MATLAB实验:运算基础,并且附有答案
(完整版)MATLAB)课后实验[1]
实验一 MATLAB 运算基础1. 先求以下表达式的值,尔后显示 MATLAB 工作空间的使用情况并保存全部变量。
(1)2sin 85 z1 21 e(2) 12z ln( x 1 x ) ,其中22 x2 1 2i5(3)ae e az sin( a 0.3) ln , a 3.0, 2.9, L , 2.9, 32 22t 0 t 1(4) 2z t 1 1 t 242t 2t 1 2 t 3,其中解:M 文件:z1=2*sin(85*pi/180)/(1+exp(2))x=[2 1+2*i;-.45 5];z2=1/2*log(x+sqrt(1+x^2))a=-3.0:0.1:3.0;z3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2)t=0:0.5:2.5;z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1)4. 完成以下操作:(1) 求[100,999] 之间能被 21 整除的数的个数。
(2) 建立一个字符串向量,删除其中的大写字母。
解:(1) 结果:m=100:999;n=find(mod(m,21)==0);length(n)ans =43(2). 建立一个字符串向量比方:ch='ABC123d4e56Fg9'; 那么要求结果是:ch='ABC123d4e56Fg9';k=find(ch>='A'&ch<='Z');ch(k)=[]ch =123d4e56g9实验二 MATLAB矩阵解析与办理1. 设有分块矩阵 A E R3 3 3 2O S2 3 2 2,其中 E、R、O、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试经过数值计算考据 2A E R RS2O S。
MATLAB全部实验及答案
MATLAB全部实验及答案实验一、MATLAB基本操作实验内容及步骤1、命令窗口的简单使用(1)简单矩阵的输入(2)求[12+2×(7-4)]÷32的算术运算结果2、有关向量、矩阵或数组的一些运算(1)设A=15;B=20;求C=A+B与c=a+b?(2)设A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1];求A*B与A.*B?A*B就是线代里面的矩阵相乘 A.*B是对应位置的元素相乘(3)设a=10,b=20;求i=a/b=0.5与j=a\b=2?(4)设a=[1 -2 3;4 5 -4;5 -6 7]请设计出程序,分别找出小于0的矩阵元素及其位置(单下标、全下标的形式),并将其单下标转换成全下标。
clear,clca=[1 -2 3;4 5 -4;5 -6 7];[x,y]=find(a<0);c=[];for i=1:length(x)c(i,1)=a(x(i),y(i));c(i,2)=x(i);c(i,3)=y(i);c(i,4)=(y(i)-1)*size(a,2)+x(i);endc(5)在MATLAB命令行窗口运行A=[1,2;3,4]+i*[5,6;7,8];看结果如何?如果改成运行A=[1,2;3,4]+i[5,6;7,8],结果又如何?前面那个是虚数矩阵,后面那个出错(6)请写出完成下列计算的指令:a=[1 2 3;3 4 2;5 2 3],求a^2=?,a.^2=?a^2= 22 16 1625 26 2326 24 28a.^2=1 4 99 16 425 4 9(7)有一段指令如下,请思考并说明运行结果及其原因clearX=[1 2;8 9;3 6];X( : ) 转化为列向量(8)使用三元组方法,创建下列稀疏矩阵2 0 8 00 0 0 10 4 0 06 0 0 0方法一:clear,clcdata=[2 8 1 4 6];ir=[1 1 2 3 4 ];jc=[1 3 4 2 1];s=sparse(ir,jc,data,4,4);full(s)方法二:不用三元组法clear,clca=zeros(4,4);a(1,[1,3])=[2,8];a(2,4)=1;a(3,2)=4;a(4,1)=6;a(9) 写出下列指令的运行结果>> A = [ 1 2 3 ]; B = [ 4 5 6 ];>> C = 3.^A>> D = A.^B3、 已知⎪⎭⎫ ⎝⎛+⋅=-334sin 234πt e y t 若需要计算t ∈[-1,1],取间隔为0.01,试计算出相对应的y 值。
Matlab实验指导书(含答案)详解
实验一:Matlab操作环境熟悉一、实验目的1.初步了解Matlab操作环境。
2.学习使用图形函数计算器命令funtool及其环境。
二、实验内容熟悉Matlab操作环境,认识命令窗口、内存工作区窗口、历史命令窗口;学会使用format命令调整命令窗口的数据显示格式;学会使用变量和矩阵的输入,并进行简单的计算;学会使用who和whos命令查看内存变量信息;学会使用图形函数计算器funtool,并进行下列计算:1.单函数运算操作。
➢求下列函数的符号导数(1) y=sin(x);(2)y=(1+x)^3*(2-x);➢求下列函数的符号积分(1) y=cos(x);(2) y=1/(1+x^2);(3)y=1/sqrt(1—x^2);(4) y=(x-1)/(x+1)/(x+2);➢求反函数(1) y=(x—1)/(2*x+3);(2) y=exp(x);(3)y=log(x+sqrt(1+x^2));➢代数式的化简(1) (x+1)*(x—1)*(x—2)/(x—3)/(x-4);(2) sin(x)^2+cos(x)^2;(3)x+sin(x)+2*x—3*cos(x)+4*x*sin(x);2.函数与参数的运算操作。
