电力系统潮流分析精编

合集下载

电力系统中的动态潮流分析

电力系统中的动态潮流分析

电力系统中的动态潮流分析在当今社会,电力已成为我们生活和生产中不可或缺的能源。

从家庭中的电器设备到工业生产中的大型机器,无一不需要稳定可靠的电力供应。

而电力系统就像是一个庞大而复杂的网络,负责将电能从发电厂输送到各个用户终端。

在这个系统中,动态潮流分析是一项至关重要的任务,它帮助我们更好地理解和掌握电力系统的运行状态,确保其安全、稳定和高效运行。

首先,让我们来了解一下什么是电力系统的潮流。

简单来说,潮流就是电力系统在某一特定运行状态下,电力网络中各节点的电压、电流和功率的分布情况。

通过对潮流的分析,我们可以知道电力从哪里来,到哪里去,以及在传输过程中的损耗和变化。

动态潮流分析与传统的静态潮流分析有所不同。

静态潮流分析通常假设电力系统处于一种稳定的运行状态,不考虑系统中的动态变化因素,如发电机的调速器、负荷的动态特性等。

而动态潮流分析则将这些动态因素纳入考虑范围,能够更真实地反映电力系统的实际运行情况。

那么,为什么要进行动态潮流分析呢?这是因为电力系统在实际运行中会面临各种各样的变化和干扰。

例如,突然增加或减少的负荷、发电机的故障、线路的短路等。

这些变化可能会导致电力系统的电压和频率发生波动,甚至可能引发系统的不稳定和崩溃。

通过动态潮流分析,我们可以提前预测这些变化对系统的影响,从而采取相应的控制措施,保障电力系统的安全稳定运行。

在动态潮流分析中,有几个关键的要素需要我们关注。

首先是发电机的模型。

发电机是电力系统中的重要电源,其输出功率和电压会受到调速器和励磁系统的控制。

因此,建立准确的发电机模型对于动态潮流分析至关重要。

其次是负荷模型。

负荷的特性会随着时间和电压的变化而变化,例如电动机负荷的启动和停止会对系统产生较大的冲击。

此外,电力网络的参数,如线路的电阻、电抗和电容等,也会影响动态潮流的分布。

为了进行动态潮流分析,我们需要使用一些专门的工具和方法。

常见的方法包括数值积分法、时域仿真法和频域分析法等。

电力系统潮流分析

电力系统潮流分析

电力系统潮流分析潮流分析是电力系统中一种重要的计算方法,用于分析电力系统中各节点电压、功率和电流的分布情况。

通过潮流分析可以评估电力系统的稳定性和可靠性,为电力系统的规划、运行和控制提供参考依据。

本文将介绍电力系统潮流分析的基本原理、计算方法以及应用范围。

一、潮流分析的基本原理在电力系统中,各节点以母线表示,节点之间通过线路连接。

潮流分析基于以下几个基本原理:1. 电压平衡原理:电力系统中的节点电压必须满足节点处功率平衡方程,即节点出注入电流之和为零。

2. 潮流方程:潮流方程描述了电力系统中各节点之间电压、功率和电流之间的关系。

潮流方程是通过母线注入导纳矩阵、支路导纳和节点注入功率来表达。

3. 网络拓扑:电力系统中的节点和线路之间形成了复杂的拓扑结构,潮流分析需要考虑节点之间的相互连接关系。

二、潮流分析的计算方法潮流分析通常采用迭代法来计算各节点的电压、功率和电流。

常用的迭代法包括高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。

1. 高斯-赛德尔迭代法:该方法是最简单的潮流计算方法之一。

它通过假设电力系统中所有节点电压的初始值,逐步迭代更新节点电压,直到满足收敛条件为止。

2. 牛顿-拉夫逊迭代法:该方法通过建立功率不平衡方程的雅可比矩阵,采用牛顿迭代和拉夫逊补偿的方法来求解节点电压。

牛顿-拉夫逊迭代法具有更快的收敛速度和更高的计算精度。

三、潮流分析的应用范围潮流分析在电力系统中有广泛的应用,包括但不限于以下几个方面:1. 系统规划:潮流分析可以用于电力系统的规划和设计,评估系统瓶颈、优化系统结构和参数配置。

2. 运行控制:潮流分析可以用于电力系统的运行控制,评估节点电压的合理范围、分析负荷变化对系统的影响。

3. 网络优化:潮流分析可以用于电力系统的网络优化,寻找最优输电线路和改善电力系统的供电可靠性。

4. 风电并网:潮流分析可以用于风电并网系统的规划和运行,评估并网系统的可靠性和电力系统与风电场的相互影响。

电 力 系 统第5章 输电系统的潮流分析

电 力 系 统第5章 输电系统的潮流分析

38
图5.16 节点阻抗矩阵中自阻抗和互阻抗的确定
39
5.2.3 功率方程式和变量、节点的分类
(1)功率方程 用节点电压方程计算系统的潮流分布,必须知道各节点注入电流才能解出各
节点电压,从而求得各支路功率。将式(5.13)所示的线性方程组表示为:
节点注入电流与对应功率的关系为
源功率取正,负荷功率取负),代入式(5.22),从而
43
负荷消耗的有功、无功功率——PDi,QDi; 电源发出的有功、无功功率——PGi,QGi; 母线(节点)电压的数值和相位角——Ui,δi。 电源发出的有功、无功功率是可以控制的自变量,称控制变量,以列向量U 表示。 母线(节点)电压的数值和相位角是受控制变量控制的因变量。 变量作如上分类后,如果能给定扰动变量和控制变量,似乎就可运用功率方 程解出2n个状态变量。其实不然,针对系统某一运行状态,虽然所有扰动变 量是确定的,但控制变量并非如此。 这样,就只有2n个未知变量,即可从2n个方程中解出。但为了保证系统的正 常运行,这些待求的2n个变量不是任意解,它们还应满足一定的约束条件。
从而写出图5.19所示网络的节点导纳矩阵:
33
由此可见,节点i的自导纳Yii在数值上等于与该节点直接连接的所有支路导 纳的总和;节点j,i之间的互导纳Yji在数值上等于连接节点j,i支路导纳的 负值。从而可得节点导纳矩阵形成十分容易,只要网络结构确定,就 可根据其网络的等值电路直观地写出。节点导纳矩阵的这些性质可以大大地 加快运算速度和节省内存量,对计算机解算问题十分有利。
44
对控制变量其约束条件是:
保证系统良好的电压质量是系统运行的基本要求之一,因此,各节点电压的 数值不得超出一定范围。从而,对状态变量Ui的约束条件是: 为保证系统运行稳定性的要求,对某些状态变量δi还有如下约束: 2)节点的分类 根据在运算中给定的变量不同系统中的节点可分为三类。 第一类称PQ节点。 第二类称PV节点。 第三类称平衡节点,又称松弛(Slack)母线。

电力系统分析(潮流计算)

电力系统分析(潮流计算)

电力系统分析(一):电力系统的基本概念No.1电力系统的组成和接线方式1、电力系统的四大主要元件:发电机、变压器、电力线路、负荷。

2、动力系统包括动力部分(火电厂的锅炉和汽轮机、水电厂的水库和水轮机、核电厂的核反应堆和汽轮机)和电力系统。

3、电力网包括变压器和电力线路。

4、用户只能从一回线路获得电能的接线方式称为无备用接线方式。

No.2电力系统的运行特点1、电能的生产、传输、分配和消费具有:①重要性、②快速性、③同时性。

2、电力系统运行的基本要求:①安全可靠持续供电(首要要求)、②优质、③经济3、根据负荷的重要程度(供电可靠性)将负荷分为三级。

4、电压质量分为:①电压允许偏差、②三相电压允许不平衡度、③公网谐波、④电压允许波动与闪变5、衡量电能质量的指标:①电压、②频率、③波形(电压畸变率)6、10kV公用电网电压畸变率不超过4%。

