高中物理-电磁感应综合应用练习

合集下载

高中物理必修3电磁感应现象与应用实验探究题专题训练

高中物理必修3电磁感应现象与应用实验探究题专题训练

高中物理必修3电磁感应现象与应用实验探究题专题训练姓名:__________ 班级:__________考号:__________一、实验,探究题(共6题)1、下图为研究电磁感应现象的实验装置,部分导线已连接.(1)用笔画线代替导线将图中未完成的电路连接好_______.(2)在闭合电键时发现灵敏电流计的指针向右偏了一下,那么合上电键后可能出现的情况有:将原线圈迅速插入副线圈时,灵敏电流计指针将____(选填“向右偏”、“向左偏”或“不偏转”).原线圈插入副线圈后,将滑动变阻器触头迅速向右拉时,灵敏电流计指针将____(选填“向右偏”、“向左偏”或“不偏转”);断开电键时,灵敏电流计指针将____(选填“向右偏”、“向左偏”或“不偏转”).2、演示地磁场存在的实验装置由环形线圈,微电流传感器,DIS等组成如图所示首先将线圈竖直放置,以竖直方向为轴转动,屏幕上的电流指针______ 填:“有”或“无”偏转;然后仍将线圈竖直放置,使其平面与东西向平行,并从东向西移动,电流指针______ 填:“有”或“无”偏转;最后将线圈水平放置,使其从东向西移动,电流指针______ 填:“有”或“无”偏转.3、如图所示是“研究电磁感应现象”的实验装置.(1)将图中所缺导线补接完整_______________.(2)如果在闭合电键时发现灵敏电流计的指针向右偏了一下,那么合上电键后,将原线圈迅速插入副线圈时,电流计指针_______(填“右偏”、“左偏”或“不偏转”);原线圈插入副线圈后,将滑动变阻器滑片迅速向左移动时,电流计指针_______(填“右偏”、“左偏”或“不偏转”).4、在“探究电磁感应的产生条件”实验中,实验连线后如图1所示,感应线圈组的内外线圈的绕线方向如图2粗线所示.(1)接通电源,闭合开关,G表指针会有大的偏转,几秒后G表指针停在中间不动.将滑动变阻器的触头迅速向右滑动时,G表指针____(“不动”、“右偏”、“左偏”、“不停振动”);迅速抽出铁芯时,G表指针____(“不动”、“右偏”、“左偏”、“不停振动”).(2)断开开关和电源,将铁芯重新插入内线圈中,把直流输出改为交流输出,其他均不变.接通电源,闭合开关,G表指针____(“不动”、“右偏”、“左偏”、“不停振动”).(3)仅用一根导线,如何判断G表内部线圈是否断了?________5、在图甲中,不通电时电流表指针停在正中央,当闭合S时,观察到电流表指针向左偏.现在按图乙连接方式将电流表与螺线管B连成一个闭合回路,将螺线管A与电池、滑动变阻器和开关串联成另一个闭合回路.(1)将S闭合后,将螺线管A插入螺线管B的过程中,电流表的指针将______(填“向左”“向右”或“不发生”)偏转;(2)螺线管A放在B中不动,电流表的指针将______(填“向左”“向右”或“不发生”)偏转;(3)螺线管A放在B中不动,滑动变阻器的滑片向右滑动,电流表的指针将_________(填“向左”“向右”或“不发生”)偏转;(4)螺线管A放在B中不动,突然切断开关S时,电流表的指针将_______(填“向左”“向右”或“不发生”)偏转.6、某研究小组同学做下面两个实验:(1)甲同学在“研究电磁感应现象”的实验中,首先要按图甲接线,以查明电流表指针的偏转方向与电流方向之间的关系;然后按图乙将电流表与线圈B连成一个闭合回路,将线圈A、电池、滑动变阻器和开关串联成另一个闭合电路,在图甲中,当闭合S时,观察到电流表指针向左偏,不通电时电流表指针停在正中央.在图乙中:S闭合后,将螺线管A插入螺线管B 的过程中,电流表的指针________(选填“向右偏”、“向左偏”或“不偏转”);线圈A放在B中不动时,指针将________(选填“向右偏”、“向左偏”或“不偏转”);线圈A放在B中不动,突然断开开关S,电流表指针将________(选填“向右偏”、“向左偏”或“不偏转”).(2)乙同学为了研究光敏电阻在室内正常光照射和室外强光照射时电阻的大小关系,用图丙所示电路进行实验,得出两种U-I图线如图丁所示.根据U-I图线可知正常光照射时光敏电阻阻值为________Ω,强光源照射时电阻为________Ω;若实验中所用电压表的内阻约为,毫安表的内阻约为;考虑到电表内阻对实验结果的影响,此实验中____(填“正常光照射时”或“强光照射时”)测得的电阻误差较大.若测量这种光照下的电阻,则需将实物图中毫安表的连接方式采用________(填“内接”或“外接”)法进行实验,实验结果较为准确.============参考答案============一、实验,探究题1、(1)见解析(2)向右偏向左偏向左偏【详解】(1)将电源、电键、变阻器、原线圈串联成一个回路,注意滑动变阻器接一上一下两个接线柱,再将电流计与副线圈串联成另一个回路,电路图如图所示.在闭合电键时,穿过线圈的磁通量增大,灵敏电流计的指针向右偏转;将原线圈迅速插入副线圈时,穿过线圈的磁通量增加,灵敏电流计指针将向右偏.原线圈插入副线圈后,将滑动变阻器触头迅速向右拉时,线圈中的电流减小,穿过线圈的磁通量减小,灵敏电流计指针将向左偏.断开电键时,线圈中的电流减小,穿过线圈的磁通量减小,灵敏电流计指针将左偏.2、有无无【解析】判断有无感应电流的关键是判断磁通量是否发生变化.地磁场在北半球两个分量,水平分量南向北,竖直分量向下.线圈以竖直为轴转动,磁通量变化.东西移动,磁感应强度不变,与线圈平面夹角不变.磁通量不变.无感应电流.水平也是如此【考点定位】地磁场的分布.感应电流产生的条件3、见解析向右偏转向左偏转【分析】(1)注意该实验中有两个回路,一是电源、电键、变阻器、小螺线管串联成的回路,二是电流计与大螺线管串联成的回路,据此可正确解答;(2)磁场方向不变,磁通量的变化不变时电流方向不变,电流表指针偏转方向相同,磁通量的变化相反时,电流表指针方向相反.【详解】(1)将电源、电键、变阻器、小螺线管串联成一个回路,再将电流计与大螺线管串联成另一个回路,电路图如图所示;(2)闭合开关,穿过副线圈的磁通量增大,灵敏电流表的指针向右偏;当将原线圈迅速插入副线圈时,则线圈的磁通量也是从无到有,则说明线圈磁通量从无到有即变大,导致电流计指针向右偏一下;线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电路中电流变小,导致线圈磁通量变小,则电流计指针向左偏转一下.【点睛】本题考查研究电磁感应现象及验证楞次定律的实验,对于该实验注意两个回路的不同.知道磁场方向或磁通量变化情况相反时,感应电流反向是判断电流表指针偏转方向的关键.4、左偏右偏不停振动短接G表前后各摇动G表一次,比较指针偏转,有明显变化,则线圈断了;没有明显偏转则未断.【详解】(1)将滑动变阻器的触头迅速向右滑动时,电阻减小,回路电流变大,根据线圈中导线的绕向可知磁通量向下增加,根据楞次定律可知,A线圈中产生的感应电流使G表指针左偏;迅速抽出铁芯时,磁通量减小,产生的感应电流方向与上述方向相反,则G表指针右偏.(2)断开开关和电源,将铁芯重新插入内线圈中,把直流输出改为交流输出,其他均不变.接通电源,闭合开关,由于穿过线圈的磁通量大小方向都不断变化,在线圈A中产生的感应电流大小方向不断变化,则G表指针不停振动.(3)根据阻尼原理,短接G表,前后各摇动G表一次,比较指针偏转,有明显变化,则线圈断了;没有明显偏转则未断.5、向左不发生向右向右【分析】由安培定则判断出判断出线圈A产生的磁场方向,然后判断出穿过线圈B的磁通量如何变化,最后由楞次定律判断出感应电流的方向,确定电流表指针的偏转方向.【详解】(1)甲电路测出电流表是正进负出向左偏.将S闭合后,将螺线管A插入螺线管B的过程中,穿过B的磁场向下,磁通量变大,由楞次定律可知,感应电流从电流表正接线柱流入,则电流表的指针将左偏转;(2)螺线管A放在B中不动,穿过B的磁通量不变,不产生感应电流,电流表的指针将不发生偏转;(3)螺线管A放在B中不动,穿过B的磁场向下,将滑动变阻器的滑动触片向右滑动时,A线圈的电流减小,穿过B的磁通量变小,由楞次定律可知感应电流从电流表负接线柱流入,则电流表的指针将右偏转;(4)螺线管A放在B中不动,穿过B的磁场向下,突然切断开关S时,穿过B的磁通量减小,由楞次定律可知,感应电流从电流表负接线柱流入,则电流表的指针将向右偏转.【点睛】熟练掌握并灵活应用安培定则及楞次定律即可正确解题.6、 (1)向左偏不偏转向右偏(2)3000 200 强光照射时外接【解析】(1)由图甲知电流从左接线柱流入电流表时,其指针向左偏转.S闭合后,将A插入B中,磁通量增大,由楞次定律和安培定则可判断B中电流方向向下,从左接线柱流入,故电流表指针向左偏转;A放在B中不动,磁通量不变,不产生感应电流,指针不偏转;断开开关,穿过B的磁通量减小,电流表指针向右偏转.(2)根据R=U/I且在U-I图象中斜率等于电阻阻值可得,正常光照射时R a =Ka=;强光照射时Rb=Kb=;由实物图可知,本实验采用电流表内接法;由(1)中所求可知,强光照射时电阻较小,与电流表内接接近,因此强光照射时误差较大;强光照射时,光敏电阻阻值为200Ω,根据;可得:,说明此时该电阻为小电阻,电流表的分压作用引起的误差大,应采用外接法;点睛:本题考查电路接法以及误差分析的方法,要注意明确电流表内外接法的正确选择,按照大电阻应采用内接法,小电阻采用外接法的方式进行选择.。