➢从y=x^2通过参数的选择去观察下列函数的图形变化(1)y1=(x+1)^2(2)y2=(x+2)^2(3) y3=2*x^2(4)y4=x^2+2(5)y5=x^4(6)y6=x^2/23.两个函数之间的操作➢求和(1) sin(x)+cos(x)(2) 1+x+x^2+x^3+x^4+x^5➢乘积(1) exp(—x)*sin(x)(2)sin(x)*x➢商(1)sin(x)/cos(x);(2)x/(1+x^2);(3)1/(x-1)/(x-2);➢求复合函数(1) y=exp(u) u=sin(x)(2)y=sqrt(u) u=1+exp(x^2)(3)y=sin(u)u=asin(x)(4) y=sinh(u)u=—x三、设计提示1.初次接触Matlab应该注意函数表达式的文本式描述。
MATLAB实验:运算基础,并且附有答案
实验二、MATLAB运算基础一、实验目的掌握MATLAB各种表达式的书写规则及常用函数的使用。
掌握MATLAB中字符串、元胞数组和结构的常用函数的使用。
二、实验内容及步骤1、设有矩阵A和B,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 1718 19 20;21 22 23 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 1311]1)求它们的乘积C >>C=A*B2)将矩阵C的右下角3x2子矩阵赋给D >>I=[3 4 5];J=[2 3];D=C(I,J)也可以用>>D=C([3 4 5],[2 3])D =520 397705 557890 7172、完成下列操作1)求[100,999]之间能被61整除的数及其个数(提示:先利用冒号表达式,再利用find和length函数。
)>> a=100:999;find(rem(a,61)==0)ans =23 84 145 206 267 328 389 450 511572 633 694 755 816 877>> b=a(ans)b =122 183 244 305 366 427 488 549 610 671 732 793 854 915 976>> length(b)ans =152)建立一个字符串向量,删除其中的大写字母(提示:利用find函数和空矩阵。
)a=’I am maying’;a( find(a>’A’&a<’Z’))=[]3、已知A=[23 10 -78 0;41 -45 65 5;32 5 0 32;6 -54 92 14],取出其前3行构成矩阵B,其前两列构成矩阵C,其左下角3x2子矩阵构成矩阵D,B与C的乘积构成矩阵E,分别求E<D、E&D、E|D、~E|~D。
(完整版)MATLAB)课后实验答案[1]
1 + e2 (2) z = 1 ln( x + 1 + x 2 ) ,其中 x = ⎡⎢ 2⎣-0.45 ⎦2 2 ⎪t 2 - 2t + 1 2 ≤ t <3 ⎨实验一MATLAB 运算基础1. 先求下列表达式的值,然后显示 MATLAB 工作空间的使用情况并保存全部变量。
(1) z = 2sin 8501221 + 2i ⎤5 ⎥(3) z = e 0.3a - e -0.3asin(a + 0.3) + ln 0.3 + a ,a = -3.0, - 2.9, L , 2.9, 3.03⎧t 2 0 ≤ t < 1 (4) z = ⎪t 2 - 11 ≤ t <2 ,其中 t=0:0.5:2.5 4⎩解:M 文件:z1=2*sin(85*pi/180)/(1+exp(2))x=[2 1+2*i;-.45 5];z2=1/2*log(x+sqrt(1+x^2))a=-3.0:0.1:3.0;3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2)t=0:0.5:2.5;z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1)4.完成下列操作:(1)求[100,999]之间能被21整除的数的个数。
(2)建立一个字符串向量,删除其中的大写字母。
解:(1)结果:m=100:999;n=find(mod(m,21)==0);length(n)ans=43(2).建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:ch='ABC123d4e56Fg9';k=find(ch>='A'&ch<='Z');ch(k)=[]ch=⎣O2⨯3⎥,其中E、R、O、S分别为单位矩阵、随机矩阵、零矩S⎦阵和对角阵,试通过数值计算验证A=⎢⎥。
2019年MATLAB)课后实验答案
实验一 MATLAB 运算基础1. 先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。
(1) 0122sin 851z e =+(2) 21ln(2z x =,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--(4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:: 解:4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建立一个字符串向量,删除其中的大写字母。
解:(1) 结果:(2). 建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A O S +⎡⎤=⎢⎥⎣⎦。
解: M 文件如下;5. 下面是一个线性方程组:1231112340.951110.673450.52111456x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(1) 求方程的解。
(2) 将方程右边向量元素b 3改为再求解,并比较b 3的变化和解的相对变化。
(3) 计算系数矩阵A 的条件数并分析结论。
解: M 文件如下:123d4e56g9实验三 选择结构程序设计1. 求分段函数的值。
