真空灭弧室结构及原理讲解

合集下载

真空灭弧室的基本结构及工作原理

真空灭弧室的基本结构及工作原理

一、真空灭弧室基本结构组成真空灭弧室的主要结构件为绝缘外壳、动静盖板、触头、波纹管、屏蔽罩、动静导电杆、导向套等,分别根据相应的功用选用不同的材料,采用真空钎焊工艺将相应的零部件封接成密闭的真空腔室,借助真空优良的绝缘性能与熄弧性能,在切断电源后能迅速熄弧并抑制电流,1、结构简图1—静端盖板2—主屏蔽罩3—动静触头4—波纹管5—动端盖板6—静导电杆7—绝缘外壳8—动导电杆2、各个主要零部件的作用1)绝缘外壳一般选用Al2O3陶瓷管壳。

Al2O3陶瓷材料具有优异电绝缘性能、较高的机械强度、高温下不易分解与蒸发等一系列优点,即能保证真空灭弧室在生产及运行过程中的气密性又不易损坏。

2)波纹管波纹管是真空灭弧室中不可缺少的重要元件。

是唯一可动的外壳部分,因此它的作用也称为“动密封”。

既能保证灭弧室的密封,又能借助于它来实现触头的相对运动,波纹管的允许伸缩量决定了所能获得的最大触头开距。

波纹管的材料壁厚仅为0.10——0.16mm,开关在每次合分动作时都会使波纹管的波状薄壁产生一次较大幅度的机械变形。

由于剧裂而频繁的机械变形很容易使波纹管因疲劳而损坏,最终导致灭弧室漏气而报废。

某种程度上,波纹管的疲劳寿命也就决定了真空灭弧室的机械寿命,所以说,整个寿命期间,一定严禁扭伤或划伤波纹管。

波纹管的疲劳寿命还和工作条件的受热温度有关,真空灭弧室在分断大的短路电流后,导电杆的余热传递到波纹管上,使波纹管的温度升高,当温升达到一定程度时,这也会影响波纹管的疲劳强度。

3)触头真空灭弧室是真空开关的心脏,而触头则是真空灭弧室的心脏,因此触头材料和触头结构等对真空灭弧室的性能影响极大。

①触头材料主要从开断能力、耐受电压能力、抗电腐蚀性、抗熔焊能力、截流值、含气量等方面来选择。

目前断路器用真空灭弧室的触头材料大都采用铜铬合金,铜与铬各占50%。

②触头结构对灭孤室的开断能力有很大影响。

采用不同结构触头产生的灭弧效果有所不同的,早期采用简单的圆柱形触头,结构虽简单,但开断能力不能满足断路器的要求,仅能开断10kA以下电流,目前仅有真空负荷开关、高压真空接触器等用真空灭弧室才采用。

真空灭弧室基础知识介绍

真空灭弧室基础知识介绍

真空电弧的熄弧条件:
真空电弧是依靠电极不断地产生金属蒸汽来维持的,因此,要熄灭真空电 弧必须将电弧电流减小到一定程度,不足以维持电弧的时候才有可能将其熄 灭。在交流情况下,真空电弧电流有很多个过零的时刻,这就给出了熄弧的 条件;在直流情况下,必须设置一个电力转向装置,使直流真空电弧电流有 一个过零的机会,以创造一个同样的熄弧条件。
选择合适的老练工艺 避免零件进炉前的氧化 减小动静端的不同轴度
提高熄弧后 耐压能力
选择合适的触头材料及触头制造工艺 固定合闸时触头的接触面
减少真空灭弧室因分合闸振动而在电极间隙 产生悬浮的细小微粒
谢 谢!
气体电弧:
电弧或弧光放电是气体放电的一种形式。放电在性质上和外观上是各种 各样的。在正常状态下,气体有良好的电气绝缘性能。但当在气体间隙的两 端加上足够强的电场时,就可以引起电流通过气体,这种现象称为放电。
1
2
3 1--动导电杆 4 2--导向套
3--波纹管 5 4--动盖板 6 5--波纹管屏蔽罩 7 6--瓷壳 8 7--屏蔽筒
8--触头系统 9--静导电杆 9 10—静盖板
10