(完整版)电磁感应综合练习题(基本题型,含答案)

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型)一、选择题: 1.下面说法正确的是( )A .自感电动势总是阻碍电路中原来电流增加B .自感电动势总是阻碍电路中原来电流变化C .电路中的电流越大,自感电动势越大D .电路中的电流变化量越大,自感电动势越大【答案】B2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLvB .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零C .当两杆以相同的速度v 同向滑动时,伏特表读数为零D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv【答案】AC3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。

如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4C .a 1 = a 2>a 3>a 4D .a 4 = a 2>a 3>a 1【答案】C4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A图9-2图9-3图9-4图9-15.如图9-4所示,在U形金属架上串入一电容器,金属棒ab在金属架上无摩擦地以速度v向右运动一段距离后突然断开开关,并使ab停在金属架上,停止后,ab不再受外力作用。

电磁感应现象压轴题综合题附答案

电磁感应现象压轴题综合题附答案

电磁感应现象压轴题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L =- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgR v B L=(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L=-3.如图,两足够长的平行金属导轨平面与水平面间夹角为=30θ︒,导轨电阻忽略不计,二者相距l =1m ,匀强磁场垂直导轨平面,框架上垂直放置一根质量为m =0.1kg 的光滑导体棒ab ,并通过细线、光滑滑轮与一质量为2m 、边长为2l正方形线框相连,金属框下方h =1.0m 处有垂直纸面方向的长方形有界匀强磁场,现将金属框由静止释放,当金属框刚进入磁场时,电阻R 上产生的热量为1Q =0.318J ,且金属框刚好能匀速通过有界磁场。

电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。

2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。

3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。

电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。

通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。

4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。

(2)在电源内部电流由负极流向正极。

(3)电源两端的电压为路端电压。

5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。

由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。

6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。

(2)功能关系:Q=W克服安培力,电流变不变都适用。

(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。

7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。

教科版高中物理必修第三册第三章电磁场与电磁波初步3电磁感应现象及其应用练习含答案

教科版高中物理必修第三册第三章电磁场与电磁波初步3电磁感应现象及其应用练习含答案

第三章电磁场与电磁波初步3电磁感应现象及其应用基础过关练题组一电磁感应现象的发现1.(2022湖北鄂州期末改编)下列现象属于电磁感应的是( )A.磁场中某点小磁针N极受力的方向与磁感应强度的方向相同B.闭合电路的一部分导体在磁场中做切割磁感线运动,导体中产生电流C.一些物体在磁体或电流的作用下会显现磁性,如插在通电螺线管中的软铁棒被磁化D.通电导线周围和永磁体周围一样都存在磁场2.(多选题)(2023山东枣庄期末)从1822年至1831年的近十年时间里,英国科学家法拉第心系“磁生电”。

在他的研究过程中有两个重要环节:(1)敏锐地觉察并提出“磁生电”的闪光思想;(2)通过大量实验,将“磁生电”(产生感应电流)的情况概括为五种:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。

结合你学过的相关知识,试判断下列说法正确的是( )A.环节(1)提出“磁生电”思想是受到了奥斯特的“电流磁效应”的启发B.环节(1)提出“磁生电”思想是为了对已经观察到的“磁生电”现象提供合理解释C.环节(2)中五种“磁生电”条件都可以概括为“穿过闭合导体回路的磁通量发生变化”D.环节(2)中“在磁场中运动的导体”这种情况不符合“穿过闭合导体回路的磁通量发生变化”这一条件题组二感应电流产生的条件3.(经典题)(多选题)(2022黑龙江哈尔滨期中)如图所示,线圈两端接在电流表上组成闭合电路。

