智能巡线小车的设计方案

合集下载

智能循迹小车___设计报告

智能循迹小车___设计报告

智能循迹小车___设计报告设计报告:智能循迹小车一、设计背景智能循迹小车是一种能够通过感知地面上的线条进行导航的小型机器人。

循迹小车可以应用于许多领域,如仓库管理、物流配送、家庭服务等。

本设计旨在开发一款功能强大、性能稳定的智能循迹小车,以满足不同领域的需求。

二、设计目标1.实现循迹功能:小车能够准确地识别地面上的线条,并按照线条进行导航。

2.提供远程控制功能:用户可以通过无线遥控器对小车进行控制,包括前进、后退、转向等操作。

3.具备避障功能:小车能够识别和避开遇到的障碍物,确保行驶安全。

4.具备环境感知功能:小车能够感知周围环境,包括温度、湿度、光照等参数,并将数据传输给用户端。

5.高稳定性和可靠性:设计小车的硬件和软件应具备较高的稳定性和可靠性,以保证长时间的工作和使用。

三、设计方案1.硬件设计:(1) 采用Arduino控制器作为主控制单元,与传感器、驱动器等硬件模块进行连接和交互。

(2)使用红外传感器作为循迹传感器,通过检测地面上的线条来实现循迹功能。

(3)使用超声波传感器来检测小车前方的障碍物,以实现避障功能。

(4)添加温湿度传感器和光照传感器,以提供环境感知功能。

(5)将无线模块与控制器连接,以实现远程控制功能。

2.软件设计:(1) 使用Arduino编程语言进行程序设计,编写循迹、避障和远程控制的算法。

(2)设计用户界面,通过无线模块将控制信号发送给小车,实现远程控制。

(3)编写数据传输和处理的程序,将环境感知数据发送到用户端进行显示和分析。

四、实施计划1.硬件搭建:按照设计方案中的硬件模块需求,选购所需元件并进行搭建。

2.软件开发:根据设计方案中的软件设计需求,编写相应的程序并进行测试。

3.功能调试:对小车的循迹、避障、远程控制和环境感知功能进行调试和优化。

4.性能测试:使用不同场景和材料的线条进行测试,验证小车的循迹性能。

5.用户界面开发:设计用户端的界面,并完成与小车的远程控制功能的对接。

智能巡线小车设计报告分解

智能巡线小车设计报告分解

智能巡线小车设计报告分解设计背景:随着科技的发展和智能化技术的逐渐成熟,智能巡线小车在日常生活中的应用越来越广泛。

智能巡线小车可以通过线路检测和跟踪,自主地进行路径规划和运动控制,具有很强的适应性和灵活性。

因此,为了满足实际需求,本设计实现了一款智能巡线小车。

设计目标:本设计的目标是设计一款具有自动巡线功能的小型车辆。

该小车能够通过感应器检测地面上的线路,并根据线路的走向进行自主行驶,同时具有避障功能。

设计思路:1.硬件设计:(1)车体设计:选择合适的车体结构和材料,确保小车的稳定性和耐用性。

(2)传感器:使用红外传感器和摄像头等传感器,对地面上的线路进行检测,并能够识别并跟踪线路。

(3)电池和电源:选择适合的电池和电源,以提供足够的电能供应小车运行。

2.软件设计:(1)线路检测与跟踪算法:通过传感器检测并识别线路,使用图像处理技术对线路进行跟踪,并实现路径规划。

(2)运动控制算法:根据检测到的线路走向,控制小车的轮子进行相应的转向,以达到自主巡线的效果。

(3)避障算法:利用传感器检测小车前方障碍物,并根据检测结果进行转向或停止等控制策略,以避免碰撞。

设计实施步骤:1.搭建硬件平台:选择合适的车体结构和材料,安装传感器和电池等硬件设备。

2.编写线路检测与跟踪算法:使用图像处理技术,实现识别和跟踪线路的算法,并设计路径规划算法。

3.编写运动控制算法:根据线路检测结果,实现小车的运动控制算法,控制轮子的转向。

4.设计避障算法:利用传感器检测障碍物,编写相应的避障算法,实现自动避障功能。

5.调试与优化:在实际测试中,对小车进行调试,并根据测试结果对算法进行优化。

设计预期结果:通过硬件和软件的配合,预期实现一款具有自动巡线和避障功能的智能小车。

小车能够自主进行线路检测和跟踪,根据检测结果进行路径规划和运动控制,同时能够避开前方的障碍物。

总结:本设计报告介绍了一款智能巡线小车的设计思路和实施步骤。

通过合理搭建硬件平台,编写相应的软件算法,预期实现一款功能齐全的智能巡线小车。

《2024年自循迹智能小车控制系统的设计与实现》范文

《2024年自循迹智能小车控制系统的设计与实现》范文

《自循迹智能小车控制系统的设计与实现》篇一一、引言随着人工智能与自动控制技术的快速发展,智能小车已经广泛应用于各种领域,如物流配送、环境监测、智能家居等。

本文将详细介绍一种自循迹智能小车控制系统的设计与实现过程,该系统能够根据预设路径实现自主循迹、避障及精确控制。