圆柱形触头






横向磁场触头:螺旋槽、杯状、万字槽。



纵向磁场触头:杯状、线圈式、马蹄铁式、R 触头、球形触头
排气台工艺






一次封排工艺




完全一次封排工艺
真空度

型式试验性能
触头材料、触头系统结构

波纹管
灭 弧 室
同轴度 陶瓷金属化

真空灭弧室基本知识

真空灭弧室基本知识
133真空电弧的形态扩散型真空电弧扩散型真空电弧集聚型真空电弧134真空灭弧室的灭弧原理大电流真空电弧的熄弧原理134真空灭弧室的灭弧原理真空电弧的熄弧条件真空电弧是依靠电极不断地产生金属蒸汽来维持的因此要熄灭真空电弧必须将电弧电流减小到一定程度不足以维持电弧的时候才有可能将其熄灭
真空灭弧室基本知识介绍
横向磁场触头是指真空灭弧室在分断短路电流时,在其电极间产 生的与电极轴线垂直的磁场。在足够的横向磁场的作用下,真空电 弧沿着触头表面不断地高速运动,从而避免了触头表面的严重熔化, 在电流过零后能迅速恢复绝缘强度,有利于电弧的熄灭。
R触头与杯状触头结构对比
R触头
杯状触头组件 杯状触头结构示意
3.真空灭弧室的触头结构
流时,电弧所产生的热能大部分被屏蔽系统所吸收, 有利于提高触头间的介质恢复强度。屏蔽筒冷凝电弧 生成物的量越大,吸收的能量也越大,越能改善真空 灭弧室的开断能力。
2.真空灭弧室的基本结构及主要零件的作 用
触头系统 1)触头结构
触头结构的作用主要是在真空灭弧室分断短路电 流时,在触头间形成横向磁场或纵向磁场,从而限制 触头表面阳极斑点的形成,提高灭弧室的分断能力。
什么是纵向磁场触头? 纵向磁场触头是指真空灭弧室在分断短路电流时,在其电极间产
生的与电极轴线方向一致的磁场。采用纵向磁场提高真空开关的分 断能力与采用横向磁场的情况截然不同,纵向磁场的加入可以提高 由扩散性电弧转变到收缩型电弧的转换电流值。在足够的的纵向磁 场的作用下,电弧斑点在电极触头表面均匀分布,触头表面不会产 生局部严重熔化,并具有电弧电压低、电弧能量小的优良特征,这 对于弧后绝缘强度恢复,提高分断能力是十分有益的。目前,大容 量的真空灭弧室多采用纵向磁场触头,这是因为纵向磁场触头具有 电磨损小,使用寿命长和分断能力强等优点。

