ 5)B .( 3,﹣13)C .(2,﹣8)D .(4,、填空题(本大题共 4 小题,每小题3分,共12 分)11.在实数﹣5,﹣3 ,0,π ,6 中,最大的一个数是.【答案】π.【解析】考点:实数大小比较.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ ABC中,BD和CE是△ABC 的两条角平分线.若∠ A=52°,则∠ 1+∠2的度数为.B.317 tan38° 15′≈.(结果精确到0.01)【答案】A.64°;B.2. 03.【解析】考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.3m 2m 5 513.已知A,B 两点分别在反比例函数y (m≠ 0)和y (m≠ )的图象上,x x 2 若点A 与点B 关于x 轴对称,则m 的值为.【答案】1.解析】b 3mb试题分析:设 A (a ,b ),则 B (a ,﹣ b ),依题意得:a,所以 3m 2m 52m 5 a ba=0,即 5m ﹣ 5=0,解得 m=1.故答案为:1.考点:反比例函数图象上点的坐标特征;关于x 轴、 y 轴对称的点的坐标.14.如图,在四边形 ABCD 中, AB=AD ,∠ BAD =∠ BCD =90°,连接 AC .若 AC=6,则四 边形 ABCD 的面积为 .【解析】∴四边形 ABCD 的面积 =正方形 AMCN 的面积;由勾股定理得:AC 2=AM 2+MC 2,而 AC=6∴2λ 2=36, λ 2=18,故答案为: 18. 考点:全等三角形的判定与性质.、解答题(本大题共 11小题,共 78 分)15.计算: ( 2) 6 | 3 2 | (1) 1.答案】 3 3 . 【解析】试题分析:根据二次根式的性质以及负整数指数幂的意义即可求出答案. 试题解析:原式 = 12 2 3 2 = 2 3 3 = 3 3 . 考点:二次根式的混合运算;负整数指数幂.x3 216.解方程:1答案】 18.x3【答案】 x=﹣ 6. x3【解析】试题分析:利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论. 试题解析:去分母得, ( x+3)2﹣2(x ﹣3)=(x ﹣3)(x+3),去括号得, x 2+6x+9﹣2x+6=x 2 ﹣9,移项,系数化为 1,得 x=﹣6,经检验, x=﹣6 是原方程的解.考点:解分式方程.17.如图,在钝角△ ABC 中,过钝角顶点 B 作 BD ⊥BC 交 AC 于点 D .请用尺规作图法在 BC 边上求作一点 P ,使得点 P 到 AC 的距离等于 BP 的长.(保留作图痕迹,不写作法)【解析】18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益, 某中学为了了解七年级学生 的早锻炼情况, 校政教处在七年级随机抽取了部分学生, 并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D 四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200 名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20 分钟.(早锻炼:指学生在早晨7:00~7:40 之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】百分比为1﹣(5%+10%+65%)=20%,补全图形如下:2)由于共有200 个数据,其中位数是第100、101个数据的平均数,则其中位数位于区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20 分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.19.如图,在正方形ABCD 中,E、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF、CE 交于点G.求证:AG =CG .【答案】证明见解析.【解析】试题分析:根据正方向的性质,可得∠ADF =CDE =90°,AD=CD,根据全等三角形的判定与性质,可得答案.考点:正方形的性质;全等三角形的判定与性质.20.某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳” 之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M 点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1. 7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M 点的仰角为24°,这时测得小军的眼睛距地面的高度AC 为1 米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN 的长(结果精确到1 米).(参考数据:sin23°≈0. 3907,cos23°≈0. 9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0. 9135,tan24°≈0. 4452.)【答案】34 米.【解析】试题分析:作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x 米,则BD =CE =x 米,再由锐角三角函数的定义即可得出结论.试题解析:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x 米,则BD =CE =x 米,在Rt△MBD 中,MD=x?tan23°,在Rt△MCE 中,ME=x?tan24°,∵ME﹣MD=DE=BC,∴x?tan24°﹣x?tan23°=1. 7﹣1,∴ x= 0.7,解得x≈34(米).tan 24 tan23 答:“聚贤亭”与“乡思柳”之间的距离AN 的长约为34 米.考点:解直角三角形的应用﹣仰角俯角问题.21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的 3 个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2 个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8 个大棚中所产的瓜全部售完后,获得的利润为y 元.根据以上提供的信息,请你解答下列问题:(1)求出y 与x 之间的函数关系式;(2)求出李师傅种植的8 个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10 万元.【答案】(1)y=7500x+68000;(2)5.【解析】试题分析:(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000 建立不等式,即可确定出结论.试题解析:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000;4(2)由题意得,7500x+6800≥100000,∴x≥4 ,∵x 为整数,∴李师傅种植的8个大棚15 中,香瓜至少种植5 个大棚.考点:一次函数的应用;最值问题.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.13【答案】(1)1;(2)3.2 16【解析】A,A)、(A,B)、(A,C)、(A,C)、A,A)、(A,B)、(A,C)、(A,C)、B,A)、(B,B)、(B,C)、(B,C)、C,A)、(C,B)、(C ,C )、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.16考点:列表法与树状图法;概率公式.23.如图,已知⊙ O的半径为5,PA是⊙ O的一条切线,切点为A,连接PO 并延长,交⊙ O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时.(1)求弦AC 的长;答案】(1)5 3;(2)证明见解析.解析】在Rt△ODA 中,AD=OA?sin60°=5 3,∴AC=2AD=5 3 ;2(2)∵ AC⊥ PB,∠ P=30°,∴∠ PAC=60°,∵∠ AOP =60°,∴∠ BOA=120°,∴∠ BCA=60°,∴∠ PAC =∠BCA ,∴ BC∥PA.考点:切线的性质.24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x 轴交于A、B 两点,其中点A 在点B 的左侧.(1)求抛物线C1,C2 的函数表达式;(2)求A、B 两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q 两点的坐标;若不存在,请说明理由.答案】(1)C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)A(﹣3,0),B(1,0);(3)存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【解析】试题分析:(1)由对称可求得a、n 的值,则可求得两函数的对称轴,可求得m 的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B 的坐标;(3)由题意可知AB 只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q 点坐标,代入C2 的函数表达式可求得P、Q 的坐标.试题解析:(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴ P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴ t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).考点:二次函数综合题;存在型;分类讨论;轴对称的性质.25.问题提出(1)如图①,△ABC 是等边三角形,AB=12,若点O是△ ABC 的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD 中,AB=12,AD=18,如果点P是AD 边上一点,且AP=3,那么BC 边上是否存在一点Q ,使得线段PQ 将矩形ABCD 的面积平分?若存在,求出PQ 的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ ABM 草地和弦AB 与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M 处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB (即每次喷灌时喷灌龙头由MA转到MB ,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△ AMB 的面积为96m2;过弦AB的中点D作DE⊥AB 交AB 于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0. 01 米)【答案】(1)4 3;(2)PQ=12 2 ;(3)喷灌龙头的射程至少为19.71 米.【解析】AD试题分析:(1)构建Rt △ AOD 中,利用cos∠ OAD=cos30°=,可得OA 的长;OA(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt△AOD 中,由勾股定理解得:r=13根据三角形面积计算高MN 的长,证明△ ADC∽△ANM ,列比例式求DC 的长,确定点O在△ AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.11试题解析:(1)如图1,过O 作OD⊥AC于D,则AD= AC= ×12=6,∵ O是内心,△2211ABC 是等边三角形,∴∠ OAD= ∠ BAC= × 60°=30°,在Rt△AOD 中,cos∠22OAD =cos30°=AD,∴ OA =6÷ 3 = 4 3 ,故答案为:4 3 ;OA 2(r﹣8)2,解得:r=13,∴OD=5,过点M作MN⊥AB,垂足为N,∵S△ABM=96,AB=24,11∴ 1 AB?MN=96,1×24×MN=96,∴MN=8,NB=6,AN=18,∵CD∥MN,∴△ ADC∽△ 22 DC AD DC 12 16ANM,∴ ,∴ ,∴DC= ,∴ OD < CD,∴点O在△ AMB 内部,∴连MN AN 8 18 3接MO 并延长交AB 于点F ,则MF 为草坪上的点到M 点的最大距离,∵在AB 上任取一点异于点F 的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF > MG ,过O 作OH ⊥ MN ,垂足为H,则OH =DN =6,MH =3,∴ OM = MH2 OH2= 32 62=3 5,∴MF =OM+r= 35 +13≈19. 71(米).答:喷灌龙头的射程至少为19.71 米.考点:圆的综合题;最值问题;存在型;阅读型;压轴题.。