7、抑制谐波的主要措施:①变压器星三角接线、②加装调谐波器、③并联电容/串联电抗、④增加整流器的脉冲次数8、衡量电力系统运行经济性的指标:①燃料损耗率、②厂用电率、③网损率9、线损包括:①管理线损、②理论线损、③不明线损10、线损计算方法:①最大负荷损耗时间法②最大负荷损失因数法③均方根电流法No.3电力系统的额定频率和额定电压1、电力线路的额定电压(也称电力网的额定电压)与用电设备的额定电压相同。

2、正常运行时电力线路首端的运行电压常为用电设备额定电压的105%,末端电压为额定电压。

3、发电机的额定电压比电力网的额定电压高5%。

4、变压器的一次绕组相当于用电设备,其额定电压与电力线路的额定电压相同;但变压器直接与发电机相连时,其额定电压与发电机额定电压相同,即为该电压级额定电压的105%。

5、变压器的二次绕组相当于电源,其输出电压应较额定电压高5%,但因变压器本身漏抗的电压损耗在额定负荷时约为5%,所以变压器二次侧的额定电压规定比额定电压高10%。

6、降压变压器二次侧连接10kV线路,当短路电压百分比小于7.5%(变压器本身漏抗的电压损耗较小)时,比线路额定电压高5%。

电力系统潮流分析报告

电力系统潮流分析报告
(6)计算各节点电压的新值
(7)运用各节点电压的新值自第三步开始进入下一次迭代。
(8)计算平衡节点功率。
第三节 计算机算法程序
第三章
第一节 PQ分解法潮流计算时的修正方程式
PQ分解法潮流计算派生于以极坐标表示时的牛顿拉夫逊法,其修正方程式是牛顿拉夫逊修正方程式的简化。为说明这一简化,将牛孙拉弗逊极坐标表示时的雅可比矩阵重新排列,由于高压输电线路的电阻远远小于电抗,以致各节点电压相位角的改变主要影响各元件中的有功功率潮流从而影响各节点的注入有功功率;各节点电压大小的改变主要影响各元件中无功功率潮流从而影响各节点的注入无功功率,可将修正方程简化为
(3)网络中有n—m个PV节点,编号m+1,m+2,…n。
至此,就可以建立修正方程,如下所示
(2-5)
式中雅可比矩阵各个元素分别为
(2—6)
第二节 牛顿拉夫逊法潮流计算的基本步骤
(1)形成节点导纳矩阵
(2)设置各节点电压的初始值
(3)代入初始值,求修正方程式中的不平衡量
(4)求取雅可比矩阵中各元素
(5)解修正方程式,求各节点的修正量。
(7)解修正方程式(4—3b),求各节点相位角的修正量
(8)求取各节点电压大小的新值
(9)运用各节点电压的新值自第三部开始下一次迭代
(10)计算平衡节点功率
第三节 PQ分解法的MATLAB实现(见附件)
第四章
与牛顿拉弗逊相比,PQ分解法有如下特点:
(1)以一个(n-1)阶和一个(m-1)阶系数矩阵 、 代替原有的(n+m—2)阶矩阵J,提高了计算速度,降低了对内存的要求。
(2)以迭代过程中保持不变的系数矩阵 、 替代不对称的系数矩阵J,提高了计算速度。

电力系统分析潮流计算最终完整版

电力系统分析潮流计算最终完整版

电力系统分析潮流计算最终完整版电力系统潮流计算是电力系统运行的基础,它对电力系统的稳定运行和安全运行具有重要意义。

本文将介绍电力系统潮流计算的主要内容和步骤,并阐述其在电力系统运行中的应用。

电力系统潮流计算是指对电力系统中各节点的电压和功率进行计算和分析的过程。

它主要用于确定电力系统中各个节点的电压和相应的功率,以评估电力系统的稳定性和安全性。

潮流计算的结果可以用于电力系统的规划、调度和运行等各个环节。

潮流计算的主要步骤主要包括:建立电力系统潮流模型、制定潮流计算方程、选择潮流计算方法和求解潮流计算方程。

建立电力系统潮流模型是潮流计算的第一步,它主要包括确定电力系统的拓扑结构、电气参数和发电机和负荷模型等。

通过建立电力系统的拓扑结构和电气参数,可以确定电力系统中各个节点之间的连接关系和传输条件。

发电机和负荷模型则用于描述电力系统中的发电机和负荷之间的相互作用。

制定潮流计算方程是潮流计算的第二步,它主要是根据电力系统的拓扑结构和电气参数,建立潮流计算的数学模型。

潮流计算方程主要包括功率方程、节点电压方程和变压器方程等。

功率方程用于描述发电机和负荷之间的功率平衡关系,节点电压方程用于描述电力系统中各个节点的电压平衡关系,变压器方程用于描述变压器的运行状况。

选择潮流计算方法是潮流计算的第三步,它主要是选择合适的方法来求解潮流计算方程。

常见的方法包括直接迭代法、高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和快速迭代法等。

不同的方法在精度和收敛速度上有所差异,根据实际情况选择合适的方法。

求解潮流计算方程是潮流计算的最后一步,它主要是通过迭代计算,求解潮流计算方程得到电力系统各个节点的电压和功率值。

在求解过程中,需要根据实际情况设置迭代的初始值和收敛条件,以保证计算结果的准确性和稳定性。

电力系统潮流计算在电力系统运行中具有广泛的应用。

它可以用于电力系统规划,通过计算电力系统中各个节点的电压和功率,评估电力系统的输电能力和供电质量,为电力系统的扩容和优化提供指导。

电力系统分析潮流计算最终完整版

电力系统分析潮流计算最终完整版

电力系统分析潮流计算实验报告姓名:XXXXXX 学号:XXXXXXXXXX 班级:XXXXXXXX一、实验目的掌握潮流计算计算机算法的方法,熟悉MATLAB的程序调试方法。

二、实验准备根据课程内容,熟悉MATLAB软件的使用方法,自行学习MATLAB程序的基础语法,并根据所学知识编写潮流计算牛顿拉夫逊法(或PQ分解法) 的计算程序,用相应的算例在MATLAB上进行计算、调试和验证。

三、实验要求每人一组,在实验课时内,调试和修改运行程序,用算例计算输出潮流结果。

四、程序流程五、实验程序%本程序的功能是用牛拉法进行潮流计算%原理介绍详见鞠平著《电气工程》%默认数据为鞠平著《电气工程》例8.4所示数据%B1是支路参数矩阵%第一列和第二列是节点编号。