在下列情况中,电流表指针发生偏转的是( )A.磁铁和线圈相对移动时B.磁铁插在线圈内不动C.线圈不动,磁铁拔出线圈时D.线圈不动,磁铁插入线圈时4.(2024四川南充段考)如图所示,直导线MN竖直放置并通以向上的电流I,矩形金属线框abcd与MN在同一平面内,边ab与MN平行,则( )A.线框向左平移时,线框中有感应电流B.线框竖直向上平移时,线框中有感应电流C.线框以MN为轴转动时,线框中有感应电流D.MN中电流突然变小时,线框中没有感应电流题组三实验:探究感应电流产生的条件5.(2024四川雅安天立中学入学考试)如图是探究电磁感应产生条件的实验器材。

高考物理电磁感应现象压轴题综合题附答案

高考物理电磁感应现象压轴题综合题附答案

高考物理电磁感应现象压轴题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。

导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。

空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。

质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。

【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。

由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。

ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。

重力加速度为g 。

求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。

【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R==线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin 302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=3.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。

高中物理电磁感应精选练习题及答案

高中物理电磁感应精选练习题及答案

【例1】 (2004,综合)发电的基本原理是电磁感应。

发现电磁感应现象的科学家是( )A .安培B .赫兹C .法拉第D .麦克斯韦解析:该题考查有关物理学史的知识,应知道法拉第发现了电磁感应现象。

答案:C【例2】发现电流磁效应现象的科学家是___________,发现通电导线在磁场中受力规律的科学家是__________,发现电磁感应现象的科学家是___________,发现电荷间相互作用力规律的的科学家是___________。

解析:该题考查有关物理学史的知识。

答案:奥斯特 安培 法拉第 库仑☆☆对概念的理解和对物理现象的认识【例3】下列现象中属于电磁感应现象的是( )A .磁场对电流产生力的作用B .变化的磁场使闭合电路中产生电流C .插在通电螺线管中的软铁棒被磁化D .电流周围产生磁场解析:电磁感应现象指的是在磁场产生电流的现象,选项B 是正确的。

答案:B★巩固练习1.关于磁通量、磁通密度、磁感应强度,下列说确的是( )A .磁感应强度越大的地方,磁通量越大B .穿过某线圈的磁通量为零时,由B =SΦ可知磁通密度为零 C .磁通密度越大,磁感应强度越大D .磁感应强度在数值上等于1 m 2的面积上穿过的最大磁通量解析:B 答案中“磁通量为零”的原因可能是磁感应强度(磁通密度)为零,也可能是线圈平面与磁感应强度平行。

答案:CD2.下列单位中与磁感应强度的单位“特斯拉”相当的是( )A .Wb/m 2B .N/A ·mC .kg/A ·s 2D .kg/C ·m解析:物理量间的公式关系,不仅代表数值关系,同时也代表单位.答案:ABC3.关于感应电流,下列说法中正确的是( )A .只要穿过线圈的磁通量发生变化,线圈中就一定有感应电流B .只要闭合导线做切割磁感线运动,导线中就一定有感应电流C .若闭合电路的一部分导体不做切割磁感线运动,闭合电路中一定没有感应电流D .当穿过闭合电路的磁通量发生变化时,闭合电路中一定有感应 电流答案:D4.在一长直导线以如图所示的恒定电流时,套在长直导线上的闭合线环(环面与导线垂直,长直导线通过环的中心),当发生以下变化时,肯定能产生感应电流的是( )A .保持电流不变,使导线环上下移动B .保持导线环不变,使长直导线中的电流增大或减小C .保持电流不变,使导线在竖直平面顺时针(或逆时针)转动D .保持电流不变,环在与导线垂直的水平面左右水平移动解析:画出电流周围的磁感线分布情况。