2017年陕西省数学中考试题含答案

2017年陕西省数学中考试题含答案

2017年陕西省初中毕业学业考试(考试时间:120分钟 满分:120分)第一部分(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1. 计算:(-12)2-1=( )A. -54B. -14C. -34D. 02. 如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )3. 若一个正比例函数的图象经过A (3,-6),B (m ,-4)两点,则m 的值为( ) A. 2 B. 8 C. -2 D. -84. 如图,直线a ∥b ,Rt △ABC 的直角顶点B 落在直线a 上.若∠1=25°,则∠2的大小为( ) A. 55° B. 75° C. 65° D. 85°第4题图 第6题图5. 化简:yx yy x x +--,结果正确的是( ) A. 1 B. 2222y x y x -+ C. yx yx +- D. x 2+y 2 6. 如图,将两个大小、形状完全相同的△ABC 和△A′B′C ′拼在一起,其中点A′与点A 重合,点C′落在边AB 上,连接B′C .若∠ACB =∠AC′B′=90°,AC =BC =3,则B′C 的长为( ) A. 3 3 B. 6 C. 3 2 D. 217. 如图,已知直线l 1:y =-2x +4与直线l 2:y =kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (-2,0),则k 的取值范围是( )A. -2<k <2B. -2<k <0C. 0<k <4D. 0<k <2第7题图 第8题图8. 如图,在矩形ABCD 中,AB =2,BC =3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( ) A.3102 B. 3105 C. 105 D. 3559. 如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5.若点P 是⊙O 上的一点,在△ABP 中,PB =AB ,则P A 的长为( )第9题图A. 5B.532C. 5 2D. 5 3 10. 已知抛物线y =x 2-2mx -4(m >0)的顶点M 关于坐标原点O 的对称点为M ′.若点M′ 在这条抛物线上,则点M 的坐标为( )A. (1,-5)B. (3,-13)C. (2,-8)D. (4,-20)第二部分(非选择题 共90分)二、填空题(共4小题,每小题3分,计12分)11. 在实数-5,-3,0,π,6中,最大的一个数是________.12. (节选)如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A =52°,则∠1+∠2的度数为________.第12题图 第14题图13. 已知A ,B 两点分别在反比例函数y =3m x (m ≠0)和y =2m -5x (m ≠52)的图象上.若点A 与点B 关于x 轴对称,则m 的值为________.14. 如图,在四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90°,连接AC .若AC =6,则四边形ABCD 的面积为________.三、解答题(共11小题,计78分.解答应写出过程) 15. (本题满分5分)计算:(-2)×6+|3-2|-(12)-1.16. (本题满分5分)解方程:3233+--+x x x =1.17. (本题满分5分)如图,在钝角△ABC 中,过钝角顶点B 作BD ⊥BC 交AC 于点D .请用尺规作图法在BC 边上求作一点P ,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)第17题图18. (本题满分5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益.某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x (分钟)进行了调查.现把调查结果分成A 、B 、C 、D 四组,如右下表所示;同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题: (1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在________区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)第18题图19. (本题满分7分)如图,在正方形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE =CF ,连接AF 、CE 交于点G .求证:AG=CG.第19题图20. (本题满分7分,改编)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着测倾器和皮尺来测量这个距离.测量方案如下:如图,首先,小军站在“聚贤亭”的A处,用测倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米;然后,小军在A处蹲下,用测倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上所测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42,sin24°≈0.41,cos24°≈0.91,tan24°≈0.45)第20题图21. (本题满分7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行整修改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜.今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜.他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22. (本题满分7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C).这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23. (本题满分8分)如图,已知⊙O的半径为5,P A是⊙O的一条切线,切点为A,连接PO并延长,交⊙O 于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC.当∠P=30°时.(1)求弦AC的长;(2)求证:BC∥P A.第23题图24. (本题满分10分)在同一直角坐标系中,抛物线C1:y=ax2-2x-3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.第24题图25. (本题满分12分)问题提出(1)如图①,△ABC是等边三角形,AB=12.若点O是△ABC的内心,则OA的长为________;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18.如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由;问题解决(3)某城市街角有一草坪,草坪是由△ABM 草地和弦AB 与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M 处的水管上安装了一喷灌龙头,以后,他想只用..喷灌龙头....来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水.于是,他让喷灌龙头的转角正好等于∠AMB (即每次喷灌时喷灌龙头由MA 转到MB ,然后再转回,这样往复喷灌),同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB =24 m ,MB =10 m ,△AMB 的面积为96 m 2;过弦AB 的中点D 作DE ⊥AB 交AB ︵于点E ,又测得DE =8 m.请你根据以上提供的信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)第25题图2017年陕西省初中毕业学业考试1. C 【解析】本题考查了有理数的混合运算,先算乘方,再算减法.(-12)2-1=14-1=-34.2. B 【解析】本题几何体的上面是一个横放的长方体,下面是一个圆柱体,从该几何体的正面看,上、下都是矩形,且上面的矩形较小.故选B.3. A 【解析】本题考查了正比例函数的图象与性质.已知A (3,-6),B (m ,-4)在正比例函数的图象上,则-63=-4m,解得m =2. 4. C 【解析】本题考查平行线及直角三角形的性质.如解图,∵△ABC 是直角三角形,∴∠ABC =90°,又∵∠1=25°,∴∠3=180°-∠ABC -∠1=65°,∵直线a ∥b ,∴∠2=∠3=65°.第4题解图5. B 【解析】本题考查了分式的减法运算,解题的关键是将分式进行通分.原式=x (x +y )(x -y )(x +y )-y (x -y )(x -y )(x +y )=x 2+xy -xy +y 2(x -y )(x +y )=x 2+y 2x 2-y 2.故选B.6. A 【解析】∵∠ACB =∠A ′C ′B ′=90°,AC =BC =3,∴△ABC 是等腰直角三角形,∴∠CAB =45°,在Rt △ABC 中,AB =AC 2+BC 2=32+32=32,又∵△ABC ≌△A ′B ′C ′,∴∠C ′AB ′=∠CAB =45°,∴∠CAB ′=∠C ′AB ′+∠CAB =45°+45°=90°,在Rt △CAB ′中,AC =3,AB ′=AB =32,∴B ′C =AC 2+(AB ′)2=32+(32)2=3 3.7. D 【解析】∵直线l 2与x 轴的交点为A (-2,0),∴-2k +b =0,则b =2k ,∴直线l 2:y =kx +2k (k ≠0),∵直线l 1:y =-2x +4与y 轴的交点为(0,4),且直线l 1与直线l 2在第一象限交于点M ,∴k >0,在直线l 2中,当x =0时,2k <4,解得k <2,则k 的取值范围是0<k <2.8. B 【解析】在矩形ABCD 中,CD =AB =2,AD =BC =3,∠BAD =∠D =90°,∵点E 是边CD 的中点,∴DE =12CD =1,在Rt △ADE 中,AE =AD 2+DE 2=32+12=10,∵BF ⊥AE ,∴∠AFB =90°,∴∠F AB+∠ABF =90°,∵∠F AB +∠EAD =90°,∴∠ABF =∠EAD ,∴△ABF ∽△EAD ,∴AB AE =BF AD ,即210=BF3,解得BF =3105.9. D 【解析】∵∠C =30°,∴∠APB =30°,∵PB =AB ,∴∠P AB =∠APB =30°,如解图,连接OA 、OB 、OP ,OB 交AP 于点H ,可得OA =OB =OP =5,∵∠AOB =2∠APB =60°,∠BOP =2∠BAP =60°,∴OA =AB =OP =BP =5,∴四边形OABP 是菱形.∴∠OHA =∠OHP =90°,OH =12OB =52,∴AH =OA 2-OH 2=52-(52)2=532,∴AP =2AH =5 3.第9题解图10. C 【解析】抛物线的对称轴为x =--2m2,即x =m ,故顶点M 的横坐标为m (m >0),设M 的坐标为(m ,n ),则M ′的坐标为(-m ,-n ),∵M 、M ′均在抛物线y =x 2-2mx -4上,∴⎩⎪⎨⎪⎧m 2-2m 2-4=n ①m 2+2m 2-4=-n ②,①+②得:2m 2-8=0,∵m >0,∴m =2,将m =2代入①得:n =-8,∴M 的坐标为(2,-8).11. π 【解析】本题考查实数的大小比较.根据正数>0>负数,比较π与6即可.∵π>3,6<9=3,∴最大的一个数是π.12. 64° 【解析】本题考查角平分线的性质及三角形内角和定理.∵在△ABC 中,BD 和CE 是△ABC 的两条角平分线,∴∠1=∠ABD =12∠ABC ,∠2=∠ACE =12∠ACB ,∴∠1+∠2=12(∠ABC +∠ACB ),∵∠ABC +∠ACB +∠A =180°,∴∠ABC +∠ACB =180°-∠A =180°-52°=128°,∴∠1+∠2=12(∠ABC +∠ACB )=12×128°=64°.13. 1 【解析】设A (x ,y ),则B (x ,-y ),∵点A 在y =3mx 的图象上,点B 在y =2m -5x的图象上,∴⎩⎨⎧y =3m x-y =2m -5x,∴3m x +2m -5x=0,∴m =1. 14. 18 【解析】如解图,连接BD .∵∠DAB =∠DCB =90°,∴A ,B ,C ,D 四点共圆.又∵AB =AD ,∴∠ADB =∠ABD =45°,∴∠DCA =∠ABD =45°,∴∠BCA =∠DCB -∠DCA =90°-45°=45°,∴CA 平分∠BCD ,过点A 作AM ⊥BC 于点M ,AN ⊥CD 交CD 的延长线于点N ,则AM =AN ,∴Rt △ABM ≌Rt △ADN (HL ),∴S △ABM =S △ADN ,∴S 四边形ABCD =S 四边形AMCN ,又∵AM =AN ,且∠DCB =90°,∴四边形AMCN 为正方形,在Rt △AMC 中,AC =6,∠ACM =45°,∴AM =32,∴S 四边形ABCD =S 四边形AMCN =AM 2=18.第14题解图15. 解:原式=-12+2-3-2……………………(3分) =-23- 3=-3 3.…………………………………………(5分)16. 解:(x +3)2-2(x -3)=(x -3)(x +3),…………………………………………(2分) x 2+6x +9-2x +6=x 2-9,x =-6.……………………………………(4分)经检验:x =-6是原方程的根.…………………………………………(5分) 17. 解:如解图,点P 即为所求.…………………………………(5分)第17题解图【作法提示】①以点D 为圆心,以适当长为半径画弧,分别交DB 、DC 于点M 、N ;②分别以点M 、N 为圆心,以大于12MN 长为半径画弧,两弧相交于点E ;③作射线DE 交BC 于点P ,点P 即为所求.18. 解:(1)如解图所示;……………………………………………………………… (2分)第18题解图(2) 20≤x <30(或填C );……………………………………(3分) (3) 1200×(65%+20%)=1020(人).∴该校七年级学生中约有1020人一天早锻炼的时间不少于20分钟.……………………………………(5分) 19.证明:∵四边形ABCD 是正方形, ∴∠ADF =∠CDE =90°,AD =CD. ∵AE =CF ,∴DE =DF .……………………………………(2分) ∴△ADF ≌△CDE (SAS).∴∠DAF =∠DCE .……………………………………(4分) 又∵∠AGE =∠CGF , ∴△AGE ≌△CGF (AAS).∴AG =CG .……………………………………(7分)20. 解:如解图,作BD ⊥MN ,垂足为D ,作CE ⊥MN ,垂足为E. 设AN =x 米,则BD =CE =x 米. 在Rt △MBD 中,MD =x ·tan23°.在Rt△MCE中,ME=x·tan24°.……………………………………(4分) ∵ME-MD=DE=BC,∴x·tan24°-x·tan23°=1.7-1.∴x =0.7︒︒tan24-tan23.∴x≈23.∴“聚贤亭”与“乡思柳”之间的距离约为23米.……………………………………(7分)第20题解图21. (1)【题图分析】设今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚的利润为y元,则今年下半年种植甜瓜的大棚数为(8-x)个:整理前信息整理后信息一根据表格数据可得:香瓜:产量:2000斤/每棚销售价:12元/每斤成本:8000元/每棚香瓜每棚的利润:(2000×12-8000)元明年上半年香瓜的总利润为:(2000×12-8000)x元二甜瓜:产量:4500斤/每棚销售价:3元/每斤成本:5000元/每棚甜瓜每棚的利润:(4500×3-5000)元明年上半年甜瓜的总利润为:(4500×3-5000)(8-x)元三8个大棚的总利润为:y=香瓜的总利润+甜瓜的总利润解:由题意,得y=(2000×12-8000)x+(4500×3-5000)(8-x)……………………………………(3分)=7500x+68000,∴y=7500x+68000;……………………………………(4分)(2)【思维教练】要使获得的利润不低于10万元,直接将(1)中求得的关系式代入y≥100000中,进而求得x的取值范围,求其最小正整数即可得解.解:由题意,可知7500x+68000≥100000.∴x≥44 15.……………………………………(6分)∴李师傅种植的8个大棚中至少有5个大棚种植香瓜,才能使获得的利润不低于10万元.……………(7分)22. 解:(1)共有4种等可能结果,而取到红枣粽子的结果有2种, 则P (取到红枣粽子)=12;……………………………………(2分)(2)由题意,列表如下:ABC 1C 2A 1 (A 1、A ) (A 1、B ) (A 1、C 1) (A 1、C 2) A 2 (A 2,A ) (A 2,B ) (A 2,C 1) (A 2,C 2) B (B ,A ) (B ,B ) (B ,C 1) (B ,C 2) C(C ,A )(C ,B )(C ,C 1)(C ,C 2)……………………………………(6分)由上表可知,取到的两个粽子共有16种等可能结果,而一个是红枣,一个是豆沙粽子的结果有3种,则P (取到一个红枣,一个豆沙粽子)=316.……………………………………(7分)23. 解: (1)如解图,连接OA . ∵P A 是⊙O 的切线,切点为A , ∴∠P AO =90°. ∵∠P =30°,∴∠AOD =60°.……………………………………(2分) ∵AC ⊥PB ,PB 过圆心,在Rt △ODA 中,AD =OA ·sin60°=532.∴AC =2AD =53;……………………………………(4分)第23题解图(2)证明:如解图,∵AC ⊥PB ,∠P =30°, ∴∠P AC =60°.∵∠AOP =90°-∠P =60°,∴∠BOA =120°.……………………………………(6分) ∴∠BCA =60°.花盘白盘∴∠P AC=∠BCA.∴BC∥P A.……………………………………(8分)24.解:(1)∵C1与C2关于y轴对称,∴C1与C2交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=-3,……………………………………(2分)∴C1的对称轴为x=1,∴C2的对称轴为x=-1,∴m=2,……………………………………(3分)∴C1:y=x2-2x-3,C2:y=x2+2x-3;……………………………………(4分)(2)令C2中y=0,则x2+2x-3=0,解得x1=-3,x2=1,∵点A在点B左侧,∴A(-3,0),B(1,0);……………………………………(6分)(3)存在.……………………………………(7分)如解图,设P(a,b),则Q(a+4,b)或(a-4,b).①当Q(a+4,b)时,得:a2-2a-3=(a+4)2+2(a+4)-3.解得a=-2.∴b=a2-2a-3=4+4-3=5.∴P1(-2,5),Q1(2,5);……………………………………(9分)②当Q(a-4,b)时,得:a2-2a-3=(a-4)2+2(a-4)-3.解得a=2.∴b=4-4-3=-3.∴P2(2,-3),Q2(-2,-3).综上所述,所求点的坐标为P1(-2,5),Q1(2,5);P2(2,-3),Q2(-2,-3).…………………(10分)第24题解图25.解:(1)43;……………………………………(3分)【解法提示】如解图①,作∠BAC,∠ACB的角平分线,分别交BC、AB于点D、E,则AD、CE的交点O即为△ABC 的内心,又知△ABC 为等边三角形,根据“三线合一”的性质,可得AE =12AB =6,∠OAE =30°,∠AEO =90°,在Rt △AEO 中,OA =cos30AE=632=4 3.第25题解图① 第25题解图②(2)存在.……………………………………(4分)如解图②,连接AC 、BD 交于点O ,连接PO 并延长交BC 于点Q ,则线段PQ 将矩形ABCD 的面积平分.(5分)∵点O 为矩形ABCD 的对称中心, ∴CQ =AP =3.过点P 作PM ⊥BC 于点M ,则PM =AB =12,MQ =12. ∴PQ =122;……………………………………(6分)(3)【思维教练】要求喷灌龙头的最小射程,且△ABM 草地及弓形AEB 草地全部都能浇上水,即求点M 到弓形AEB 的最大值,根据已知D 为AB 弦的中点,DE ⊥AB ,可考虑在射线ED 上找圆心O ,利用勾股定理即可求得其半径长,再通过作辅助线MN ⊥AB 构造△ADC ∽△ANM ,结合△ABM 的面积及AB 的长即可判断出点O 的位置,进而求得点M 到弓形AEB 距离最大的位置,再利用线段等量代换即可得解.第25题解图③如解图③,延长ED 交AM 于点C . ∵AD =DB ,ED ⊥AB ,AB ︵为劣弧, ∴AB ︵所在圆的圆心在射线DC 上. 设圆心为O ,半径为r ,连接OA ,则 在Rt △ADO 中,r 2=122+(r -8)2. 解得r =13.∴OD =5.……………………………………(8分) 过点M 作MN ⊥AB ,垂足为N. ∵S △ABM =96,AB =24,MB =10, ∴MN =8,NB =6,AN =18.∵△ADC ∽△ANM , ∴DC 8=1218, ∴DC =163,∴OD <CD ,∴点O 在△AMB 内部,……………………………………(9分)∴连接MO 并延长交AB ︵于点F ,则MF 为草坪上的点到M 点的最大距离. 在AB ︵上任取一异于点F 的点G ,连接GO ,GM , ∴MF =OM +OF =OM +OG >MG , 即MF >MG ,过点O 作OH ⊥MN ,垂足为H ,则OH =DN =6,MH =3, ∴OM =35,∴MF =OM +r =35+13,∴喷灌龙头的射程至少为(35+13)米时才能实现他的想法.……………………………………(12分)。