节点编号由小到大编写%对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点编号%第三列为支路的串列阻抗参数,含变压器支路此值为变压器短路电抗%第四列为支路的对地导纳参数,含变压器支路此值不代入计算%第五烈为含变压器支路的变压器的变比,变压器非标准电压比%第六列为变压器是否是否含有变压器的参数,其中“1”为含有变压器,“0”为不含有变压器%B2为节点参数矩阵%第一列为节点注入发电功率参数%第二列为节点负荷功率参数%第三列为节点电压参数%第四列%第五列%第六列为节点类型参数,“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数%X为节点号和对地参数矩阵%第一列为节点编号%第二列为节点对地参数%默认算例% n=4;% n1=4;% isb=4;% pr=0.00001;% B1=[1 2 0.1667i 0 0.8864 1;1 3 0.1302+0.2479i 0.0258i 1 0;1 4 0.1736+0.3306i 0.0344i 1 0;3 4 0.2603+0.4959i 0.0518i 1 0];% B2=[0 0 1 0 0 2;0 -0.5-0.3i 1 0 0 2;0.2 0 1.05 0 0 3;0 -0.15-0.1i 1.05 0 0 1];% X=[1 0;2 0.05i;3 0;4 0];clear;clc;num=input('是否采用默认数据?(1-默认数据;2-手动输入)');if num==1n=4;n1=4;isb=4;pr=0.00001;B1=[1 2 0.1667i 0 0.8864 1;1 3 0.1302+0.2479i 0.0258i 1 0;1 4 0.1736+0.3306i 0.0344i 1 0;3 4 0.2603+0.4959i 0.0518i 1 0];B2=[0 0 1 0 0 2;0 -0.5-0.3i 1 0 0 2;0.2 0 1.05 0 0 3;0 -0.15-0.1i 1.05 0 0 1];X=[1 0;2 0.05i;3 0;4 0];elsen=input('请输入节点数:n=');n1=input('请输入支路数:n1=');isb=input('请输入平衡节点号:isb=');pr=input('请输入误差精度:pr=');B1=input('请输入支路参数:B1=');B2=input('请输入节点参数:B2=');X=input('节点号和对地参数:X=');endTimes=1; %迭代次数%创建节点导纳矩阵Y=zeros(n);for i=1:n1if B1(i,6)==0 %不含变压器的支路p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-1/B1(i,3);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4);Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4);else %含有变压器的支路p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-B1(i,5)/B1(i,3);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+B1(i,5)/B1(i,3)+(1-B1(i,5))/B1(i,3);Y(q,q)=Y(q,q)+B1(i,5)/B1(i,3)+(B1(i,5)*(B1(i,5)-1))/B1(i,3);endendfor i=1:n1Y(i,i)=Y(i,i)+X(i,2); %计及补偿电容电纳enddisp('导纳矩阵为:');disp(Y); %显示导纳矩阵%初始化OrgS、DetaSOrgS=zeros(2*n-2,1);DetaS=zeros(2*n-2,1);%创建OrgS,用于存储初始功率参数h=0;j=0;for i=1:n %对PQ节点的处理if i~=isb&B2(i,6)==2 %不是平衡点&是PQ点h=h+1;for j=1:n%公式8-74%Pi=ei*(Gij*ej-Bij*fj)+fi*(Gij*fj+Bij*ej)%Qi=fi*(Gij*ej-Bij*fj)-ei*(Gij*fj+Bij*ej)OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real (Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j ,3))+imag(Y(i,j))*real(B2(j,3)));endendendfor i=1:n %对PV节点的处理,注意这时不可再将h初始化为0if i~=isb&B2(i,6)==3 %不是平衡点&是PV点h=h+1;for j=1:n%公式8-75-a%Pi=ei*(Gij*ej-Bij*fj)+fi*(Gij*fj+Bij*ej)%Qi=fi*(Gij*ej-Bij*fj)-ei*(Gij*fj+Bij*ej)OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real (Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j ))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendend%创建PVU 用于存储PV节点的初始电压PVU=zeros(n-h-1,1);t=0;for i=1:nif B2(i,6)==3t=t+1;PVU(t,1)=B2(i,3);endend%创建DetaS,用于存储有功功率、无功功率和电压幅值的不平衡量h=0;for i=1:n %对PQ节点的处理if i~=isb&B2(i,6)==2h=h+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1); %delPiDetaS(2*h,1)=imag(B2(i,2))-OrgS(2*h,1); %delQiendendt=0;for i=1:n %对PV节点的处理,注意这时不可再将h初始化为0if i~=isb&B2(i,6)==3h=h+1;t=t+1;DetaS(2*h-1,1)=real(B2(i,1))-OrgS(2*h-1,1); %delPiDetaS(2*h,1)=real(PVU(t,1))^2+imag(PVU(t,1))^2-real(B2(i,3))^2-imag(B2(i,3))^2; %delUi endend% DetaS%创建I,用于存储节点电流参数i=zeros(n-1,1);h=0;for i=1:nif i~=isbh=h+1;I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1))/conj(B2(i,3));%conj求共轭endend%创建Jacbi(雅可比矩阵)Jacbi=zeros(2*n-2);h=0;k=0;for i=1:n %对PQ节点的处理if B2(i,6)==2h=h+1;for j=1:nif j~=isbk=k+1;if i==j %对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1));else %非对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1);endif k==(n-1) %将用于内循环的指针置于初始值,以确保雅可比矩阵换行k=0;endendendendendk=0;for i=1:n %对PV节点的处理if B2(i,6)==3h=h+1;for j=1:nif j~=isbk=k+1;if i==j %对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=2*imag(B2(i,3));Jacbi(2*h,2*k)=2*real(B2(i,3));else %非对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=0;Jacbi(2*h,2*k)=0;endif k==(n-1) %将用于内循环的指针置于初始值,以确保雅可比矩阵换行k=0;endendendendenddisp('初始雅可比矩阵为:');disp(Jacbi);%求解修正方程,获取节点电压的不平衡量DetaU=zeros(2*n-2,1);DetaU=inv(Jacbi)*DetaS; %inv矩阵求逆% DetaU%修正节点电压j=0;for i=1:n %对PQ节点处理if B2(i,6)==2j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endendfor i=1:n %对PV节点的处理if B2(i,6)==3j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endend% B2%开始循环**********************************************************************while abs(max(DetaU))>prOrgS=zeros(2*n-2,1);h=0;j=0;for i=1:nif i~=isb&B2(i,6)==2h=h+1;for j=1:nOrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real (Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j ))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendendfor i=1:nif i~=isb&B2(i,6)==3h=h+1;for j=1:nOrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real (Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j ))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendend% OrgS%创建DetaSh=0;for i=1:nif i~=isb&B2(i,6)==2h=h+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);DetaS(2*h,1)=imag(B2(i,2))-OrgS(2*h,1);endendt=0;for i=1:nif i~=isb&B2(i,6)==3h=h+1;t=t+1;% DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);DetaS(2*h-1,1)=real(B2(i,1))-OrgS(2*h-1,1);DetaS(2*h,1)=real(PVU(t,1))^2+imag(PVU(t,1))^2-real(B2(i,3))^2-imag(B2(i,3))^2;endend% DetaS%创建Ii=zeros(n-1,1);h=0;for i=1:nif i~=isbh=h+1;I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1))/conj(B2(i,3));endend% I%创建JacbiJacbi=zeros(2*n-2);h=0;k=0;for i=1:nif B2(i,6)==2h=h+1;for j=1:nif j~=isbk=k+1;if i==jJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1));elseJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1);endif k==(n-1)k=0;endendendendendk=0;for i=1:nif B2(i,6)==3h=h+1;for j=1:nif j~=isbk=k+1;if i==jJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=2*imag(B2(i,3));Jacbi(2*h,2*k)=2*real(B2(i,3));elseJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=0;Jacbi(2*h,2*k)=0;endif k==(n-1)k=0;endendendend% JacbiDetaU=zeros(2*n-2,1);DetaU=inv(Jacbi)*DetaS;% DetaU%修正节点电压j=0;for i=1:nif B2(i,6)==2j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endendfor i=1:nif B2(i,6)==3j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endend% B2Times=Times+1; %迭代次数加1enddisp('迭代次数为:');disp(Times);disp('收敛时电压修正量为::');disp(DetaU);for k=1:nE(k)=B2(k,3);e(k)=real(E(k));f(k)=imag(E(k));V(k)=sqrt(e(k)^2+f(k)^2);sida(k)=atan(f(k)./e(k))*180./pi;end%=============== 计算各输出量=========================== disp('各节点的实际电压标幺值E为(节点号从小到大排列):'); disp(E); %显示各节点的实际电压标幺值E用复数表示disp('-----------------------------------------------------')disp('各节点的电压大小V为(节点号从小到大排列):');disp(V); %显示各节点的电压大小V的模值disp('-----------------------------------------------------');disp('各节点的电压相角sida为(节点号从小到大排列):');disp(sida); %显示各节点的电压相for p=1:nfor q=1:nC(p)=C(p)+conj(Y(p,q))*conj(E(q)); %计算各节点的注入电流的共轭值endS(p)=E(p)*C(p); %计算各节点的功率S = 电压X 注入电流的共轭值enddisp('各节点的功率S为(节点号从小到大排列):');disp(S); %显示各节点的注入功率Sline=zeros(n1,5);disp('-----------------------------------------------------');disp('各条支路的首端功率Si为(顺序同您输入B1时一致):');for i=1:n1p=B1(i,1);q=B1(i,2);Sline(i,1)=B1(i,1);Sline(i,2)=B1(i,2);if B1(i,6)==0Si(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))-conj(E(q)))*conj(1./(B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);elseSi(p,q)=E(p)*(conj(E(p))*((1-B1(i,5))/B1(i,3))+(conj(E(p))-conj(E(q)))*(B1(i,5)/B1(i,3)));Siz(i)=Si(p,q);endSSi(p,q)=Si(p,q);Sline(i,3)=Siz(i);ZF=['S(',num2str(p),',',num2str(q),')=',num2str(SSi(p,q))];disp(ZF);enddisp('-----------------------------------------------------');disp('各条支路的末端功率Sj为(顺序同您输入B1时一致):');for i=1:n1p=B1(i,1);q=B1(i,2);if B1(i,6)==0Sj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)./B1(i,5))-conj(E(p)))*conj(1./(B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);elseSj(q,p)=E(q)*(conj(E(q))*((B1(i,5)*(B1(i,5)-1))/B1(i,3))+(conj(E(q))-conj(E(p)))*(B1(i,5)/B1(i,3)));Sjy(i)=Sj(q,p);endSSj(q,p)=Sj(q,p);Sline(i,4)=Sjy(i);ZF=['S(',num2str(q),',',num2str(p),')=',num2str(SSj(q,p))];disp(ZF);enddisp('-----------------------------------------------------');disp('各条支路的功率损耗DS为(顺序同您输入B1时一致):');for i=1:n1p=B1(i,1);q=B1(i,2);DS(i)=Si(p,q)+Sj(q,p);DDS(i)=DS(i);Sline(i,5)=DS(i);ZF=['DS(',num2str(p),',',num2str(q),')=',num2str(DDS(i))];disp(ZF);enddisp('-----------------------------------------------------');disp('各支路首端编号末端编号首端功率末端功率线路损耗');disp(Sline);六、运行结果及其分析是否采用默认数据?(1-默认数据;2-手动输入)1导纳矩阵为:2.9056 -11.5015i 0.0000 + 5.3173i -1.6606 +3.1617i -1.2450 + 2.3710i0.0000 + 5.3173i 0.0000 - 4.6633i 0.0000 + 0.0000i 0.0000 + 0.0000i-1.6606 + 3.1617i 0.0000 + 0.0000i 2.4904 - 4.7039i -0.8298 + 1.5809i-1.2450 + 2.3710i 0.0000 + 0.0000i -0.8298 + 1.5809i 2.0749 - 3.9089i初始雅可比矩阵为:11.1267 2.7603 -5.3173 0 -3.1617 -1.6606-3.0509 11.8762 0 -5.3173 1.6606 -3.1617-5.3173 0 5.3173 0 0 00 -5.3173 0 4.0092 0 0-3.3198 -1.7436 0 0 4.8217 2.69800 0 0 0 0 2.1000迭代次数为:4收敛时电压修正量为::1.0e-05 *0.0349-0.2445-0.0101-0.5713-0.0931-0.0073各节点的实际电压标幺值E为(节点号从小到大排列):0.9673 - 0.0655i 1.0252 - 0.1666i 1.0495 - 0.0337i 1.0500 + 0.0000i -----------------------------------------------------各节点的电压大小V为(节点号从小到大排列):0.9695 1.0387 1.0500 1.0500-----------------------------------------------------各节点的电压相角sida为(节点号从小到大排列):-3.8734 -9.2315 -1.8419 0各节点的功率S为(节点号从小到大排列):-0.0000 + 0.0000i -0.5000 - 0.3000i 0.2000 + 0.1969i 0.3277 + 0.0443i -----------------------------------------------------各条支路的首端功率Si为(顺序同您输入B1时一致):S(1,2)=-0.5-0.30713iS(1,3)=-0.24266-0.197iS(1,4)=-0.25734-0.11013iS(3,4)=-0.055551+0.0017528i-----------------------------------------------------各条支路的末端功率Sj为(顺序同您输入B1时一致):S(2,1)=0.5+0.24606iS(3,1)=0.25555+0.1952iS(4,1)=0.2712+0.1014iS(4,3)=0.056496-0.057061i-----------------------------------------------------各条支路的功率损耗DS为(顺序同您输入B1时一致):DS(1,2)=0-0.06107iDS(1,3)=0.012892-0.0018014iDS(1,4)=0.013863-0.0087295iDS(3,4)=0.00094545-0.055308i-----------------------------------------------------各支路首端编号末端编号首端功率末端功率线路损耗1.0000 + 0.0000i2.0000 + 0.0000i -0.5000 - 0.3071i 0.5000 + 0.2461i 0.0000 - 0.0611i 1.0000 + 0.0000i3.0000 + 0.0000i -0.2427 - 0.1970i 0.2556 + 0.1952i 0.0129 - 0.0018i 1.0000 + 0.0000i4.0000 + 0.0000i -0.2573 - 0.1101i 0.2712 + 0.1014i 0.0139 - 0.0087i3.0000 + 0.0000i4.0000 + 0.0000i -0.0556 + 0.0018i 0.0565 - 0.0571i 0.0009 - 0.0553i七、实验体会及感悟通过这次实验,首先让我对matlab软件有了初步的了解,对它强大的矩阵运算能力有了更深的体会,同时掌握了设置断点和断点调试的一般方法,结合课本上的程序流程图和参考资料上的例子单步跟踪调试,再一次的熟悉了牛顿拉夫逊法潮流计算的一般方法和步骤,对计算机计算潮流计算有了更进一步的认识,在学习潮流计算时,虽然依次学习了节点导纳矩阵,功率方程、雅可比矩阵,但不能将它们联系起来,更不知道其中的原委,通过程序的编写,知道了其中的联系,也知道了每个方程、矩阵在计算中的作用。

