浅谈火电及核电DCS

浅谈火电及核电DCS
浅谈火电及核电DCS

浅谈国内火电DCS与核电DCS的异同企业:北京广利核系统工程有限公司日期:2012-03-05

领域:D CS 点击数:4852

摘要:DCS控制系统是随着现代工业生产自动化的不断发展和自动化控制需求不断提高应运而生的综合控制系统。不论是火力发电厂还是核能发电厂随着DCS系统的不断完善,基本在上世纪末期普遍采用DCS控制系统取代了传统的模拟仪表控制系统及PLC等控制系统。核电DCS与火电DCS由于控制对象的不同而各有特点。

关键词:DCS;超临界机组;压水堆

1 引言

1975年美国Honeywell公司推出了第一套DCS系统:TDCS-2000。经过多年的发展,当前全球约有数百家厂商推出了千余种DCS系统,广泛应用于电力、石化、冶金等工控领域。世界上第一座火力发电厂是1875年在法国巴黎建成的,距今有130多年的历史。第一座核电站是奥布尼斯克(Obninsk)核电站,于1954年在前苏联卡卢加州开始运行,距今有50多年的历史。到上世纪末期DCS系统逐渐成熟后,火电厂和核电厂的仪控系统开始普遍采用DCS。

火力发电厂生产过程:煤等化石燃料在锅炉炉膛中燃烧加热水冷壁里的水使之变为蒸汽,锅炉产生的蒸汽进入汽轮机,汽轮机旋转带动发电机发电。核能发电厂(压水堆)的生产过程:反应堆中的核燃料经过核裂变反应产生热量来加热一回路的水,一回路的给水在蒸汽发生器中将热量传给二回路的给水使之转化为蒸汽,蒸汽推动汽轮机转动,从而带动发电机发电。这个过程与火力发电厂相似,因此核反应堆也被称为“核锅炉”。由于燃煤锅炉与核锅炉有着不同的能量转换特性,也就注定了火电DCS与核电DCS有着不同的特点。

2 DCS系统的基本特点

2.1 高可靠性

由于DCS将系统控制功能分散在不同的计算机上实现,系统结构采用容错设计,因此某一台计算机出现的故障不会导致系统其它功能的丧失。此外,由于系统中各台计算机所承担的任务比较单一,可以针对需要实现的功能采用具有特定结构和软件的专用计算机,从而使系统中每台计算机的可靠性也得到提高。

2.2 开放性

DCS采用开放式、标准化、模块化和系列化设计,系统中各台计算机采用局域网方式通信,实现信息传输,当需要改变或扩充系统功能时,可将新增计算机方便地连入系统通信网络或从网络中断开,几乎不影响系统其他计算机的工作。开放性另一方面表现在,当前主流的DCS产品几乎都可以通过组态直接无缝集成第三方系统和设备,无需更改系统程序。

2.3 灵活性

通过组态软件根据不同的流程应用对象进行软硬件组态,即确定测量与控制信号及相互间连接关系,从控制算法库选择适用的控制规律以及从图形库调用基本图形组成所需的各种监控和报警画面,从而方便地构成所需的控制系统。

2.4 易于维护

功能单一的小型或微型专用计算机,具有维护简单、方便的特点,当某一局部或某个计算机出现故障时,可以在不影响整个系统运行的情况下在线更换,迅速排除故障。

2.5 协调性

各工作站之间通过通信网络传输各种数据,整个系统信息共享,协调工作,以完成控制系统的总体功能和优化处理。

2.6 控制功能齐全

控制算法丰富,集连续控制、顺序控制和批处理控制于一体,可实现串级、前馈、解耦、自适应和预测控制等先进控制,并可方便地加入所需的特殊控制算法。

3 火电DCS的侧重点

以超临界百万火电机组为代表进行介绍。水的临界状态参数为22.12MPa,374.15℃,当机组主蒸汽压力参数高于这一临界状态参数时,通常称为超临界参数机组。对于超超临界参数,目前国际上尚无标准明确界定是多少,国内863课题把机组主蒸汽压力为25MPa以上、主蒸汽温度达580℃以上时,称其为超超临界机组。截止到2010年10月份,国内已经商运的百万超临界火电机组就达到了64台,这些机组的热控系统采用了四个厂家的DCS,其中采用西屋OVATION系统的44台、采用西门子SPPA-T3000系统的18台、采用和利时HOLLiASMACS系统的1台、采用国电智深EDPF-NT+系统的1台。综合以上四家的仪控系统,总结出当前国内百万火电机组DCS系统具有以下特点。

3.1 管控一体化成趋势

常规火电厂按工艺生产流程分为单元机组部分、机组公用部分、电厂辅网部分,与之配套的传统DCS也主要应用于这三块主要生产流程上。而近年来,随着计算机网络技术、数据安全和容错技术、模型仿真技术、实时数据库技术不断提高和电厂经营管理需求的不断提高,火电厂DCS系统已经从单纯的生产过程控制系统逐渐演变为以集生产过程控制系统(DCS)、生产管理系

统、经营管理系统于一体的火电厂数字化系统,暨管控一体化系统,如图1所示。在当前的火电DCS市场上,除了最基本的生产过程监控系统之外,DCS厂商还要提供客户集生产管理、经营管理、资产管理等于一身的全方位一体化控制系统(或留有与厂级数字网的通讯接口)。

图1 火电厂管控一体化示意图

3.2 仪控系统结构及子系统分类基本一致

常规火电单元机组为一套仪控系统,按工艺分为炉、机、电三部分,按功能分为DAS(Data Acquisition System 数据采集系统)、MCS(Modular Control System 模拟量控制系统)、SCS(Sequence Control System 顺序控制系统)、FSSS (FurnaceSafeguard Supervisory System 炉膛安全监控系统)、ECS(ElectroControl System 电气控制系统)、DEH(Digital Electro-HydraulicControl System 数字式电液控制系统)、BPCS(By-pass ControlSystem 旁路控制系统)、MEH(Boiler Feedpump Turbine ControlSystem 给水泵汽轮机数字式电液控制系统)、ETS(EmergencyTrip System 紧急停机系统)、TSI(Turbine

SupervisoryInstrumentation 汽轮机监控仪表)等,以上多数功能都集中在一套DCS系统中实现,只有FSSS、DEH、ETS、TSI 设置独立的监控系统。而近年来随着DCS系统可靠性和开放性的不断提高,有些机组的FSSS和DEH功能也纳入了DCS系统中,一般只保留ETS、TSI为独立的监控系统。

3.3 采用的控制算法先进

相当一部分先进的控制算法、控制模式已经应用到火电厂的自动化控制过程中。

(1)AGC自动发电控制(Automatic Generation Control)

自动发电控制(简称AGC)是现代电网控制的一项基本和重要功能,是建立在电网调度自动化能量管理系统(简称EMS)与发电机协调控制系统(简称CCS)间闭环控制的一种先进的技术手段。AGC能控制机组自动响应电网调度发出的负荷指令,结合一次调频功能自动控制机组有功功率的增减,使电网频率维持稳定,同时使得发电和用电达到平衡。AGC提出虽已有10年时间,但前期应用自动化程度很不理想,近年来随着CCS功能的不断完善,使得AGC才开始名符其实。上海外高桥三期百万机组AGC应用是很成功的,另外,机组CCS功能还设置了热控智能保护,此项功能在不降低现有保护可靠性的同时还减少了机组误动和拒动的次数。

(2) FCB快速甩负荷(Fast Cut Back)

2008年3月,上海外高桥三厂百万机组分别完成了75%和100%负荷的FCB功能试验。试验时,控制人员未做任何干预,事先未采取任何预防措施,仅依靠自动控制系统良好的协调控制能力,使机组做到全甩供电负荷时,发电机带厂用电,锅炉和汽轮机运行平稳,真正实现了孤岛运行。2011年6月宁夏宁东电厂#2机组(660MW)100%额定功率快速甩负荷试验成功。机组FCB试验成功,表明机组主机设备、辅机设备、仪控DCS系统已经达到相当高的水平。试验显示:FCB功能不仅能显著提高电厂运行的