2226035605231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩且且及其他用if 语句实现,分别输出x=,,,,,,时的y 值。
MATLAB)课后实验答案
实验一 MATLAB 运算基础1、 先求下列表达式得值,然后显示MATLAB 工作空间得使用情况并保存全部变量。
(1) 0122sin 851z e =+(2) 21ln(2z x =+,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e a z a a --+=++=--L (4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0、5:2、5 解:4、 完成下列操作:(1) 求[100,999]之间能被21整除得数得个数。
(2) 建立一个字符串向量,删除其中得大写字母。
解:(1) 结果:(2)、 建立一个字符串向量 例如:ch='ABC123d4e56Fg9';则要求结果就是:实验二 MATLAB 矩阵分析与处理1、 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵与对角阵,试通过数值计算验证22E R RS A OS +⎡⎤=⎢⎥⎣⎦。
解: M 文件如下;5、 下面就是一个线性方程组:1231112340.951110.673450.52111456x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(1) 求方程得解。
(2) 将方程右边向量元素b 3改为0、53再求解,并比较b 3得变化与解得相对变化。
(3) 计算系数矩阵A 得条件数并分析结论。
解: M 文件如下:实验三 选择结构程序设计1、 求分段函数得值。
2226035605231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩且且及其他用if 语句实现,分别输出x=-5、0,-3、0,1、0,2、0,2、5,3、0,5、0时得y 值。
东北林业大学机电工程学院电气matlab实验内容答案
实验一 MATLAB 运算基础1.先求下列表达式的值,然后显示MA TLAB 工作空间的使用情况并保存全部变量。
(1)22sin8511z e ︒=+ clear ;z1=2*sin(85/180*pi)/(1+exp(2))(2)12ln(2z x =+,其中2120.455i +⎡⎤=⎢⎥-⎣⎦clear ;x=[2,1+2*i;-0.45,5];z2=log(x+sqrt(1+x^2))/2(3)0.30.33sin(0.3), 3.0, 2.9, 2.8,,2.8,2.9,3.02a ae e z a a --=+=--- clear ;a=(-3:0.1:3);z3=((exp(0.3*a)-exp(-0.3*a))/2).*sin(a+0.3)(4)2220141122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪--≤<⎩,其中t =0:0.5:2.5clear for t=0:0.5:2.5 if t>=0 & t<1 z4=t^2elseif t>=1 & t<2 z4=t^2-1 else z4=t^2-2*t-1 end end 2.已知12344347873657A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,131203327B -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦求下列表达式的值:(1) A+6=B 和A-B+I(其中I 为单位矩阵)。
(2) A*B 和A.*B 。
(3) A^3和A^.3 。
(4) A/B 和B\A 。
(5)[A ,B]和[A([1,3],;);B^2] 。
clearA=[12,34,-4;34,7,87;3,65,7]; B=[1,3,-1;2,0,3;3,-2,7]; Z1=A+6*B I=eye(3,3) Z11=A-B+IZ21=A.*B % The second A^3 % The third A.^3A/B % The forth B\A[A,B] % The fifth [A([1,3],:);B^2] 3.设有矩阵A 和B12345678910111213141516171819202122232425A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦, 30161769023497041311B ⎡⎤⎢⎥-⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦(1) 求它们的乘积C 。
MATLAB运算基础答案
实验 01 讲评、参考答案讲评未交实验报告的同学名单数学: 6 人(11、12 级)信科: 12-04, 12-22, 13-47批改情况:问题 1:不仔细,式子中出错。
问题 2:提交的过程不完整。
问题 3:使用语句尾分号 (;)不当,提交的过程中不该显示的结果显示。
问题 4:截屏窗口没有调整大小。
附参考答案:王平《MATLAB软件》课内实验实验 01 MATLAB 运算基础(第 2 章 MATLAB 数据及其运算)一、实验目的1.熟悉启动和退出 MATLAB 的方法。
2.熟悉 MATLAB 命令窗口的组成。
3.掌握建立矩阵的方法。
4.掌握 MATLAB 各种表达式的书写规则以及常用函数的使用。
二、实验内容1.数学表达式计算先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。
计算三角函数z12sin 850(注意:度要转换成弧度,e2如何给出)1 e2示例:点击Command Window 窗口右上角的,将命令窗口提出来成悬浮窗口,适当调整窗口大小。