电力系统潮流分析

电力系统潮流分析

电力系统潮流分析电力系统潮流分析是电力系统运行和规划中的重要工作,通过对电力系统的节点电压和功率流动进行计算和分析,可以评估电力系统的稳定性、安全性以及电能的经济分配。

本文将从潮流分析的基本原理、计算方法以及应用方面进行论述。

一、基本原理电力系统潮流分析是基于电力系统的等效电路模型和节点电压/功率之间的关系进行的。

在电力系统中,各个节点之间通过导线连接,形成复杂的电网。

当电力系统运行时,节点之间通过导线传输电能,而节点电压会受到负荷、发电机、变压器等因素的影响而发生变化。

电力系统潮流分析需要根据各个节点的特性(负荷、电源等)以及导线的特性(阻抗、输电能力等),计算得到节点电压和功率的分布情况,从而对电力系统的运行状态有所了解。

二、计算方法电力系统潮流分析的计算方法主要包括潮流方程的建立和潮流计算的迭代过程。

1. 潮流方程的建立潮流方程是电力系统潮流计算的基础,其基本形式为节点功率方程和节点电压方程。

节点功率方程描述了节点负荷与节点电压、导线传输电能之间的关系;节点电压方程描述了节点电压与节点电流、导线阻抗之间的关系。

通过列举各个节点的功率方程和电压方程,并结合电力系统的拓扑关系,可以建立电力系统的潮流方程。

2. 潮流计算的迭代过程潮流计算是通过迭代的方法求解电力系统的节点电压和功率流动情况。

迭代过程中,首先需要对电力系统中的各个节点进行初始化,即给定节点电压和功率的初值。

然后,根据潮流方程,计算节点电压和功率的值,再根据计算结果进行修正,直到达到收敛条件为止。

常用的潮流计算方法包括高斯-赛德尔迭代法、牛顿-拉夫逊迭代法等。

三、应用方面电力系统潮流分析在电力系统运行和规划中有广泛的应用。

1. 运行控制通过潮流分析可以获得电力系统的节点电压和功率分布情况,从而评估电网的稳定性。

根据潮流分析的结果,可以采取相应的控制措施,如调节发电机的输出功率、调整变压器的变比等,以维持电力系统的稳定运行。

2. 负荷分配潮流分析可以帮助确定电力系统中各个节点的负荷分布情况,从而合理安排电能的供应。

电力系统最优潮流分析

电力系统最优潮流分析

电力系统最优潮流分析电力系统是现代社会中最重要的系统工程之一,为社会生产和人民生活提供了绝大部分能量。

电能的生产需要耗费大量的燃料,而目前电能在输送、分配和消费过程中存在着大量的损耗。

因此如何采取适当措施节约能源,提高整个电力系统的运行效率,优化系统的运行方式,是国内外许多学者一直关注与研究的热点。

电力系统的最优化运行是指在确保电力系统安全运行、满足用户用电需求的前提下,如何通过调度系统中各发电机组或发电厂的运行,从而使系统发电所需的总费用或所消耗的总燃料达到最小的运筹决策问题。