二、系统设计(一)系统概述自循迹智能小车控制系统主要由控制系统硬件、传感器模块、电机驱动模块等组成。

其中,控制系统硬件采用高性能单片机或微处理器作为主控芯片,实现对小车的控制。

传感器模块包括超声波测距传感器、红外线测距传感器等,用于感知周围环境并实时传输数据给主控芯片。

电机驱动模块负责驱动小车行驶。

(二)硬件设计1. 主控芯片:采用高性能单片机或微处理器,具备高精度计算能力、实时响应和良好的可扩展性。

2. 传感器模块:包括超声波测距传感器和红外线测距传感器。

超声波测距传感器用于测量小车与障碍物之间的距离,红外线测距传感器用于检测小车行驶路径上的标志线。

3. 电机驱动模块:采用直流电机和电机驱动器,实现对小车的精确控制。

4. 电源模块:为整个系统提供稳定的电源供应。

(三)软件设计1. 控制系统软件采用模块化设计,包括主控程序、传感器数据处理程序、电机控制程序等。

2. 主控程序负责整个系统的协调与控制,根据传感器数据实时调整小车的行驶状态。

3. 传感器数据处理程序负责对传感器数据进行处理和分析,包括距离测量、方向判断等。

4. 电机控制程序根据主控程序的指令,控制电机的运转,实现小车的精确控制。

(四)系统实现根据设计需求,通过电路设计与焊接、传感器模块的安装与调试、电机驱动模块的安装与调试等步骤,完成自循迹智能小车控制系统的硬件实现。

在软件方面,编写各模块的程序代码,并进行调试与优化,确保系统能够正常运行并实现预期功能。

三、系统功能实现及测试(一)自循迹功能实现自循迹功能通过红外线测距传感器实现。

当小车行驶时,红外线测距传感器不断检测地面上的标志线,并根据检测结果调整小车的行驶方向,使小车始终沿着预设路径行驶。

(2024年)智能循迹小车设计

(2024年)智能循迹小车设计
工作原理
通过红外、超声波等传感器感知周围环境信息,将感知数据传输给微控制器进行处理,微控制器根据预设算法控制执行器调整小车行驶状态,实现循迹功能。
4
2024/3/26
随着工业自动化的发展,智能循迹小车在生产线、仓库等场景中的应用需求不断增加。
自动化需求
教育领域需求
娱乐领域需求
智能循迹小车作为教学实验平台,在高等教育、职业教育等领域具有广泛应用前景。
高精度定位技术
30
2024/3/26
THANKS
感谢您的观看。
31
2024/3/26
模块测试
集成测试
仿真测试
实地测试
将所有模块集成在一起进行测试,验证系统整体功能是否正常。
使用仿真软件对智能循迹小车进行仿真测试,模拟实际运行环境。
在实际场地对智能循迹小车进行测试,验证其在实际环境中的性能表现。
21
2024/3/26
系统联调
将硬件和软件集成在一起进行系统联调,确保系统整体运行稳定可靠。
智能循迹小车设计
1
2024/3/26
目录
项目背景与意义系统总体设计循迹算法研究控制系统设计调试与测试项目成果展示总结与展望
2
2024/3/26
01
CHAPTER
项目背景与意义
3
2024/3/26
定义
智能循迹小车是一种基于微控制器、传感器和执行器等技术的自主导航小车,能够按照预定路径进行自动循迹。
电机类型
选用直流电机或步进电机,根据实际需求进行选择。
保护措施
加入过流保护、过热保护等电路,确保电机和驱动电路的安全运行。
17
2024/3/26
18
2024/3/26

智能巡线小车设计报告分解

智能巡线小车设计报告分解

智能巡线小车设计报告分解一、引言智能巡线小车是一种能够自主巡线并进行相关操作的智能设备。

其主要应用于工业生产线上,可以帮助实现自动化控制和监测,提高生产效率和质量。

本设计报告将详细介绍智能巡线小车的设计原理、系统结构、硬件设计以及软件设计等方面。

二、设计原理三、系统结构1.视觉感知子系统:该子系统主要负责获取周围环境图像并进行处理。

通过摄像头采集图像,并利用图像处理算法进行边缘检测和特征提取,以确定巡线的路径。

2.控制决策子系统:该子系统主要根据视觉感知子系统提供的线路信息,对小车的巡线轨迹进行规划和控制决策。

可以利用PID控制算法进行轨迹跟踪控制,以保持小车在线路上的稳定行驶。

3.执行控制子系统:该子系统主要负责执行控制指令,并控制小车的动作。

主要包括电机驱动系统、转向器和传感器等组件。

4.动力系统:该系统主要提供小车的动力支持。

可以采用电池或者直流电源等形式供电,以保证小车的正常运行。

四、硬件设计1.电路设计:电路设计主要包括摄像头电路、信号采集电路、控制算法电路、电机驱动电路等。

其中,摄像头电路负责将图像信号转化为数字信号;信号采集电路负责采集小车传感器的数据;控制算法电路主要用于计算小车的控制指令;电机驱动电路负责驱动小车的电机进行运动。