命令窗口中的执行过程:计算自然对数z 21ln( x21 2i 1 x 2) ,其中 x520.45(提示: clc 命令擦除命令窗口, clear则清除工作空间中的所有变量,使用时注意区别,慎用clear 命令。
应用点乘方)命令窗口中的执行过程:求数学表达式的一组值z 3 e0.3ae 0.3 a sin(a0.3) ln0.3 a, a3.0, 2.9,L , 2.9, 3.022提示:利用冒号表达式生成 a 向量,求各点的函数值时用点乘运算。
命令窗口中的执行过程:求分段函数的一组值t 20t1z4 t 211t2,其中 t=0:: t 22t 1 2t3提示:用逻辑表达式求分段函数值。
命令窗口中的执行过程:对工作空间的操作接着显示 MATLAB 当前工作空间的使用情况并保存全部变量提示:用到命令who, whos, save, clear, load ,请参考教材相关内容。
MATLAB实验及答案详解
>> C3
C3 =
9 22 2
8 19 -6
36 88 3
>> D1
D1 =
2 -2 3
655
16 -10 3
>> D2
D2 =
0.5000 -2.0000 0.3333
0.6667 5.0000 0.2000
1.0000 -10.0000 3.0000
>> D3
D3 =
141
4 25 1
16 100 9
5.0000 - 5.0000i 6.0000 - 6.0000i
②求矩阵的逆矩阵
>> B=[1 2;3 4];
>> B1=inv(B) 运行后显示:
B1 = -2.0000 1.0000 1.5000 -0.5000
>> B2=B^(-1) 运行后显示: B2 =
-2.0000 1.0000 1.5000 -0.5000 ③关于矩阵求幂 >>A=[1 2;3 4]; B=[ 2 1;3 2]; >>A.^B 运行后显示: ans =
>>A=[1,2,3;4,5,6] 运行后显示: A= 123 456
在命令窗口输入:
>>b=A(1,2)
运行后显示:b =2
在命令窗口输入:
>>A(2,3)=-3
运行后显示:A =
123
4 5 -3
矩阵的操作
>>A=[1,2,3;4,5,6;7,8,9]
>>B=diag(A) %X 为矩阵时,V=diag(X,k)得到列向量 V,它取自 X 的第 K 个对角
MATLAB实验二运算基础答案
实验二、MA TLAB运算基础一、实验目的掌握MA TLAB各种表达式的书写规则及常用函数的使用。
掌握MA TLAB中字符串、元胞数组和结构的常用函数的使用。
二、实验内容及步骤1、设有矩阵A和B,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 1718 19 20;21 22 23 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 1311]1)求它们的乘积C2)将矩阵C的右下角3x2子矩阵赋给D>> A=[1:1:5;6:1:10;11:1:15;16:1:20;21:1:25];B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 13 11];...C=A*B,D=C(3:5,2:3)C =93 150 77258 335 237423 520 397588 705 557753 890 717D =520 397705 557890 7172、完成下列操作1)求[100,999]之间能被61整除的数及其个数(提示:先利用冒号表达式,再利用find和length函数。
)>> A=[100:999];B=find(rem(A,61)==0),B_total=length(B)B =23 84 145 206 267 328 389 450 511 572633 694 755 816 877B_total =152)建立一个字符串向量,删除其中的大写字母(提示:利用find函数和空矩阵。
)>> a=['MA TLAB is important'], b=abs(a); c=find(b<=90 & b>=65) , a(c)=[],a =MA TLAB is importantc = 1 2 3 4 5 6a =is important⑶已知A=[23 10 -78 0;41 -45 65 5;32 5 0 32;6 -5492 14],取出其前3行构成矩阵B,其前两列构成矩阵C,其左下角3x2子矩阵构成矩阵D,B与C的乘积构成矩阵E,分别求E<D、E&D、E|D、~E|~D。
含答案《MATLAB实用教程》
含答案《MATLAB实⽤教程》第⼆章 MATLAB 语⾔及应⽤实验项⽬实验⼀ MATLAB 数值计算三、实验内容与步骤1.创建矩阵=987654321a(1(2)⽤(3)⽤(42.矩阵的运算(1)利⽤矩阵除法解线性⽅程组。
=+++=-+-=+++=+-12224732258232432143214321421x x x x x x x x x x x x x x x 将⽅程表⽰为AX=B ,计算X=A\B 。
(2)利⽤矩阵的基本运算求解矩阵⽅程。
已知矩阵A 和B 满⾜关系式A -1BA=6A+BA ,计算矩阵B 。
其中=7/10004/10003/1A ,Ps: format rata=[1/3 0 0;0 1/4 0;0 0 1/7];b=inv(a)*inv(inv(a)-eye(3))*6*a(3)计算矩阵的特征值和特征向量。
已知矩阵?--=1104152021X ,计算其特征值和特征向量。
和相频特性Fw=-arctan(2w),w 的范围为[0.01,10],按对数均匀分布。
3.多项式的运算(1)多项式的运算。
已知表达式G(x)=(x-4)(x+5)(x 2-6x+9),展开多项式形式,并计算当x 在[0,20]内变化时G(x)的值,计算出G(x)=0的根。
Page 324(2)多项式的拟合与插值。