真空灭弧室原理

真空灭弧室原理

真空灭弧室原理引言真空灭弧室是一种用于灭弧的设备,广泛应用于电力系统、工业设备和实验室等场合。

其原理是利用真空环境下的电离和电子的扩散效应,将电弧能量迅速扩散和吸收,从而使电弧熄灭。

本文将对真空灭弧室的原理进行详细介绍。

一、真空灭弧室的结构真空灭弧室由外壳、绝缘件、真空开关和灭弧室组成。

1. 外壳:真空灭弧室的外壳通常由耐高压、耐热、耐腐蚀的材料制成,如陶瓷或金属。

外壳的主要功能是提供机械保护和绝缘保护。

2. 绝缘件:绝缘件通常由陶瓷或氧化铝等绝缘材料制成,用于隔离和支撑内部部件。

绝缘件的作用是保证真空灭弧室的绝缘性能和机械强度。

3. 真空开关:真空开关是真空灭弧室的核心部件,其内部有一个真空室和一对电极。

真空室用于创造真空环境,电极用于产生和灭弧。

4. 灭弧室:灭弧室是真空开关内部的一个空间,用于吸收和扩散电弧能量。

灭弧室通常由缓冲材料填充,如石英砂或陶瓷珠。

缓冲材料可以吸收电弧能量,并将其扩散到更大的面积,从而实现电弧的灭弧。

二、真空灭弧室的工作原理真空灭弧室利用真空环境下的电离和电子的扩散效应,将电弧能量迅速扩散和吸收,从而使电弧熄灭。

其工作原理如下:1. 开关闭合:当真空开关处于闭合状态时,电流从电源流入真空开关的电极,形成电弧。

2. 电离:电弧中的电流通过电离作用,使气体分子电离产生电子和离子。

电子和离子的产生使电弧能量迅速增加。

3. 扩散:在真空环境下,电子和离子的运动受到限制,无法迅速扩散和散失。

而灭弧室内的缓冲材料可以吸收电弧能量,并将其扩散到更大的面积。

4. 能量衰减:电弧能量在缓冲材料中逐渐衰减,同时扩散到更大的面积。

这样,电弧的能量密度得到降低,使得电弧变得不稳定。

5. 熄灭:由于电弧的不稳定性和能量衰减,电弧最终熄灭。

此时,真空开关断开电路,完成灭弧过程。

三、真空灭弧室的特点真空灭弧室具有以下特点:1. 高灭弧能力:真空环境下,电弧能量可以迅速扩散和吸收,使得灭弧速度和能力大大提高。

(完整word版)真空灭弧室的基本结构及工作原理

(完整word版)真空灭弧室的基本结构及工作原理

一、真空灭弧室基本结构组成真空灭弧室的主要结构件为绝缘外壳、动静盖板、触头、波纹管、屏蔽罩、动静导电杆、导向套等,分别根据相应的功用选用不同的材料,采用真空钎焊工艺将相应的零部件封接成密闭的真空腔室,借助真空优良的绝缘性能与熄弧性能,在切断电源后能迅速熄弧并抑制电流,1、结构简图1—静端盖板2—主屏蔽罩3—动静触头4—波纹管5—动端盖板6—静导电杆7—绝缘外壳8—动导电杆2、各个主要零部件的作用1)绝缘外壳一般选用Al2O3陶瓷管壳。

Al2O3陶瓷材料具有优异电绝缘性能、较高的机械强度、高温下不易分解与蒸发等一系列优点,即能保证真空灭弧室在生产及运行过程中的气密性又不易损坏。

2)波纹管波纹管是真空灭弧室中不可缺少的重要元件。

是唯一可动的外壳部分,因此它的作用也称为“动密封”。

既能保证灭弧室的密封,又能借助于它来实现触头的相对运动,波纹管的允许伸缩量决定了所能获得的最大触头开距。

波纹管的材料壁厚仅为0.10——0.16mm,开关在每次合分动作时都会使波纹管的波状薄壁产生一次较大幅度的机械变形。

由于剧裂而频繁的机械变形很容易使波纹管因疲劳而损坏,最终导致灭弧室漏气而报废。

某种程度上,波纹管的疲劳寿命也就决定了真空灭弧室的机械寿命,所以说,整个寿命期间,一定严禁扭伤或划伤波纹管。

波纹管的疲劳寿命还和工作条件的受热温度有关,真空灭弧室在分断大的短路电流后,导电杆的余热传递到波纹管上,使波纹管的温度升高,当温升达到一定程度时,这也会影响波纹管的疲劳强度。

3)触头真空灭弧室是真空开关的心脏,而触头则是真空灭弧室的心脏,因此触头材料和触头结构等对真空灭弧室的性能影响极大。

①触头材料主要从开断能力、耐受电压能力、抗电腐蚀性、抗熔焊能力、截流值、含气量等方面来选择。

目前断路器用真空灭弧室的触头材料大都采用铜铬合金,铜与铬各占50%。

②触头结构对灭孤室的开断能力有很大影响。

采用不同结构触头产生的灭弧效果有所不同的,早期采用简单的圆柱形触头,结构虽简单,但开断能力不能满足断路器的要求,仅能开断10kA以下电流,目前仅有真空负荷开关、高压真空接触器等用真空灭弧室才采用。

真空灭弧室的基本结构及工作原理

真空灭弧室的基本结构及工作原理

真空灭弧室的基本结构及工作原理真空灭弧室是真空断路器的核心部件,配套于相应的开关设备,广泛应用于电力、冶金、化工、煤况、铁道等输配电系统中,起控制与保护作用。

本文介绍了真空灭弧室的基本结构及其工作原理。

一、真空灭弧室基本结构组成真空灭弧室的主要结构件为绝缘外壳、动静盖板、触头、波纹管、屏蔽罩、动静导电杆、导向套等,分别根据相应的功用选用不同的材料,采用真空钎焊工艺将相应的零部件封接成密闭的真空腔室,借助真空优良的绝缘性能与熄弧性能,在切断电源后能迅速熄弧并抑制电流,1、结构简图1―静端盖板2―主屏蔽罩3―动静触头4―波纹管5―动端盖板6―静导电杆7―绝缘外壳8―动导电杆2、各个主要零部件的作用1)绝缘外壳一般选用Al2O3陶瓷管壳。