数学上可将此问题描述为非线性规划或混合非线性规划问题。

最优潮流问题是指在满足必须的系统运行和安全约束条件下,通过调整系统中可利用控制手段实现预定目标最优的系统稳定运行状态。

同经典的经济调度法相比,最优潮流具有全面规划、统筹考虑等优点,它可将安全运行和最优经济运行等问题进行综合考虑,通过统一的数学模型来描述,从而将电力系统对经济性、安全性以及电能质量等方面的要求统一起来。

最优潮流问题的提出把电力系统的最优运行理论提高到一个新的高度,受到了国内外学者高度重视。

最优潮流已在电力系统中的安全运行、电网规划、经济调度、阻塞管理、可靠性分析以及能量管理系统等方面得到了广泛应用,成为了电力系统网络运行分析和优化中不可或缺的工具。

一、最优潮流问题研究的意义最优潮流可将电力系统可靠性与电能质量量化成相应的经济指标,并最终达到优化资源配置、降低成本、提高服务质量的目的。

因此最优潮流研究具有传统潮流计算无法比拟的意义,主要体现在以下两个方面。

一方面,通过最优潮流计算可指导系统调度员的操作,保证系统在经济、安全、可靠的状态下运行。

具体表现为:第一,当所求问题以目标函数、控制变量和约束条件的形式固定下来后,就一定可以求出唯一最优解,并且该结果不受人为因素的影响。

第二,最优潮流的寻优过程可以自动识别界约束,在解逐渐趋于最优的过程中可得到网络传输瓶颈信息,从而可以指导电网扩容与规划。

电力系统潮流计算与分析

电力系统潮流计算与分析

电力系统潮流计算与分析概述:电力系统潮流计算与分析是电力系统运行中的重要步骤,它涉及到对电力系统的节点电压、线路潮流以及功率损耗等进行精确计算和分析的过程。

通过潮流计算和分析,电力系统运行人员可以获得关键的运行参数,从而保持电力系统的稳定运行。

本文将从潮流计算的基本原理、计算方法、影响因素以及潮流分析的实际应用等方面进行论述。

潮流计算的基本原理:潮流计算的基本原理是基于电力系统的节点电压和线路潮流之间的平衡关系进行计算。

在电力系统中,电源会向负载供电,而线路损耗会导致电压降低。

潮流计算就是要确定电力系统中各个节点的电压和线路潮流,以保持系统的稳定运行。

通过潮流计算,可以得到节点电压、线路潮流以及负荷功率等关键参数。

潮流计算的方法:潮流计算可以分为迭代法和直接法两种方法。

1. 迭代法:迭代法是潮流计算中最常用的方法,它基于电力系统的牛顿—拉夫逊法(Newton-Raphson method)来进行计算。

迭代法的基本步骤如下:a. 假设节点电压的初值;b. 根据节点电压初值和电力系统的潮流方程建立节点电流方程组;c. 利用牛顿—拉夫逊法迭代求解节点电压;d. 判断是否满足收敛条件,如果不满足,则返回第二步重新计算,直至满足收敛条件。

2. 直接法:直接法是潮流计算中的另一种方法,它基于电力系统的潮流松弛法(Gauss-Seidel method)来进行计算。

直接法的基本步骤如下:a. 假设节点电压的初值;b. 根据节点电压初值和电力系统的潮流方程,按照节点顺序逐步计算节点电压;c. 判断是否满足收敛条件,如果不满足,则返回第二步重新计算,直至满足收敛条件。