将多项式G(x)=x 4-5x 3-17x 2+129x-180,当x 在[0,20]多项式的值上下加上随机数的偏差构成y1,对y1进⾏拟合。
对G(x)和y1分别进⾏插值,计算在5.5处的值。
Page 325 四、思考练习题1.使⽤logspace 函数创建0~4π的⾏向量,有20个元素,查看其元素分布情况。
Ps: logspace(log10(0),log10(4*pi),20) (2) sort(c,2) %顺序排列 3.1多项式1)f(x)=2x 2+3x+5x+8⽤向量表⽰该多项式,并计算f(10)值. 2)根据多项式的根[-0.5 -3+4i -3-4i]创建多项式。
(完整版)MATLAB)课后实验答案[1]
实验一 MATLAB 运算基础1.先求下列表达式的值,然后显示 MATLAB 工作空间的使用情 况并保存全部变量解:4.完成下列操作:(1) 求[100,999] 之间能被21整除的数的个数。
(1) z i 2sin 85° 1 e 2Z 2 卯(x L),其中x2 0.45 2i 5Z 3 0.3a 0.3a e e 2sin (a 0.3)3.0, 2.9,L ,2.9, 3.0 Z 4t 2t 2 t 2 1 2t 其中 t=0:0.5:2.5(2) 建立一个字符串向量,删除其中的大写字母。
解: (1)结果:m=100:999;n=fin d(mod(m,21)==0);len gth( n)ans =43(2).建立一个字符串向量例如:ch二'ABC123d4e56Fg9:则要求结果是: ch二'ABC123d4e56Fg9:k=fi nd(ch>='A'&ch<='Z'); ch(k)=[] ch =123d4e56g9 实验二MATLAB 矩阵分析与处理1.设有分块矩阵A E 3 3 °2 3 R 3 2S 2 2 ,其中E 、R 、0、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证A 2 E R RS 0 S 22 3 4 1 1 1 3 4 5 1 1 1 4 5 6 x , 0.95 x 2 0.67 x 3 0.52(1) 求方程的解。
(2) 将方程右边向量元素 b 3改为0.53再求解,并比较 b 3的变化和解的相对变化。
(3)计算系数矩阵A 的条件数并分析结论。
解:M 文件如下: 解:M 文件如下; 5.下面是一个线性方程组:实验三选择结构程序设计1. 求分段函数的值。
x2x 6 x 0且x 3y x2 5x 6 0 x 5且x 2 及x 3x2x 1 其他用if语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0 时的y值。
MATLAB运算基础(第2章)答案培训资料
M A T L A B运算基础(第2章)答案实验01讲评、参考答案讲评未交实验报告的同学名单批改情况:问题1:不仔细,式子中出错。
问题2:提交的过程不完整。
问题3:使用语句尾分号(;)不当,提交的过程中不该显示的结果显示。
问题4:截屏窗口没有调整大小。
附参考答案:实验01 MATLAB 运算基础(第2章 MATLAB 数据及其运算)一、实验目的1. 熟悉启动和退出MATLAB 的方法。
2. 熟悉MATLAB 命令窗口的组成。
3. 掌握建立矩阵的方法。
4. 掌握MATLAB 各种表达式的书写规则以及常用函数的使用。
二、实验内容1. 数学表达式计算先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。
1.1 计算三角函数122sin 851z e=+(注意:度要转换成弧度,e 2如何给出) 《MATLAB 软件》课内实验王平示例:点击Command Window 窗口右上角的,将命令窗口提出来成悬浮窗口,适当调整窗口大小。
命令窗口中的执行过程:1.2 计算自然对数221ln(1)2z x x =++,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦(提示:clc 命令擦除命令窗口,clear 则清除工作空间中的所有变量,使用时注意区别,慎用clear 命令。
应用点乘方)命令窗口中的执行过程:1.3 求数学表达式的一组值0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--提示:利用冒号表达式生成a 向量,求各点的函数值时用点乘运算。
命令窗口中的执行过程:1.4 求分段函数的一组值2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.5 提示:用逻辑表达式求分段函数值。
命令窗口中的执行过程:1.5 对工作空间的操作接着显示MATLAB当前工作空间的使用情况并保存全部变量提示:用到命令who, whos, save, clear, load,请参考教材相关内容。
试验一:matlab语言的基本使用方法及答案
试验一:matlab语言的基本使用方法及答案【一】实验目的:了解matlab 语言的上机环境,熟悉其主要视窗的使用方法。
熟悉利用Matlab 进行基本的数学运算【二】实验内容1、 Matlab 指令窗的悬停与还原,指令窗中各种标点符号的作用2、历史命令窗口的操作。
历史命令的重新运行,单行命令的运行,不连续多行命令的运行,连续多行命令的运行,历史命令窗口右键快捷菜单各命令的操作。
3、工作空间操作。
工作空间右键快捷方式各种命令的应用4、明确搜索路径对于Matlab 的作用,熟练搜索路径的修改5、使用format 命令查看pi 的各种显示格式6、令A=1.2,B=-4.6,C=8.0,D=3.5, E=-4.0 计算)22arctan(DBC E A T ππ+=并将计算过程保存成M-file 运算 7、令a=5.67,b=7.8 计算)lg(b a e ba ++ 8、已知半径为15的圆,求其直径,周长及面积9、已知三角形三边长分别为a=8.5,b=14.6,c=18.4,求其面积提示area=sqrt (s (s-a )(s-b )(s-c ))S=(a+b+c )/210、计算 y=sin(x)ln(1+x)-x 2其中x=[1 2 3 4 5 ],并画出x ,y 的函数关系11、设 75,24=-=b a ,计算|)tan(||)||sin(|b a b a ++的值。