2.结构设计:结构设计主要指小车的机械结构设计。

要根据小车的功能和使用环境,设计出合理的结构来满足其巡线和动作需求。

五、软件设计1.图像处理算法设计:图像处理算法设计主要包括边缘检测算法、特征提取算法等。

要根据巡线的需求,对摄像头采集到的图像进行相应处理,提取出线路信息。

2.控制算法设计:控制算法设计主要包括轨迹规划算法、PID控制算法等。

要根据小车的运动需求,设计相应的控制算法,保持小车在线路上的稳定行驶。

3.用户界面设计:用户界面设计主要包括操作界面的设计和数据显示界面的设计。

要设计一个直观、友好的用户界面,方便操作和监测小车的状态。

六、总结通过对智能巡线小车的设计原理、系统结构、硬件设计和软件设计的介绍,可以看出,智能巡线小车是一种集成了多种技术的智能设备。

智能循迹小车设计方案

智能循迹小车设计方案

智能循迹小车设计方案一、设计目标:1.实现智能循迹功能,能够沿着预定轨迹自动行驶。

2.具备避障功能,能够识别前方的障碍物并及时避开。

3.具备远程遥控功能,方便用户进行操作和控制。

4.具备数据上报功能,能够实时反馈运行状态和数据。

二、硬件设计:1.主控模块:使用单片机或者开发板作为主控模块,负责控制整个小车的运行和数据处理。

2.传感器模块:-光电循迹传感器:用于检测小车当前位置,根据光线的反射情况确定移动方向。

-超声波传感器:用于检测前方是否有障碍物,通过测量障碍物距离来判断是否需要避开。

3.驱动模块:-电机和轮子:用于实现小车的运动,可选用直流电机或者步进电机,轮子要具备良好的抓地力和摩擦力。

-舵机:用于实现小车的转向,根据循迹传感器的信号来控制舵机的角度。

4.通信模块:-Wi-Fi模块:用于实现远程遥控功能,将小车与遥控设备连接在同一个无线网络中,通过网络通信进行控制。

-数据传输模块:用于实现数据上报功能,将小车的运行状态和数据通过无线通信传输到指定的接收端。

三、软件设计:1.循迹算法:根据光电循迹传感器的反馈信号,确定小车的行进方向。

为了提高循迹的精度和稳定性,可以采用PID控制算法进行修正。

2.避障算法:通过超声波传感器检测前方障碍物的距离,当距离过近时,触发避障算法,通过调整小车的行进方向来避开障碍物。

3.遥控功能:通过Wi-Fi模块与遥控设备建立连接,接收遥控指令并解析,根据指令调整小车的运动状态。

4.数据上报功能:定时采集小车的各项运行数据,并通过数据传输模块将数据发送到指定的接收端,供用户进行实时监测和分析。

四、系统实现:1.硬件组装:根据设计要求进行硬件的组装和连接,确保各个模块之间的正常通信。

2.软件编程:根据功能要求,进行主控模块的编程,实现循迹、避障、遥控和数据上报等功能。

3.调试测试:对整个系统进行调试和测试,确保各项功能正常运行,并进行性能和稳定性的优化。

4.用户界面设计:设计一个用户友好的界面,实现对小车的远程控制和数据监测,提供良好的用户体验。

智能巡线小车设计报告

智能巡线小车设计报告

智能巡线小车设计报告一、引言智能巡线小车是一种能够自主识别线路并沿线行驶的机器人小车。

它利用多种传感器和控制系统,能够实时感知环境,并做出相应的行驶决策。

本设计报告将详细介绍智能巡线小车的设计思路、硬件组成和软件实现。

二、设计思路智能巡线小车的设计思路主要包括以下几个方面:1. 线路识别:通过摄像头获取图像信息,利用图像处理算法识别出线路的位置和方向。

2. 行驶控制:根据线路识别结果,通过控制系统调整小车的速度和方向,保持小车在线路上行驶。

3. 环境感知:通过其他传感器如红外传感器、超声波传感器等,实时感知周围环境的障碍物,并对小车的行驶做出相应的调整。

4. 远程控制:提供远程控制的功能,通过无线通信模块与小车建立通信连接,实现对小车的遥控操作。

三、硬件组成智能巡线小车的硬件组成主要包括以下几个组件:1. 主控制器:使用单片机或者嵌入式开发板作为主控制器,负责接收各种传感器数据、处理运算并实现相应的控制算法。

2. 摄像头:用于获取环境图像,采集线路的位置和方向信息。

3. 电机驱动模块:控制小车的电机转动,实现小车的前进、后退、转弯等功能。

4. 传感器模块:包括红外传感器、超声波传感器等,用于感知周围环境的障碍物。

5. 无线通信模块:通过无线通信模块与遥控器或者其他设备建立连接,实现远程控制功能。

四、软件实现智能巡线小车的软件实现主要包括以下几个模块:1. 图像处理算法:利用图像处理算法对摄像头采集的图像进行处理,提取线路的位置和方向信息。

2. 行驶控制算法:根据线路识别结果,调整电机驱动模块控制小车的速度和方向,让小车保持在线路上行驶。

3. 环境感知算法:利用传感器模块采集的数据,判断周围环境是否有障碍物,并根据情况调整小车的行驶路线。

4. 远程控制算法:在无线通信模块的支持下,实现与遥控器或者其他设备之间的通信,接收远程控制指令,实现远程遥控小车的功能。

五、实施计划本项目的实施计划如下:1. 准备阶段:收集相关资料,设计硬件电路图和软件流程图,并购买所需的元器件。

智能寻线小车设计方案(大学生电子设计竞赛)

智能寻线小车设计方案(大学生电子设计竞赛)

一任务利用组委会提供的电机等材料设计并制作一台全自主小车,在规定时间内由起始点出发沿规定的路径到达终点,路径各段均有不同要求,综合功能完成程度与时间评分二要求规定路径如下图所示终点起始区路径说明:小车由起始区出发,沿箭头方向循迹运行。

在弧线区,小车可自选路径,但直线去必须循轨,右侧打叉的路径为禁行路,小车经休息区时,许停留5秒,停留时应有声指示,然后继续前行,最后150 cm为减速区,小车应减速驶过,用时不小于60秒,最后小车停在终点区,并进行声光指示(终点和休息区的声光指示应有区别)。

除减速区,其余其它路段应尽量高速行驶,小车行使全程(除弧线区)小车车体应有一部分覆盖轨迹线,全程时间不得超过180秒。

轨迹线为黑色,宽度约为1.5cm场地为赛场地面。

一、方案选择与论证1、运动方式的选择通常的运动方法有轮式和履带驱动式两种,其选择依赖于路面状况、机械复杂性和控制复杂性。

方案一:采用四轮——常见的汽车结构模式特点是一个马达作为动力,通过变速箱驱动后轮;另一个马达转动导向轮来决定行驶方向。

优点是在直道行驶速度较快、方向和速度相互独立。

缺点为转弯半径大、驱动轮易打滑、导向轮方向不易精确控制。

方案二:采用履带式结构特点:两个电机分别驱动两条履带。

优点是可以在原地转动;在不平的路面上性能稳定,牵引力大。

缺点为速度慢、速度和方向不能单独控制摩擦力很大;能量损耗大,机械结构复杂。

综合考虑,我们将轮式和履带式的优点结合在一起,采用两个大脚车的模型(见附图三)拼接而成,达到了较好的机动性和可控性。

2、电机驱动调速方案论证电机驱动调速方案的控制目标是实现电动机的正、反转及调速寿命较短、可靠性低。

方案三:H型PWM电路采用电子开关组成H型PWM电路。

H型电路保证了简单的实现转速和方向的控制;用单片机控制电子开关工作的占空比,精确调整电动机转速。

最终选择方案三。

3、路面探测方案论证探测路面黑线的原理:光线照射到路面并反射,由于黑线和白线的反射系数不同,可根据接收到的反射光的强弱来判断传感器和黑线相对位置。

智能循迹小车总体设计方案

智能循迹小车总体设计方案

智能循迹小车总体设计方案1.1 整体设计方案本系统采用简单明了的设计方案。

通过高发射功率红外光电二极管和高灵敏度光电晶体管组成的传感器循迹模块黑线路经,然后由AT89S52通过IO口控制L298N驱动模块改变两个直流电机的工作状态,最后实现小车循迹。