影响潮流计算的因素:1. 负荷:电力系统中的负荷是潮流计算中的重要因素之一,负荷的变化会导致节点电压和线路潮流的波动。

因此,在进行潮流计算时,需要准确地估计各个节点的负荷。

2. 发电机:发电机是电力系统的电源,它的输出功率和电压会影响潮流计算中的节点电压和线路潮流。

电力行业的电力系统潮流计算与分析

电力行业的电力系统潮流计算与分析

电力行业的电力系统潮流计算与分析电力系统是一个复杂的能源交互网络,其潮流计算与分析对于电力行业的运营和规划至关重要。

本文将介绍电力系统潮流计算的基本原理、方法以及应用,并对一些常见的电力系统问题进行分析和解决。

一、电力系统潮流计算原理电力系统潮流计算是指通过建立和求解电力系统的节点电压和支路潮流等参数的方程组,来分析电力系统中各个节点和支路的电压、功率等参数。

其基本原理是基于电力系统中的潮流方程和节点电压平衡方程。

电力系统潮流方程是描述电力系统节点之间潮流传输关系的基本方程。

在潮流计算中,常用的潮流方程有M端潮流方程、PQ端潮流方程和PV端潮流方程。

这些方程反映了电力系统中不同类型节点的潮流传输特性,是潮流计算的基础。

节点电压平衡方程是电力系统潮流计算中的重要方程。

它根据电力系统的拓扑结构和能量守恒原理,描述了电力系统中各个节点的电压平衡关系。

通过求解节点电压平衡方程,可以得到电力系统中各个节点的电压值,从而确定电力系统的潮流分布情况。

二、电力系统潮流计算方法电力系统潮流计算方法包括迭代法、直接法和混合法等。

其中,迭代法是最常用和最经典的方法。

1. 迭代法迭代法是通过反复迭代计算来逼近电力系统的潮流计算结果。

常用的迭代法有高斯-赛德尔法、牛顿-拉夫逊法和快速潮流法等。

高斯-赛德尔法是一种基于节点顺序更新的迭代法,通过交替更新节点电压和支路潮流,逐渐逼近潮流计算结果。

牛顿-拉夫逊法是一种基于牛顿迭代法的改进方法,通过利用电压-节点功率雅可比矩阵的特性,加快了潮流计算的收敛速度。

快速潮流法是一种针对大规模电力系统的高效迭代法,通过合理的迭代策略和加速技术,提高了潮流计算的效率和准确性。

2. 直接法直接法是一种通过求解线性方程组来直接得到电力系统的潮流计算结果的方法。

常用的直接法有节点导纳矩阵法和母线导纳矩阵法等。

节点导纳矩阵法是一种基于电力系统拓扑结构的直接法,通过建立节点导纳矩阵和节点电流矩阵,求解节点电流和支路潮流。

电力系统潮流分析与潮流控制方法研究

电力系统潮流分析与潮流控制方法研究

电力系统潮流分析与潮流控制方法研究近年来,随着电力需求的快速增长,电力系统的规模和复杂度也逐渐增加。

电力潮流分析是电力系统中最基础、最重要的问题之一,它对于电网运行和规划具有重要的意义。

本文将介绍电力系统潮流分析的基本原理与方法,并探讨一些潮流控制的研究方向。

一、电力系统潮流分析电力系统潮流分析是指通过计算电网中各节点的电压和功率大小,来推断电力系统中各元件的电压、功率、电流等重要参数的方法。

电力系统潮流分析的主要目的是获得系统运行状态的信息,以便合理地配置电力资源和优化系统运行。

潮流分析的基本原理是基于电力系统的节点电流平衡方程和节点电压平衡方程。

节点电流平衡方程描述了电力系统中各节点的注入有功功率与出注有功功率之间的平衡关系,即注入有功功率等于出注有功功率。

节点电压平衡方程则描述了电力系统中各节点的注入无功功率与出注无功功率之间的平衡关系。

电力系统潮流分析的方法主要分为直流潮流和交流潮流两种。

直流潮流是一种简化的潮流计算方法,它假设电网中的所有元件均为线性无功,即不考虑元件的损耗和非线性等因素。

直流潮流方法适用于负荷较小、电网变化较慢的情况下,能够快速计算得到电力系统中各节点的电压和功率大小。

而交流潮流则是一种更精确、更复杂的潮流计算方法,它考虑了电网元件的非线性特性和损耗等因素。

交流潮流分析需要通过迭代计算来逼近电力系统中各节点的电压和功率大小。

通常使用牛顿-拉夫逊法或高斯-赛德尔法等数值计算方法进行求解。

二、潮流控制方法研究潮流控制是指通过调节电力系统中的控制设备和控制策略,改变系统的潮流分布,以达到优化电力系统运行和保证电网的稳定性等目标。

潮流控制方法研究的核心是寻找有效的控制手段和策略,使得电力系统在各种工况下都能保持良好的运行状态。

一种常见的潮流控制方法是调节发电机有功和无功输出。

通过调节发电机的出力,可以改变电力系统中各节点的电压和功率分布,以满足负荷需求,增加系统的可靠性。

同时,通过调节发电机的无功输出,可以调整系统中的功率因数,提高电力系统的功率负载能力。

电力系统潮流分析与稳定性研究

电力系统潮流分析与稳定性研究

电力系统潮流分析与稳定性研究电力系统是我们现代生活中不可或缺的一部分。

它为我们带来了光明、热力、流动和信号,同时也承担了国家能源战略重任。

在电力系统中,潮流计算是实现电力平衡和保障电网安全运行的重要方法之一,而潮流稳定性研究是保障电力系统稳定运行的重要保障。

一、电力系统潮流分析在电力系统中,潮流计算是指在给定的电源、负载及电路参数条件下,计算各节点电压、电流、功率等参数的计算过程。

潮流计算是电网运行管理和规划中重要的支撑技术,通过潮流计算,可以了解电力系统的运行状态和负荷水平,对于安排电力生产计划、优化电网配置、制定电力调度方案、合理规划电网扩建等方面具有重要意义。

在潮流计算中,常用的计算方法为节点法和支路法。

节点法指通过计算每个节点的电压及相位角度,来推算各节点的电流等参数。

而支路法则是从支路流动出发,主要是将支路电流的分布规律转化为节点电压的分布规律。

二、电力系统潮流稳定性研究电力系统潮流稳定性研究是指对于电力系统各种干扰因素导致的系统不稳定现象进行研究和分析,以保障电力系统的稳定运行。

通常情况下,电力系统中会出现各种不稳定因素,如本地系统扰动、负荷变动、间歇电源等,这些不稳定因素会导致电力系统出现电压偏差、频率波动等安全隐患,必须及时检测和识别,避免对电力系统的正常运行造成影响。

现代电力系统的稳定性研究主要包括动态稳定性和静态稳定性两大方面。

动态稳定性研究是指在系统发生扰动时,恢复稳态时所需要的时间和控制量的大小,其中包含了暂态稳定性和稳定裕度两部分。

静态稳定性则是系统在小扰动条件下,各个节点电压幅值、相角稳定,不会出现过电压或过电流等不稳定现象。

三、结论潮流分析和稳定性研究是电力系统稳定性保障的重要技术手段。

电力系统运行时常遭受一系列外部干扰,如天气变化、负荷变化、新能源互联网等因素,这些干扰因素对于电力系统的影响不能被忽略。

因此,我们必须要掌握先进的电力潮流计算和稳定性分析方法,通过实时监测、数据分析和先进算法等多种手段,实现电力系统运行的可靠与稳定。

电力系统潮流分析

电力系统潮流分析

目录弓I言 (3)第一章电力系统运行稳定性的基本概念 (4)1.1同步发电机的机电特性 (4)1.1.1同步发电机的功角特性 (4)1.1.2同步发电机的转子运动特性 (6)1.2电力系统的静态稳定 (7)13电力系统的暂态稳定 (8)1.4电力系统的负荷稳定 (9)1.5电力系统的电压稳定 (11)第二章电力系统潮流原理分析 (13)2.1电力系统潮流的概述 (13)2.2简单电力系统的运行和分析 (13)2.2.1简单电力网络的电压降落 (13)2.2.2简单电力网络的功率损耗 (15)2.3电力系统潮流的调整和控制 (18)23.1电力系统无功功率的平衡 (18)2.3.2无功功率与系统电压的关系 (19)2.3.3电力系统中自功功率的平衡 (21)第三章电力系统潮流实验分析 (22)3.1电力系统潮流分析实验设备简介 (22)3.1.1THLZD—2型电力系统综合自动化实验平台的介绍 (22)3.1.2THLDK—2型电力系统监控实验平台的简介 (23)3.2电力系统潮流实验 (24)3.2.1实验中公用的实验步骤说明 (25)3.2.2复杂电力系统潮流分布的典型结构 (29)3.2.3三相相间短路对复杂电力系统潮流的影响 (30)3.2.4切机、切负荷对复杂电力系统潮流的彫响 (30)3.2.5原动机转速扰动对复杂电力系统潮流的影响 (30)3.2.6原动机励磁改变对复杂电力系统潮流的影响 (30)3.2.7原动机进相运行对复杂电力系统潮流的影响 (30)3.2.8电容补偿对节点电压的影响 (30)引言在现代社会中,电能早已成为社会生产力的重要基础,为工业、农业、交通、国防等各行各业提供着不可缺少的动力,它已经像粮食、空气一般,成为支掠现代社会文明的物质基础之一。

社会文明越发达,我们人类的生产和生活就越离不开电能。

因此,电力工业作为国民经济的一项基础产业,其发展水半已经成为反映国家经济发达程度的重要指标。

潮流计算实验报告分析

潮流计算实验报告分析

一、实验背景与目的电力系统潮流计算是电力系统分析中的一个重要环节,它通过对电力系统网络中功率和电压的分布进行计算,以评估系统的运行状态。

本实验旨在通过实际操作,加深对电力系统潮流计算原理和方法的理解,并掌握使用PSASP、ETAP等软件进行潮流计算的基本技能。

二、实验原理与方法1. 基本原理潮流计算主要基于基尔霍夫电流定律和基尔霍夫电压定律,通过求解电力系统网络中的功率和电压分布,得到各节点电压、线路电流和设备功率等参数。

2. 计算方法常用的潮流计算方法包括牛顿-拉夫逊法、快速分解法、迭代法等。

本实验采用牛顿-拉夫逊法进行潮流计算。

3. 实验步骤(1)建立电力系统网络模型,包括节点、线路、变压器等元件;(2)设置各节点电压初始值和负荷功率;(3)计算网络中各支路功率和节点电压,判断是否满足功率平衡和电压平衡;(4)根据功率平衡和电压平衡条件,修正节点电压,重复步骤(3)直至满足收敛条件。

三、实验过程与结果分析1. 实验数据本实验采用某实际电力系统网络进行计算,网络包括10个节点、15条线路和3个变压器。

2. 实验步骤(1)根据实验数据,建立电力系统网络模型;(2)设置各节点电压初始值和负荷功率;(3)使用PSASP软件进行潮流计算;(4)分析计算结果,包括节点电压、线路电流和设备功率等。