12、分别画出函数x x y cos 2=和x xz sin =在区间[-6π,6π]上的图形。
实验一:6~~令A=1.2,B=-4.6,C=8.0,D=3.5, E=-4.0 计算)22arctan(DBC E A T ππ+=并将计算过程保存成M-file 运算 >> A=1.2;B=-4.6;C=8.0;D=3.5;E=-4.0;>> T=atan((2*pi*A+E/(2*pi*B*C))/D)T =1.1371>>7~令a=5.67,b=7.8 计算)lg(b a e ba ++ >> a=5.67;b=7.8;>> c=exp(a+b)/log10(a+b)c =6.2677e+005>>10计算 y=sin(x)ln(1+x)-x 2其中x=[1 2 3 4 5 ],并画出x ,y 的函数关系 >> x=[1,2,3,4,5];>> y=sin(x).*log(1+x)-x.*x;>> plot(x,y)>>11设 75,24=-=b a ,计算|)tan(||)||sin(|b a b a ++的值。
matalab编程答案
MATLAB 实验综合训练(一)MATLAB 运算基础1.1 计算矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡897473535与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡638976242之和,并指出矩阵的规模。
>> a=[5 3 5;3 7 4;7 9 8];>> b=[2 4 2;6 7 9;8 3 6];>> a+bans =7 7 79 14 1315 12 141.2 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
>> a=[1 2 3;4 5 6;7 8 9];>> a.^2ans =1 4 916 25 3649 64 81>> a^2ans =30 36 4266 81 96102 126 1501.3 将矩阵⎥⎦⎤⎢⎣⎡=5724a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡235912687574(2)按照a 、b 、c 的列顺序组合成一个行矢量,即[]296531877254% (1)>> d=[a(:) b(:) c(:)]d =4 7 55 8 62 1 97 3 2或者a=[4 2;7 5];b=[7 1;8 3];c=[5 9;6 2];>> a1=reshape(a,4,1);% 函数功能:重新调整矩阵的行数、列数、维数。
Reshape 使用的列优先! >> b1=reshape(b,4,1);>> c1=reshape(c,4,1);>> D=[a1 b1 c1]D =4 7 57 8 62 1 95 3 2或者>> y=reshape([a b c],1,12)y =Columns 1 through 84 7 25 7 8 1 3Columns 9 through 125 6 9 2% (2)>> e=[a(:);b(:);c(:)]'e =4 5 2 7 7 8 1 3 5 6 9 2或利用(1)中产生的d>> e=reshape(d,1,12)ans =4 5 2 7 7 8 1 3 5 6 9 2或者>> M=d(:)M =472578135692>> N=M'N=4 7 25 7 8 1 35 69 21.4 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。
MATLAB程序设计与应用(第二版)课后实验答案
Matlab课后实验题答案实验一 MATLAB运算基础1. 先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。
(1)0 122sin851ze =+(2)21ln(2z x=,其中2120.455ix+⎡⎤=⎢⎥-⎣⎦(3)0.30.330.3sin(0.3)ln, 3.0, 2.9,,2.9,3.0 22a ae e az a a--+=++=--(4)2242011122123t tz t tt t t⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t=0:0.5:2.52. 已知:1234413134787,2033657327A B --⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦求下列表达式的值:(1) A+6*B 和A —B+I(其中I 为单位矩阵) (2) A*B 和A.*B (3) A^3和A.^3 (4) A/B 及B\A(5) [A,B ]和[A ([1,3],:);B^2] 解:3. 设有矩阵A 和B123453166789101769,111213141502341617181920970212223242541311A B ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1) 求它们的乘积C 。
(2) 将矩阵C 的右下角3×2子矩阵赋给D 。
(3) 查看MATLAB 工作空间的使用情况。
4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建立一个字符串向量,删除其中的大写字母。
解:(1) 结果:(2).建立一个字符串向量 例如: ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1。