1.2系统设计步骤(1)根据设计要求,确定控制方案;(2)将各个模块进行组装并进行简单调试;(3)画出程序流程图,使用C语言进行编程;(4)将程序烧录到单片机内;(5)进行调试以实现控制功能。

1.2.1系统基本组成智能循迹小车主要由AT89S52单片机电路、循迹模块、L298N驱动模块、直流电机、小车底板、电源模块等组成。

(1)单片机电路:采用AT89S52芯片作为控制单元。

AT89S52单片机具有低成本、高性能、抗干扰能力强、超低功耗、低电磁干扰,并且与传统的8051单片机程序兼容,无需改变硬件,支持在系统编程技术。

使用ISP可不用编程器直接在PCB板上烧录程序,修改、调速都方便。

(2)循迹模块:采用脉冲调制反射红外发射接收器作为循迹传感器,调制信号带有交流分量,可减少外界的大量干扰。

信号采集部分就相当于智能循迹小车的眼睛,有它完成黑线识别并产生高、低平信号传送到控制单元,然后单片机生成指令来控制驱动模块来控制两个直流电机的工作状态,来完成自动循迹。

(3)L298N驱动模块:采用L298N作为点击驱动芯片。

L298N具有高电压、大电流、响应频率高的全桥驱动芯片,一片L298N可以分别控制两个直流电机,并且带有控制使能端。

该电机驱动芯片驱动能力强、操作方便、稳定性好,性能优良。

L298N的使能端可以外接电平控制,也可以利用单片机进行软件控制,满足各种复杂电路的需要。

另外,L298N的驱动功率较大,能够根据输入电压的大小输出不同的电压和功率,解决了负载能力不够的问题。

智能循迹小车设计方案

智能循迹小车设计方案

智能循迹小车设计方案摘要本文介绍了智能循迹小车的设计方案。

智能循迹小车是一种能够根据预设的路径自动行驶的小车。

它可以通过传感器感知周围环境,并根据预设的路径进行行驶。

在本文中,我们将讨论智能循迹小车的系统设计、硬件实现以及软件算法。

1. 引言智能循迹小车是近年来智能交通领域的一个热门研究方向。

它可以应用于无人驾驶、物流配送等领域,具有广阔的应用前景。

本文将介绍智能循迹小车的设计方案,以供相关研究人员参考。

2. 系统设计智能循迹小车的系统设计由硬件和软件两部分组成。

2.1 硬件设计智能循迹小车的硬件设计主要包括以下几个方面:•电机驱动:智能循迹小车需要有强大的驱动力来行驶。

通常采用直流电机作为驱动装置,并配备电机驱动器。

•路径感知:智能循迹小车需要能够感知预设的路径。

通常使用红外线传感器或摄像头进行路径感知。

•避障功能:智能循迹小车还需要具备避障功能,以避免与障碍物发生碰撞。

通常使用超声波传感器或红外线传感器进行障碍物的检测。

•控制系统:智能循迹小车的控制系统通常采用微控制器或单片机进行控制。

它可以根据传感器的反馈信息,控制电机驱动器的转动。

2.2 软件设计智能循迹小车的软件设计主要包括以下几个方面:•路径规划算法:智能循迹小车需要能够根据预设的路径进行行驶。

路径规划算法会根据传感器感知到的环境信息,计算出最优的行驶路径。

•控制算法:智能循迹小车的控制算法会根据路径规划算法的结果,控制电机驱动器的转动。

它可以实现小车沿着路径稳定行驶,并及时调整行驶方向。

•避障算法:智能循迹小车的避障算法会根据传感器感知到的障碍物信息,判断是否需要进行避障操作。

它可以实时监测障碍物,并及时采取措施进行避让。

3. 硬件实现智能循迹小车的硬件实现通常需要进行电路设计和机械结构设计。

电路设计主要包括电机驱动电路、传感器接口电路以及控制系统电路的设计。

可以使用电路设计软件进行模拟和调试,确保电路的性能和稳定性。

机械结构设计主要包括车身设计、电机安装以及传感器安装等。

机器人创新实验智能巡线小车报告

机器人创新实验智能巡线小车报告

机器人创新实验智能巡线小车报告一、引言智能巡线小车是一种基于机器视觉和控制系统的机器人,能够在预定的路径上进行准确的行驶。

本报告旨在总结机器人创新实验中智能巡线小车的设计过程、关键技术和性能评估,以及未来的改进方向。

二、设计过程1.硬件设计智能巡线小车的硬件设计包括底盘、传感器和控制模块。

底盘采用高强度材料制作,轮子安装在底盘上,并由直流电机驱动。

传感器主要包括摄像头和红外线传感器,摄像头用于采集路径图像,红外线传感器用于检测小车是否偏离轨道。

控制模块由单片机和驱动电路组成,用于接收传感器数据并控制电机运动。

2.软件设计智能巡线小车的软件设计主要包括路径识别和控制算法。

路径识别算法通过对摄像头采集到的图像进行处理,提取出图像中的路径信息。

控制算法根据传感器数据判断小车是否偏离轨道,并相应调整电机速度和转向角度,使小车保持在预定的路径上。

三、关键技术1.图像处理图像处理是智能巡线小车的核心技术之一、通过对摄像头采集的图像进行二值化、滤波和边缘检测等操作,可以提取出路径信息,并进行路径的识别和跟踪。