3. 结果分析(1)节点电压分布合理,各节点电压满足运行要求;(2)线路电流分布均匀,线路负载率在合理范围内;(3)设备功率分配合理,满足电力系统运行需求。

四、实验总结与讨论1. 实验总结本实验通过实际操作,加深了对电力系统潮流计算原理和方法的理解,掌握了使用PSASP软件进行潮流计算的基本技能。

2. 讨论(1)实验中,节点电压初始值设置对计算结果有较大影响,需要根据实际情况进行设置;(2)潮流计算结果受网络拓扑结构、元件参数和负荷分布等因素的影响,需要综合考虑;(3)在实际工程应用中,应根据具体情况选择合适的潮流计算方法,以保证计算结果的准确性和可靠性。

(完整)电力系统潮流计算方法分析

(完整)电力系统潮流计算方法分析

电力系统潮流分析—基于牛拉法和保留非线性的随机潮流姓名:***学号:***1 潮流算法简介1.1 常规潮流计算常规的潮流计算是在确定的状态下.即:通过已知运行条件(比如节点功率或网络结构等)得到系统的运行状态(比如所有节点的电压值与相角、所有支路上的功率分布和损耗等)。

常规潮流算法中的一种普遍采用的方法是牛顿-拉夫逊法.当初始值和方程的精确解足够接近时,该方法可以在很短时间内收敛.下面简要介绍该方法。

1.1。

1牛顿拉夫逊方法原理对于非线性代数方程组式(1-1),在待求量x 初次的估计值(0)x 附近,用泰勒级数(忽略二阶和以上的高阶项)表示它,可获得如式(1-2)的线性化变换后的方程组,该方程组被称为修正方程组。

'()f x 是()f x 对于x 的一阶偏导数矩阵,这个矩阵便是重要的雅可比矩阵J 。

12(,,,)01,2,,i n f x x x i n ==(1-1)(0)'(0)(0)()()0f x f x x +∆=(1—2)由修正方程式可求出经过第一次迭代之后的修正量(0)x ∆,并用修正量(0)x ∆与估计值(0)x 之和,表示修正后的估计值(1)x ,表示如下(1—4).(0)'(0)1(0)[()]()x f x f x -∆=-(1—3)(1)(0)(0)x x x =+∆(1-4)重复上述步骤.第k 次的迭代公式为: '()()()()()k k k f x x f x ∆=-(1—5)(1)()()k k k x x x +=+∆(1-6)当采用直角坐标系解决潮流方程,此时待解电压和导纳如下式:i i i ij ij ijV e jf Y G jB =+=+ (1-7)假设系统的网络中一共设有n 个节点,平衡节点的电压是已知的,平衡节点表示如下.n n n V e jf =+(1-8)除了平衡节点以外的所有2(1)n -个节点是需要求解的量。

电力系统的潮流计算与分析

电力系统的潮流计算与分析

电力系统的潮流计算与分析引言电力是现代社会不可或缺的能源,电力系统的稳定运行和高效管理对整个社会经济发展起着重要作用。

而电力系统的潮流计算与分析是电力系统运行和管理的重要工具。

本文将探讨电力系统潮流计算与分析的原理、方法以及应用领域,旨在增进读者对该领域的了解。

一、电力系统潮流计算的原理电力系统潮流计算是指在给定电网拓扑结构、负荷需求和发电机输出等条件下,通过数学模型计算各节点的电压幅值和相位角,以获取电网各元件的电流分布和功率流向。

潮流计算的核心是建立电力系统的节点电压和传输功率的联立方程组,并通过求解方程组得到节点电压和功率流向的数值解。

潮流计算的基本原理是基于电力系统的各节点之间存在有功功率平衡和无功功率平衡,即电力系统各节点的有功功率和无功功率之和等于节点的负荷功率和发电机输出功率之和。

通过对电力系统进行潮流计算,可以得出各节点的电压、功率因数、功率损耗等参数,为电力系统的运行和管理提供依据。

二、电力系统潮流计算的方法1. 直流潮流计算方法直流潮流计算方法是一种较为简化的计算方法,适用于较小规模的电力系统以及初步的潮流计算。

该算法假设电力系统中各节点电压的相角都为零,即所有节点电压相位角均取0°,从而简化了潮流计算的计算量。

然而,直流潮流计算方法无法考虑电网的无功功率平衡,无法准确得到节点的功率因数和无功功率分布。

2. 迭代法潮流计算方法迭代法是一种常用的潮流计算方法,其基本思路是通过反复迭代计算节点电压和功率分布,直到达到收敛条件为止。

迭代法潮流计算方法常用的算法包括高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。

迭代法潮流计算方法能较好地考虑电网的无功功率平衡,可以获得较为准确的节点电压和功率分布。

3. 双切迭代法潮流计算方法双切迭代法是一种相对较新的潮流计算方法,其基本思路是通过分析电力系统的分割区域,将电力系统划分为多个小区域进行潮流计算,并通过切割和迭代的方式逐步求解整个电力系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统潮流分析精编 Document number:WTT-LKK-GBB-08921-EIGG-22986潮流计算的意义(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。

(2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。

(3)正常检修及下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。

(4)预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。

总结为在和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。

同时,为了电力系统的运行状态,也需要进行大量而快速的潮流计算。

因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。

在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在的实时监控中,则采用在线潮流计算。

潮流计算的发展史利用电子计算机进行潮流计算从20世纪50年代中期就已经开始。

此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的。

对潮流计算的要求可以归纳为下面几点:(1)算法的可靠性或收敛性(2)计算速度和内存占用量(3)计算的方便性和灵活性电力系统潮流计算属于稳态分析范畴,不涉及系统元件的动态特性和过渡过程。

因此其数学模型不包含微分方程,是一组高阶非线性方程。

非线性代数方程组的解法离不开迭代,因此,潮流计算方法首先要求它是能可靠的收敛,并给出正确答案。

随着电力系统规模的不断扩大,潮流问题的方程式阶数越来越高,目前已达到几千阶甚至上万阶,对这样规模的方程式并不是采用任何数学方法都能保证给出正确答案的。

这种情况促使电力系统的研究人员不断寻求新的更可靠的计算方法。

在用数字计算机求解电力系统潮流问题的开始阶段,人们普遍采用以节点导纳为基础的高斯-赛德尔迭代法(一下简称导纳法)。

这个方法的原理比较简单,要求的数字计算机的内存量也比较小,适应当时的制作水平和电力系统理论水平,于是电力系统计算人员转向以阻抗矩阵为主的逐次代入法(以下简称阻抗法)。

20世纪60年代初,数字计算机已经发展到第二代,计算机的内存和计算速度发生了很大的飞跃,从而为阻抗法的采用创造了条件。

阻抗矩阵是满矩阵,阻抗法要求计算机储存表征系统接线和参数的阻抗矩阵。

这就需要较大的内存量。

而且阻抗法每迭代一次都要求顺次取阻抗矩阵中的每一个元素进行计算,因此,每次迭代的计算量很大。

阻抗法改善了电力系统潮流计算问题的收敛性,解决了导纳法无法解决的一些系统的潮流计算,在当时获得了广泛的应用,曾为我国电力系统设计、运行和研究作出了很大的贡献。

但是,阻抗法的主要缺点就是占用计算机的内存很大,每次迭代的计算量很大。

当系统不断扩大时,这些缺点就更加突出。

为了克服阻抗法在内存和速度方面的缺点,后来发展了以阻抗矩阵为基础的分块阻抗法。

这个方法把一个大系统分割为几个小的地区系统,在计算机内只需存储各个地区系统的阻抗矩阵及它们之间的联络线的阻抗,这样不仅大幅度的节省了内存容量,同时也提高了节省速度。