高考物理电磁感应现象压轴题综合题

高考物理电磁感应现象压轴题综合题

高考物理电磁感应现象压轴题综合题一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。

【答案】(1)5C ;(2)4s 【解析】 【分析】 【详解】解:(1)t=2s 内MN 杆上升的距离为21 2h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为BLh ∆Φ=产生的平均感应电动势为E t ∆Φ=产生的平均电流为E I R=流过MN 杆的电量q It =代入数据解得25C 2BLat q R==(2)EF 杆刚要离开平台时有BIL Mg =此时回路中的电流为E I R=MN 杆切割磁场产生的电动势为E BLv =MN 杆运动的时间为v t a=代入数据解得224s MgRt B L a==2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ = 37°角,下端连接阻值为R =2Ω的电阻.磁场方向垂直导轨平面向上,磁感应强度为0.4T .质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.金属棒沿导轨由静止开始下滑.(g=10m/s 2,sin37°=0.6,cos37°=0.8)(1)判断金属棒下滑过程中产生的感应电流方向; (2)求金属棒下滑速度达到5m/s 时的加速度大小; (3)当金属棒下滑速度达到稳定时,求电阻R 消耗的功率. 【答案】(1)由a 到b (2)22/a m s =(3)8P W = 【解析】 【分析】 【详解】(1)由右手定则判断金属棒中的感应电流方向为由a 到b .(2)金属棒下滑速度达到5/m s 时产生的感应电动势为0.4152E BLv V V ==⨯⨯= 感应电流为1EI A R==,金属棒受到的安培力为0.4110.4?F BIL N N ==⨯⨯= 由牛顿第二定律得:mgsin mgcos F ma θμθ--=,解得:22/a m s =. (3)设金属棒运动达到稳定时,所受安培力为F ',棒在沿导轨方向受力平衡mgsin mgcos F θμθ=+',解得:0.8F N '=,又:F BI L '=',0.820.41F I A A BL ''===⨯电阻R 消耗的功率:28P I R W ='=. 【点睛】该题考查右手定则的应用和导体棒沿着斜面切割磁感线的运动,该类题型综合考查电磁感应中的受力分析与法拉第电磁感应定律的应用,要求的解题的思路要规范,解题的能力要求较高.3.如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场.若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:(1)棒进入磁场前,回路中的电动势E 大小;(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流I 与时间t 的关系式.【答案】(1)0.04 V ; (2)0.04 N , I =22Bv tR;【解析】 【分析】 【详解】⑴在棒进入磁场前,由于正方形区域abcd 内磁场磁感应强度B 的变化,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,在棒进入磁场前回路中的电动势为E ==0.04V⑵当棒进入磁场时,磁场磁感应强度B =0.5T 恒定不变,此时由于导体棒做切割磁感线运动,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,回路中的电动势为:e =Blv ,当棒与bd 重合时,切割有效长度l =L ,达到最大,即感应电动势也达到最大e m =BLv =0.2V >E =0.04V根据闭合电路欧姆定律可知,回路中的感应电流最大为:i m ==0.2A根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:F m =i m LB =0.04N 在棒通过三角形abd 区域时,切割有效长度l =2v (t -1)(其中,1s≤t≤+1s ) 综合上述分析可知,回路中的感应电流为:i ==(其中,1s≤t≤+1s )即:i =t -1(其中,1s≤t≤1.2s ) 【点睛】注意区分感生电动势与动生电动势的不同计算方法,充分理解B-t 图象的含义.4.如图所示,将边长为a 、质量为m 、电阻为R 的正方形导线框竖直向上抛出,穿过宽度为b 、磁感应强度为B 的匀强磁场区域,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进入磁场.整个运动过程中始终存在着大小恒定的空气阻力f ,且线框不发生转动.求:(1)线框在下落阶段匀速进入磁场时的速度v 2; (2)线框在上升阶段刚离开磁场时的速度v 1; (3)线框在上升阶段通过磁场过程中产生的焦耳热Q . 【答案】(1)22mg fR B a - (2)()22122Rv mg f B a =-(3)()()()2224432mR Q mg f mg f a b B a ⎡⎤=--++⎣⎦ 【解析】 【分析】(1)下落阶段匀速进入磁场说明线框所受力:重力、空气阻力及向上的安培力的合力为零.(2)对比线框离开磁场后继续上升一段高度(设为h ),然后下落相同高度h 到匀速进入磁场时两个阶段受力情况不同,合力做功不同,由动能定理:线框从离开磁场至上升到最高点的过程.(3)求解焦耳热Q ,需要特别注意的是线框向上穿过磁场是位移是a+b 而不是b ,这是易错的地方 【详解】(1)线框在下落阶段匀速进入磁场瞬间,由平衡知识有:222B a v mg f R=+解得:222()mg f Rv B a -=(2)线框从离开磁场至上升到最高点的过程,由动能定理:2110()02mg f h mv -+=- 线圈从最高点落至进入磁场瞬间:211()2mg f h mv -= 联立解得:221222()mg f Rv v mg f mg f B a+==-- (3)线框在向上通过磁场过程中,由能量守恒定律有:220111()()22Q mg f a b mv mv +++=- 而012v v =解得:222443[()]()()2mR Q mg f mg f a b B a=--++ 即线框在上升阶段通过磁场过程中产生的焦耳热为222443[()]()()2mR Q mg f mg f a b B a=--++ 【点睛】此类问题的关键是明确所研究物体运动各个阶段的受力情况,做功情况及能量转化情况,选择利用牛顿运动定律、动能定理或能的转化与守恒定律解决针对性的问题,由于过程分析不明而易出现错误.5.如图所示,宽度L =0.5 m 的光滑金属框架MNPQ 固定于水平面内,并处在磁感应强度大小B =0.4 T ,方向竖直向下的匀强磁场中,框架的电阻非均匀分布.将质量m =0.1 kg ,电阻可忽略的金属棒ab 放置在框架上,并与框架接触良好.以P 为坐标原点,PQ 方向为x 轴正方向建立坐标.金属棒从0x 1?m =处以0v 2?m /s =的初速度,沿x 轴负方向做2a 2?m /s =的匀减速直线运动,运动中金属棒仅受安培力作用.求:(1)金属棒ab 运动0.5 m ,框架产生的焦耳热Q ;(2)框架中aNPb 部分的电阻R 随金属棒ab 的位置x 变化的函数关系;(3)为求金属棒ab 沿x 轴负方向运动0.4 s 过程中通过ab 的电荷量q ,某同学解法为:先算出经过0.4 s 金属棒的运动距离x ,以及0.4 s 时回路内的电阻R ,然后代入BLxq R R∆Φ==求解.指出该同学解法的错误之处,并用正确的方法解出结果. 【答案】(1)0.1 J (2)R x =(3)0.4C 【解析】【分析】 【详解】(1)金属棒仅受安培力作用,其大小0.120.2?F ma N ⨯===金属棒运动0.5 m ,框架中产生的焦耳热等于克服安培力做的功所以0.20.50.1?Q Fx J ===⨯. (2)金属棒所受安培力为F BIL =E BLv I R R ==所以22B L RF ma v==由于棒做匀减速直线运动v所以R ===(3)错误之处是把0.4 s 时回路内的电阻R 代入BLxq R=进行计算. 正确的解法是q It = 因为F BIL ma == 所以ma 0.12q t 0.40.4?C BL 0.40.5⨯⨯⨯=== 【点睛】电磁感应中的功能关系是通过安培力做功量度外界的能量转化成电能.找两个物理量之间的关系是通过物理规律一步一步实现的.用公式进行计算时,如果计算的是过程量,我们要看这个量有没有发生改变.6.如图甲所示。

高中物理必修第三册课时同步检测—电磁感应现象及应用(含解析)

高中物理必修第三册课时同步检测—电磁感应现象及应用(含解析)

高中物理必修第三册课时同步检测—电磁感应现象及应用(含解析)一、单选题1.如图所示,变化的匀强磁场垂直穿过金属框架MNQP ,金属杆ab 在恒力F 作用下沿框架从静止开始运动,t =0时磁感应强度大小为B 0,为使ab 中不产生感应电流,下列能正确反映磁感应强度B 随时间t 变化的图像是( )A .B .C .D .【答案】C【解析】当通过闭合回路的磁通量不变时,则棒MN 中不产生感应电流,BS Φ=,设金属杆ab 长为L ,金属杆ab 距离MP 的距离为l 1,棒的质量为m ,则Fa m =,212x at =则()22101112+22ml FtFt B Ll BL l x BL l BL m m ⎛⎫=+=+= ⎪⎝⎭则21012+=2ml Ft B l B m所以21012+12ml Ft B m B l 随着时间增加,1B是增大的,且增大的速度越来越快,且非线性关系. 故选C 。

2.如图是漏电保护器的部分电路图,由金属环,线圈,控制器组成,其工作原理是控制器探测到线圈中有电流时会把入户线断开,即称电路跳闸,下列有关漏电保护器的说法正确的是( )A .当接负载的电线中电流均匀变化时,绕在铁芯上的线圈中有稳定的电流B .当接负载的电线短路或电流超过额定值时,漏电保护器会发出信号使电路跳闸C .只有当接负载的电线漏电时,绕在铁芯上的线圈中才会有电流通过D .当接负载的电线中电流不稳定时,漏电保护器会发出信号使电路跳闸【答案】C【解析】漏电保护器的工作原理是控制器探测到线圈中有电流时会把入户线断开,线圈的磁通量是由流入负载的导线中的电流和流出负载的导线中的电流在线圈中产生的磁通量的叠加,由于一般情况下,流入负载导线中的电流和流出负载导线中的电流等大反向,故线圈中的磁通量为零,无电流产生。