安全系数,还大大增强了电力系统的安全性和稳定性。

(3)优化控制

由于当前电力市场的峰谷差日益增大,百万机组也要参与电网调峰,如某DCS在提高机组负荷的快速响应能力上就进行了控制优化,具体采用以下措施:①电网负荷指令变化后,调整汽轮机机前压力设定值,从而提高负荷的初始响应速度;②将给水量和燃烧率的相互作用减小,增加焓值调整和机组调整的稳定性;③采用负荷或分离器压力校正调节参数,用变参数调节来提高调节品质。

4 核电DCS的侧重点

我国核电站经过30多年的发展,目前在进入商运的机组有11台,分布在秦山(5台)、大亚湾(2台)、田湾(2台)、岭澳(2台)。我国引进二代堆技术(法国M310)加以改进,形成了二代加压水堆CPR1000及CP1000(这两种堆型同宗同源,除燃料组件数目不一致外,主要结构基本一致),同时我国也直接引进了三代堆技术AP1000和EPR。这四种堆型在我国都有项目在实施,会成为我国一定时间内的主流堆型。这四种堆型结构不同,所以他们采用的DCS仪控系统也不相同。本文提及的核电DCS选取AP1000、EPR、CPR1000这三种堆型采用的仪控系统为例。相比火电DCS,核电DCS具有以下不同之处。

4.1 核电厂DCS安全级别并非只有一类各国对核电仪控系统的安全级别分类并不统一,其中美国只有核安全级和非安全级,但是欧洲却将仪控系统分为A、B、C三个等级,目前我国核电仪控系统参照美国的做法也分为两类。无论是三代堆AP1000和EPR,还是自我改善的二代加压水堆(CPR1000、CP1000),这几种堆型的核电厂DCS都包括以下部分,即核岛DCS、常规岛DCS和

BOP(Balance of Plant)。核岛DCS主体属于安全级设备范畴,常规岛DCS和BOP属于非安全级设备范畴。

4.2 核电厂DCS系统结构多样

AP1000压水堆采用的仪控系统是西屋公司的Common Q+OVATION平台;EPR压水堆采用的仪控系统是西门子的TXS+TXP平台;CPR1000压水堆采用的仪控系统是三菱公司与和利时公司提供的MELTAC-Nplus R3+HOLLYSYS N平台,CP1000压水堆采用的仪控系统是INVENSYS公司提供的TRICON+I/A平台,下面对前三种平台进行详解。

(1)AP1000采用Common Q+OVATION平台,核岛DCS采用Common Q平台,常规岛DCS采用OVATION平台,整套DCS包括8大子系统:OCS(Operation and Control Centers System 运行与控制中心系统)、DDS(Data Display and Processing System 数据显示与处理系统)、PMS(Protection and Safety Monitoring System保护与安全监督系统)、PLS(Plant Control System 电站控制系统)、TOS(Turbine Control System 汽轮机控制与诊断系统)、IIS(Incore Instrumentation System 堆芯测量系统)、SMS9SpecialMonitoring System 专用监测系统0、DAS(Diverse ActuationSystem 多样化驱动系统)。系统结构如图2所示。

图2 AP1000仪控系统示意图

(2) EPR采用西门子公司的TXS+TXP平台,核岛DCS采用TXS平台,常规岛DCS采用TXP平台,整套DCS包括8大子系统:PICS(Process Information and Control Centers System 过程信息和控制系统)、SICS(Safety Information and Control Centers System安全信息和控制系统)、PAS(Process Automation System 过程自动化系统)、RCSL(Reactor

Control,Surveillance and LimitationSystem 反应堆控制监督和限制系统)、PS(Protection System保护系统)、TPCS(Turbine Protection and Control System 汽轮机保护和控制系统)、SAS(Safety Automation System 安全自动化系统)、PACS(Priority and Actuator Control System 优先级和执行器控制系统)。系统结构如图3所示。

图3 EPR仪控系统示意图

(3)CPR1000采用MELTAC-Nplus R3+HOLLYSYS N平台,核岛DCS采用MELTAC-Nplus R3平台,常规岛DCS采用HOLLYSYS N平台,核岛DCS系统主要包括:RPC(ReactorProtection Cabinet 反应堆保护系统)、ESFAC(Engineered SafetyFeatures Actuation Cabinet 专设安全驱动系统)、SLC(SafetyLogic Cabinet 安全逻辑机柜系统)、RPCC(Reactor PowerControl Cabinet 反应堆功率控制柜系统)、CCMS(Core CoolingMonitoring System Cabinet 堆芯冷却监测系统)、SR(SafetyRelated Cabinet 安全相关系统)。常规岛中汽轮机本体监控采用ALSTOM公司的专用系统TGS,其它的汽轮机辅机和电气监控采用一套整体MACS

系统。系统结构如图4所示。

4.3 核电DCS中的常规岛仪控系统更可靠

(1)常规岛重要的联锁保护功能由两个冗余的独立回路实现。这两个回路,从信号源到保护信号的输出都是互为冗余、相互独立,分布在不同的机柜控制器内,相关的I/O冗余通道也是分布在不同的机柜控制器内。可靠性上考虑宁拒动勿误动时,两回路串联输出;可靠性上考虑宁误动勿拒动时,两回路并联输出。

(2)对于一些重要的输出,在信号测量、控制器处理、执行单元三个环节均进行了交叉冗余设置,只要同一个环节上不同时出现故障,这个保护回路就可以正常工作。这种设计是非常可靠的。在火电厂,一般只有汽轮机保护回路才采取这样的配置,所以核电站的设计对控制的可靠性要求比火电厂要高得多。

图4 CPR1000仪控系统示意图

4.4 功能设计上更可靠

为保证核电站安全、稳定、经济运行,核电DCS设计时必须遵循以下原则:单一故障原则、独立性原则、多样化原则、冗余性原则、故障安全原则、共模故障最小原则和经济运行原则。

5 两者的区

别火电机组DCS与核电机组DCS比较不是同一层面的比较,而是多方位多角度存在差异,本文仅狭义地比较DCS本身的差异:

5.1 DCS设计标准不同

(1)火电DCS设计遵循及参考的主要标准规程包括:

电力部标准系列,如《中华人民共和国电力行业标准》(DL/T 5210.4-2009R热工仪表及控制装置)、《火力发电厂热工控制系统设计技术规定》(DL/T 5175-2003)、《火力发电厂分散控制系统在线验收测试规程》等;

国际电工委员会标准类IEC系列,如《信息技术设备的安全要求》(IEC 60950)等;

美国仪器学会标准类ISA系列,如《数字处理计算机硬件测试》(ISA RP55.1)等;

美国科学仪器制造商协会标准类SAMA系列,如《仪表和控制系统的功能图表示法》(SAMA PMC 22.1)等;

美国电子和电气工程师学会标准类IEEE系列,如《电厂分布式数字控制和监视导则》(IEEE 1046-)等;

美国电子工业协会标准类EIA系列,如《数字终端设备与使用串行二进制数据进行数据交换的数据通讯设备之间的接口》(EIA RS-485)等;

(2)核电DCS设计遵循及参考的主要标准规程包括:

核安全法规类HAF系列,如《核电厂质量保证安全规定》(HAF003)、《核电厂设计安全规定》(HAF102)等;

核安全导则类HAD系列,如《核电厂质量保证大纲的制定》(HAD003/01)、《核电厂安全有关仪表和控制系统》(HAD102/16)等;

国际原子能机构标准类IAEA系列,如《核动力厂安全重要仪表控制系统》(IAEA-NS-G-1.3)等;

国际电工委员会标准类IEC系列,如《核电厂安全系统用计算机软件》(IEC 60880)等;

国家标准类GB系列,如《核反应堆保护系统安全准则》(GB403)、《核电厂仪表和控制系统及其供电设备安全分级》(GB/T15474)等;

美国电子和电气工程师学会标准类IEEE系列,如《数字计算机系统应用于核电站安全系统准则》(IEEE 7-4.3.2)等;