2.控制算法控制算法是智能巡线小车的另一项关键技术。

通过对传感器数据进行实时分析和判断,可以实现小车对路径的跟踪和调整。

常用的控制算法包括PID控制和模糊控制等。

四、性能评估为评估智能巡线小车的性能,可以从准确性、稳定性和速度等方面进行考察。

在实际测试中,可以将小车放置在不同形状和颜色的路径上,观察小车能否准确识别路径并保持在上面。

同时,可以通过测量小车的行驶速度和转向精度来评估小车的稳定性和速度。

五、改进方向尽管智能巡线小车在设计上已经取得了一定的成绩,但还存在一些改进的方向。

首先,可以加强图像处理算法,提高路径识别的准确性和鲁棒性。

其次,可以进一步优化控制算法,提高小车对路径的精准度和响应速度。

此外,可以将智能巡线小车与其他机器人技术相结合,如避障、自主导航等,实现更复杂的任务。

六、结论智能巡线小车是一种基于机器视觉和控制系统的机器人,能够在预定的路径上进行准确的行驶。

智能寻迹小车设计方案

智能寻迹小车设计方案

智能寻迹小车设计方案智能寻迹小车设计方案一、项目概述智能寻迹小车是一种能够自主行走并根据黑线路径进行导航的小型机器人。

本设计方案旨在实现小车的自主控制和路径识别功能,为用户提供一个可以根据预定路径行走的智能小车。

二、技术原理智能寻迹小车的核心技术包括光电传感器模块、控制模块和驱动模块。

光电传感器模块用于感知黑线路径,控制模块用于辨识路径信号并控制小车的行走方向,驱动模块用于控制小车的轮子转动。

小车通过光电传感器模块获取黑线路径的信号,经过控制模块的处理后,驱动模块控制轮子的转动实现小车的行走。

三、硬件配置1. 光电传感器:用于感知黑线路径,采用多个红外线光电二极管和光敏二极管进行测量。

2. 控制模块:采用单片机作为控制核心,用于接收和处理光电传感器的信号,并根据信号控制车轮转动。

3. 驱动模块:采用直流电机作为驱动装置,驱动车轮的转动。

四、软件架构1. 信号处理算法:根据光电传感器模块的输出信号,设计信号处理算法,将感知到的黑线路径转化成可识别的控制信号。

2. 路径识别算法:分析感知到的黑线路径信号,识别出黑线的走向,并根据识别结果控制小车的行走方向。

3. 控制算法:根据路径识别算法的结果,控制驱动模块产生适当的电压,实现小车轮子的转动。

五、功能实现1. 自主行走功能:小车能够根据识别的黑线路径自主地行走,避免碰撞障碍物或偏离路径。

2. 路径识别功能:小车能够准确地识别黑线路径,并根据路径进行相应的控制。

3. 远程控制功能:用户可以通过无线遥控器对小车进行远程控制,包括行走方向和速度的控制。

六、性能指标1. 导航准确性:小车在正确识别黑线路径的情况下完成整个行程,保持在路径上的偏离范围小于5mm。

2. 响应速度:小车对路径信号的处理和控制反应时间小于100ms。

3. 可靠性:小车在连续行走1小时内不发生故障,并能正常完成指定的行走任务。

七、安全性考虑1. 碰撞检测:小车装配超声波传感器,能够检测前方的障碍物并自动停止行走,避免碰撞事故的发生。

智能循迹避障小车设计

智能循迹避障小车设计

智能循迹避障小车设计智能循迹避障小车设计1.简介1.1 背景随着智能技术的不断发展,智能循迹避障小车在各个领域中得到了广泛应用。

此文档旨在提供一个详细的设计方案,以实现智能循迹避障小车的功能。

1.2 目标本设计的目标是开发一款智能小车,能够根据预设的路径行驶,并能够自动避开障碍物。

2.设计概述2.1 硬件设计2.1.1 主控制模块2.1.1.1 微控制器选择根据功能需求和成本考虑,选择一款适合的微控制器作为主控制模块。

2.1.1.2 传感器接口设计适当的传感器接口,用于连接循迹和避障传感器。

2.1.2 驱动模块2.1.2.1 电机驱动器选择根据电机参数和电源需求,选择合适的电机驱动器。

2.1.2.2 电机控制接口设计适当的电机控制接口,用于根据输入信号控制电机的运行。

2.1.3 电源模块2.1.3.1 电源选择根据整体电路的功耗需求,选择合适的电源供应方案。

2.1.3.2 电源管理电路设计设计合适的电源管理电路,用于提供稳定的电源给各个模块。

2.2 软件设计2.2.1 循迹算法设计设计一种有效的循迹算法,使小车能够按照预设路径行驶。

2.2.2 避障算法设计设计一种智能避障算法,使小车能够根据传感器信息自动避开障碍物。

3.实施计划3.1 硬件实施计划3.1.1 购买所需材料和组件根据设计需求,购买合适的硬件材料和组件。

3.1.2 组装硬件模块按照设计要求,组装各个硬件模块,并进行必要的连接。

3.2 软件实施计划3.2.1 开发循迹算法设计和开发循迹算法,并进行模拟和测试。

3.2.2 开发避障算法设计和开发避障算法,并进行模拟和测试。

4.测试和验证4.1 硬件测试使用适当的测试方法,验证硬件模块的功能和性能。

4.2 软件测试使用合适的测试方法,验证软件算法的正确性和可靠性。

5.总结与展望根据测试结果,对整个设计方案进行总结,并提出可能的改进方向。

附件:(此处列出本文档所涉及的附件名称和描述)法律名词及注释:(此处列出本文所涉及的法律名词及其相应的解释和注释)。

智能巡线小车方案

智能巡线小车方案

一、总体设计
小车外形图如下:
小车包括车轮、底盘、电机、红外传感器、单片机、其他模块电路。

让小车在如下形状的跑道上一圈一圈巡线,一边巡线一边在控制器中建构跑道,来改变电机的控制策略,达到每一圈巡线的速度比上一圈快的效果。

二、电机选型
四个轮子分别用四个步进电机驱动。

由于步进电机的旋转角度可以精确控制,所以步进电机兼具测速功能,可以免去测速传感器和电机速度控制的部分。

三、单片机选型
单片机需要接受来自传感器的信息,以及存储巡线一圈的过程中电机运动状态和传感器返回值的信息,还需要对这些信息进行处理。

我们选用Arduino单片机。

四、传感器设计
采用红外传感器来判断小车是否在正常巡线。

红外传感器的分布,图中所示四个蓝色的圆圈:
五、控制器策略
1、第一圈,根据传感器的返回值对左右轮的转速进行调整。

同时根据传感器和值和左右电机的实际转速对路况进行估计。

2、第二圈,根据上一圈得到的信息给出电机的控制策略,并根据传感器的返回值对电机的转速进行纠正。

同时根据传感器和值和左右电机的实际转速对路况进行重新估计,并对特定路况下的控制策略进行修正。

3、第三圈,重复第二圈的策略,并尝试逐步提高速度。

智能巡线小车的设计方案

智能巡线小车的设计方案
表3.1 一些寄存器的复位状态
寄存器
复位状态
寄存器
复位状态
PC
0000H
TCON