设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A OS +⎡⎤=⎢⎥⎣⎦。
(完整版)MATLAB)课后实验答案[1]
实验一 MATLAB 运算基础1. 先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。
(1) 0122sin 851z e =+(2) 21ln(2z x =,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e a z a a --+=++=--L (4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.5 解:4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建立一个字符串向量,删除其中的大写字母。
解:(1) 结果:(2). 建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A O S +⎡⎤=⎢⎥⎣⎦。
解: M 文件如下;5. 下面是一个线性方程组:1231112340.951110.673450.52111456x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(1) 求方程的解。
(2) 将方程右边向量元素b 3改为0.53再求解,并比较b 3的变化和解的相对变化。
(3) 计算系数矩阵A 的条件数并分析结论。
解: M 文件如下: 123d4e56g9实验三 选择结构程序设计1. 求分段函数的值。
2226035605231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩且且及其他用if 语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y 值。
MATLAB程序设计及应用(第二版)课后实验答案(最新整理)
阵和对角阵,试通过数值计算验证。
22E R RS A OS +⎡⎤=⎢⎥⎣⎦解: M 文件如下;由ans,所以22E R RS A O S +⎡⎤=⎢⎥⎣⎦2. 产生5阶希尔伯特矩阵H 和5阶帕斯卡矩阵P ,且求其行列式的值Hh 和Hp 以及它们的条件数Th 和Tp ,判断哪个矩阵性能更好。
为什么?解:M 文件如下:因为它们的条件数Th>>Tp,所以pascal 矩阵性能更好。
3. 建立一个5×5矩阵,求它的行列式值、迹、秩和范数。
解: M 文件如下:4. 已知2961820512885A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦求A 的特征值及特征向量,并分析其数学意义。
解:M 文件如图:数学意义:V的3个列向量是A的特征向量,D的主对角线上3个是A的特征值,特别的,的3个列向量分别是D的3个特征值的特征向量。
5. 下面是一个线性方程组:111⎡⎤输出结果:由结果,X和X2的值一样,这表示b的微小变化对方程解也影响较小,而A的条件数算得较小,所以数值稳定性较好,A是较好的矩阵。
6. 建立A矩阵,试比较sqrtm(A)和sqrt(A),分析它们的区别。
解:M文件如下:分析结果知:sqrtm(A)是类似A的数值平方根(这可由b1*b1=A的结果看出),而sqrt(A)则是对A中的每个元素开根号,两则区别就在于此。
实验三 选择结构程序设计1. 求分段函数的值。
2226035605231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩且且及其他用if 语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y 值。
解:M文件如下:2. 输入一个百分制成绩,要求输出成绩等级A 、B 、C 、D 、E 。
其中90分~100分为A ,80分~89分为B ,79分~79分为C ,60分~69分为D ,60分以下为E 。
要求:(1) 分别用if 语句和switch 语句实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二、MATLAB运算基础一、实验目的掌握MATLAB各种表达式的书写规则及常用函数的使用。
掌握MATLAB中字符串、元胞数组和结构的常用函数的使用。
二、实验内容及步骤1、设有矩阵A和B,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 1718 19 20;21 22 23 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 1311]1)求它们的乘积C >>C=A*B2)将矩阵C的右下角3x2子矩阵赋给D >>I=[3 4 5];J=[2 3];D=C(I,J)也可以用>>D=C([3 4 5],[2 3])D =520 397705 557890 7172、完成下列操作1)求[100,999]之间能被61整除的数及其个数(提示:先利用冒号表达式,再利用find和length函数。
)>> a=100:999;find(rem(a,61)==0)ans =23 84 145 206 267 328 389 450 511572 633 694 755 816 877>> b=a(ans)b =122 183 244 305 366 427 488 549 610 671 732 793 854 915 976>> length(b)ans =152)建立一个字符串向量,删除其中的大写字母(提示:利用find函数和空矩阵。
)a=’I am maying’;a( find(a>’A’&a<’Z’))=[]3、已知A=[23 10 -78 0;41 -45 65 5;32 5 0 32;6 -54 92 14],取出其前3行构成矩阵B,其前两列构成矩阵C,其左下角3x2子矩阵构成矩阵D,B与C的乘积构成矩阵E,分别求E<D、E&D、E|D、~E|~D。