法国标准RCC系列,如《反应堆核电站核岛电气设备设计和建造规则》(RCC-E)等;

5.2 仪控设备安全级别不同

核电仪控设备按用途和功能分为安全级(1E)和非安全级(NC)两大类。在发生事故时和事故后为保护公众所需的所有仪控设备为安全级,安全级以外的设备属于非安全级。按此标准,核电DCS包括安全级DCS设备和非安全级DCS设备,而火电DCS只包括非安全级DCS设备。

5.3 系统体系结构不同

火电站一个单元机组DCS采用炉、机、电一体化控制。核电站一个单元机组分为三个子系统:核岛DCS(1E级)、常规岛DCS(NC 级)、辅控岛BOP-DCS(NC级)。

6 结束语

根据日本福岛事故后核电安全检察结果,即将出台的《核电安全规划》提出,国内未来新上核电项目要按照国际先进标准设计下一代核电站,在核电技术设备上要全面引进包括AP1000(美国西屋公司独创的先进非能动压水堆)和EPR(法国阿海法公司研发的欧洲压水堆)在内的第三代核电技术,同时要求尽量新上大容量设备,安全指标和质量标准均比《核电中长期发展计划》要求更高。另外从能源地理结构上看,近期我国东部将限制火电审批,将以核能发电取而代之,“十二五”期间将形成山西等五大综合能源基地加上中东部以兴建核电为主的“5+1”能源格局。所以,核电和火电在我国当前的能源结构都是不可缺少的,与之配套的火电DCS与核电DCS也将互相借鉴、取长补短、共同获得良好的发展。

核电厂常规岛与火电相比的主要差异

核电厂常规岛与火电相比的主要差异 (院内新员工参考教材) 2010年9月济南

核电厂常规岛与火电相比的主要差异 山东电力工程咨询院张磊 2010年9月7日 核电厂常规岛主要部分是汽机岛,它是在火电基础上发展起来的,与火电有许多共同点,下面仅论述两者的主要差异。 一、设计理念差异 毫无疑问,核电厂常规岛与火电厂发电机组都将安全运行放在首位。但核电厂更将安全运行放在压倒一切、重中之重的地位。因为一旦发生核泄漏事故,其影响是长期的,甚至影响到几代人,其影响范围也是世界性的,这在我国火电机组众多事故案例中是没有先例的。 二、主设备上的差异 下面均以国外×××核电厂1300MW机组与同容量的火电机组为例进行比较。 注:1、我国内陆核电厂地处温度、湿度较高地区,同容量机组的循环冷却水量更大,预计在220000t/h左右; 2、造成上述各项差异的原因出自两者设计理念的差异,即前者强调运行安全,效率让位于安全,后者采用高转速、高参数的主设备,追求的则是更高的效率。

三、主厂房区域布置的不同点 1、核电厂主厂房采用单元制布置,即每台机组的主厂房是独立的,彼此不接建; 火电厂为运行管理方便,2台或几台机组的汽机房和锅炉房是相连的。 (见图1、图2、图3) 图1 国外×××核电厂总平面布置立体图

- 3 - 图2 国外×××核电厂总平面布置平面图

-4- 图3 国外×××核电厂总平面布置侧向视图

2、核电厂为安全起见,再热汽不采用进出反应堆进行再热,而用主汽进行再热。核电厂除湿再热器(即汽水分离再热器)布置在汽机高中压缸两侧,而火电厂的再热器设在锅炉本体内部,汽机房没有再热器。 (见图4、图5)

火电厂DCS控制系统维护探讨

火电厂DCS控制系统维护探讨 发表时间:2019-07-16T15:41:34.073Z 来源:《电力设备》2019年第6期作者:郑怡慧 [导读] 摘要:伴随着社会的发展以及科技的进步,DCS控制系统不断升级完善,系统的可靠性、经济性、安全性均在持续的提升。 (山西漳泽电力侯马热电分公司山西 043008) 摘要:伴随着社会的发展以及科技的进步,DCS控制系统不断升级完善,系统的可靠性、经济性、安全性均在持续的提升。但是,DCS控制系统仍然存在一定的缺陷,仍然无法将故障彻底阻绝,这也一定程度影响着机组及相关工作人员的人生安全。同时,在火电厂DCS控制系统运行过程中,普遍因为缺乏故障的应急处理经验,在发生故障之后,大多数检修人员都凭借着自身的经验以及系统的操作经验来进行处理,导致故障不断扩大、升级。对此,研究火电厂DCS控制系统故障的应急处理和预防有着显著意义。 关键词:火电厂;DCS;控制系统 一 DCS电源 1.因UPS或保安电源故障后电源自动装置切换时间较长,导致DCS或ETS瞬间失电造成停机的事故时有发生,分散控制系统宜采用双路UPS 冗余方式供电,进线分别接在不同供电母线上。例如某电厂因UPS电源温度高报警,保安电源作为备用电源不能及时(ms级)由备用转为工作电源,使FSSS火检柜两路电源同时丧失,全炉膛无火MFT。 2.配置独立的UPS不与其它设备共用,一旦因其它设备原因导致UPS故障势必危及DCS的安全。 3.UPS旁路电源当受到外界干扰时,输出电压波动大。将UPS负载控制在30%~60%额定输出功率范围内是最佳工作方式,避免因负载突然加上或突然减载时,UPS电源的电压输出波动大,而使UPS电源无法正常工作。如某厂一机炉曾发生因UPS旁路电源输出电压波动大,造成其下属所接的重要系统无法正常工作,而引发机组跳闸的事故。 二 DCS的软硬件 1.在选择DCS控制系统时要优先考虑有在类似机组上良好运行业绩的控制系统,这样的成套控制系统通过了工厂试验和实际投运,其可靠性得到了时间的检验。同时要尽可能多地了解不同DCS在其他电厂的使用情况,尤其是主要出现的重大问题,以便在招标中进行比对和取舍。 2.控制系统的硬件一定要具有高可靠性,在电子元器件上的生产工艺各环节上采用了成熟技术,电子模件最好能热拔插。控制器的运算和存储能力要足够,IO卡件具有很强的抗干扰能力。 3.控制系统从结构上要充分地采用了冗余技术。对于控制系统的控制器、网络通讯等必须冗余,且各冗余设备之间必须能实现无扰切换。采用冗余结构不仅能避免控制系统的局部故障扩大事故,保证机组安全稳定运行,同时也保证设备故障的在线排除,从而消除事故隐患。 4.控制系统软件的可维护性要好。尤其是以下几个方面:程序及软件的稳定性好,不会出现系统或单个控制器死机等问题;系统自诊断性好:控制器及IO信号有出错报警;人机交换友好:可以在线修改程序及下装;备品备件有可靠保证:在15年内采购容易且周期短,价格低;功能是否强大。控制系统的软件的可读性好,其组态功能块的种类是否能轻易实现DCS控制系统的各种工艺功能的需要。 另外,在DCS控制系统选型时,还要充分考虑到以下各个方面:为了确保控制系统的安全可靠性,控制器对数不能太低,以便于控制功能分配的合理分配;IO模块的数量要合理,以便在分配IO通道时既可以避免重要信号的过度集中,以确保各IO模件的余量合理等。 三 DCS网络 1.机组运行时在线调试实时通讯,因配置冲突导致网络故障。 2.为同其他系统通讯,在实时数据网上增加接口或更改网络结构,导致网络异常。 3.日常使用过程中,因经常对DPU修改或增加功能,导致DPU负荷率过高,影响网络正常工作。 4.制定完善的DCS系统操作制度,使用USB口的操作规定,以免外界的侵入控制系统。 5.热工专业平时要加强DCS系统的网络维护。如利用停机时间逐个复位DCS系统的DPU和MMI(操作员站),一般要求每隔半年要复位一次DPU和MMI,以消除计算机长期运行的累计误差;MMI站主机放置的地方,应定期检查工作环境和通风状况,避免通风散热不良导致的硬件故障或硬件加速老化;对于DCS系统和其他系统(比如MIS、SIS等)的接口,应该在其他系统侧的网关站上,加装病毒防火墙,并及时更新病毒库。同时及时更新操作系统的补丁,从而提高系统的安全性;定期检查系统风扇是否工作正常,以确保系统能长期可靠地运行;定期对DCS主系统及与主系统连接的所有相关系统(包括专用装置)的通信负荷率进行在线测试,确认在机组出现异常工况、高负荷运行、当DPU或通信总线产生冗余切换的同时出现负荷扰动时,网络负荷率控制在行业规定范围内。 四 DCS失灵后的后备操作 在《防止电力生严重大事故的二十五项重点要求》中规定了“操作员站及少数重要操作按钮的配置应能满足机组各种工况下的操作要求,特别是紧急故障处理的要求。紧急停机停炉按钮配置,应采用与DCS分开的单独操作回路”的要求,但目前仍有部分机组的手动停炉停机按钮没有直接接入跳闸驱动回路中,而是直接进入FSSS或ETS装置的输入卡件通道,参加逻辑运算后,再通过输出回路送至跳闸驱动回路。这样,在FSSS或ETS故障后,运行人员无法在集控室进行手动紧急停炉。关于MFT动作回路的设计目前有带电跳和失电跳两种方案。带电跳采用常开接点进行控制,采用常开接点进行控制的方案虽减少了误动的可能性,但增加了拒动的可能性,如DCS失电后MFT不能正常动作。失电跳采用常闭接点进行控制,即在DCS失电后,MFT仍能动作,比较来看,这种方案对机组是最安全的,减少了拒动的可能性,但却增加了误动的可能性。为了提高动作的可靠性和保证机组的安全性,部分机组采用了另一种方案,即在DCS正常的情况下,可通过DCS逻辑正常触发MFT继电器的常开接点来动作设备。同时为了保证DCS失电后MFT的正确动作,再引入一路220VDC直流电源,在DCS失电后,采用手动按钮直接动作直流继电器,去跳有关设备。但是这里仍然有一个设计观念问题,当DCS电源真正消失时,包括重要保护在内也不起作用了,此时机组处于不安全状态。按照《火力发电厂设计技术规程》(DL 5000-2000)中的要求,应设计炉膛安全监控系统失电后的紧急停炉保护。另外基于某电厂曾发生过DCS瘫痪机组停机后,因电气原因两台交流润滑油泵失电,由于润滑油压低联启直流油泵的联锁未做电气硬逻辑联锁,故直流油泵未自动联启,同时没有及时手动启动直流油泵,导致汽机化瓦事故的发生。因此系统设计上必须充分考虑安全原则,涉及机组安全停机和失电情况下的安全联锁功能,除在控制器逻辑内实现外,还应在就地硬逻辑中设计并实现。 五 DCS施工的可靠性 1.施工中要注意盘柜与地的可靠绝缘和盘柜母线的可靠接地,同时对孔洞等必须做防火处理,盘柜等要有防振动措施。 2.敷设电缆时尤其要注意强电弱电分开,屏蔽线的可靠接地和抗干扰,如果混淆,可能造成DCS板卡的烧毁。在布线过程中一定要按照设计