00H
ACC
00H
TL0
00H
PSW
00H
TH0
00H
SP
07H
TL1
00H
DPTR
0000H
TH1
00H
P0-P3
FFH
SCON
00H
IP
XX000000B
SBUF
不定
IE
0X000000B
PCON
0XXX0000B
TMOD
为了能够较好的满足系统的要求,我们选择了方案2。
2.5
方案1:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整.此方案的优点是电路较为简单,缺点是继电器的响应时间慢,易损坏,寿命较短,可靠性不高。
方案2:采用电阻网络或数字电位器调节电动机的分压,从而达到分压的目的。但电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主要的问题在于一般的电动机电阻很小,但电流很大,分压不仅回降低效率,而且实现很困难。
方案2:选用51系列的单片机,AT89S52单片机算术运算功能强,软件编程灵活、自由度大,功耗低、体积小、技术成熟,成本也比ARM低。
根据自己的知识能力,实验室现有条件,选用STC89C52RC单片机作为本次毕业设计的主控芯片,而且此芯片烧程序也不需要专用的下载器,另一方面节省了成本,只要安装USB转串口驱动,在普通的计算机上就可以烧写程序,很方便。
2.7 本章小结
经过积极论证,最后采用以STC89C52单片机为控制核心,黑白线信号经过TCRT5000输出高低电压信号,再经过LM324电压比较器输出给单片机标准TTL电平信号,而单片机根据输入口高低电平的变化来执行相对应指令,使小车达到稳定的行驶。

《2024年自循迹智能小车控制系统的设计与实现》范文

《2024年自循迹智能小车控制系统的设计与实现》范文

《自循迹智能小车控制系统的设计与实现》篇一一、引言随着科技的飞速发展,智能小车在物流、军事、科研等领域的应用越来越广泛。

自循迹智能小车作为其中的一种重要应用,其控制系统的设计与实现显得尤为重要。

本文将详细介绍自循迹智能小车控制系统的设计思路、实现方法及实验结果。

二、系统设计1. 硬件设计自循迹智能小车控制系统硬件主要包括:电机、车轮、控制器、传感器等部分。

其中,电机和车轮是驱动小车运动的核心部件,控制器负责处理传感器数据并发出控制指令,传感器则用于感知小车周围环境信息。

在硬件设计过程中,我们需要根据实际需求选择合适的电机、控制器及传感器。

例如,电机应具备较高的转矩和转速,以保障小车的运动性能;控制器应具备强大的数据处理能力和快速响应能力,以保证小车的循迹效果;传感器应具备较高的灵敏度和稳定性,以准确感知周围环境信息。

2. 软件设计软件设计是自循迹智能小车控制系统的核心部分。

我们采用模块化设计思想,将软件系统分为传感器数据处理模块、路径规划模块、控制算法模块等。

传感器数据处理模块负责收集并处理传感器数据,为路径规划模块提供准确的环境信息。

路径规划模块根据传感器数据和预设的循迹算法,规划出最优路径。

控制算法模块则根据路径规划结果,发出控制指令给电机,驱动小车按照规划的路径行驶。

三、实现方法1. 传感器选择与数据处理我们选择了红外线传感器作为循迹的主要传感器。

红外线传感器可以感知地面的黑白线,将循迹线转化为电信号,为路径规划提供依据。

同时,我们还选用了超声波传感器和摄像头等设备,用于感知小车周围的环境信息,提高循迹的准确性和安全性。

在数据处理方面,我们采用了数字滤波技术,对传感器数据进行处理,以消除噪声干扰,提高数据的准确性。

此外,我们还采用了卡尔曼滤波算法对位置信息进行融合,以提高循迹的稳定性。

2. 路径规划与控制算法路径规划模块采用了一种基于A算法的循迹算法。

A算法是一种常用的路径规划算法,具有较高的搜索效率和准确性。

《2024年自循迹智能小车控制系统的设计与实现》范文

《2024年自循迹智能小车控制系统的设计与实现》范文

《自循迹智能小车控制系统的设计与实现》篇一一、引言随着科技的飞速发展,智能小车作为智能交通系统的重要组成部分,已经广泛应用于军事、工业、民用等多个领域。

自循迹智能小车控制系统的设计与实现,成为了智能化进程中一个关键环节。

本文旨在阐述自循迹智能小车控制系统的设计原理和实现过程,分析系统结构与功能,为相关研究与应用提供参考。

二、系统设计1. 硬件设计自循迹智能小车控制系统硬件主要包括:电机驱动模块、传感器模块、主控制器模块等。

其中,电机驱动模块负责驱动小车前进、后退、转向等动作;传感器模块包括红外传感器、超声波传感器等,用于检测小车周围环境及路径信息;主控制器模块采用高性能微控制器,负责协调各模块工作,实现小车的自主循迹。

2. 软件设计软件设计包括控制系统算法设计和程序编写。

控制系统算法主要包括路径识别算法、速度控制算法、避障算法等。

程序编写采用模块化设计思想,将系统功能划分为多个模块,如电机控制模块、传感器数据采集模块、路径识别与决策模块等。

各模块之间通过通信接口进行数据交换,实现小车的自主循迹。

三、实现过程1. 传感器数据采集与处理传感器模块负责采集小车周围环境及路径信息,包括红外传感器、超声波传感器等。

这些传感器将采集到的数据传输至主控制器模块,经过数据处理与分析,提取出有用的信息,如障碍物位置、路径边界等。

2. 路径识别与决策路径识别与决策模块根据传感器数据,判断小车当前位置及目标路径,并制定相应的行驶策略。

当小车偏离目标路径时,系统会自动调整行驶方向,使小车重新回到目标路径上。

此外,避障算法也在此模块中实现,当检测到障碍物时,系统会及时调整小车的行驶方向,避免与障碍物发生碰撞。

3. 电机控制与驱动电机控制与驱动模块根据主控制器的指令,控制电机的运转,实现小车的前进、后退、转向等动作。

通过调整电机的转速和转向,可以实现对小车速度和行驶方向的精确控制。

四、实验结果与分析通过实验测试,自循迹智能小车控制系统能够在不同环境下实现自主循迹和避障功能。

智能小车循迹设计方案

智能小车循迹设计方案

智能小车循迹设计方案智能小车循迹设计方案智能小车循迹是指通过对循迹线路的感知和判断,自动调整车辆行驶的轨迹,实现自动化导航的功能。

下面是一个智能小车循迹设计方案的简要介绍。

硬件设计方案:1. 传感器选择:将红外传感器作为循迹小车的传感器,红外传感器具有较高的探测精度和稳定性,在光线变化时也能稳定工作。

2. 微控制器选择:选择一款性能出色、功能强大的微控制器,如Arduino、Raspberry Pi等,作为智能小车的控制中心,负责循迹算法的实现和控制指令的下发。