而发生漏电时,流入负载导线中的电流和流出负载导线中的电流大小不等,线圈的磁通量发生变化,有电流产生。

故选C 。

高中物理电磁感应习题

高中物理电磁感应习题

4、如图所示,光滑导轨竖直放置,匀强磁场的磁感 应强度为B=0.5T,磁场方向垂直于导轨平面向外,导 体棒ab长L=0.2m,电阻R=1.0Ω.导轨电阻不计,当导 体棒紧贴导轨匀速下滑时,均标有“6V 3W”字样的两 小灯泡恰好正常发光,求
(1)通过ab的电流的大小和方向.
(2)ab的运动速度.
B
7、两根相距d=20厘米的平行金属长导轨固定在同一水 平面内,并处于竖直方向的匀强磁场中,磁场的磁感应 强度B=0.20特,导轨上面横放着两条金属细杆构成矩形 回路,两条金属杆的电阻为r=0.25欧,回路中其余部分 的电阻可不计,已知两金属细杆在平行于导轨的拉力的 作用下沿导轨朝相反的方向匀速平移,速度大小都是 v=5.0米/秒,如图4-97所示,不计导轨上的摩擦.
19.如图所示,竖直放置的螺线管与导线abcd构成回路, 导线所围区域内有一垂直纸面向里的变化的匀强磁场, 螺线管下方水平桌面上有一导体圆环,导线abcd所围 区域内磁场的磁感强度按下列哪一图线所表示的方式 随时间变化时,导体圆环将受到向上的磁场作用力
20.如图所示,xoy坐标系y轴左侧和右侧分别有垂直 于纸面向外、向里的匀强磁场,磁感应强度均为B, 一个围成四分之一圆形的导体环oab,其圆心在原点o, 半径为R,开始时在第一象限。从t=0起绕o点以角速 度ω逆时针匀速转动。试画出环内感应电动势E随时 间t而变的函数图象(以顺时针电动势为正)。
30.如图4-72所示,两个互相连接的金属圆环用同样规
(1)求作用于每条金属细杆的拉力的大小.
(2)求两金属细杆在间距增加0.40米的滑动过程中共产 生的热量
8.如图4-89所示,闭合的单匝线圈放在匀强磁场中, 以角速度ω=300弧度/秒绕中心轴oo′逆时针匀速转动 (沿oo′方向看).oo′轴垂直磁场方向.线圈的ab边 长为0.1米,bc边长为0.2米,线圈的总电阻R=0.05欧, B=0.5特.从中性面开始转动,求: (1)单匝线圈的最大感应电动势是多少?位置如何? (2)由中性面开始转过90°时,平均感应电动势是 多少?

高中物理电磁感应练习题及答案

高中物理电磁感应练习题及答案

高中物理电磁感应练习题及答案一、选择题1、在电磁感应现象中,下列说法正确的是:A.感应电流的磁场总是阻碍原磁通量的变化B.感应电流的磁场方向总是与原磁场的方向相反C.感应电流的磁场方向总是与原磁场的方向相同D.感应电流的磁场方向与原磁场方向无关答案:A.感应电流的磁场总是阻碍原磁通量的变化。

2、一导体在匀强磁场中匀速切割磁感线运动,产生感应电流。

下列哪个选项中的物理量与感应电流大小无关?A.磁感应强度B.导体切割磁感线的速度C.导体切割磁感线的长度D.导体切割磁感线的角度答案:D.导体切割磁感线的角度。

二、填空题3、在电磁感应现象中,当磁通量增大时,感应电流的磁场方向与原磁场方向_ _ _ _ ;当磁通量减小时,感应电流的磁场方向与原磁场方向 _ _ _ _。

答案:相反;相同。

31、一根导体在匀强磁场中以速度v运动,切割磁感线,产生感应电动势。

如果只增大速度v,其他条件不变,则产生的感应电动势将_ _ _ _ ;如果保持速度v不变,只减小磁感应强度B,其他条件不变,则产生的感应电动势将 _ _ _ _。

答案:增大;减小。

三、解答题5、在电磁感应现象中,有一闭合电路,置于匀强磁场中,接上电源后有电流通过,现将回路断开,换用另一电源重新接上,欲使产生的感应电动势增大一倍,应采取的措施是()A.将回路绕原路转过90°B.使回路长度变为原来的2倍C.使原电源的电动势增大一倍D.使原电源的电动势和回路长度都增大一倍。

答案:A.将回路绕原路转过90°。

法拉第电磁感应定律是电磁学中的重要规律之一,它描述了变化的磁场产生电场,或者变化的电场产生磁场的现象。

这个定律是法拉第在1831年发现的,它为我们打开了一个全新的领域——电磁学,也为我们的科技发展提供了强大的理论支持。

在高中物理中,法拉第电磁感应定律主要通过实验和理论推导来展示,让学生们能够更直观地理解这个重要的规律。

高中的学生们已经对电场和磁场的基本概念有了一定的了解,他们已经掌握了电场线和磁场线的概念,以及安培定则等基本知识。

高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案练习题一:1. 一根导线以速度v穿过磁感应强度为B的均匀磁场,导线长度为L,角度θ为导线与磁场方向的夹角。

求导线在时间Δt内所受到的感应电动势。

答案:感应电动势E = B * v * L * sinθ2. 一根导线以速度v进入磁感应强度为B的均匀磁场,导线的长度为L。

当导线完全进入磁场后,突然停止不动。

求此过程中导线两端之间的电势差。

答案:电势差V = B * v * L3. 一个长度为L的导线以速度v匀速通过磁感应强度为B的均匀磁场,当导线通过时间Δt后,磁场方向突然发生改变。

求导线两端之间产生的感应电动势。

答案:感应电动势E = 2 * B * v * L4. 一根长度为L的导线以速度v与磁感应强度为B的均匀磁场垂直相交,导线所受到的感应电动势大小为E,如果将导线切成长度为L/2的两段导线,两段导线所受感应电动势的大小分别是多少?答案:每段导线所受感应电动势的大小都是E练习题二:1. 一台电动机的转子有60个磁极,额定转速为3000转/分钟。

求转子在额定转速下的转子导线所受的感应电动势大小。

答案:转子导线所受感应电动势的大小为ω * Magnetic Flux,其中ω为角速度,Magnetic Flux为磁通量。

转速为3000转/分钟,转速ω =2π * 3000 / 60。

由于转子有60个磁极,每转所经过的磁通量为60 * Magnetic Flux。

因此,转子导线所受感应电动势的大小为60 * 2π * 3000 / 60 * Magnetic Flux。

2. 一根长度为L的导线以角速度ω绕通过导线轴线的磁感应强度为B的磁场旋转。

求导线两端之间的电势差大小。

答案:电势差V = B * ω * L3. 一根输电线路的电阻为R,长度为L,电流为I。

如果在电力系统中,磁感应强度为B的磁场垂直于导线方向,求输电线路两端之间的感应电动势。

答案:感应电动势E = B * L * I4. 一块矩形线圈有N匝,每匝的边长为a和b,磁通量为Φ,求矩形线圈所受到的感应电动势。

高考物理电磁感应现象压轴题综合题含答案

高考物理电磁感应现象压轴题综合题含答案

高考物理电磁感应现象压轴题综合题含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图甲所示,一对足够长的平行光滑轨道固定在水平面上,两轨道间距 l= 0.5m ,左侧接一阻值 为R 的电阻。

人教版高中物理选择性必修第二册课后习题 第2章 电磁感应 习题课三 电磁感应中的综合问题

人教版高中物理选择性必修第二册课后习题 第2章 电磁感应 习题课三 电磁感应中的综合问题

习题课三电磁感应中的综合问题课后·训练提升基础巩固一、选择题(第1~2题为单选题,第3~6题为多选题)1.如图所示,垂直于导体框平面向里的匀强磁场的磁感应强度为B,导体ef的长为l,ef的电阻为r,外电阻阻值为R,其余电阻不计。

ef与导体框接触良好,当ef在外力作用下向右以速度v匀速运动时,ef两端的电压为( )A.BlvB.BlvRR+r C.BlvrR+rD.BlvrR,导体棒切割磁感线产生的感应电动势为E=Blv,ef两端的电压相当于电源的路端电压,根据闭合电路欧姆定律得U ef=ER总·R=BlvR+rR,选项B正确。