我国核能技术发展的主要方向

我国核能技术发展的主要方向 中国核电发展现状 我国核电在运核电厂已达到38台,总发电功率超过3 700万千瓦,在建 机组18台,总装机容量2 100万千瓦,到2020年我国在运核电厂预期将达到 5 800万千瓦,占世界第二位。 正如中国工程院、法国科学院及法国国家技术院给国际原子能机构的报告中所写:“就所有民用核能活动而言,可以认为法国和俄罗斯在当下全球领先。同时,中国在核电站建设方面正在取得重大突破,是未来潜在的领先国家之一。” 我国核电充分吸收了国际核电发展的经验和教训,并采用当前最先进的技术,遵循最高的安全标准,坚持自主创新,不断改进,并拥有技术先进、实力强大的装备行业,以支撑中国核电建设。可以说,中国核电具有“后发优势”。 我国最早引入和开发三代核电技术,遵循国际最高安全标准,完全满足美国“电力公司要求文件”(URD)和欧洲国家的“欧洲电力公司要求”(EUR),堆芯损坏概率(CDF)小于十万分之一,大量放射性释放概率(LRF)小于百万分之一。

我国率先在三门、海阳引进、建设首批4台AP1000先进压水堆核电厂,同时在台山建设2台EPR1700先进压水堆核电厂。我国自主研发的三代核电包括CAP1400和“华龙一号”,其中“华龙一号”正在福建福清、广西防城港和巴基斯坦卡拉奇顺利建设,并积极准备进入英国市场。 “华龙一号”是在我国具有成熟技术和规模化核电建设及运行的基础上,通过优化和改进,自主设计建设的三代压水堆核电机组。它满足先进压水堆核电厂的标准规范,其主要特点有:1)采用标准三环路设计,堆芯由177个燃料组件组成,降低堆芯比功率,满足热工安全余量大于15%的要求;2)采用能动加非能动的安全系统;3)采用双层安全壳,具有抗击大型商用飞机撞击的能力;4)设置严重事故缓解设施,包括增设稳压器卸压排放系统,非能动氢气复合装置,以及堆腔淹没系统,保持堆芯熔融物滞留在压力容器内;5)设置湿式(文丘里)过滤排放系统,以防止安全壳超压;6)设计基准地面水平加速度为0.3g;7)全数字化仪控系统。 2 持续提高核电的安全性 我国和国际上都在进行提高核电的安全性研究,主要有从设计上实际消除大规模放射性释放,保持安全壳完整性,严重事故预防和缓解(包括:严重事故管理导则,极端自然灾害预防管理导则),耐事故燃料(ATF)研究以及先进的废物处理和处置技术的开发和应用。 国际上安全监管机构都要求新建反应堆应满足下列安全目标: (1)必须实际消除出现堆芯熔化、导致早期或大量放射性泄露的事故;

火电与核电的比较

篇名:淺談火力發電及核能發電的介紹與比較 作者:陳約佐。國立東港海事。輪三甲 壹、前言: 工業的發達,相對的用電量也大,因此電在生活中不可或缺的能源目前台灣的電源主要由火力、水力及核能發電構成。民國六十一年時, 火力發電佔總發電量的 80%, 水力發電佔 20%。民國九十四年時, 總發電量 968 億度, 水力發電佔了 2%; 火力發電佔 44%, 其中燃煤佔 44%, 燃油佔 3%, 燃氣佔 16%; 核能發電則佔 25%。由上述可知, 早期台灣以火力發電為主, 近年來因為環境污染問題及燃料能源有限等因素, 火力發電佔總發電量有下降的趨勢, 整體發電的結構已有明顯的改變。由文字敘述中可以看出火力跟核能絕佔多數,那就一起來淺談火力發電跟核能發電。 民國61的比例圖民國94年的比例圖 貳、本文: 一?火力電廠的汙染 燃煤及燃油電廠,在燃燒過程中,不可避免會產生大量廢氣,從而污染了空氣,燃煤電廠更會產生大量飛灰,對環境產生不良影響。這些廢氣通常夾雜著許多未完全燃燒物質或燃料當中本身含有的伴隨物質,因而形成有害物質,影響生態環境及人體健康。各種燃料在用作火力發電時,可能產生有害物質的情形;污染物對環境的損害,其中的CO2氣體雖不算有害物質,但大量累積的結果,也可能藉由溫室效應(Greenhouse effect )而產生全球性的氣候變遷。球性的氣候變遷。色。為配合政府能源多元化政策,台電公司火力發電採用之燃料為煤碳、重油及天然氣,其中以燃煤的汽力發電機組為主,以燃天然氣的複循環機組為輔。為因應尖峰負載的供電需求,另有燃輕柴油之氣渦輪機組,目前火力發電廠共二十九所。