2017年陕西省初中毕业学业考试解析版

2017年陕西省初中毕业学业考试解析版

机密★启用前2017年陕西省初中毕业学业考试数学答案及评分参考第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,计30分)第Ⅱ卷(非选择题共90分) 二、填空题(共4小题,每小题3分,计12分)11.<12. A. 23B.0.7113.k<1214.1三、解答题(共11小题,计78分)(以下给出了各题的一种解法及评分参考,其它符合题意的解法请参照相应题的解答赋分) 15.解:原式=32-1+3-22……………………(3分)=2+ 2.………………………………(5分) 16.解:(2x-1)(x-2)=2(x2-4)-3(x+2).…………(2分)-2x=-16.……………………………(3分)x=8.………………………………(4分) 经检验,x=8是原方程的根.…………………………(5分)17.解:如图所示,点P即为所求.…………………(5分)18.解:(1)补全的条形统计图和扇形统计图如图所示.………………………………………………………………(2分)(2)B.(或填偶尔随手丢垃圾亦可)…………………………(3分)(3)1 500×5%=75(人).∴估计该年级学生中约有75人经常随手丢垃圾.………(4分) 看法:争做遵守倡议的模范;做文明公民;从我做起,绝不随手丢垃圾等.………………………………………………………(5分) (主题明确,态度积极即可得分)19.证明:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∠B=∠D.∴∠E=∠F.………………………………………………(4分)又∵AE=CF,∴BE=DF.………………………………………………(5分)∴△BEH≌△DFG.∴BH=DG.………………………………………………(7分) 20.解:如图,作ME⊥CD,垂足为E.设CE长为x米,则BE=(1.8+x)米,AE=(1+x)米.……(2分)在Rt△BME中,EM=1.8tan35x+︒,在Rt△AME中,EM=1tan34.5x+︒,∴1.8tan35x+︒=1tan34.5x+︒.……………………………………(5分)∴x≈42.∴山CD比旗杆MN高出约42米.……………………(7分) 21.解:(1)y=4 000x+6 000(20-x)=-2 000x+120 000. ∴y=-2 000x+120 000.………………………………(3分)(2)由题意,知2010 31x x-==.解得:x=15.……………………………………………(5分) ∴当x=15时,y=-2 000×15+120 000=90 000.∴该种植户所获总利润为90 000元.………………(7分) 22.解:由题意,列表如下:…………………………………………………………(5分)由上表可知,共有25种等可能结果,且两个数位上的数字之和恰好为9的结果有5种.∴P(两个数位上的数字之和恰好为9)=15.………………(7分)23.(1)证明:连接OA、OC、OD,其中OD与AC交于点N.∵∠ABD=∠DBC,∴∠AOD=∠DOC.∴OD⊥AC.………………………………………………(3分)又∵DE∥AC,∴OD⊥DE.而点D在⊙O上,∴DE为⊙O的切线.……………………………………(5分)(2)解:由(1)知CN=12AC.当DE=12AC时,DE=CN,DE∥CN.…………………(7分) ∴四边形NDEC为矩形.∴∠ACB=90°.…………………………………………(8分) 24.解:(1)∵A(-1,0),OB=OC=3OA,∴B(3,0),C(0,-3).∴930,3a b ca b cc-+=⎧⎪++=⎨⎪=-⎩……………………………………(2分)解之,得12,3 abc=⎧⎪=-⎨⎪=-⎩∴y=x2-2x-3.……………………………………(4分) (2)存在.由题意知,抛物线对称轴为直线x=1.记直线BC与直线x=1的交点为M,∴点M即为所求.………………………………(5分)理由:连接AM .∵点A 与点B 关于直线x =1对称, ∴AM =MB .∴CM +AM =CM +MB =BC . ∴△ACM 的周长=AC +BC .在直线x =1上任取一点M ′,连接CM ′、BM ′、AM ′. ∵AM ′=M ′B ,∴CM ′+AM ′=CM ′+M ′B ≥BC . ∴AC +CM ′+AM ′≥AC +BC .∴△ACM 的周长最小.…………………………………(6分) 设直线x =1与x 轴交于点D ,则MD ∥OC .∴3DM =23.∴DM =2.∴M (1,-2).……………………………………………(7分) (3)存在.设点N 坐标为(n ,n 2-2n -3). ∵S △ABC =2S △OCN , ∴12×4×3=2×12×3×|n |.∴|n |=2.∴n =±2.…………………………………………………(8分) 当n =2时,n 2-2n -3=-3. ∴N (2,-3).当n =-2时,n 2-2n -3=5. ∴N (-2,5).综上所述,符合条件的点N 有(2,-3)或(-2,5).……(10分) 25.解:(1)2.…………………………………………………(3分) (2)25-2.……………………………………………………(7分) (3)由题意,知△ABM ≌△BCN .∴∠AMB =∠BNC . ∴∠AMC +∠BNC =180°.∴∠APB =∠MPN =180°-∠ACB =120°.作△APB 的外接圆⊙O ,则符合条件的所有点P 都在弦AB 所对的劣弧AB 上.………………………………………………………(8分)当点P 运动到AB ︵的中点F 时,此时△ABP 面积最大.……(9分) ∵过点O 作l ∥AB ,作PH ⊥l 于点H ,交AB 于点G . 连接OP 、OF ,且OF 交AB 于点Q ,则OF ⊥AB . ∵OF =OP ≥HP ,且OQ =HG ,∴QF ≥GP .…………………………………………………(10分) 连接AF .∵在Rt △AFQ 中,FQ =12AB tan30°= 3. ∴S △ABF =12×6×3=3 3.∴△ABP 面积的最大值为3 3.…………………………(12分)。

2017年陕西省中考数学试卷-答案

2017年陕西省中考数学试卷-答案
第Ⅱ卷
二、填空题 11.【答案】 π 【解析】根据实数比较大小的方法,可得 π 6 0 3 5 ,故实数 5, 3,0, π, 6 其中最大的数是 π .
【提示】根据正数大于 0,0 大于负数,正数大于负数,比较即可. 【考点】实数大小的比较 12.【答案】 64 2.03
陕西省 2017 年初中毕业学业考试
数学答案解析
第Ⅰ卷
一、选择题
1.【答案】C
【解析】原式 1 1 3
4
4
【提示】原式先计算乘方运算,再计算加减运算即可得到结果.
【考点】有理数的混合运算
2.【答案】B
【解析】从正面看下边是一个较大的矩形,上边是一个较小的矩形.
【提示】根据从正面看得到的图形是主视图,可得答案.
0)
的交点在第一象限,∴

4 2k 0 k2 8k 0
,解得
0

k

2
.
k 2
【提示】首先根据直线 l2 与 x 轴的交点为 A(2,0) ,求出 k、b 的关系;然后求出直线 l1 、直线 l2 的交点坐标,
根据直线 l1 、直线 l2 的交点横坐标、纵坐标都大于 0,求出 k 的取值范围即可.
【考点】简单组合体的三视图
3.【答案】A 【解析】设正比例函数解析式为: y kx ,将点 A(3, 6) 代入可得: 3k 6 ,解得: k 2 ,∴函数解析 式为: y 2x ,将 B(m, 4) 代入可得: 2m 4 ,解得 m 2 ,
【提示】运用待定系数法求得正比例函数解析式,把点 B 的坐标代入所得的函数解析式,即可求出 m 的值.
3 / 10
【解析】A.∵ A 52 ,∴ ABC ACB 180 A 128 ,∵ BD平分ABC . CE平分ACB ,∴