Al2O3陶瓷材料具有优异电绝缘性能、较高的机械强度、高温下不易分解与蒸发等一系列优点,即能保证真空灭弧室在生产及运行过程中的气密性又不易损坏。

2)波纹管真空灭弧室是真空断路器的核心部件,配套于相应的开关设备,广泛应用于电力、冶金、化工、煤况、铁道等输配电系统中,起控制与保护作用。

本文介绍了真空灭弧室的基本结构及其工作原理。

波纹管是真空灭弧室中不可缺少的重要元件。

是唯一可动的外壳部分,因此它的作用也称为“动密封”。

既能保证灭弧室的密封,又能借助于它来实现触头的相对运动,波纹管的允许伸缩量决定了所能获得的最大触头开距。

波纹管的材料壁厚仅为0.10――0.16mm,开关在每次合分动作时都会使波纹管的波状薄壁产生一次较大幅度的机械变形。

由于剧裂而频繁的机械变形很容易使波纹管因疲劳而损坏,最终导致灭弧室漏气而报废。

某种程度上,波纹管的疲劳寿命也就决定了真空灭弧室的机械寿命,所以说,整个寿命期间,一定严禁扭伤或划伤波纹管。

波纹管的疲劳寿命还和工作条件的受热温度有关,真空灭弧室在分断大的短路电流后,导电杆的余热传递到波纹管上,使波纹管的温度升高,当温升达到一定程度时,这也会影响波纹管的疲劳强度。

真空灭弧室使用指南 Guidelines for the Use of Vacuum Interrupter

真空灭弧室使用指南 Guidelines for the Use of Vacuum Interrupter

真空灭弧室使用指南周立娟一、 真空灭弧室基本结构、工作原理及应用1. 基本结构:如图1示2.工作原理 真空灭弧室,又名真空开关管,是中高压电力开关的核心部件,其基本工作原理是将一对具有良好开断性能的触头密封在真空腔体中,利用腔体内的高真空作为绝缘灭弧介质,来实现电力电路的接通与分断功能。

当真空灭弧室的触头在真空中带电分离时,动静触头的电接触表面积迅速减小,当减小到仅剩下一个或几个微小接触点(通常称为金属桥)时,其电流密度增大,温度迅速升高,直至发生电极金属的蒸发,同时形成极高的电场强度,导致强烈的场致发射和间隙的击穿,产生了真空电弧。

由于触头的特殊结构,可以促使电弧在触头表面均匀分布,从而减小电弧能量对触头的电烧蚀,并使真空灭弧室具有较高的弧后介质恢复速度。

随着触头开距的增大,当工频电流接近零时,真空电弧的等离子体迅速向四周扩散,电弧电流过零后,触头间隙的真空介质迅速恢复成绝缘体,至此电流被分断,开断结束。

3.应用领域真空灭弧室作为无源器件,配套于相应的开关设备,其运动部分与开关上的操动机构连接,靠操动机构来驱动真空灭弧室的运动部分开合,从而实现输配电电网中线路的分断与关图1 真空灭弧室基本结构图示 1.动导电杆 2.导向套 3.动盖板 4.波纹管 5.屏蔽筒 6.触头组合 7.绝缘外壳 8.静盖板 9.静导电杆 1 2 3 4 5 6 7 8 9合,主要应用于电力的输配电系统,还应用于矿山、冶炼、石油化工、电气化铁道、太阳能、风能等输配电系统,具有节能、节材、防火、防爆、体积小、寿命长、维护费用低、运行可靠、无污染等优点。