利用燃燒煤炭、石油、液化天然瓦斯等燃料所產生的熱能,讓水受熱而成為蒸汽,在不斷受熱下,使水變成高壓高溫的蒸汽,然後運用此高溫高壓蒸汽的能 量,推動汽輪機運轉帶動發電機發電。此外,內燃機發電亦是火力發電的一種,一般以柴油為燃料的內燃機(引擎)為動力,帶動發電機運轉發電,此種發電方式 主要使用於用電量小的離島,或是作為大樓及工廠等之緊急發電機用。 三?核能發電的原理 核能發電的原理與火力發電相似,核能發電是利用鈾燃料進行核分裂連鎖反應 時所產生的熱,將水加熱成高溫高壓的蒸利用鈾燃料進行核分裂連鎖反應所產生的熱,將水加熱成高溫高壓,核反應所放出的熱量較燃燒化石燃料所放出的能量要高很多(相差約百萬倍),比較起來所以需要的燃料體積比火力電廠少相當多。核能發電所使用的的鈾235純度只約佔3%-4%,其餘皆為無法產生核分裂的鈾238汽,用以推動汽輪機,再帶動發電機發電。 四?核能發電的汙染 核電廠在運轉的過程中,會排放出具有危險 性及傷害性的輻射廢棄物,以氣態、液態及固態等形式存在。由於輻射線是看不到、摸 不到、聞不到,因此其嚴重性不易被查覺。如果輻射強度較高的廢棄物,就設法以(水 泥)固化的方式收集在廢料桶內,輻射強度較低的則直接排放出廠外。一個百萬瓩發電 量的機組,除平時排放至大氣中和海域中的輻射物質外,每年就有幾千桶中低輻射強度 的固化輻射性廢棄物,以及幾十噸核反應用過的高輻射強度燃料棒。這些數量龐大的輻 射性廢棄物,只有靜待自行衰變,此外別無他法。除輻射性物質對環境的污染之外,核電廠還 製造更多廢熱污染。因為核電廠的能源轉換效率較低,其排放的廢熱比任何火力發電廠 (產電量相同)的廢熱高出許多。

中国核电行业发展现状(2011)

中国核电行业发展现状(2011-3-15) 一、中国核电发展现状 (一)中国核电的发展阶段 1、核能研究阶段 在70年代末,我国已经有了核动力应用的想法,但是由于十年动乱的影响,1969年,原二机部各类学校有的停办,有的撤销,有的交给地方。研究所被精简缩编,名存实亡,研究工作虽然一直没有停顿,但“清查”、批斗使广大科技人员的积极性遭到极大的压抑,影响了工作的进行。一些基础科研项目基本停止,核电的科研工作未能展开。 2、核电技术起步阶段 这一阶段我国的核电技术开始起步,但是由于我国核电政策的徘徊不定,使得我国的核动力研究主要应用于核动力舰艇上,1971年9月,我国自己建造的第一艘核动力舰艇安全下水,试航成功,其后20年,我国核电仍为零。值得一提的是,我国在此期间进行了核电站的概念设计,但是进度缓慢,秦山核电站的设计即从此时开始,但后来停止了,如同整个世界核电的大潮流一样。 1984年我国第一座自己研究、设计和建造的核电站--秦山核电站破土动工,表明中国核电事业的开始。 3、黄金复苏阶段 中国核电从秦山核电开始,大亚湾核电为转折,历经十年,终于迎来了核电春天,各个项目如同雨后春笋,不断开工。 进入新世纪,国家对核电的发展做出新的战略调整。国务院已颁布了《核电中长期发展规划》,提出了到2020年核电装机容量达到4000万千瓦、在建1800万千瓦的目标,这个目标有可能更高。(据新华网2010年3月22日消息称:国家能源局有关负责人于2010年3月22日说,目前我国正在对2020年核电中长期发展规划进行调整。根据目前的工作部署,到2020年我国核电装机目标保守看为7000万千瓦至8000万千瓦。) 中国核电站布局

浅谈火电及核电DCS

浅谈国内火电DCS与核电DCS的异同企业:北京广利核系统工程有限公司日期:2012-03-05 领域:D CS 点击数:4852 摘要:DCS控制系统是随着现代工业生产自动化的不断发展和自动化控制需求不断提高应运而生的综合控制系统。不论是火力发电厂还是核能发电厂随着DCS系统的不断完善,基本在上世纪末期普遍采用DCS控制系统取代了传统的模拟仪表控制系统及PLC等控制系统。核电DCS与火电DCS由于控制对象的不同而各有特点。 关键词:DCS;超临界机组;压水堆 1 引言 1975年美国Honeywell公司推出了第一套DCS系统:TDCS-2000。经过多年的发展,当前全球约有数百家厂商推出了千余种DCS系统,广泛应用于电力、石化、冶金等工控领域。世界上第一座火力发电厂是1875年在法国巴黎建成的,距今有130多年的历史。第一座核电站是奥布尼斯克(Obninsk)核电站,于1954年在前苏联卡卢加州开始运行,距今有50多年的历史。到上世纪末期DCS系统逐渐成熟后,火电厂和核电厂的仪控系统开始普遍采用DCS。 火力发电厂生产过程:煤等化石燃料在锅炉炉膛中燃烧加热水冷壁里的水使之变为蒸汽,锅炉产生的蒸汽进入汽轮机,汽轮机旋转带动发电机发电。核能发电厂(压水堆)的生产过程:反应堆中的核燃料经过核裂变反应产生热量来加热一回路的水,一回路的给水在蒸汽发生器中将热量传给二回路的给水使之转化为蒸汽,蒸汽推动汽轮机转动,从而带动发电机发电。这个过程与火力发电厂相似,因此核反应堆也被称为“核锅炉”。由于燃煤锅炉与核锅炉有着不同的能量转换特性,也就注定了火电DCS与核电DCS有着不同的特点。 2 DCS系统的基本特点

发电厂DCS控制系统解决方案

循环流化床锅炉是被国际公认的高效、低污染的清洁燃烧技术,是国家重点鼓励和发展的环保节能项目。该锅炉具有燃烧效率高,负荷调节范围大,无需加装脱硫、脱硝装置即可实现90%脱硫率,满足环保要求,以经济的方式解决大气污染问题,而且煤种适应性广,排出的灰渣活性好,容易实现综合利用。 目前国内300MW等级循环流化床锅炉消化引进阿尔斯通技术,和常规煤粉锅炉相比主要在燃烧系统方面存在差异其具有如下特点: ?通常锅炉四角分别布置4个返料器和4个外置流化床,外置床中布置了中温过热器,低 温过热器和高温再热器等锅炉受热面。 ?锅炉左右两侧配有风道燃烧器,每侧风道燃烧器含有两支油枪,床上左右两侧各配有 4支床上油枪。 ?风烟系统中一次风作为主要流化风,二次风分上中下分级送风助燃,多路流化风对返 料器、外置床等受热室起到流化作用。 ?风烟系统中灰循环的合理建立是锅炉稳定燃烧的重要前提,也是控制床温、再热汽温 的基础。 ?由于循环流化床锅炉的复杂性,锅炉炉膛安全监测系统和常规煤粉炉有较大差别,包 含锅炉跳闸BT、送风跳闸AT和主燃料跳闸MFT三个主要跳闸信号。 ?由于循环流化床锅炉的大滞后特性,自动控制难点在协调控制,床温控制、床压控制、 过热汽温控制和再热汽温控制。 ?对于循环配套直接空冷系统,直接空冷的控制关键在于风机转速主指令控制,即如何 设定好背压是一个关键,既能够考虑到汽轮机效率,又能考虑到风机电耗率,达到一个最佳经济性指标,同时兼顾到低温防冻保护。 图1?1 循环流化床机组示意图 1.2配置方案 蒙西DCS项目由DAS、FSSS、SCS、MCS、DEH、ECS、ACC等部分组成,总点数约20000点,采用TPS系统,总配置单元机组配置控制器18×2对,公用系统配置控制器2对,ACC