克服阻抗法缺点的另一途径是采用牛顿-拉夫逊法(以下简称)。

牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。

解决电力系统潮流计算问题是以导纳矩阵为基础的,因此,只要在迭代过程中尽可能保持方程式的稀疏性,就可以大大提高牛顿潮流程序的计算效率。

自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了阻抗法,成为直到目前仍被广泛采用的方法。

在牛顿法的基础上,根据电力系统的特点,抓住主要矛盾,对纯数学的牛顿法进行了改造,得到了P-Q分解法。

P-Q分解法在计算速度方面有显着的提高,迅速得到了推广。

牛顿法的特点是将非线性方程线性化。

20世纪70年代后期,有人提出采用更精确的模型,即将泰勒级数的高阶项也包括进来,希望以此提高算法的性能,这便产生了保留非线性的潮流算法。

另外,为了解决病态潮流计算,出现了将潮流计算表示为一个无约束非线性规划问题的模型,即非线性规划潮流算法。

近20多年来,潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛顿法和P-Q分解法进行的。

此外,随着人工智能理论的发展,遗传算法、、模糊算法也逐渐被引入潮流计算。

但是,到目前为止这些新的模型和算法还不能取代牛顿法和P-Q分解法的地位。

由于电力系统规模的不断扩大,对计算速度的要求不断提高,计算机的并行计算技术也将在潮流计算中得到广泛的应用,成为重要的研究领域。

潮流计算的发展趋势通过几十年的发展,潮流算法日趋成熟。

近几年,对潮流算法的研究仍然是如何改善传统的潮流算法,即高斯-塞德尔法、牛顿法和快速解耦法。

牛顿法,由于其在求解非线性潮流方程时采用的是逐次线性化的方法,为了进一步提高算法的收敛性和计算速度,人们考虑采用将泰勒级数的高阶项或非线性项也考虑进来,于是产生了二阶潮流算法。

后来又提出了根据直角坐标形式的潮流方程是一个二次代数方程的特点,提出了采用直角坐标的保留非线性快速潮流算法。

对于保留非线性算法典型论文有:1.文献[保留非线性的电力系统概率潮流计算]提出了它在电力系统概率潮流计算中的应用。

该文献提出了一种新的概率潮流计算方法,它保留了潮流方程的非线性,又利用了P-Q解耦方法,因而数学模型精度较高,且保留了P-Q解耦的优点,有利于大电网的随机潮流计算,用提出的方法对一个典型的系统进行了计算,其数值用MonteCarlo随机模拟作了验证,得到了满意的结果。

2.文献[基于系统分割的保留非线性的快速P-Q解耦潮流计算法]分析研究了保留非线性的P-Q解耦快速潮流计算法。

该文献提出了一种新的状态估计算法,既保留了量测方程非线性又利用了快速P-Q分解方法,因此数学模型精度高且保留了快速P-Q分解的优点,提高了状态估计的计算精度和速度.采用系统分割方法将大系统分割为多个小系统,分别对每个小系统进行状态估计,然后对各小系统的状态估计结果进行协调,得到整个系统具有同一参考节点的状态估计结果,这样可大大提高状态估计的计算速度,有利于进行大电网的状态估计.在18节点系统上进行的数字仿真实验验证了该方法的有效性。

岩本伸一等提出了一种保留非线性的快速潮流计算法,但用的是,因而没法利用P-Q解耦。

为了更有利于大电网的潮流计算,将此原理推广用于P-Q解耦。

这样,既利用了保留非线性的快速算法,在迭代中使用常数,又保留了P-Q解耦的优点。

对于一些病态系统,应用非线性潮流计算方法往往会造成计算过程的振荡或者不收敛,从数学上讲,非线性的潮流计算方程组本来就是无解的。

这样,人们提出来了将潮流方程构造成一个函数,求此函数的最小值问题,称之为非线性规划潮流的计算方法。

优点是原理上保证了计算过程永远不会发散。

如果将数学规划原理和牛顿潮流算法有机结合一起就是最优乘子法。

另外,为了优化系统的运行,从所有以上的可行潮流解中挑选出满足一定指标要求的一个最佳方案就是最优潮流问题。

最优潮流是一种同时考虑经济性和安全性的分析优化问题。

OPF 在电力系统的安全运行、经济调度、可靠性分析、能量管理以及电力定价等方面得到了广泛的应用。

最优潮流方面的典型论文有:1.文献[电力系统最优潮流新算法的研究]以NCP 方法为基础,提出了一种新的求解最优潮流算法——投影渐近半光滑牛顿型算法。

该文献以NCP方法为基础,提出了一种新的求解OPF算法——投影渐近半光滑牛顿型算法。

针对电力系统的特点,本文的研究工作如下: 1.建立了与OPF 问题的KKT系统等价的带界约束的半光滑方程系统。

与已有的NCP方法相比,新的模型由于无需考虑界约束对应的对偶变量(乘子变量),降低了问题的维数,从而适用于解大规模的电力系统问题。

2.基于建立的新模型,本文提出了一类新的Newton型算法,该算法一方面保持界约束的相容性,另一方面有较好的全局与局部超线性收敛性,同时,算法结构简单,易于实现。

3.考虑到电力系统固有的弱耦合特性,受传统解耦最优潮流方法的启示,在所提出的新Newton型方法的基础上,本文又设计了一类分解方法。

新方法基于解耦——校正的策略实现算法,不仅充分利用了系统的弱耦合特性,同时保证分解算法在理论上的收敛性。

4.根据所提出的两种算法,用标准的IEEE电力测试系统进行数值实验,并与已有的其他方法进行比较。

结果显示新算法具有良好的收敛性和计算效果,在电力系统的规划与运行方面将有广阔的应用前景。

2.文献[基于可信域内点法的最优潮流问题研究]介绍了OPF内点法具有收敛性强、多项式时间复杂性等优点,是极具潜力的优秀算法之一。

电力系统不断发展,使得OPF算法跻身于极其困难、非凸的大规模非线性规划行列。

可信域和线性搜索方法是保证最优化算法全局收敛性能的两类技术,将内点法和可信域、线性搜索方法有机结合,构造新的优化算法,是数学规划领域的研究热点。

此方面的典型文献有:1.文献[电力市场环境下基于最优潮流的输电容量充裕度研究]首先以最优潮流为工具,选取系统中的关键线路作为系统输电容量充裕度的研究对象,从电网运行的安全性、可靠性的角度系统地研究了稳定限额对输电容量充裕度的影响,指出稳定限额因子与影子价格的乘积可直接反应出稳定限额水平的经济价值,同时也可以较好的指示出系统运行相对安全、经济的稳定限额水平区间。

2.文献[电力市场环境下基于最优潮流的节点实时电价和购电份额研究]为了为配电公司最优购电模型提供价格参考依据,以发电成本最小为目标函数,考虑电力的影响,建立了实时电价模型。

模型利用预测校正原对偶内点法求解,以IEEE30节点系统为算例验证了模型的可行性。

3.文献[电力系统动态最优潮流的模型与算法研究]指出电力系统动态最优潮流是对调度周期内的系统状态进行统一优化的有效工具,对保证电力系统安全经济运行具有重要的理论意义和现实意义。

文献结合内点法和免疫遗传算法,对经典动态最优潮流问题和动态无功优化问题的算法进行了深入的研究,提出了新的算法;并建立了含电压稳定约束、含无功型离散变量,以及含机组启停变量的动态最优潮流模型,将新算法推广应用于各种新模型,拓展了动态最优潮流的研究领域。

对于一些特殊性质的潮流计算问题有直流潮流计算方法、随机潮流计算方法和三相潮流计算方法。

直流潮流计算方法,文献[基于改进布登法的交直流潮流计算]主要介绍在分析求解非线性方程组的布罗伊登法和一种改进的布罗伊登法的基础上,针对交直流混联系统,运用改进的布罗伊登法,提出了一种潮流计算的统一迭代法,设计了算法的具体实现步骤,并以一个IEEE9节点修改系统进行仿真计算,结果表明本文采用的改进布罗伊登法交直流潮流计算方法有效可行。

相关文档
最新文档