陕西省2017年中考数学试题含答案

陕西省2017年中考数学试题含答案
益阳市 2017 年普通初中毕业学业考试试卷
数学
注意事项:1.本学科试卷分试题卷和答题卡两部分; 2.请将姓名、准考证号等相关信息按要求填写在答题卡上; 3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效; 4.本学科为闭卷考试,考试时量为 90 分钟,卷面满分为 150 分; 5.考试结束后,请将试题卷和答题卡一并交回.
的两根为 ,
,那么下列结论一定成立的是( )
A. 【答案】A 【解析】
B.
C.
D.
考点:1、根与系数的关系;2、根的判别式 7.如图,电线杆 的高度为 ,两根拉线 与 相互垂直,∠ = ,则拉线 的长度为( 、 、 在同一条直线上)( )
A.
B.
C.
D.
【答案】B 【解析】
试题分析:根据同角的余角相等得∠CAD=∠BCD,由 os∠BCD= 知 BC=
A.
B.
C.
D.
【答案】D 【解析】
考点:在数轴上表示不等式的解集
3.下列性质中菱形不一定具有的性质是( )
A.对角线互相平分
B.对角线互相垂直
C.对角线相等
D.既是轴对称图形又是中心对称图形
【答案】C 【解析】
故选:C. 考点:菱形的性质 4.目前,世界上能制造出的最小晶体管的长度只有 0.000 000 04m,将 0.000 000 04 用科学计数法表示为 ()
12.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为
12 人,频率为 0.25,那么被调查的学生人数为

【答案】48
【解析】
试题分析:设被调查的学生人数为 x 人,
则有 =0.25,

2017年陕西省中考数学试卷(解析版)

2017年陕西省中考数学试卷(解析版)

2017年陕西省中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.计算:(﹣)2﹣1=()A.﹣B.﹣C.﹣D.02.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.3.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣84.如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°5.化简:﹣,结果正确的是()A.1 B.C.D.x2+y26.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3B.6 C.3D.7.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<28.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则P A的长为()A.5 B.C.5D.510.已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题(共4小题)11.在实数﹣5,﹣,0,π,中,最大的一个数是.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.tan38°15′≈.(结果精确到0.01)13.已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为.14.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.三、解答题(共10小题)15.计算:(﹣)×+|﹣2|﹣()﹣1.16.解方程:﹣=1.17.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如表所示,同时,将调查结果绘制成下面两幅不完整的统计图.分组早锻炼时间/分钟A0~10B10~20C20~30D30~40请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)19.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.20.某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:产量(斤/每棚)销售价(元/每斤)成本(元/每棚)品种项目香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.24.问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)2017年陕西省中考数学试卷(解析版)参考答案一、单选题(共10小题)1.【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=﹣1=﹣,故选:C.【知识点】有理数的混合运算2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上边是一个较小的矩形,故选:B.【知识点】简单组合体的三视图3.【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【知识点】一次函数图象上点的坐标特征4.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∠1+∠ABC+∠3=180°,∴∠3=180﹣∠1﹣∠ABC=180°﹣25°﹣90°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【知识点】平行线的性质5.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==.故选:B.【知识点】分式的加减法6.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【知识点】勾股定理7.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴解得∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴解得0<k<2.故选:D.【知识点】一次函数图象上点的坐标特征、两条直线相交或平行问题8.【分析】根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=3=•AE•BF,∴BF=.故选:B.【知识点】矩形的性质9.【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.【知识点】等腰三角形的性质、三角形的外接圆与外心10.【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选:C.【知识点】二次函数的性质二、填空题(共4小题)11.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>>0>>﹣5,故实数﹣5,,0,π,其中最大的数是π.故答案为:π.【知识点】实数大小比较12.【分析】A:由三角形内角和得∠ABC+∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB);B:利用科学计算器计算可得.【解答】解:A、∵∠A=52°,∴∠ABC+∠ACB=180°﹣∠A=128°,∵BD平分∠ABC、CE平分∠ACB,∴∠1=∠ABC、∠2=∠ACB,则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=64°,故答案为:64°;B、tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【知识点】计算器—数的开方、计算器—三角函数、三角形内角和定理13.【分析】设A(a,b),则B(a,﹣b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m的值.【解答】解:设A(a,b),则B(a,﹣b),依题意得:,所以=0,即5m﹣5=0,解得m=1.故答案是:1.【知识点】关于x轴、y轴对称的点的坐标、反比例函数图象上点的坐标特征14.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,方法二:将三角形ADC绕点A顺时针旋转90度得到△ABC′,只要证明△ACC′是等腰直角三角形,然后面积可用AC×AC′来表示.故答案为:18.【知识点】全等三角形的判定与性质三、解答题(共10小题)15.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣+2﹣﹣2=﹣2﹣=﹣3【知识点】负整数指数幂、二次根式的混合运算16.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【知识点】解分式方程17.【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【知识点】角平分线的性质、作图—基本作图18.【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【知识点】扇形统计图、中位数、用样本估计总体、频数(率)分布直方图19.【分析】根据正方向的性质,可得∠ADF=∠CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=∠CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS),∴AG=CG.【知识点】全等三角形的判定与性质、正方形的性质20.【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=,解得x≈34.答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【知识点】解直角三角形的应用-仰角俯角问题21.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000(0<x<8),(2)由题意得,7500x+68000≥100000,∴x≥4,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【知识点】一次函数的应用22.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;(2)由题意可得,出现的所有可能性是:∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.【知识点】列表法与树状图法、概率公式23.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(2,﹣3),Q(﹣2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q(﹣2,﹣3).【知识点】二次函数综合题24.【分析】(1)构建Rt△AOD中,利用cos∠OAD=cos30°=,可得OA的长;(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt△AOD中,r2=122+(r﹣8)2,解得:r=13根据三角形面积计算高MN的长,证明△ADC∽△ANM,列比例式求DC的长,确定点O在△AMB内部,利用勾股定理计算OM,则最大距离FM的长可利用相加得出结论.【解答】解:(1)如图1,过O作OD⊥AC于D,则AD=AC=×12=6,∵O是内心,△ABC是等边三角形,∴∠OAD=∠BAC=×60°=30°,在Rt△AOD中,cos∠OAD=cos30°=,∴OA=6÷=4,故答案为:4;(2)存在,如图2,连接AC、BD交于点O,连接PO并延长交BC于Q,则线段PQ将矩形ABCD 的面积平分,∵点O为矩形ABCD的对称中心,∴CQ=AP=3,过P作PM⊥BC于点M,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ===12;(3)如图3,作射线ED交AM于点C∵AD=DB,ED⊥AB,是劣弧,∴所在圆的圆心在射线DC上,假设圆心为O,半径为r,连接OA,则OA=r,OD=r﹣8,AD=AB=12,在Rt△AOD中,r2=122+(r﹣8)2,解得:r=13,∴OD=5,过点M作MN⊥AB,垂足为N,∵S△ABM=96,AB=24,∴AB•MN=96,×24×MN=96,∴MN=8,NB=6,AN=18,∵CD∥MN,∴△ADC∽△ANM,∴,∴,∴DC=,∴OD<CD,∴点O在△AMB内部,∴连接MO并延长交于点F,则MF为草坪上的点到M点的最大距离,∵在上任取一点异于点F的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF>MG,过O作OH⊥MN,垂足为H,则OH=DN=6,MH=3,∴OM===3,∴MF=OM+r=3+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.【知识点】圆的综合题。