我国核能发展现状

我国核能发展现状 目前我们国家核能起着相当重要的作用,核能的和平利用是20世纪人类最伟大的成就之一,经过半个多世纪的发展,核技术已经渗透到能源、工业、农业、医疗、环保等各个领域,特别是核能在电力工业成功运用,为提高各位人们的生活质量与水平作出了重要贡献。 目前核电约占世界总发电量的16%,与水电、火电一起构成电力能源三大支柱,核能技术不断发展和进步寄托着人类对未来的希望,它将成为最终解决全球可持续发展的综合能源之一。世界50多年的核能发展表明,核能不失为一种清洁、安全和经济的能源,随着我国经济的持续高速发展,毕竟对能源提出快速增长要求,而我国目前以煤炭为主的能源结构又与日益严重的环境问题日益相关,所以发展核能是解决我国能源短缺、改善能源结构、控制环境污染、保障能源结构重要途径之一。 中国建设的第一座核电厂1991年建成投产,结束了中国大陆无核电力的历史,1994年投产大电站,1996年中国又自主设计建设了二级核电站,三级核电站,随着最近广东核电厂投入,我国目前公共12组核电机组投入运行,运行的核电机组安全状况良好,平均用于值可达到85%,核电辐射水平一直保持在本地水平。 到目前为止我国已合作了12个核电项目,共31台机组,合作规模达到3378万千瓦,已开工建设24台,建成规模2660万千瓦。核电作为我国新能源的主力军,正面临着难得的发展机遇,进入了批量化、规模化的发展阶段,目前我国引进三代核技术AP1千以及EP2顺利建成,它在中国经济快捷的发展,对核燃料的高效利用以及对减少高排放物发挥了重大的效应。 07年3月,随着中美间两份重要协议《核岛供货合同框架协议》和《技术转让合同的框架协议》的签署,美国西屋公司和绍尔公司组成的西屋联合体在中国的第三代核电招标中正式中标,AP1000成为三代核电自主化依托项目所选择的技术路线,世界上最先进的第三代核电技术AP1000落户中国。 AP1000技术虽然先进,但到目前为止世界上尚没有一座建成的电站,中国将是第一个“品尝”这一技术的国家。我国的研究人员从AP600到AP1000进行了十多年的研究,对这一技术有较深入的了解。第三代技术是从第二代发展来的,其主要系统均有工程实践,只是核电站安全系统设计理念不同,AP1000使用的是非能动的方式。 作为第三代核电站,AP1000具有良好的安全性和经济性。第二代核电站主要是上世纪70年代根据当时安全法规设计的。其设计基准不考虑核电站严重事故(如

核电与火电之比较

核电与火电之比较 核电站也称原子能发电站是将原子核裂变释放的核能转变为电能的系统和设备。自从3月11号日本核电站因海啸引发爆炸而靠造成核泄露,核电站的安全再一次引起人们的观注。核电与火电相比有何利弊,火电建设会不会迎来一个高峰期呢,这将拭目以待。现将从以下几个方面比较一下火电与核电。 1、所用的燃料: 核电站的燃料是U235,利用核裂变产生的能量,是核能;火电则是烧煤炭,利用的是燃烧发出的热量,是化学能。 核电站是一种高能量、少耗料的电站。以一座发电量为100万千瓦的电站为例,如果烧煤,每天需耗煤 7000~8000吨左右,一年要消耗200多万吨。若改用核电站,每年只消耗1.5吨裂变铀或钚,一次换料可以满功率连续运行一年。其成本是每度电0.3元,平均7000小时的年可发电小时数,近100%的能源利用效率,核电可以说是最经济、最高效的发电方式,同时也可以大大减少电站燃料的运输和储存问题。此外,核燃料在反应堆内燃烧过程中,同时还能产生出新的核燃料。 煤炭是一种不可再生的化石燃料,总量有限,而且随着石油的枯竭,煤炭将成为重要的化工燃料,作为燃料使用是一种巨大的浪费,所以近几年煤碳价格一直在上涨,这也给不少火电厂造成了很大的压力。 2、所消耗的成本: 核电的建设成本远高于火电,但是发电成本却低于火电。 3、所产生的污染: 从广义来说,都有污染,不过核电因为产生的是核废料,所以比较特殊,第一产生的核废料非常少,第二,核废料的储存很特别,几乎没有人会接触到。所以从人类居住角度而言核电可以算是几乎无污染。而火电理论上是有很大污染的,在中国尤其是,不过因为现在火电都要上脱硫设施的,所以现在新建的火电产生的污染仅仅是二氧化碳一种而已,而二氧化碳则是造成地球温室效应的罪魁祸首。 4、所能达到的规模: 火电现在最大的机组容量大概100万千瓦左右,而核电目前再建的EPR机组能到170万千瓦,所以单机容量而言核电是能远超火电的,原因就在利用的水蒸气的状态

2火力发电厂分散控制系统(DCS)基本知识

火力发电厂分散控制系统(DCS)基本知识 1.分散控制系统(DCS) 分散控制系统,英文名称distributed control system,简称DCS。可以理解为:集中监视,分散控制的计算机系统。 DCS系统按照功能可以分为:数据采集系统(DAS)、模拟量控制系统(MCS)、炉膛安全监控系统(FSSS)、顺序控制系统(简称SCS,有时旁路控制系统BTC和电气控制系统ECS作为SCS的子功能)、数字电液控制系统(DEH)、汽机保护系统(ETS)。部分火力发电厂汽机保护系统ETS用PLC来实现、旁路控制系统BTC使用专用控制系统(不包含在DCS系统内)。 DCS系统也可以按照工艺系统来划分。比如某电厂的DCS系统按工艺系统划分为:一号锅炉控制系统、一号汽机控制系统、二号锅炉控制系统、二号汽机控制系统。 2.数据采集系统(DAS) 数据采集系统,英文名称data acquisition system,简称DAS。采用数字计算机系统对工艺系统和设备的运行参数进行测量,对测量结果进行处理、记录、显示和报警,对机组的运行情况进行计算和分析,并提出运行指导的监视系统。 DAS至少有下列功能: ●显示:包括操作显示、成组显示、棒状图显示、趋势显示、报警显示等。 ●制表记录:包括定期记录、事故顺序记录(SOE,毫秒级扫描周期,信号类型为开关量输入DI)、跳闸一览记录等。 ●历史数据存储和检索。 注:操作员站相应时间测试。 3.模拟量控制系统(MCS) 模拟量控制系统,英文名称modulating control system,简称MCS。是指系统的控制作用由被控变量通过反馈通路引向控制系统输入端所形成的控制系统,也称闭环控制或反馈控制。其输出量为输入量的连续函数。火力发电厂模拟量控制系统,是锅炉、汽轮机及其辅助运行参数自动控制系统的总称。 火力发电厂主要自动一般有:协调控制系统、给水控制(汽包水位控制)、炉膛负压控制、送风控制(包含氧量校正)、燃料控制、过热器减温水控制、再热器减温水控制、除氧器水位控制、凝汽器水位控制等。

中国核电发展概况

中国核电发展概况(截止2010年) 1我国核电产业未来前景 我国目前的电力供应依然以火力发电为主,水电、风电、核电等规模非常小,电力结构极为不合理,一方面带来能源的极大浪费,另一方面也带来了严重的环境问题。为此国家提出了发展新能源发电,鼓励核能等清洁能源的综合利用政策。 中国核电发展进程大约比全球核能发展进程相对滞后约20年。七十年代中国开始对核电的探索,八十年代中国核电开始“起步”,九十年代至2006年为中国核电的“发展期”,至今大约30年时间。中国核电的“发展期”正处于世界核电发展之“低谷期”。尽管如此,中国核电在不利的条件下仍取得了较大的成绩。到2006年底为止中国投运的核电机组共11台,870万千瓦,约占全国发电总装机容量的1.4%。特别是2000年至今中国投运机组8台,占全球同期投运机组数的1/4。与此同时,中国建立了较为完备全面的核电体系,基本掌握了第二代核电技术,并开始了第三代和第四代核电技术的基础研发工作。这一切,为下一步的跨越发展做好了全方位的准备。 2010年,我国正在制定的《新兴能源产业发展规划》着眼于中国新兴能源产业中长期发展目标,在2011年-2020年间,核能、水能以及煤炭的清洁化利用将是政策支持的重点,也将是5万亿投资的重点支持对象。因此,国家有关部门正在积极调整我国的核电中长期发展规划,提出到2020年中国的核电装机容量将由原来的4000万千瓦提高到7000万千瓦以上。而且有消息称,国家能源局正在制定的《核电管理条例》有望于2010年底前上报国务院。《核电管理条例》将重点体现对未来核电开发的支持,其中将大力推动内陆核电站的开发建设。 为实现规划目标,在“十二五”期间提高核电站开工量是核电产业规划的重点任务之一。原因是,核电站的建设周期长达四五年,要实现核电装机容量到2020年达到7000万千瓦以上的目标,必须在2015年开工至少60个100万千瓦的核电站,2010年开始展开前期规划。因此,未来5年,将是核电企业们迎来大量订单的黄金期。