3. 电机控制:选用直流电机作为小车的驱动源,通过PWM方式控制电机的转速和方向,使小车能够实现前进、后退和转弯等动作。

4. 电源选择:选择适宜的电源供电,保证小车能够长时间稳定工作,同时考虑到重量和体积的限制。

软件设计方案:1. 循迹算法:编写适用于红外传感器的循迹算法,通过传感器感知循迹线路的变化,根据相应的判断逻辑,控制车轮的转动方向,使小车保持在循迹线上行驶。

2. 硬件控制:驱动电机实现小车的移动,通过控制电机的转速和方向,使小车顺利前进、后退和转弯。

3. 用户交互:通过编写用户交互界面,实现对小车循迹功能的设置和控制,方便用户进行配置和操作。

4. 循迹环境优化:通过对循迹环境进行优化,如对循迹线进行加密处理、使用特殊材料制作循迹线等,提高循迹的准确性和稳定性。

5. 故障处理:对于传感器故障、电机故障等情况,做好相应的异常处理,提高小车的稳定性和可靠性。

总结:智能小车循迹设计方案包括硬件部分和软件部分,硬件部分主要包括传感器、微控制器、电机控制和电源选择等;软件部分主要包括循迹算法、硬件控制、用户交互、循迹环境优化和故障处理等。

通过精心设计和实施,可以实现小车循迹的自动导航功能。

智能循迹小车设计方案

智能循迹小车设计方案

智能循迹小车设计方案智能循迹小车设计方案智能循迹小车是一种能够根据预设路径自主行驶的无人驾驶车辆。

本设计方案旨在实现一辆智能循迹小车的设计与制作。

一、方案需求:1. 路径规划与控制:根据预设的路径,小车能够准确、迅速地在指定道路上行驶,并能随时调整方向和速度。

2. 传感器控制与反馈:小车具备多种传感器,能够实时感知周围环境和道路状况,如通过红外线传感器检测道路上的障碍物。

3. 自主导航与避障能力:小车能够自主判断并决策前进、转弯或避让,确保安全行驶。

当感知到障碍物时,能及时做出反应避开障碍。

二、方案设计:1. 硬件设计:a. 小车平台:选择合适的小车底盘,具备稳定性和承重能力,大小和外观可以根据实际需求进行设计。

b. 传感器系统:包括红外线传感器、超声波传感器和摄像头等,用于感应周围环境和道路状况。

c. 控制系统:采用单片机或嵌入式控制器,以实现传感器数据的处理、决策和控制小车运动。

2. 软件设计:a. 路径规划与控制算法:通过编程实现路径规划算法,将预设路径转换为小车可以理解的指令,控制小车的运动和转向。

b. 感知与决策算法:根据传感器获取的数据,实时判断周围环境和道路状况,做出相应的决策,例如避开障碍物或调整行驶速度。

c. 系统界面设计:为方便操作和监测,设计一个人机交互界面,显示小车的状态信息和传感器数据。

三、方案实施:1. 硬件实施:根据设计要求选择合适的硬件部件,并将它们组装在一起,搭建小车平台和安装传感器。

确保传感器按照预期工作稳定。

2. 软件实施:使用合适的编程语言开发控制程序。

编写路径规划、感知与决策算法,并将其与硬件系统绑定在一起。

通过测试和调试确保程序的正常运行。

3. 功能测试:对小车进行现场测试,包括路径规划、感知与决策的功能、反应时间和精度等方面的测试。

根据测试结果进行优化和调整。

四、方案展望:1. 增加智能化功能:进一步发展智能循迹小车的功能,添加更多的传感器和算法,实现更高级的自主导航和避障能力。

基于STM32单片机的智能巡线小车的设计

基于STM32单片机的智能巡线小车的设计

基于STM32单片机的智能巡线小车的设计概述本文档介绍了一种基于STM32单片机的智能巡线小车的设计方案。

该方案旨在实现小车在固定轨道上自动巡线的功能,通过使用STM32单片机和传感器模块,实现对线路的检测和控制,进而实现小车的自主导航。

硬件设计智能巡线小车的硬件设计主要包括以下几个方面:1. STM32单片机:选择适合的STM32单片机作为主控芯片,具有足够的计算能力和IO口数量,用于控制小车的各种功能。

2. 电机驱动模块:使用电机驱动模块控制小车的电机,实现小车的前进、后退、转向等动作。

3. 巡线传感器模块:使用巡线传感器模块实时检测线路的位置,并将检测结果传输给STM32单片机。

4. 电源模块:使用适配器或者电池等电源模块为小车提供稳定的电源。

软件设计智能巡线小车的软件设计主要包括以下几个方面:1. 接口程序设计:编写STM32单片机的接口程序,用于与巡线传感器模块和电机驱动模块进行通信,实现数据的读取和控制信号的发送。

2. 算法设计:设计线路检测算法,通过巡线传感器模块检测到的数据进行分析和处理,确定小车应该采取的动作,如前进、后退、转向等。

3. 控制程序设计:编写控制程序,根据算法的结果控制电机驱动模块,实现小车的自主导航功能。

4. 用户界面设计:设计一个基本的用户界面,用于显示小车的状态信息和操作界面。

实施步骤基于STM32单片机的智能巡线小车的实施步骤如下:1. 进行硬件搭建:按照设计要求,将STM32单片机、电机驱动模块、巡线传感器模块和电源模块等连接起来,并进行必要的电路连接和固定。