2017年陕西省中考数学试卷含答案解析

2017年陕西省中考数学试卷含答案解析

2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.计算:=( )21()12--=A . B . C . D .054-14-34-【答案】C .【解析】试题分析:原式=﹣1=,故选C .1434-考点:有理数的混合运算.2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【答案】B .【解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选B .考点:简单组合体的三视图.3.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣8【答案】A .【解析】考点:一次函数图象上点的坐标特征.4.如图,直线a ∥b ,Rt △ABC 的直角顶点B 落在直线a 上,若∠1=25°,则∠2的大小为( )A .55°B .75°C .65°D .85°【答案】C .【解析】试题分析:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a ∥b ,∴∠2=∠3=65°.故选C .考点:平行线的性质.5.化简:,结果正确的是( )x x x y x y--+A .1 B . C . D .2222x y x y +-x y x y-+22x y +【答案】B .【解析】试题分析:原式= =.故选B .2222x xy xy y x y +-+-2222x y x y +-考点:分式的加减法.6.如图,将两个大小、形状完全相同的△ABC 和△A ′B ′C ′拼在一起,其中点A ′与点A 重合,点C ′落在边AB 上,连接B ′C .若∠ACB =∠AC ′B ′=90°,AC =BC =3,则B ′C 的长为( )A.B.6 C. D【答案】A.【解析】试题分析:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=CAB′=90°,∴B′C A.考点:勾股定理.7.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是( )A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【答案】D.【解析】考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.8.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE 交AE于点F,则BF的长为( )A B C.D【答案】B.【解析】考点:相似三角形的判定与性质;矩形的性质.9.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为( )A .5BC .D .【答案】D .【解析】试题分析:连接OA 、OB 、OP ,∵∠C =30°,∴∠APB =∠C =30°,∵PB =AB ,∴∠PAB =∠APB =30°∴∠ABP =120°,∵PB =AB ,∴OB ⊥AP ,AD =PD ,∴∠OBP =∠OBA =60°,∵OB =OA ,∴△AOB是等边三角形,∴AB =OA =5,则Rt △PBD 中,PD =cos30°•PB ×5,∴AP =2PD =,故选D .考点:三角形的外接圆与外心;等腰三角形的性质.10.已知抛物线(m >0)的顶点M 关于坐标原点O 的对称点为M ′,若224y x mx =--点M ′在这条抛物线上,则点M 的坐标为( )A .(1,﹣5)B .(3,﹣13)C .(2,﹣8)D .(4,﹣20)【答案】C .【解析】试题分析:=,∴点M (m ,﹣m 2﹣4),∴点M ′(﹣m ,224y x mx =--22()4x m m ---m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m =±2.∵m >0,∴m =2,∴M (2,﹣8).故选C .考点:二次函数的性质.二、填空题(本大题共4小题,每小题3分,共12分)11.在实数﹣50中,最大的一个数是 .【答案】π.【解析】考点:实数大小比较.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A =52°,则∠1+∠2的度数为 .B tan38°15′≈ .(结果精确到0.01)【答案】A .64°;B .2.03.【解析】考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.13.已知A ,B 两点分别在反比例函数(m ≠0)和(m ≠)的图象上,3m y x =25m y x -=52若点A 与点B 关于x 轴对称,则m 的值为 .【答案】1.【解析】试题分析:设A (a ,b ),则B (a ,﹣b ),依题意得:,所以 =0,325m b a m b a ⎧=⎪⎪⎨-⎪-=⎪⎩325m m a +-即5m ﹣5=0,解得m =1.故答案为:1.考点:反比例函数图象上点的坐标特征;关于x 轴、y 轴对称的点的坐标.14.如图,在四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90°,连接AC .若AC =6,则四边形ABCD 的面积为 .【答案】18.【解析】∴四边形ABCD 的面积=正方形AMCN 的面积;由勾股定理得:AC 2=AM 2+MC 2,而AC =6;∴2λ2=36,λ2=18,故答案为:18.考点:全等三角形的判定与性质.三、解答题(本大题共11小题,共78分)15.计算:.11(|2|(2---【答案】-【解析】试题分析:根据二次根式的性质以及负整数指数幂的意义即可求出答案.试题解析:原式===22+---考点:二次根式的混合运算;负整数指数幂.16.解方程:.32133x x x +-=-+【答案】x =﹣6.【解析】试题分析:利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.试题解析:去分母得,(x +3)2﹣2(x ﹣3)=(x ﹣3)(x +3),去括号得,x 2+6x +9﹣2x +6=x 2﹣9,移项,系数化为1,得x =﹣6,经检验,x =﹣6是原方程的解.考点:解分式方程.17.如图,在钝角△ABC 中,过钝角顶点B 作BD ⊥BC 交AC 于点D .请用尺规作图法在BC 边上求作一点P ,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)【答案】作图见解析.【解析】考点:作图—基本作图.18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.19.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE 交于点G.求证:AG=CG.【答案】证明见解析.【解析】试题分析:根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.考点:正方形的性质;全等三角形的判定与性质.20.某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【答案】34米.【解析】试题分析:作BD ⊥MN ,CE ⊥MN ,垂足分别为点D 、E ,设AN =x 米,则BD =CE =x 米,再由锐角三角函数的定义即可得出结论.试题解析:如图,作BD ⊥MN ,CE ⊥MN ,垂足分别为点D 、E ,设AN =x 米,则BD =CE =x 米,在Rt △MBD 中,MD =x •tan23°,在Rt △MCE 中,ME =x •tan24°,∵ME ﹣MD =DE =BC ,∴x •tan24°﹣x •tan23°=1.7﹣1,∴x =,解得x ≈34(米).0.7tan 24tan 23 o o答:“聚贤亭”与“乡思柳”之间的距离AN 的长约为34米.考点:解直角三角形的应用﹣仰角俯角问题.21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x 个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y 元.根据以上提供的信息,请你解答下列问题:(1)求出y 与x 之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【答案】(1)y =7500x +68000;(2)5.【解析】试题分析:(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.试题解析:(1)由题意得,y =(2000×12﹣8000)x +(4500×3﹣5000)(8﹣x )=7500x +68000;(2)由题意得,7500x +6800≥100000,∴x ≥,∵x 为整数,∴李师傅种植的8个大棚4415中,香瓜至少种植5个大棚.考点:一次函数的应用;最值问题.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A ),豆沙粽子(记为B ),肉粽子(记为C ),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【答案】(1);(2).12316【解析】(A ,A )、(A ,B )、(A ,C )、(A ,C )、(A ,A )、(A ,B )、(A ,C )、(A ,C )、(B ,A )、(B ,B )、(B ,C )、(B ,C )、(C ,A )、(C ,B )、(C ,C )、(C ,C ),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.316考点:列表法与树状图法;概率公式.23.如图,已知⊙O 的半径为5,PA 是⊙O 的一条切线,切点为A ,连接PO 并延长,交⊙O 于点B ,过点A 作AC ⊥PB 交⊙O 于点C 、交PB 于点D ,连接BC ,当∠P =30°时.(1)求弦AC 的长;(2)求证:BC ∥PA .【答案】(1);(2)证明见解析.【解析】在Rt△ODA中,AD=OA•sin60,∴AC=2AD=;(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°,∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA,∴BC∥PA.考点:切线的性质.24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x 轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.【答案】(1)C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)A(﹣3,0),B(1,0);(3)存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【解析】试题分析:(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.试题解析:(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).考点:二次函数综合题;存在型;分类讨论;轴对称的性质.25.问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM 草地和弦AB 与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M 处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB (即每次喷灌时喷灌龙头由MA 转到MB ,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB =24m ,MB =10m ,△AMB 的面积为96m 2;过弦AB 的中点D 作DE ⊥AB 交于点E ,又测得DE =8m .»AB 请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【答案】(1)2)PQ =;(3)喷灌龙头的射程至少为19.71米.【解析】试题分析:(1)构建Rt △AOD 中,利用cos ∠OAD =cos30°=,可得OA 的长;AD OA(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt △AOD 中,由勾股定理解得:r =13根据三角形面积计算高MN 的长,证明△ADC ∽△ANM ,列比例式求DC 的长,确定点O 在△AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.试题解析:(1)如图1,过O 作OD ⊥AC 于D ,则AD =AC =×12=6,∵O 是内心,△ABC 1212是等边三角形,∴∠OAD =∠BAC =×60°=30°,在Rt △AOD 中,cos ∠OAD =cos30°=1212,∴OA =6=,故答案为:AD OA(r ﹣8)2,解得:r =13,∴OD =5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB =24,∴AB •MN =96,×24×MN =96,∴MN =8,NB =6,AN =18,∵CD ∥MN ,∴△ADC ∽△ANM ,1212∴,∴,∴DC =,∴OD <CD ,∴点O 在△AMB 内部,∴连接MO DC AD MN AN =12818DC 163并延长交于点F ,则MF 为草坪上的点到M 点的最大距离,∵在上任取一点异于点F »AB »AB 的点G ,连接GO ,GM ,∴MF =OM +OF =OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH =DN =6,MH =3,∴OM =,∴MF =OM +r =+13≈19.71(米).答:喷灌龙头的射程至少为19.71米.考点:圆的综合题;最值问题;存在型;阅读型;压轴题.数学试卷第Ⅰ卷(选择题 共30分)A 卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.计算:( )21()12--=A . B . C . D .054-14-34-2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .3.若一个正比例函数的图象经过两点,则的值为( )(3,6),(,4)A B m --m A .2 B .8 C .-2 D .-84.如图,直线,的直角顶点落在直线上.若,则的大小//a b Rt ABC ∆B a 125∠=o2∠为( )A .B .C .D .55o 75o 65o 85o 5.化简:,结果正确的是( )x x x y x y--+A .1 B . C . D .2222x y x y +-x y x y -+22x y +6.如图,将两个大小、形状完全相同的和拼在一起,其中点与点重合,ABC ∆A B C '''∆A 'A点落在边上,连接.若,,则的长C 'AB B C '90ACB AC B ''∠=∠=o3AC BC ==B C '为( )A ..6 C . D 7.如图,已知直线与直线在第一象限交于点.若1:24l y x =-+2:(0)l y kx b k =+≠M 直线与轴的交点为,则的取值范围是( )2l x (2,0)A -kA .B .C .D .22k -<<20k -<<04k <<02k <<8.如图,在矩形中,.若点是边的中点,连接,过点ABCD 2,3AB BC ==E CD AE B 作交于点,则的长为( )BF AE ⊥AE F BFA B C .9.如图,是的内接三角形,,的半径为5.若点是上的ABC ∆O e 30C ∠=o O e P O e 一点,在中,,则的长为( )ABP ∆PB AB =PAA .5BC . .10.已知抛物线的顶点关于坐标原点的对称点为.若点224(0)y x mx m =-->M O M '在这条抛物线上,则点M 的坐标为( )M 'A . B . C . D .(1,5)-(3,13)-(2,8)-(4,20)-B卷第Ⅱ卷(非选择题 共90分)二、填空题(共4小题,每小题3分,计12分)11.在实数中,最大的一个数是 .5,π-12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在中,和是的两条角平分线.若,则ABC ∆BD CE ABC ∆52A ∠=o12∠+∠的度数为 .B . .(结果精确到0.01)3815'≈o 13.已知两点分别在反比例函数和的图象上.若,A B 3(0)m y m x =≠255()2m y m x -=≠点与点关于轴对称,则的值为 .A B x m 14.如图,在四边形中,,,连接.若ABCD AB AD =90BAD BCD ∠=∠=o AC 6AC =,则四边形的面积为 .ABCD三、解答题 (共11小题,计78分.解答应写出过程)15.计算:.11(2|()2--16.解方程:.32133x x x +-=-+17.如图,在钝角中,过钝角顶点作交于点.请用尺规作图法ABC ∆B BD BC ⊥AC D 在边上求作一点,使得点到的距离等于的长.(保留作图痕迹,不写作法)BC P P AC BP18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益.某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间(分钟)进行了调查.现把调查结果分成四组,如右下表所示;x A B C D 、、、同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在_________区间内;(3)已知该校七年级共有1 200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼.)19.如图,在正方形中,分别为边和上的点,且,连接ABCD E F 、AD CD AE CF =交于点.求证:.AF CE 、G AG CG =20.某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着测倾器和皮尺来测量这个距离。

2017年陕西省中考数学试卷(解析版)

2017年陕西省中考数学试卷(解析版)

2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣)2﹣1=()A.﹣B.﹣C.﹣D.02.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2B.8C.﹣2D.﹣84.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°5.(3分)化简:﹣,结果正确的是()A.1B.C.D.x2+y26.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC =3,则B′C的长为()A.3B.6C.3D.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<28.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则P A的长为()A.5B.C.5D.510.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.tan38°15′≈.(结果精确到0.01)13.(3分)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为.14.(3分)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC =6,则四边形ABCD的面积为.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣)×+|﹣2|﹣()﹣1.16.(5分)解方程:﹣=1.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.20.(7分)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A 处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.(8分)如图,已知⊙O的半径为5,P A是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥P A.24.(10分)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n 关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP =3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE ⊥AB交于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)2017年陕西省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【解答】解:原式=﹣1=﹣,故选:C.2.【解答】解:从正面看下边是一个较大的矩形,上边是一个较小的矩形,故选:B.3.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.4.【解答】解:∵∠1=25°,∠1+∠ABC+∠3=180°,∴∠3=180﹣∠1﹣∠ABC=180°﹣25°﹣90°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.5.【解答】解:原式==.故选:B.6.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.7.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴解得∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴解得0<k<2.故选:D.8.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=3=•AE•BF,∴BF=.故选:B.9.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠P AB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.10.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选:C.二、填空题(本大题共4小题,每小题3分,共12分)11.【解答】解:根据实数比较大小的方法,可得π>>0>>﹣5,故实数﹣5,,0,π,其中最大的数是π.故答案为:π.12.【解答】解:A、∵∠A=52°,∴∠ABC+∠ACB=180°﹣∠A=128°,∵BD平分∠ABC、CE平分∠ACB,∴∠1=∠ABC、∠2=∠ACB,则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=64°,故答案为:64°;B、tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.13.【解答】解:设A(a,b),则B(a,﹣b),依题意得:,所以=0,即5m﹣5=0,解得m=1.故答案是:1.14.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,方法二:将三角形ADC绕点A顺时针旋转90度得到△ABC′,只要证明△ACC′是等腰直角三角形,然后面积可用AC×AC′来表示.故答案为:18.三、解答题(本大题共11小题,共78分)15.【解答】解:原式=﹣+2﹣﹣2=﹣2﹣=﹣316.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.17.【解答】解:如图,点P即为所求.18.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.19.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=∠CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS),∴AG=CG.20.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=,解得x≈34.答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.21.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+68000≥100000,∴x≥4,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.22.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;(2)由题意可得,出现的所有可能性是:∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.23.【解答】解:(1)连接OA,∵P A是⊙O的切线,∴∠P AO=90°∵∠P=30°,∴∠AOD=60°,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA•sin60°=∴AC=2AD=5(2)∵AC⊥PB,∠P=30°,∴∠P AC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠P AC=∠BCA∴BC∥P A24.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(2,﹣3),Q(﹣2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q (﹣2,﹣3).25.【解答】解:(1)如图1,过O作OD⊥AC于D,则AD=AC=×12=6,∵O是内心,△ABC是等边三角形,∴∠OAD=∠BAC=×60°=30°,在Rt△AOD中,cos∠OAD=cos30°=,∴OA=6÷=4,故答案为:4;(2)存在,如图2,连接AC、BD交于点O,连接PO并延长交BC于Q,则线段PQ 将矩形ABCD的面积平分,∵点O为矩形ABCD的对称中心,∴CQ=AP=3,过P作PM⊥BC于点M,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ===12;(3)如图3,作射线ED交AM于点C∵AD=DB,ED⊥AB,是劣弧,∴所在圆的圆心在射线DC上,假设圆心为O,半径为r,连接OA,则OA=r,OD=r﹣8,AD=AB=12,在Rt△AOD中,r2=122+(r﹣8)2,解得:r=13,∴OD=5,过点M作MN⊥AB,垂足为N,∵S△ABM=96,AB=24,∴AB•MN=96,×24×MN=96,∴MN=8,NB=6,AN=18,∵CD∥MN,∴△ADC∽△ANM,∴,∴,∴DC=,∴OD<CD,∴点O在△AMB内部,∴连接MO并延长交于点F,则MF为草坪上的点到M点的最大距离,∵在上任取一点异于点F的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF>MG,过O作OH⊥MN,垂足为H,则OH=DN=6,MH=3,∴OM===3,∴MF=OM+r=3+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.。