2.在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图甲所示,当磁场的磁感应强度B随时间t 按图乙所示变化时,下列选项能正确表示线圈中感应电动势E变化的是( )内,磁感应强度均匀增大,根据楞次定律,线圈中感应电流为负方向,且保持不变;1~3s内,磁感应强度不变,线圈中感应电流为零;3~5s 内,磁感应强度均匀减小,线圈中感应电流为正方向,且保持不变;0~1s内和3~5s内磁场的变化率之比为2∶1,即感应电动势之比为2∶1,可得出感应电动势图像为B,选项B正确。

3.由螺线管、电阻和水平放置的平行板电容器组成的电路如图所示,其中,螺线管匝数为n,横截面积为S,电容器两极板间距为d。

螺线管处于竖直向上的匀强磁场中,一质量为m、电荷量为q的带正电颗粒悬停在电容器中,重力加速度大小为g,则( )A.磁感应强度均匀增大B.磁感应强度均匀减小C.磁感应强度变化率为nmgdqSD.磁感应强度变化率为mgdnqS,带正电颗粒悬停在电容器中,粒子受重力与静电力作用,故静电力竖直向上,电容器下极板带正电,即通电螺线管的下端为电源正极,根据电源内部的电流由负极流向正极,由安培定则可知磁感应强度均匀减小,选项A错误,B正确。

带正电颗粒悬停在电容器中,粒子受重力与静电力作用,有qE=mg,根据法拉第电磁感应定律有E电=nΔΦΔt =nΔBΔtS,且E=E电d,联立解得ΔBΔt =mgdnqS,选项C错误,D正确。

高中物理《电磁感应》练习题(附答案解析)

高中物理《电磁感应》练习题(附答案解析)

高中物理《电磁感应》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.社会的进步离不开科学发现,每一步科学探索的过程倾注了科学家的才智和努力,以下关于科学家的贡献说法不正确的是()A.安培提出了分子电流假说,解释了磁现象B.奥斯特首先发现了电流的磁效应C.法拉第发现了电磁感应现象D.库仑测出了电子的电量2.如图甲所示,300匝的线圈两端A、B与一个理想电压表相连。

线圈内有指向纸内方向的匀强磁场,线圈中的磁通量在按图乙所示规律变化。

下列说法正确的是()A.A端应接电压表正接线柱,电压表的示数为150VB.A端应接电压表正接线柱,电压表的示数为50.0VC.B端应接电压表正接线柱,电压表的示数为150VD.B端应接电压表正接线柱,电压表的示数为50.0V3.如图所示,在匀强磁场中做各种运动的矩形线框,能产生感应电流的是()A.图甲中矩形线框向右加速运动B.图乙中矩形线框匀速转动C.图丙中矩形线框向右加速运动D.图丁中矩形线框斜向上运动4.下列物理学史材料中,描述正确的是()A.卡文迪什通过扭秤实验测量出静电引力常量的数值B.为了增强奥斯特的电流磁效应实验效果,应该在静止的小磁针上方通以自西向东的电流C.法拉第提出了“电场”的概念,并制造出第一台电动机D.库仑通过与万有引力类比,在实验的基础上验证得出库仑定律5.如图所示,将一个闭合铝框放在蹄形磁铁的两个磁极之间,铝框可以绕竖直轴OO'自由转动,蹄形磁铁在手摇的控制下可以绕竖直轴OO'转动。

初始时,铝框和蹄形磁铁均是静止的。

现通过不断手摇使蹄形磁铁转动起来,下列关于闭合铝框的说法正确的是()A.铝框仍保持静止B.铝框将跟随磁极同向转动且一样快C.铝框将跟随磁极同向转动,转速比磁铁小D.铝框将朝着磁极反向转动,转速比磁铁小6.如图所示,a、b是用同种规格的铜丝做成的两个同心圆环,两环半径之比为2:3,其中仅在a环所围成区域内有垂直于纸面向里的匀强磁场。

高考物理专题电磁学知识点之电磁感应经典测试题附答案解析

高考物理专题电磁学知识点之电磁感应经典测试题附答案解析

高考物理专题电磁学知识点之电磁感应经典测试题附答案解析一、选择题1.在图中,EF 、GH 为平行的金属导轨,其电阻不计,R 为电阻,C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆.有匀强磁场垂直于导轨平面.若用I 1和I 2分别表示图中该处导线中的电流,则当横杆AB( )A .匀速滑动时,I 1=0,I 2=0B .匀速滑动时,I 1≠0,I 2≠0C .加速滑动时,I 1=0,I 2=0D .加速滑动时,I 1≠0,I 2≠02.两块水平放置的金属板间的距离为d ,用导线与一个n 匝线圈相连,线圈电阻为r ,线圈中有竖直方向的磁场,电阻R 与金属板连接,如图所示,两板间有一个质量为m 、电荷量+q 的油滴恰好处于静止,则线圈中的磁感应强度B 的变化情况和磁通量的变化率分别是A .磁感应强度B 竖直向上且正增强,tφ∆=dmg nq B .磁感应强度B 竖直向下且正增强,tφ∆=dmg nq C .磁感应强度B 竖直向上且正减弱,tφ∆=()dmg R r nqR + D .磁感应强度B 竖直向下且正减弱,tφ∆=()dmgr R r nqR + 3.如图所示,用粗细均匀的铜导线制成半径为r 、电阻为4R 的圆环,PQ 为圆环的直径,在PQ 的左右两侧均存在垂直圆环所在平面的匀强磁场,磁感应强度大小均为B ,但方向相反,一根长为2r 、电阻为R 的金属棒MN 绕着圆心O 以角速度ω顺时针匀速转动,金属棒与圆环紧密接触。

下列说法正确的是( )A .金属棒MN 两端的电压大小为2B r ωB .金属棒MN 中的电流大小为22B r Rω C .图示位置金属棒中电流方向为从N 到MD .金属棒MN 转动一周的过程中,其电流方向不变4.如图所示,A 、B 两闭合圆形线圈用同样导线且均绕成100匝。

半径A B 2R R =,内有以B 线圈作为理想边界的匀强磁场。

若磁场均匀减小,则A 、B 环中感应电动势A B :E E 与产生的感应电流A B :I I 分别是( )A .AB :2:1E E =;A B :1:2I I =B .A B :2:1E E =;A B :1:1I I =C .A B :1:1E E =;A B :2:1I I =D .A B :1:1E E =;A B :1:2I I =5.如图所示的电路中,电源的电动势为E ,内阻为r ,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值,在0t =时刻闭合开关S ,经过一段时间后,在1t t =时刻断开S ,下列表示灯D 中的电流(规定电流方向A B →为正)随时间t 变化的图像中,正确的是( )A .B .C .D .6.如图所示,两块水平放置的金属板间距离为d ,用导线与一个n 匝线圈连接,线圈置于方向竖直向上的磁场B 中。