>>B=A([1 2 3 ],:)>> C=A(:,[1 2])>> D=A([2 3 4 ],[12 ])>> E=B*C>> E<Dans =1 10 00 1 >> E&Dans =1 11 11 1 >> E|Dans =1 11 11 1 >> ~E|~D ans =0 00 00 04、使用函数,实现矩阵左旋90°或右旋90°的功能>>rot90(A,1)代表左旋90度5、写出使以下这段文字成为字符串的MA TLAB指令。
注意保持这段文字的格式:在英式用法中,引号通常是单引号,如'Fire!'。
In GB usage quotation marks are usually single: 'fire!'.>> a='在英式用法中,引号通常是单引号,如''Fire!''。
'a =在英式用法中,引号通常是单引号,如'Fire!'。
>> b='In GB usage quotation marks are usually single: ''fire!''. 'b =In GB usage quotation marks are usually single: 'fire!'.>>strvcat(a,b) %strvcat代表垂直拼接ans =在英式用法中,引号通常是单引号,如'Fire!'。
In GB usage quotation marks are usually single: 'fire!'6. 用结构体数组来存储2名学生的基本情况数据,每名学生的数据包括学号、姓名、专业和2门课程的成绩。
>> student=struct('xuehao',{000,001},'xingming',{'deni ','sherry'},'zhuanye',{'math','english'},'chengji',{'math:87,english:9 0','math:86,english:92'})student =1x2 struct array with fields:xuehaoxingmingzhuanyechengji>> student(1)ans =xuehao: 0xingming: 'deni 'zhuanye: 'math'chengji: 'math:87,english:90'>> student(2)ans =xuehao: 1xingming: 'sherry'zhuanye: 'english'chengji: 'math:86,english:92'7求S=20+21+22+23+24+……+210的值(提示:利用求和函数与累乘积函数。
)方法一>> a=[1 2 2 2 2 2 2 2 2 2 2];c=cumprod(a)c =1 2 4 8 1632 64 128 256 512 1024 >> sum(c)ans =2047方法二>> a=0:10;>> b=2.^ab =Columns 1 through 91 2 4 8 16 32 64 128 256Columns 10 through 11512 1024>> c=sum(b)c =20478建立矩阵A并回答有关问题A{1,1}=1;A{1,2}='Brenden';A{2,1}=reshape(1:9,3,3);A{2,2}={12,34,2;54,21,3;4,23,67};1)使用访问的方式如何将Brenden改写成BRENDEN?>>A{1,1}=1;A{1,2}='Brenden';A{2,1}=reshape(1:9,3,3);A{2, 2}={12,34,2;54,21,3;4,23,67}A =[ 1] 'Brenden'[3x3 double] {3x3 cell}>> upper(A{1,2}) 用{}来访问元胞的内容ans =BRENDEN2)分别执行A(3)=[]和A{3}=[]后,A的值各是多少?并说明原因。
>> A(3)=[]A =[1] [3x3 double] {3x3 cell}>>A{1,1}=1;A{1,2}='Brenden';A{2,1}=reshape(1:9,3,3);A{2,2}={12,34,2;54,21,3;4,23,67}A =[ 1] 'Brenden'[3x3 double] {3x3 cell}>> A{3}=[]A =[ 1] [][3x3 double] {3x3 cell}原因:用()是访问元胞数组内的元胞,而用{}是访问元胞数组内的元胞内容。
9利用MATLAB提供的rand函数和圆整函数随机生成4X3整数矩阵A,进行如下操作1)A各列元素的平均值和中值>> A=round(rand(4,3)*10)A =9 9 17 9 42 4 84 9 0>> mean(A)ans =5.5000 7.7500 3.2500>> median(A)ans =5.5000 9.0000 2.50002)A的最大元素和最小元素及它们的位置>> A=round(rand(4,3)*10)A =5 8 39 7 58 3 76 3 3>> x=max(A(:))x =9>> find(A==x) %找最大值的位置ans =23)求A的每行元素的和以及全部元素之和>>sum(A,2);sum(A(:))4)分别对A的每列元素按升序、每行元素按降序排列>>sort(A); sort默认升序>>dim=2;sort(A,dim,'descend')或者直接用sort(A,2,’descend’)10、思考:已知元胞数组CC(:,:,1) ='way' 'sherry'[ 1] [ 2]C(:,:,2) ='deni' 'joe'[ 3] [ 4]和元胞数组fields={'name','id'}问: >>S1=cell2struct(C,fields,1)>>S2=cell2struct(C,fields,2)>>S3=cell2struct(C,fields,3)三条指令中,请说明转换正确的是哪些指令?。