2017年中国火力发电量、水力发电量、风力发电量及核能发电量预测分析

2017年中国火力发电量、水力发电量、风力发电量及核能发电量预测分析一、中国火力发电量预测 2015年,全国火力发电累计产量为42,101.9亿千瓦时,同比降低了2.8%;2016年1-8月,累计产量为28,639亿千瓦时,同比降低了0.5%。预计,2017年火力发电量将达到41,738亿千瓦时,未来五年(2017-2021)年均复合增长率约为-0.49%,2021年火力发电量将达到40,933亿千瓦时。 中国火力发电量预测 数据来源:公开数据整理 二、中国水力发电量预测 2015年,全国水力发电累计产量为9,959.9亿千瓦时,同比增长了4.2%;2016年1-8月,累计产量为7,157亿千瓦时,同比增长了12%。预计2017年水力发电量将达到11,801亿千瓦时,未来五年(2017-2021)年均复合增长率约为7.92%,2021年水力发电量将达到16,010亿千瓦时。 中国水力发电量预测

数据来源:公开数据整理 三、中国风力发电量预测 2015年1-10月,全国风力发电累计产量为1,370.71亿千瓦时,同比增长了14.94%;2016年1-8月,累计产量为1,358.00亿千瓦时,同比增长了16.3%。预计,2017年风力发电量将达到1,846亿千瓦时,未来五年(2017-2021)年均复合增长率约为15.20%,2021年风力发电量将达到3,252亿千瓦时。 中国风力发电量预测 数据来源:公开数据整理 四、中国核能发电量预测

2015年1-10月,全国核能发电累计产量为1,404.56亿千瓦时,同比增长了30.99%;2016年1-8月,累计产量为1,364.00亿千瓦时,同比增长了23.7%。预计2017年核能发电量将达到2,128亿千瓦时,未来五年(2017-2021)年均复合增长率约为21.10%,2021年核能发电量将达到4,577亿千瓦时。 中国核能发电量预测

大中型火电厂DCS自动控制系统改造及应用

大中型火电厂DCS自动控制系统改造及应用 发表时间:2019-05-24T11:15:21.157Z 来源:《电力设备》2018年第35期作者:赵立强 [导读] 摘要:自动控制系统是数字技术在社会资源开发中应用的主要技术形式,具有系统化、多元性及创新性等特征。 (内蒙古白音华自备电厂内蒙古锡林郭勒 026200) 摘要:自动控制系统是数字技术在社会资源开发中应用的主要技术形式,具有系统化、多元性及创新性等特征。基于此,结合当前火电厂自动控制系统的应用情况,探究了技术优化策略,以提升技术应用安全指数。 关键词:火电厂;自动控制系统;创新性 引言 自动控制系统在火电厂中的应用是社会发展的主要动力,与当代产业动力需求紧密相连。研究发现,阶段性归纳技术问题,可及时发现技术应用中的问题,推动系统升级。因此,火电厂自动控制系统优化策略的探究过程也是火电厂技术整合、创新的过程。 1自动控制系统概述 自动控制系统是生产设备在无人操控的状态下,自主按照已设定的生产程序进行生产加工。自动化控制系统在火电厂中的应用主要是指DCS系统的生产应用。该程序一方面运用数字命令实现发电原料传送、发电原料燃烧以及能力转换,另一方面借助数字显示窗口、信息采集与处理程序,关联产品转换的各项环节。按照火电厂自动化控制程序的设计结构,可将系统分为程序管理、程序操作与控制和终端控制窗口三部分。三者协作大大缩减了火电厂生产成本,提升了生产效率。 2火电厂自动控制系统应用中的问题 DCS程序作为火电厂自动控制系统的代表形式,在实际应用中仍存在诸多问题。 第一、硬件故障:自动化控制系统发挥控制作用,需借助其他辅助性元件完成动力转换。因此,当外部辅助零件出现故障时,自动化控制系统将无法继续工作。例如,火电厂生产设备限流保护不当,导致输电线路短路;系统电力传输线路破损、连接不当以及线路受潮等,导致自动化控制程序无法启动,影响电力转换系统的正常工作。 第二、热工程序问题:火电厂发电时,动力转化环节、热工强度检测/计算环节是电力转换的关键。由于自动化控制系统程序长期处于一线生产环境下,系统多处于离线工作状态,但热工生产信息输出却是联网状态。若热工转换信息系统已更新而自动控制系统未更新,生产中将出现系统信息识别不准确或者信息无法识别的状况,影响DCS系统的生产能力。 第三、程序信号干扰:实际应用中,DCS系统可能出现受信号影响的情况。一方面,DCS自动控制系统为半开放信号传输程序,即系统完全依靠程序信息安全识别窗口进行安全管理,缺少直接的安全管理体系,一旦外部传输信号超出正常信号强度,自动控制程序将受到干扰。另一方面,自动化控制系统长期处于干燥、灰尘积压的环境,外部元件易与空气摩擦产生静电,进而对程序信号产生干扰。 3火电厂自动控制系统的优化策略 为进一步优化火电厂自动控制系统的应用效果,必须解决火电厂自动化控制程序应用中的问题。 3.1针对性解决硬件故障 结合火电厂自动化控制系统的应用实际,对DCS程序涉及的外部元件进行系统性检查,并给予解决。第一,处理火电厂电力传输线路、动力转换设备及电力采集系统等方面的外部元件障碍问题,加强自动化控制系统的限流保护强度。第二,将火电厂自动化控制系统关联的元件应用环境、电源传输通路等部分,更换为更安全的限流传输控制环境。火电厂进行自动化控制系统优化时,需以外部应用元件优化为首要环节。安全检测人员现场勘察发现,自动化控制系统多个连接端的限流保护值差异较大,外部电力系统线路老化,且限流线路极易发生短路。因此,按照最新版自动化控制系统做功功率范围,重新调换了限流线路和设备元件,以确保自动化控制系统在火电厂发电中的安全应用[1]。 3.2热工程序计划性、目标性调节 3.2.1热工程序计划性调节 火电厂应用自动化控制系统做功时,需经I/O通道程序进行动力供应信号传输,再利用终端控制器将产生的信息反馈到中心控制体系。因此,热工程序优化时,必须确保信息传输环节和信息反馈环节的完整,以提升信息传导速率。例如,某火电厂自动化生产系统优化时,程序研究人员先按照该火电厂内DCS系统终端反馈窗口数量布设终端自动控制模型。模拟火电厂热工转换时,各DCS系统I/O接收渠道的各种情况,然后在故障指令处理程序中加入模拟分析问题的处理方法。而自动化系统的终端控制环节,采取信号指令模糊传输法,拓展系统在热工处理环节的信息识别范围。热工程序应用后,检测自动化系统的热工运作情况发现,热工终端反馈数据准确率为98.78%,程序检测、反馈等周期为30.89~35.88s,与程序优化前差异较大。可见,计划性自动化控制系统优化在火电厂动力转换中发挥了重要作用[2]。 3.2.2热工程序目标性调节 目标性人工调节实质上是周期性技术调节的过程。首先,自动化控制程序需定期更新,以确保火电厂动力控制端输出信息与自动化热工控制程序相适应。其次,按照火电厂每日生产需求,科学调整自动化程序数据采集命令的范围。某火电厂以DCS系统作为火电厂动力转换的主要控制方法,解决了自动化系统实际应用中存在的信号识别能力差等问题。系统检验人员进行程序优化时,在程序管理层设计了系统更新命令,将程序控制环节和程序操控环节统一设定了信息识别检验标准A。当外部输出信息不在A范围时,自动化程序将提示系统更新。同时,该企业对火电厂自动控制系统中的数据传输和热工计算环节进行了联网设计。当程序自主检测到程序新版本时,技术结构将自动更新。此外,自动化系统优化后,系统控制命令信息传输体系一部分信息借助云空间存储,一部分信息利用磁盘存储。为确保自动化程序可流畅性做功,技术人员只需适当扩充磁盘存储空间。该火电厂的自动化控制程序处理策略,是数字技术实践中优化的具体表现[3]。 3.2.3解决程序信号干扰问题 火电厂的系统信号干扰问题,可通过改善程序安全管理体系的方法解决。某火电厂自动化控制系统优化时,需重设自动化系统安全渠道。程序开发人员在当前技术体系基础上,增设了火电生产中线路电阻、电压和电容等环节的检测。同时,火电厂将程序安全操控命令设定为热工程序计算和终端反馈信息安全管理两部分。火电厂动力传输时,一旦内部电磁波超出内部电流控制的安全指数,安全防护系统将立即借助绝缘元件进行阻隔。若电磁波的强度较大,系统将立即切断本次电力传输渠道,改为多批次电力功率传输。此外,改进后的DCS