电磁感应综合问题(解析版)--2024年高考物理大题突破优选全文

电磁感应综合问题(解析版)--2024年高考物理大题突破优选全文

电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。

2.掌握应用动量守恒定律处理电磁感应问题的方法。

3.熟练应用楞次定律与法拉第电磁感应定律解决问题。

4.会分析电磁感应中的图像问题。

5.会分析电磁感应中的动力学与能量问题。

电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。

一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。

【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理-电磁感应综合应用练习1.如图所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块( )A.在P和Q中都做自由落体运动B.在两个下落过程中的机械能都守恒C.在P中的下落时间比在Q中的长D.落至底部时在P中的速度比在Q中的大解析:选C.小磁块下落过程中,在塑料管Q中只受到重力,而在铜管P中还受到向上的磁场力,即只在Q中做自由落体运动,故选项A、B错误;小磁块在P 中加速度较小,故在P中下落时间较长,落至底部时在P中的速度较小,选项C正确,D错误.2.(多选)如图所示,竖直平面内的虚线上方是一匀强磁场B,从虚线下方竖直上抛一正方形线圈,线圈越过虚线进入磁场,最后又落回原处,运动过程中线圈平面保持在竖直平面内,不计空气阻力,则( )A.上升过程克服磁场力做的功大于下降过程克服磁场力做的功B.上升过程克服磁场力做的功等于下降过程克服磁场力做的功C.上升过程克服重力做功的平均功率大于下降过程中重力的平均功率D.上升过程克服重力做功的平均功率等于下降过程中重力的平均功率解析:选AC.线圈上升过程中,加速度增大且在减速,下降过程中,运动情况比较复杂,有加速、减速或匀速等,把上升过程看成反向的加速,可以比较当运动到同一位置时,线圈速度都比下降过程中相应的速度要大,可以得到结论:上升过程中克服安培力做功多;上升过程时间短,所以上升过程克服重力做功的平均功率大于下降过程中重力的平均功率,故正确选项为A、C.3.如图所示,有两个相邻的有界匀强磁场区域,磁感应强度的大小均为B,磁场方向相反,且与纸面垂直,磁场区域在x轴方向宽度均为a,在y轴方向足够宽.现有一高为a的正三角形导线框从图示位置开始向右沿x轴方向匀速穿过磁场区域.若以逆时针方向为电流的正方向,在以下选项中,线框中感应电流i与线框移动的位移x的关系图象正确的是( )解析:选 C.线框从开始进入到全部进入第一个磁场过程,磁通量向里增大,则由楞次定律可知,电流方向为逆时针方向,故B一定错误;因切割的有效长度均匀增大,故由E=BLv可知,电动势也均匀增加,而在全部进入第一个磁场时,磁通量达最大,该瞬间变化率为零,故电动势也为零,故A错误;当线框开始进入第二个磁场时,线框中磁通量向里减小,则可知电流方向为顺时针方向,故D错误;而进入第二个磁场后,分处两磁场的线框两部分产生的电流相同,且有效长度是均匀变大的,当将要全部进入第二个磁场时,线框中电流达最大2I0.故C正确.4.(多选)如图所示,电阻不计、间距为l的光滑平行金属导轨水平放置于磁感应强度为B、方向竖直向下的匀强磁场中,导轨左端接一定值电阻R.质量为m、电阻为r的金属棒MN置于导轨上,受到垂直于金属棒的水平外力F的作用由静止开始运动,外力F与金属棒速度v的关系是F=F0+kv(F0、k是常量),金属棒与导轨始终垂直且接触良好.金属棒中感应电流为i,受到的安培力大小为F A,电阻R 两端的电压为U R,感应电流的功率为P,它们随时间t变化图象可能正确的有( )解析:选BC.经受力分析和电路分析知,i =Blv R +r ,F A =Bil =B 2l 2R +r v ,U R =iR =BlR R +r v ,P =i 2(R +r )=B 2l 2R +r v 2,因此i ∝F A ∝U R ∝P ∝v ,i -t 、F A -t 、U R -t 图象的形状与v -t 图象相同.对金属棒由牛顿第二定律得F -F A =ma ,得F 0+⎝⎛⎭⎪⎫k -B 2l 2R +r v =ma .若k =B 2l 2R +r ,则a =0,金属棒做匀加速运动,A 错误.若k >B 2l 2R +r ,a 逐渐增大,B 正确.若k <B 2l 2R +r ,a 逐渐减小,最后趋向于零,C 正确.由以上分析知P -t 图象形状与B 或C 相似,D 错误.5.(多选)如图所示,光滑金属导轨AC 、AD 固定在水平面内,并处在方向竖直向下、大小为B 的匀强磁场中.有一质量为m 的导体棒以初速度v 0从某位置开始在导轨上水平向右运动,最终恰好静止在A 点.在运动过程中,导体棒与导轨始终构成等边三角形回路,且通过A 点的总电荷量为Q .已知导体棒与导轨间的接触电阻阻值恒为R ,其余电阻不计.则( )A .该过程中导体棒做匀减速运动B .该过程中接触电阻产生的热量为12mv 20C .开始运动时,导体棒与导轨所构成回路的面积为S =QR BD .当导体棒的速度为12v 0时,回路中感应电流大小为初始时的一半解析:选BC.该过程中l 、v 均在减小,故加速度a 减小,选项A 错误.由能量守恒定律可知Q 热=12mv 20,选项B 正确.I =E R =ΔΦR Δt,ΔΦ=BS ,Q =I Δt ,联立得S =QR B ,选项C 正确.当v =12v 0时,l <l 0,由I =E R =Blv R 知,I <I 02,选项D 错误.6.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( )A .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W解析:选B.小灯泡稳定发光说明棒做匀速直线运动.此时:F 安=B 2l 2v R 总,对棒满足:mg sin θ-μmg cos θ-B 2l 2vR 棒+R 灯=0因为R 灯=R 棒则:P 灯=P 棒再依据功能关系:mg sin θ·v -μmg cos θ·v =P 灯+P 棒 联立解得v =5 m/s,P 灯=1 W,所以B 项正确.[综合应用题组]7.两根足够长的光滑导轨竖直放置,间距为L,底端接阻值为R的电阻.将质量为m的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁场垂直,如图所示.除电阻R外其余电阻均不计.现将金属棒从弹簧原长位置由静止释放.则( )A.金属棒将做往复运动,动能、弹性势能与重力势能的总和保持不变B.金属棒最后将静止,静止时弹簧的伸长量为mg kC.金属棒最后将静止,电阻R上产生的总热量为mg·mg kD.金属棒第1次达到最大速度时金属棒的伸长量为mg k解析:选B.金属棒在往复运动的过程中不断克服安培力做功产生电能,并转化成焦耳热,机械能不断减少,最终静止,静止时弹力等于金属棒的重力,A错误、B正确.由能量守恒定律可得mg·mgk=Q+E弹,C错误.当金属棒第1次达到最大速度时,加速度为零,则mg=kx+F安,D错误.8.(多选)如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R,在金属线框的下方有一匀强磁场区域,MN和PQ是匀强磁场区域的水平边界,并与线框的bc边平行,磁场方向垂直于线框平面向里.