2017年陕西省中考数学试卷(含答案解析)

2017年陕西省中考数学试卷(含答案解析)

2017 年陕西省中考数学试卷一、选择题(本大题共10 小题,每小题3 分,共 30 分)1.( 3 分)计算:(﹣ 1)2﹣ 1= ()2A .﹣ 5B .﹣1 C . ﹣3 444D . 0【考点】 有理数的混合运算.【专题】 计算题;实数.【分析】 原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式 =1﹣ 1= ﹣ 3, 故选 C44【点评】此题考查了有理数的混合运算,熟练掌握运算法则 是解本题的关键.2.( 3 分)如图所示的几何体是由一个长方体和一个圆柱体 组成的,则它的主视图是()A .B .C .D .【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选: B .【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3 分)若一个正比例函数的图象经过A(3,﹣ 6),B (m ,﹣ 4 )两点,则 m 的值为()A. 2 B . 8C.﹣ 2D.﹣ 8【考点】一次函数图象上点的坐标特征.【分析】运用待定系数法求得正比例函数解析式,把点B 的坐标代入所得的函数解析式,即可求出m 的值.【解答】解:设正比例函数解析式为:y=kx ,将点 A( 3 ,﹣ 6 )代入可得:3k= ﹣6,解得: k= ﹣2 ,∴函数解析式为:y= ﹣ 2x ,将 B (m ,﹣ 4 )代入可得:﹣ 2m= ﹣ 4,解得 m=2 ,故选: A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.( 3 分)如图,直线 a∥ b ,Rt △ ABC 的直角顶点 B 落在直线 a 上,若∠1=25 °,则∠2 的大小为()A. 55°B. 75°C. 65°D. 85°【考点】平行线的性质.【分析】由余角的定义求出∠ 3 的度数,再根据平行线的性质求出∠ 2 的度数,即可得出结论.【解答】解:∵∠1=25 °,∴∠ 3=90 °﹣∠1=90 °﹣ 25 ° =65 °.∵a∥b ,∴∠ 2= ∠ 3=65 °.故选: C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.( 3 分)化简:x﹣y,结果正确的是()x-y x+yx 2+y2x-yD . x 2+y 2A. 1B.x 2-y 2C.x+y【考点】分式的加减法.【专题】计算题;分式.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.x 2+xy-xy+y2x2+y2【解答】解:原式 =x2 -y 2= x2-y2.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.( 3 分)如图,将两个大小、形状完全相同的△ ABC 和△ A′B′C′拼在一起,其中点A′与点A 重合,点C′落在边AB 上,连接 B′ C.若∠ ACB= ∠ AC′ B′ =90 °,AC=BC=3,则B′C 的长为()A.3√3B.6C.3√2D.√21【考点】勾股定理.【分析】根据勾股定理求出 AB ,根据等腰直角三角形的性质得到∠ CAB′ =90 °,根据勾股定理计算.【解答】解:∵∠ACB= ∠ AC′ B′ =90 °, AC=BC=3 ,22∴AB= √ AC+ BC=3 √2,∠ CAB=45 °,∵△ ABC和△ A′ B′ C′大小、形状完全相同,∴ ∠ C′ AB′= ∠ CAB=45 °, AB′ =AB=3 √2,∴∠ CAB′ =90 °,22√3,∴ B′ C=√ CA′A=3+ B故选: A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.( 3 分)如图,已知直线 l 1:y= ﹣ 2x+4 与直线 l2:y=kx+b (k ≠ 0 )在第一象限交于点M .若直线 l 2与 x 轴的交点为A (﹣ 2 , 0 ),则 k 的取值范围是()A.﹣ 2 < k < 2B .﹣ 2 < k < 0 C. 0 < k < 4 D .0 <k < 2【考点】两条直线相交或平行问题;F8 :一次函数图象上点的坐标特征.【专题】推理填空题.【分析】首先根据直线l 2与 x 轴的交点为A(﹣ 2 ,0),求出 k 、b 的关系;然后求出直线l 1、直线 l 2的交点坐标,根据直线 l 1、直线 l 2的交点横坐标、纵坐标都大于0 ,求出 k的取值范围即可.【解答】解:∵直线l 2与 x 轴的交点为A(﹣ 2 , 0 ),∴﹣ 2k+b=0,∴{y = -2x + 4x =解得 {y = kx + 2k y =4-2kk+2 8k k+2∵直线 l1:y= ﹣ 2x+4与直线l2:y=kx+b(k ≠0 )的交点在第一象限,4-2k> 0∴ {k+2解得 0 <k < 2 .8k>0k+2故选: D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.( 3 分)如图,在矩形ABCD中,AB=2,BC=3.若点E 是边 CD 的中点,连接A E ,过点 B 作 BF ⊥AE 交 AE 于点 F,则 BF 的长为()A.3√10B.3√10 C .√10 D .3√5 2555【考点】相似三角形的判定与性质;LB :矩形的性质.11【分析】 根据 S △ ABE =2S 矩形 ABCD =3= 2?AE?BF ,先求出 AE ,再求出 BF 即可.【解答】 解:如图,连接BE .∵四边形 ABCD 是矩形,∴ AB=CD=2 , BC=AD=3 , ∠D=90 °,在Rt△ADE中,2222=√10 ,AE= √ AD+ DE=√3+ 1∵ S △ ABE =21S 矩形 ABCD =3= 21?AE?BF ,∴ BF= 3√510.故选 B .【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.( 3 分)如图,△ ABC 是⊙ O 的内接三角形, ∠ C=30 °, ⊙O 的半径为 5 ,若点 P 是⊙ O 上的一点,在△ ABP 中,PB=AB ,则 PA 的长为()5√3A.5B.2C.5√2D.5 √3【考点】三角形的外接圆与外心; KH :等腰三角形的性质.【分析】连接 OA 、OB 、OP ,根据圆周角定理求得∠APB=∠C=30 °,进而求得∠ PAB= ∠ APB=30 °,∠ ABP=120 °,根据垂径定理得到 OB ⊥AP,AD=PD ,∠OBP= ∠ OBA=60 °,即可求得△ AOB 是等边三角形,从而求得 PB=OA=5 ,解直角三角形求得 PD ,即可求得 PA .【解答】解:连接 OA 、 OB 、OP ,∵∠ C=30 °,∴∠ APB= ∠ C=30 °,∵PB=AB ,∴∠ PAB= ∠ APB=30 °∴∠ ABP=120 °,∵PB=AB ,∴OB ⊥ AP, AD=PD ,第 9页(共 38页)∵OB=OA ,∴△ AOB 是等边三角形,∴ AB=OA=5 ,√35√3则 Rt △ PBD 中,PD=cos30 ° ?PB= 2× 5= 2,∴ AP=2PD=5 √3,故选 D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10 .( 3 分)已知抛物线y=x 2﹣ 2mx ﹣ 4(m > 0 )的顶点 M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点 M的坐标为()A.(1,﹣ 5) B.(3,﹣ 13 )C.(2 ,﹣ 8) D.(4,﹣20 )【考点】二次函数的性质.【分析】先利用配方法求得点M 的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点 M′的坐标代入抛物线的解析式求解即可.【解答】解: y=x 2﹣ 2mx ﹣4=x 2﹣ 2mx+m2﹣m2﹣4=(x ﹣m )2﹣ m 2﹣ 4 .∴点 M (m ,﹣ m 2﹣4).∴点 M′(﹣ m , m 2+4 ).∴m 2 +2m 2﹣ 4=m 2+4 .解得 m= ±2 .∵ m > 0 ,∴m=2 .∴M( 2,﹣ 8 ).故选 C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点 M′的坐标是解题的关键.二、填空题(本大题共 4 小题,每小题 3 分,共 12 分)11 .( 3 分)在实数﹣ 5,﹣√3, 0 ,π,√6中,最大的一个数是.【考点】实数大小比较.【分析】根据正数大于0 ,0 大于负数,正数大于负数,比第11页(共 38页)较即可.【解答】解:根据实数比较大小的方法,可得π>√6> 0> - √3>﹣ 5 ,故实数﹣ 5 , - √3, 0 ,π,√6其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数> 0 >负实数,两个负实数绝对值大的反而小.12 .( 3 分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ ABC 中, BD 和 CE 是△ ABC 的两条角平分线.若∠A=52 °,则∠1+ ∠ 2 的度数为.3B. √17 tan38 ° 15 ′≈.(结果精确到0.01)【考点】计算器—三角函数; 25 :计算器—数的开方;K7 :三角形内角和定理.【分析】 A :由三角形内角和得∠ABC+ ∠ ACB=180 °﹣∠ A=128 °,根据角平分线定义得∠1+ ∠2=1∠ABC+ 1∠22 ACB= 1(∠ ABC+ ∠ ACB );2B :利用科学计算器计算可得.【解答】解: A 、∵∠ A=52 °,∴∠ ABC+ ∠ ACB=180 °﹣∠ A=128 °,∵ BD 平分∠ ABC 、 CE 平分∠ ACB ,∴∠ 1= 21∠ABC 、∠ 2=21∠ACB ,则∠ 1+ ∠ 2= 21∠ ABC+21∠ ACB=21(∠ABC+ ∠ ACB ) =64 °,故答案为:64 °;3B 、√17 tan38 ° 15 ′≈2.5713× 0.7883≈2.03,故答案为: 2.03 .【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.3m13 .( 3 分)已知 A ,B 两点分别在反比例函数y= x( m≠0 )和 y= 2m-5(m ≠ 5 )的图象上,若点A 与点B 关于 xx2轴对称,则 m 的值为.【考点】 反比例函数图象上点的坐标特征;关于 x 轴、 y 轴对称的点的坐标.【分析】 设 A ( a , b ),则 B ( a ,﹣ b ),将它们的坐标分别代入各自所在的函数解析式,通过方程来求 m 的值.【解答】 解:设 A ( a , b ),则 B (a ,﹣ b ),b = 3m依题意得: {a-b2m-5,=a所以 3m+2m-5 =0 ,即 5m ﹣ 5=0 ,a解得 m=1 .故答案是: 1 .【点评】本题考查了反比例函数图象上点的坐标特征,关于x 轴, y 轴对称的点的坐标.根据题意得﹣5=0 是解题的难点.3m+2m-5a=0 ,即 5m14 .( 3 分)如图,在四边形 ABCD 中, AB=AD ,∠ BAD=∠ BCD=90 °,连接 AC .若 AC=6 ,则四边形 ABCD 的面积为.【考点】全等三角形的判定与性质.【分析】作辅助线;证明△ ABM ≌△ ADN ,得到 AM=AN ,△A BM 与△ ADN 的面积相等;求出正方形 AMCN 的面积即可解决问题.【解答】解:如图,作 AM ⊥ BC 、AN ⊥CD ,交 CD 的延长线于点 N ;∵∠ BAD= ∠ BCD=90 °∴四边形 AMCN 为矩形,∠MAN=90°;∵∠ BAD=90 °,∴∠ BAM= ∠ DAN ;在△ ABM与△ ADN中,∠BAM= ∠ DAN{∠AMB= ∠AND,AB= AD∴△ ABM ≌△ ADN ( AAS ),∴ AM=AN (设为λ);△ ABM 与△ ADN 的面积相等;∴四边形 ABCD的面积=正方形AMCN的面积;由勾股定理得:AC 2 =AM 2 +MC 2,而 AC=6 ;22∴ 2λ=36,λ =18,故答案为: 18 .【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11 小题,共 78 分)15 .( 5 分)计算:(﹣√2)×√6+| √3﹣ 2| ﹣(12)﹣1.【考点】二次根式的混合运算;负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣√12+2﹣√3﹣2=﹣ 2 √3﹣√3=﹣3√3【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16 .( 5 分)解方程:x+3﹣2=1 .x-3x+3【考点】解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3 ),去括号得, x 2 +6x+9 ﹣ 2x+6=x 2﹣9 ,移项,系数化为1,得x= ﹣6 ,经检验,x= ﹣6 是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17 .( 5 分)如图,在钝角△ABC 中,过钝角顶点 B 作 BD⊥B C 交 AC 于点 D .请用尺规作图法在 BC 边上求作一点 P,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)第17页(共 38页)【考点】作图—基本作图.【分析】根据题意可知,作∠BDC 的平分线交BC 于点 P 即可.【解答】解:如图,点P 即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18 .( 5 分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x (分钟)进行了调查.现把调查结果分成 A 、B 、 C 、D 四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1 )补全频数分布直方图和扇形统计图;( 2 )所抽取的七年级学生早锻炼时间的中位数落在区间内;(3 )已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20 分钟.(早锻炼:指学生在早晨7 :00 ~ 7 : 40 之间的锻炼)【考点】频数(率)分布直方图;V5 :用样本估计总体;VB :扇形统计图;W4 :中位数.【分析】(1)先根据A 区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为 1 求得 C 区间人数及 D 区间百分比可得答案;(2 )根据中位数的定义求解可得;(3 )利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10 ÷5%=200,则 20 ~ 30 分钟的人数为200 × 65%=130(人),D 项目的百分比为1﹣( 5%+10%+65%)=20% ,补全图形如下:(2)由于共有 200 个数据,其中位数是第 100 、101 个数据的平均数,则其中位数位于 C 区间内,故答案为: C ;(3) 1200 ×( 65%+20% ) =1020 (人),答:估计这个年级学生中约有 1020 人一天早锻炼的时间不少于20 分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19 .(7 分)如图,在正方形ABCD 中,E 、F 分别为边AD 和 CD 上的点,且 AE=CF ,连接 AF 、CE 交于点 G.求证:AG=CG .【考点】正方形的性质;KD :全等三角形的判定与性质.【分析】根据正方向的性质,可得∠ADF=CDE=90 °,AD=CD ,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD 是正方形,∴∠ ADF=CDE=90 °,AD=CD .∵AE=CF ,∴ DE=DF ,AD=CD在△ ADF 和△ CDE 中 {∠ ADF= ∠ CDE,DF= DE∴△ ADF ≌△ CDE ( SAS ),∴∠ DAF= ∠DCE ,∠ GAE= ∠ GCF在△ AGE 和△ CGF 中, {∠ AGE= ∠ CGF,AE=CF∴△ AGE ≌△ CGF ( AAS ),∴AG=CG .