2. 开发接口程序:编写STM32单片机的接口程序,实现与巡线传感器模块和电机驱动模块的通信。

3. 设计算法和控制程序:根据巡线传感器模块的输出数据,设计线路检测算法,确定小车的动作,编写相应的控制程序。

4. 实现用户界面:开发一个简单的用户界面,显示小车的状态信息和操作界面。

5. 调试和测试:对小车进行调试和测试,确保线路检测和控制功能的正常运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人要实现自动导引功能和避障功能就必须要感知导引线和障碍物,感知导引线相当给机器人一个视觉功能。避障控制系统是基于自动导引小车(AVG—auto-guide vehicle)系统,基于它的智能小车实现自动识别路线,判断并自动避开障碍,选择正确的行进路线。使用传感器感知路线和障碍并作出判断和相应的执行动作。
1.2
现智能小车发展很快,从智能玩具到其它各行业都有实质成果。其基本可实现循迹、避障、检测贴片、寻光入库、避崖等基本功能,这几届的电子设计大赛智能小车又在向声控系统发展。比较出名的飞思卡尔智能小车更是走在前列。我此次的设计主要实现循迹、检测铁片、显示小车行走时间这三个功能。
1.
第1章对智能循迹小车意义和作用,现状进行简单阐述。
但是这种方案受光照影响很大,不能够稳定的工作。因此我们考虑其它更加稳定的方案。
方案2:用红外发射管和接收管自己制作光电对管寻迹传感器。红外发射管发出红外线,当发出的红外线照射到白色的平面后反射,若红外接收管能接收到反射回的光线则检测出白线继而输出低电平,若接收不到发射管发出的光线则检测出黑线继而输出高电平。这样自己制作组装的寻迹传感器基本能够满足要求,但是工作不够稳定,且容易受外界光线的影响,因此我们放弃了这个方案。
2.3.2
循迹主要是检测路面情况,利用光的反射原理,当光线照射在白在线,反射量比较大,反之,照在黑在线,由于黑色对光的吸收,反射回来的量比较少,这样就可以判断黑带轨道的走向。为此我们产生以下三种方案。
方案1:用光敏电阻组成光敏探测器。光敏电阻的阻值可以跟随周围环境光线的变化而变化。当光线照射到白线上面时,光线发射强烈,光线照射到黑线上面时,光线发射较弱。因此光敏电阻在白线和黑线上方时,阻值会发生明显的变化。将阻值的变化值经过比较器就可以输出高低电平。
第2章介绍了该智能循迹小车系设计方案比较和选择,分析了各模块的功能。
第3章阐述了智能小车系统的硬件电路的设计,其中包括电源模块、路面检测模块、单片机最小系统、电机驱动模块,以及一些辅助电路。
第4章首先介绍了该系统的软件编程,以及程序调试过程中所用到的程序调试软件及其调试环境。
最后总结部分说明了本论的主要容,举出了在系统测试过程中所发现的问题,并提出了可能的解决方案。
方案1:可见光传感器是基于可见光源的传感器,它结构简单、设计成熟,但是它工作在可见光波段,容易被外界干扰。
方案2:红外光传感器。红外线是波长为830nm~950nm的电磁波,自然环境物理在该波段的辐射量是很微弱的,所以红外反射式传感器受外界干扰较小,可靠性高。设计技术成熟,应用广泛。
方案3:紫外线传感器。在自然环境下该类传感器很难受干扰,可靠性高,但是它价格昂贵。所以我们最终选择方案二,即红外光传感器作为传感器检测模块的基本器件。
智能巡线小车的设计方案
1.1 智能小车的意义和作用
自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。
随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。但CCD传感器的价格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉传感器是一种实用有效的方法。
方案3:采用TCRT50000光电传感器,该传感器模块是基于TCRT5000红外光电传感器设计的一款红外反射式光电开关,传感器采用高发射功率红外光电二极管和高灵敏度光电晶体管组成,输出的信号经施密特电路整形,稳定可靠。
扩展部分:实现小车的避障功能(如时间充足);
主要的设计容:
1:电源模块的设计。
2:路面检测模块的设计。
3:单片机最小系统的设计。
4:电机驱动模块的设计。
2.2
方案1:采用单电源供电,通过单电源同时对单片机和直流电机进行供电,此方案的优点是,减少机身的重量,操作简单,其缺点是,这样会使单片机的波动变大,影响单片机的性能,稳定性比较弱。
2 方案论证与选择
2.1
设计一个基于单片机控制的自动寻迹小车,使小车能够自动检测地面黑色轨迹,并沿着黑色车轨迹行驶。系统方案方框图如图2.1所示的自动循迹,能前进、左转弯、右转弯、后退,检测沿途的铁片并显示铁片数目跟小车行走时间。(按照程序预设);
该智能小车可以作为机器人的典型代表。它可以分为三大组成部分:传感器检测部分、执行部分、CPU。机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避。基于上述要求,传感检测部分考虑到小车一般不需要感知清晰的图像,只要求粗略感知即可,所以可以舍弃昂贵的CCD传感器而考虑使用价廉物美的红外反射式传感器来充当。智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度。单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有PWM功能的单片机,这样可以实现精确调速;第二,可以由软件模拟PWM输出调制,需要占用单片机资源,难以精确调速,但单片机型号的选择余地较大。考虑到实际情况,本文选择第二种方案。CPU使用STC89C52单片机,配合软件编程实现。
方案2:采用双电源供电,通过两个独立的电源分别对单片机和直流电机进行供电,此方案的优点是,减少波动,稳定性比较好,可以让小车更好的运作起来,唯一的缺点就是会增加小车的重量。
综合以上的优缺点,本设计决定采用第二种方案。
2.3
2.3.1
循迹模块对于智能巡线小车来说就像来说有如人的眼睛对于人,是提供给小车的“眼睛”,此类光电传感器可以分为:可见光传感器、红外传感器、紫外线传感器等(此处不考虑光电耦合器件和位置敏感器件,由于它们占用太多的MCU资源,用起来不方便)。
相关文档
最新文档