我国电力系统现状及发展趋势

我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 1.前言 中国电力工业自1882年在上海诞生以来,经历了艰难曲折、发展缓慢的67年,到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82.6%。水电装机占总装机容量的24.5%,核电发电量占全部发电量的2.3%,可再生能源主要是风电和太阳能发电,总量微乎其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以秦山、大亚湾/岭澳、田湾为代表的三个核电基地,截至2008年底,国内已投入运营的机组共11台,占世界在役核电机组数的2.4%,装机容量约910万千瓦,为全国电力装机总量的1.14%、世界在役核电装机总量的2.3%。高参数、大容量机组比重有所增加,截止2009年底,全国已投运百万千瓦超超临界机

火电厂dcs控制系统

火电厂dcs控制系统 什么是dcs控制系统ECS):其主要作用是发电机的启、停控制及逻辑;厂用电系统各开关的控制及逻辑;电气系统的各参数与设备状态的监视;继电保护动作情况、故障报警及时间顺序记录。MEH):其主要作用是调节汽泵组的转速,可完成如下功能:挂闸、升速、定速、CCS控制、超速保护等功能。BCS):旁路系统是一个独立的系统,旁路控制能完成旁路操作的确切要求,并能完成安全功能或快开/块关功能,其基本组成部分分为高旁控制器和低旁控制器,主要实现高低旁的压力控制和温度控制。系统的主要技术概述 DCS在火为发电厂烟气脱硫控制系统的应用电厂脱硫是将燃煤机组烟气中的含硫化合物降低到符合国家排放标准的一种工艺,目前常应用比较广的是湿法脱硫工艺。该工艺主要包括工艺水系统,石灰石浆液制备、输送系统,吸收塔系统,石膏脱水系统,烟气系统等子工艺系统。主要设备有湿式球磨机、浆液输送泵、氧化风机、浆液循环泵以及增压风机等。就其控制系统而言,湿法脱硫工艺一般具有以下特点: 烟气脱硫的控制对象比较特殊但数量较少,控制对象较分散,控制使用的PID较少,控制回路较简单;闭环控制较少,开环控制较多,实时性要求不太高。另外,顺控较多,注重的是时间控制,保护要求不多。因此,脱硫控制系统是一个以开关量为主,模拟量为辅并伴有少量调节回路的系统,属于典型的混合控制系统,其控制I/O点数约3000点。 本系统采用石灰石石膏湿法脱硫工艺,该工艺是目前世界上应用最为广泛和最可靠的工艺。该工艺以石灰石浆液作为吸收剂,通过石灰石浆液在吸收塔内对烟气进行洗涤,发生反应,以去除烟气中的SO2,反应产生的亚硫酸钙通过强制氧化生成含两个结晶水的硫酸钙(石膏)。 总结随着计算机技术、通讯技术和控制技术的不断发展,为满足电网需要,火电机组必须具备更高的调节适应能力,采用厂级监控信息系统(SIS)、一体化的分散控制系统(DCS)

中国核电发展现状及未来发展趋势

中国核电发展现状及未来发展趋势 山东大学 能源与动力工程学院 公元1964,中国西北,罗布泊的一声巨响,向世界宣告,中国拥有了自己的核武器。 1970年12月26日,中国第一艘核潜艇下水,代表我国开始使用核动力。 1991年12月15日,我国自行设计、建造和运营管理的第一座30万千瓦压水堆核电站——秦山核电站正式并网发电,代表着中国在和平利用核能的道路上迈出了坚实的第一步。 漫漫征途,从中国第一次核试验,到第一核电机组并网发电,中国核能利用已经走过了近三十年。在党中央、国务院的正确领导下,我国核电经过20多年的发展,取得了显著成绩。核电设计、建设和运营水平明显提高,核电工业基础已初步形成。三十年风风雨雨,三十年艰苦历程。中国核电从无到有,为共和国的华美乐章添加了最美妙的音符。 我国核电现状 从上世纪80年代起,经过起步和小批量两个阶段的建设,我国目前形成了浙江秦山、广东大亚湾和江苏田湾三个核电基地。截至到2004年9月,我国共有9台核电机组投入运行,装机容量达到700万千瓦。2003年底,我国核电装机容量和核发电总量,分别占我国电力总装机容量和发电量的1.7%和2.3%。在浙江、广东两省,2003年核发电量均超过本省总发电量的13%,核电成为当地电力供应的重要支柱。 与此同时,通过引进与自主研发,我国在核电站维护运营及设计方面都有了很大的的进步:秦山一期核电站已经安全运行13年,在2003年结束的第七个燃料循环中创造了连续安全运行443天的国内核电站最好成绩,2003年世界核电运营者协会(WANO)九项性能指标中,秦山核电站有六项指标达到中值水平,其中三项指标达到世界先进水平。秦山二期国产化核电站全面建成投产,实现了我国自主建设商用核电站的重大跨越,比投资1330美元/千瓦,国产化率55%,经受住了初步运行考验,表现出了优良的性能,实现了较好的经济效益和社会效益。秦山三期重水堆核电站提前建成投产,实现了核电工程管理与国际接轨,创造了国际同类型核电站的多项纪录。 广东大亚湾核电站投运10年来,保持安全稳定运行,部分运行指标达到国际先进水平,取得了较好的经济效益。广东岭澳核电站也已经全面建成投产并取得良好的运行业绩。江苏田湾核电站1号机组正在调试过程中。此外,我国出口巴基斯坦的恰希玛核电站2000年6月并网发电,2003年负荷因子达到85%。 我国核电当前技术水平与发展情况 进入二十一世纪,传统能源的利用程度已经接近极限,而且,由于工业革命以来,人类对化石能源的过分利用,对环境造成了难以消除的影响。今天,面对油价高涨,能源短缺,各国都在寻找能源的解决办法。中国科学院学部核能发展战略咨询组起草的一份战略研究报告指出,我国能源供应面临三大挑战:第一,能源发展需求与我国能源资源人均拥有量不足之间的矛盾;第二,以煤为主的能源结构不合理,大量燃煤造成严重的环境污染和温室气体问题;第三,能源利用效率不高,能源浪费比较严重。为应对上述挑战,我国将强化节能和提高能效作为基本国策放在首位,并逐步调整和优化能源结构,逐步降低化石能源的消耗份额,提高新能源的份额。而“在各种替代能源中,只有核能既是一种经济、安全、洁净的能源,又可大规模地替代化石能源。只有积极发展核

相关文档
最新文档