【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20 .(7 分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的 A 处,用侧倾器测得“乡思柳”顶端M 点的仰角为23 °,此时测得小军的眼睛距地面的高度AB为 1.7 米,然后,小军在 A 处蹲下,用侧倾器测得“乡思柳”顶端 M 点的仰角为 24 °,这时测得小军的眼睛距地面的高度 AC 为 1 米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离 AN 的长(结果精确到 1 米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈ 0.9135,tan24°≈0.4452 .)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作BD⊥MN,CE⊥MN,垂足分别为点 D 、E,设 AN=x 米,则 BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作 BD ⊥MN ,CE ⊥MN ,垂足分别为点D、E,设 AN=x 米,则 BD=CE=x 米,在 Rt △ MBD 中, MD=x?tan23 °,在Rt △MCE 中,ME=x?tan24 °,∵ME ﹣ MD=DE=BC ,∴x?tan24 °﹣ x?tan23 ° =1.7 1﹣,∴ x=0.7,解得 x ≈ 34 (米).°-tan23tan24°答:“聚贤亭”与“乡思柳”之间的距离AN的长约为 34 米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21 .( 7 分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的 3 个温室大棚进行修整改造,然后, 1 个大棚种植香瓜,另外 2 个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包 5 个大棚,以后就用 8 个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种产量(斤 / 每销售价(元/每成本(元/每项目棚)斤)棚)香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x 个,明年上半年 8 个大棚中所产的瓜全部售完后,获得的利润为y 元.根据以上提供的信息,请你解答下列问题:(1)求出 y 与 x 之间的函数关系式;(2)求出李师傅种植的 8 个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于 10 万元.【考点】一次函数的应用.【分析】( 1)利用总利润 =种植香瓜的利润 +种植甜瓜的利润即可得出结论;(2)利用( 1 )得出的结论大于等于 100000 建立不等式,即可确定出结论.【解答】解:( 1)由题意得,y= (2000 × 12 ﹣ 8000 ) x+ ( 4500 × 3 ﹣5000 )( 8 ﹣ x )=7500x+68000,( 2)由题意得, 7500x+6800≥ 100000,4,∴x ≥ 4 15∵x 为整数,∴李师傅种植的8 个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:( 1 )根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22 .( 7 分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为 A ),豆沙粽子(记为 B ),肉粽子(记为 C ),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1 )假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2 )若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】列表法与树状图法; X4 :概率公式.【分析】( 1 )根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:( 1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:2= 1,42即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是12;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、( A, C)、(A,A)、(A,B)、(A,C)、( A, C)、(B,A)、(B, B)、(B, C)、(B ,C)、(C,A)、(C, B)、(C, C)、(C ,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:163.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23 .( 8 分)如图,已知⊙ O 的半径为 5 ,PA 是⊙ O 的一条切线,切点为 A,连接 PO 并延长,交⊙ O 于点 B ,过点 A 作 AC⊥PB 交⊙ O 于点 C、交 PB 于点 D,连接 BC ,当∠P=30 °时,(1)求弦 AC 的长;(2)求证: BC ∥PA .【考点】切线的性质.【分析】(1)连接OA,由于PA是⊙ O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC ,由锐角三角函数即可求出AC 的长度.( 2 )由于∠AOP=60 °,所以∠BOA=120 °,从而由圆周角定理即可求出∠BCA=60 °,从而可证明BC ∥PA【解答】 解:( 1)连接 OA ,∵PA 是⊙ O 的切线,∴∠ PAO=90 °∵∠ P=30 °,∴∠ AOD=60°,∵AC ⊥PB ,PB 过圆心 O ,∴AD=DC在 Rt △ ODA 中, AD=OA?sin60 °=5√23∴AC=2AD=5 √3(2)∵AC ⊥PB ,∠P=30 °,∴∠ PAC=60 °,∵∠ AOP=60 °∴∠ BOA=120 °,∴∠ BCA=60 °,∴∠ PAC= ∠BCA∴BC ∥ PA【点评】 本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24 .( 10 分)在同一直角坐标系中,抛物线C1:y=ax 2﹣ 2x ﹣3 与抛物线 C 2:y=x 2 +mx+n关于y轴对称,C2与x轴交于 A 、B 两点,其中点 A 在点 B 的左侧.(1 )求抛物线 C 1, C 2的函数表达式;(2 )求 A、 B 两点的坐标;(3 )在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点 Q,使得以 AB 为边,且以 A 、B 、P、Q 四点为顶点的四边形是平行四边形?若存在,求出 P、Q 两点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1 )由对称可求得a、n 的值,则可求得两函数的对称轴,可求得 m 的值,则可求得两抛物线的函数表达式;( 2 )由 C 2的函数表达式可求得 A 、B 的坐标;( 3 )由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q 点坐标,代入 C2的函数表达式可求得P、Q 的坐标.【解答】解:(1 )∵C 1、 C 2关于 y 轴对称,∴C 1与 C 2的交点一定在y 轴上,且 C 1与 C2的形状、大小均相同,∴a=1 , n= ﹣ 3 ,∴C 1的对称轴为x=1 ,∴C 2的对称轴为x= ﹣ 1,∴m=2 ,∴C 1的函数表示式为 y=x 2﹣ 2x ﹣ 3 , C2的函数表达式为 y=x 2 +2x ﹣ 3 ;(2 )在 C 2的函数表达式为 y=x 2 +2x ﹣ 3 中,令 y=0 可得 x 2+2x ﹣ 3=0 ,解得 x= ﹣ 3 或 x=1 ,∴A(﹣ 3,0),B(1,0);(3 )存在.∵AB 的中点为(﹣ 1 ,0 ),且点 P 在抛物线 C 1上,点 Q 在抛物线 C2上,∴A B 只能为平行四边形的一边,∴P Q ∥ AB 且 PQ=AB ,由( 2 )可知 AB=1 ﹣(﹣ 3 ) =4 ,∴P Q=4 ,设 P( t , t 2﹣ 2t ﹣ 3 ),则 Q( t+4 ,t 2﹣2t ﹣ 3)或( t ﹣ 4 ,t 2﹣2t ﹣ 3 ),①当Q( t+4 ,t 2﹣2t ﹣ 3 )时,则t 2﹣2t ﹣3= (t+4 )2+2(t+4 )﹣ 3 ,解得 t= ﹣ 2 ,∴t2﹣ 2t ﹣ 3=4+4 ﹣ 3=5 ,∴P(﹣ 2,5 ),Q(2,5);②当 Q(t ﹣ 4 ,t 2﹣ 2t ﹣ 3)时,则 t 2﹣2t ﹣ 3= ( t ﹣ 4)2+2(t﹣4)﹣ 3 ,解得 t=2 ,∴t 2﹣ 2t ﹣ 3=4 ﹣ 4﹣ 3= ﹣3 ,∴P(﹣ 2,﹣ 3),Q(2,﹣ 3),综上可知存在满足条件的点P、 Q,其坐标为 P(﹣ 2 , 5 ),Q(2,5)或 P(﹣ 2,﹣ 3 ),Q(2,﹣ 3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在( 1 )中由对称性质求得 a、n 的值是解题的关键,在( 2 )中注意函数图象与坐标轴的交点的求法即可,在( 3 )中确定出 PQ 的长度,设 P点坐标表示出Q 点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25 .( 12 分)问题提出(1 )如图①,△ ABC是等边三角形,AB=12 ,若点O 是△ABC 的内心,则OA 的长为;问题探究(2)如图②,在矩形 ABCD 中, AB=12 , AD=18 ,如果点 P是 AD 边上一点,且 AP=3 ,那么 BC 边上是否存在一点 Q ,使得线段 PQ 将矩形 ABCD 的面积平分?若存在,求出 PQ 的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM 草地和弦 AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在 M 处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由 MA 转到 MB ,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出 AB=24m ,MB=10m ,△ AMB 的面积为96m 2;过弦 AB 的中点 D 作 DE ⊥ AB 交 AB ?于点 E ,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到 0.01 米)【考点】圆的综合题.【分析】( 1 )构建 Rt △ AOD中,利用 cos ∠OAD=cos30 °=OA AD,可得 OA 的长;( 2 )经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3 )如图 3 ,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在 Rt △ AOD 中, r 2=12 2+( r ﹣8 )2,解得: r=13 根据三角形面积计算高 MN 的长,证明△ ADC ∽△ ANM ,列比例式求DC 的长,确定点 O 在△ AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.【解答】解:(1)如图 1,过 O 作 OD ⊥AC 于 D,则 AD=1AC= 1×12=6 ,22∵O 是内心,△ ABC 是等边三角形,∴∠OAD= 12∠ BAC= 12× 60 ° =30 °,在 Rt △ AOD 中, cos ∠ OAD=cos30 °=ADOA,∴OA=6 ÷√23=4 √3,故答案为: 4 √3;(2)存在,如图 2 ,连接 AC 、 BD 交于点 O,连接 PO 并延长交 BC 于 Q ,则线段 PQ 将矩形 ABCD 的面积平分,∵点 O 为矩形 ABCD 的对称中心,∴CQ=AP=3 ,过 P 作 PM ⊥ BC 于点,则 PM=AB=12 , MQ=18 ﹣ 3 ﹣3=12 ,由勾股定理得: 22=√12+ 12 2=12 √2 ;PQ= √ PM + MQ(3 )如图 3 ,作射线 ED 交 AM 于点 C∵ AD=DB , ED ⊥ AB , AB ?是劣弧, ∴ AB ?所在圆的圆心在射线 DC 上,假设圆心为 O ,半径为 r ,连接 OA ,则 OA=r ,OD=r ﹣ 8 ,1AD= 2AB=12 ,在 Rt △ AOD 中, r 2=12 2+( r ﹣ 8 )2,解得: r=13 ,∴ OD=5 ,过点 M 作 MN ⊥AB ,垂足为N ,∵ S △ABM =96 ,AB=24 ,∴ 12AB?MN=96,12×24 ×MN=96 ,∴ MN=8 ,NB=6 , AN=18 , ∵CD ∥MN ,∴△ ADC ∽△ ANM ,DC AD∴MN=AN,∴DC =12,818∴ DC= 163 ,∴ OD <CD ,∴点 O 在△ AMB 内部,∴连接 MO 并延长交 AB?于点 F ,则 MF 为草坪上的点到M点的最大距离,?F 的点G ,连接 GO ,GM , ∵在 AB 上任取一点异于点 ∴ MF=OM+OF=OM+OG>MG ,即 MF >MG ,过 O 作 OH ⊥ MN ,垂足为 H ,则 OH=DN=6 ,MH=3 ,22 22=3 √5,∴OM= √ MH + OH =√3+ 6∴ MF=OM+r=3 √5+13 ≈ 19.71 (米),答:喷灌龙头的射程至少为19.71 米.【点评】本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为 MF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年陕西省初中毕业学业考试试题
数 学
第Ⅰ卷(选择题 共30分)
一、 选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意
的)
1.A 为数轴上表示-1的点,将点A 沿数轴向右平移3个单位到点B ,则点B 所表示的实数为 ( ) A.3 B.2 C.-4 D.2或-4
2.如图,P 为正三角形ABC 外接圆上一点,则∠APB = ( )A.150° B.135° C.115° D.120°
3.化简
221
42
x x x -
--的结果是( ) A. 12x + B. 1
2
x - C. 2324x x -- D. 2324x x +-
4.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,
设这件商品 的成本价为x 元,根据题意,下面所列的方程正确的是 ( ) A.x ·40%×80%=240 B. x (1+40%)×80%=240 C. 240×40%×80%=x D. x ·40%=240×80% 5.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是 ( ) A.3:4 B.5:8 C.9:16 D.1:2 6.若双曲线6
y x
=-
经过点A (m ,-2m ),则 m 的值为( )
A.
B.3
C. D.3±
7.⊙O 和⊙O ’的半径分别为R 和R ’,圆心距
OO ’=5,R =3,当0<R ’<2时,⊙O 和⊙O ’的位置关系是( ) A.内含 B.外切 C.相交 D.外离
8.已知圆锥的底面周长为58cm ,母线长为30cm ,求得圆锥的侧面积为( ) A.870cm 2 B.908 cm 2 C.1125 cm 2 D.1740 cm 2
9.应中共中央总书记胡锦涛同志的邀请,中国国民党主席连战先生、亲民党主席宋楚瑜先生分别从台湾来大陆参观访问,先后来到西安,都参观了新建成的“大唐芙蓉园”。