现使金属线框从MN上方某一高度处由静止开始下落,如图乙是金属线框由开始下落到bc刚好运动到匀强磁场PQ边界的v­t图象,图中数据均为已知量.重力加速度为g,不计空气阻力.下列说法正确的是( )A .金属线框刚进入磁场时感应电流方向沿adcba 方向B .磁场的磁感应强度为1v 1t 2-t 1mgR v 1C .金属线框在0~t 3时间内所产生的热量 为mgv 1(t 2-t 1)D .MN 和PQ 之间的距离为v 1(t 2-t 1)解析:选BC.根据楞次定律可知,线框刚进入磁场时,感应电流的方向为abcda 方向,选项A 错误;由于bc 边进入磁场时线框匀速运动,则mg =B 2l 2v 1R ,而线框边长l =v 1(t 2-t 1),联立可得B =1v 1t 2-t 1mgRv 1,选项B 正确;金属线框在0~t 3时间内,只有在t 1~t 2时间内才产生热量,此过程中安培力与重力大小相等,因此所产生的热量为mgv 1(t 2-t 1),选项C 正确;MN 和PQ 之间的距离为v 1(t 2-t 1)+v 1+v 22(t 3-t 2),选项D 错误.9.(多选)如图所示,边长为L 、不可形变的正方形导线框内有半径为r 的圆形磁场区域,其磁感应强度B 随时间t 的变化关系为B =kt (常量k >0).回路中滑动变阻器R 的最大阻值为R 0,滑动片P 位于滑动变阻器中央,定值电阻R 1=R 0、R 2=R 02.闭合开关S,电压表的示数为U ,不考虑虚线MN 右侧导体的感应电动势,则( )A .R 2两端的电压为U7B .电容器的a 极板带正电C .滑动变阻器R 的热功率为电阻R 2的5倍D .正方形导线框中的感应电动势为kL 2解析:选AC.由法拉第电磁感应定律E =nΔΦΔt =n ΔBΔtS 有E =k πr 2,D 错误;因k >0,由楞次定律知线框内感应电流沿逆时针方向,故电容器b 极板带正电,B 错误;由题图知外电路结构为R 2与R 的右半部并联,再与R 的左半部、R 1相串联,故R 2两端电压U 2=R 02×12R 0+R 02+R 02×12U =U7,A 正确;设R 2消耗的功率为P =IU 2,则R 消耗的功率P ′=2I ×2U 2+IU 2=5P ,故C 正确.10.如图,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.解析:(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得ma =F -μmg ①设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为E =Blv ③联立①②③式可得 E =Blt 0⎝ ⎛⎭⎪⎫F m -μg ④(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律I =E R⑤式中R 为电阻的阻值.金属杆所受的安培力为F A =BlI ⑥因金属杆做匀速运动,由牛顿运动定律得F -μmg -F A =0⑦ 联立④⑤⑥⑦式得R =B 2l 2t 0m⑧答案:(1)Blt 0⎝ ⎛⎭⎪⎫F m -μg (2)B 2l 2t 0m11.如图,两条相距l 的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B 1随时间t 的变化关系为B 1=kt ,式中k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)与导轨垂直,磁场的磁感应强度大小为B 0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN ,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:(1)在t =0到t =t 0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小. 解析:(1)在金属棒越过MN 之前,t 时刻穿过回路的磁通量为Φ=ktS ① 设在从t 时刻到t +Δt 的时间间隔内,回路磁通量的变化量为ΔΦ,流过电阻R 的电荷量为Δq .由法拉第电磁感应定律有E =ΔΦΔt②由欧姆定律有i=E R ③由电流的定义有i=Δq Δt④联立①②③④式得|Δq|=kSRΔt⑤由⑤式得,在t=0到t=t0的时间间隔内,流过电阻R的电荷量q的绝对值为|q|=ktS R⑥(2)当t>t0时,金属棒已越过MN.由于金属棒在MN右侧做匀速运动,有f=F⑦式中,f是外加水平恒力,F是匀强磁场施加的安培力.设此时回路中的电流为I,F的大小为F=BIl⑧此时金属棒与MN之间的距离为s=v0(t-t0)⑨匀强磁场穿过回路的磁通量为Φ′=B0ls○10回路的总磁通量为Φt=Φ+Φ′⑪式中,Φ仍如①式所示.由①⑨○10⑪式得,在时刻t(t>t0)穿过回路的总磁通量为Φt=B0lv0(t-t0)+kSt⑫在t到t+Δt的时间间隔内,总磁通量的改变ΔΦt为ΔΦt=(B0lv0+kS)Δt⑬由法拉第电磁感应定律得,回路感应电动势的大小为E t =⎪⎪⎪⎪⎪⎪ΔΦtΔt⑭由欧姆定律有I=EtR⑮联立⑦⑧⑬⑭⑮式得f=(B0lv+kS)BlR⑯答案:(1)ktSR(2)B0lv0(t-t0)+kSt(B0lv0+kS)BlR12.如图甲所示,平行长直导轨MN、PQ水平放置,两导轨间距L=0.5 m,导轨左端M、P间接有一阻值R=0.2 Ω的定值电阻,导体棒ab的质量m=0.1 kg,与导轨间的动摩擦因数μ=0.1,导体棒垂直于导轨放在距离左端d=1.0 m处,导轨和导体棒始终接触良好,电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,t=0时刻,磁场方向竖直向下,此后,磁感应强度B随时间t的变化如图乙所示,不计感应电流产生的磁场的影响.取重力加速度g=10 m/s2.(1)求t=0时棒所受到的安培力F0;(2)分析前3 s时间内导体棒的运动情况并求前3 s内棒所受的摩擦力F f随时间t变化的关系式;(3)若t=3 s时,突然使ab棒获得向右的速度v0=8 m/s,同时垂直棒施加一方向水平、大小可变化的外力F,使棒的加速度大小恒为a=4 m/s2、方向向左.求从t=3 s到t=4 s的时间内通过电阻的电荷量q.解析:(1)t=0时棒的速度为零,故回路中只有感生电动势,由法拉第电磁感应定律知E=ΔΦΔt=ΔBΔtLd感应电流I=E Rt=0时棒所受到的安培力F=B0IL代入数据解得F0=0.025 N(2)ab棒与导轨间的最大静摩擦力Ffm=μmg=0.1 N>F0=0.025 N所以在t=0时刻棒静止不动,加速度为零,在0~3 s内磁感应强度B都小于B,棒所受的安培力都小于最大静摩擦力,故前3 s内导体棒静止不动,电流恒为I =0.25 A在0~3 s内,磁感应强度B=B0-kt=0.2-0.1t T因导体棒静止不动,ab棒在水平方向受安培力和摩擦力,二力平衡,则有F f =BIL=(B0-kt)IL代入数据可得F f=0.012 5(2-t)N(t<3 s)(3)3~4 s内磁感应强度大小恒为B2=0.1 T,ab棒做匀变速直线运动,Δt1=4 s-3 s=1 s设t=4 s时棒的速度为v,第4 s内的位移为x,则v=v-aΔt1=4 m/sx=v+v2Δt1=6 m在这段时间内的平均感应电动势E=ΔΦΔt1通过电阻的电荷量q=IΔt1=ERΔt1=B2LxR=1.5 C答案:(1)0.025 N (2)静止不动F f=0.012 5(2-t)N(t<3 s) (3)1.5 C1。

相关文档
最新文档