该园占地面积约为800000m 2,若按比例尺1:2000缩小后,其面积大约相当于( ) A.一个篮球场的面积 B.一张乒乓球台台面的面积
C.《陕西日报》的一个版面的面积
D.《数学》课本封面的面积
C 第5题图
第2题图
10.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:( )
(1)他们都行驶了18千米;
(2)甲在途中停留了0.5小时;
(3)乙比甲晚出发了0.5小时;
(4)相遇后,甲的速度小于乙的速度;
(5)甲、乙两人同时到达目的地。

其中,符合图象描述的说法有
A.2个
B.3个
C.4个
D.5个
第Ⅱ卷(非选择题共90分)
二.填空题(共6小题,每小题3分,计18分)
11.5×(-4.8)+ 2.3
= _______。

12.分解因式:a3-2a2b+ab2=________。

13.如图,在菱形ABCD中,DE⊥AB,垂足是E,DE=6,
sinA=3
5
,则菱形ABCD
14.根据图中所给的数据,求得避雷针CD的长约为
________m(结果精确的到0.01m)。

(可用计算器求,也可用下列参考数据求:
sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,
cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)
15.用7
16.右图是用12
三、解答题(共9小题,计72分。

解答应写出过程)
17.(本题满分5分)计算:(a2+3)(a-2)-a(a2-2a-2)。

第16题图
C
第13题图
第10题图
A
第14题图
18.(本题满分6分)
如图,四边形ABCD 中,AC 垂直平分BD 于点O 。

(1) 图中有多少对全等三角形?请把它们都写出来; (2) 任选(1)中的一对全等三角形加以证明。

19.(本题满分7分)
已知: x 1、x 2是关于x 的方程x 2+(2a -1)x +a 2=0的两个实数根 且(x 1+2)(x 2+2)=11,求a 的值。

20(本题满分8分)
为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进
根据上表中的数据,回答下列问题:
(1) 该班学生每周做家务劳动的平均时间是多少小时?
C A
B D O
第18题图
(2) 这组数据的中位数、众数分别是多少? (3) 请你根据(1)、(2)的结果,用一句话谈谈自己的感受。

21.(本题满分8分)
某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000
(1一次函数,求这个一次函数的解析式(不要求写出x 的取值范围);
(2) 如果出版社投入成本48000元,那么能印该读物多少册? 22.(本题满分8分)
阅读:我们知道,在数轴上,x =1表示一个点,而在平面直角坐标系中,x =1表示一条直线;我们还知道,以二元一次方程2x -y +1=0的所有解为坐标的点组成的图形就是一次函数y =2x +1的图象,它也是一条直线,如图①.
观察图①可以得出:直线=1与直线y =2x +1的交点P 的坐标(1,3)就是方程组
1210x x y =⎧⎨-+=⎩的解,所以这个方程组的解为1
3
x y =⎧⎨
=⎩ 在直角坐标系中,x ≤1表示一个平面区域,即直线x =1以及它左侧的部分,如图②;y
≤2x +1也表示一个平面区域,即直线y =2x +1以及它下方的部分,如图③。

回答下列问题:
(1) 在直角坐标系(图④)中,用作图象的方法求出方程组2
22x y x =-⎧⎨
=-+⎩
的解;
(2) 用阴影表示2
y 2x 2y 0x ⎧⎪
⎨⎪⎩
≥-≤-+≥,所围成的区域。

23.(本题满分8分)
如图,PC 切⊙O 于点C ,过圆心的割线PAB 交⊙O 于A 、B 两点,BE ⊥PE ,垂足为E ,BE 交⊙O 于点D ,F 是PC 上一点,且PF =AF ,FA
1)
∠FGD =2∠
PBC ;
(2)PC PO AG AB
=。

第22题图① 第22题图②
24.(本题满分10分)
如图,在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0
,。

(1)求圆心的坐标;
(2)抛物线y=ax2+bx+c过O、A两点,且顶点在正比例函数
y
=-
3
x的图象上,求抛物线的解析式;
(3)过圆心C作平行于x轴的直线DE,交⊙C于D、E两点,试判断D、E两点是否在(2)中的抛物线上;
(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围。

25.(本题满分12分)
已知:直线a ∥b ,P 、Q 是直线a 上的两点,M 、N 是直线b 上两点。

(1) 如图①,线段PM 、QN 夹在平行
直线a 和b 之间,四边形PMNQ 为等腰梯形,其两腰PM =QN 。

请你参照图①,在图②中画出异
于图①的一种图形,使夹在平行
直线a 和b 之间的两条线段相等。

(2) 我们继续探究,发现用两条平行直
线a 、b 去截一些我们学过的图形,
会有两条“曲线段相等”(曲线上两
点和它们之间的部分叫做“曲线段”。

把经过全等变换后能重合的两条曲线
段叫做“曲线段相等”)。

请你在图③中画出一种图形,使夹在
平行直线a 和b 之间的两条曲线段相等。

(3) 如图④,若梯形PMNQ 是一块绿化地,梯形的上底PQ =m ,下底MN =n ,且m
<n 。

现计划把价格不同的两种花草种植在S 1、S 2、S 3、S 4四块地里,使得价格相同的花草不相邻。

为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由。

P Q M N
a b 第25题图① a b
第25题图②
a b
第25题图③ P Q M N
a b
第25题图④
S 1
S 2 S 3 S 4
n m。

相关文档
最新文档