二、使用环境条件1. 周围空气温度:户内开关设备用真空灭弧室-25 ℃~+40℃;户外开关设备用真空灭弧室-40 ℃~+40℃。

2. 海拔一般不超过1000米,超过1000米使用时需与我公司协商。

3 .户内相对湿度:日平均值不大于95%,月平均值不大于90%,户外应有防凝露措施。

固封极柱用真空灭弧室

固封极柱用真空灭弧室

固封极柱用真空灭弧室固封极柱用真空灭弧室是一种用于高压开关设备的重要组件,它的作用是在开关操作时消除电弧,并且保证设备的可靠性和安全性。

本文将介绍固封极柱用真空灭弧室的工作原理、结构特点、应用领域以及未来发展趋势。

一、工作原理固封极柱用真空灭弧室的工作原理主要是利用高真空状态下的电场效应和磁场效应来消除电弧。

在设备操作时,当触头分离时,产生的电弧会迅速扩散并在灭弧室内形成一个电弧柱。

灭弧室内部安装了一组电极和磁场线圈,利用电场效应和磁场效应将电弧柱的能量转化为热能,使电弧迅速熄灭。

利用高真空状态下的绝缘性能,确保设备的安全可靠性。

二、结构特点固封极柱用真空灭弧室的结构主要包括外壳、触头、灭弧室、绝缘材料、电极和磁场线圈等组件。

外壳采用高强度金属材料制成,具有良好的耐压性能。

触头采用铜合金或其他导电材料制成,具有良好的导电性能和耐磨性。

灭弧室采用高真空度的材料制成,确保灭弧效果。

绝缘材料采用高压绝缘材料,确保设备的绝缘性能。

电极和磁场线圈组成了灭弧系统,通过优化设计可实现更好的灭弧效果。

三、应用领域固封极柱用真空灭弧室主要应用于高压断路器、负荷开关、隔离开关等高压开关设备中。

在这些设备中,灭弧室起着关键的作用,可以有效消除电弧,确保设备的安全可靠性。

固封极柱用真空灭弧室具有体积小、重量轻、寿命长等特点,适用于各种高压开关设备的应用场景。

四、未来发展趋势随着高压开关设备的不断发展,固封极柱用真空灭弧室也在不断改进和完善。

未来,固封极柱用真空灭弧室将继续向高性能、高可靠性和智能化方向发展。

在材料方面,将会出现更多新型高性能材料的应用,如碳纳米材料、高温陶瓷材料等,以提高灭弧室的耐压性能和绝缘性能。

在结构设计上,将会更加注重产品的紧凑性和便捷性,以适应设备的小型化和智能化趋势。

在灭弧技术上,将会采用更先进的电极和磁场线圈设计,以提高灭弧效果和稳定性。

固封极柱用真空灭弧室将会在高压开关设备领域发挥越来越重要的作用,为设备的安全可靠性提供更好的保障。

真空灭弧室

真空灭弧室

1 真空灭弧室工作原理1.1电弧电弧是一种能量集中、温度高、亮度大的气体放电现象,是一种电离的气体,质量极轻,发出耀眼的光芒,在外力作用下迅速移动、卷缩和伸长。

在操作电力开关分断电路的过程中,当开关的触头即将分离时,由于触头的接触面突然减小,使得触头接触处的电阻猛增,同时电路上被消耗的电能将产生上千度的高温,使触头产生热电子发射,这与人们在电子管中观察到的热电子发射情况类似,只不过这时触头表面的温度比电子管内灯丝的温度要高得多,发射的热电子强度也大得多。

同时在开关触头分离的瞬间,电路加在触头上的电压将在触头间极小的间隙内形成很强的电场,它将在高温作用下触头发射的热电子迅速加速,这些高速运动的热电子碰撞其周围的气体分子而产生自由电子和正离子,被电离出来的自由电子在高温和强电场的作用下继续加速,又碰撞其附近的其它气体分子,如此继续,形成连锁反应,使开关触头间的气体在极短的时间发生雪崩似的电离,接通电路,发出耀眼的亮光,这就是人们看到的电弧。

1.2熄灭电弧的方法交流电弧的熄灭条件是在零休期间不发生热击穿,同时在此之后弧隙介质恢复过程总是胜过电压恢复过程,也即不发生击穿。

但从灭弧效果来看,零休期间是最好的灭弧时机:一则这时弧隙的输入功率近乎等于零,只要采取适当措施加速电弧能量的散发以抑制热电离,即可防止因热击穿引起电弧重燃;二则这时线路所储能量很小,需借电弧散发的能量不大,不易因出现较高的过电压而引起电击穿。

反之,若灭弧非常强烈,在电流自然过零前就“截流”,强迫电弧熄灭,则将产生很高的过电压,即使不致影响灭弧,对线路及其中的设备也很不利。

因此,除非有特殊要求,交流开关电器多采用灭弧强度不过强的灭弧装置,使电弧是在零休期间,而且是在电流首次自然过零时熄灭实际上交流电弧未必均能于电流首次自然过零时熄,有时需经2~3个半周才熄灭。

如图2所示,触头刚分(t=t0)时,弧隙甚小,uh也不大。

故电流在首次过零(t=t1)前,其波形基本上仍属正弦波,且在电流过零处电源电压滞后约为δ≈90°。

真空灭弧室有关使用问题

真空灭弧室有关使用问题

真空灭弧室有关使用问题1真空灭弧室的基本结构(1)气密绝缘系统:由玻壳(或陶瓷壳)及动、定端盖板、不锈钢波纹管组成气密绝缘系统,起气密绝缘作用。

(2)导电回路:主要由一对触头(电极),动、定触头座,动、定导电杆组成,起接通与断开回路的作用。

(3)屏蔽系统:该部分通常由环绕触头四周的金属屏蔽筒构成,主要作用是防止触头在燃弧过程中产生的大量金属蒸汽和液滴喷溅、污染绝缘外壳的内壁,造成管内绝缘强度下降。

其次还可以改善管内电场分布,并吸收电弧能量,冷凝电弧生成物,提高真空灭弧室开断电流的能力。

(4)波纹管:波纹管是由厚度为0.1〜0.2mm的不锈钢制成的薄壁元件,是真空灭弧室的一个重要的结构零件,它使动触头在真空状态下运动成为可能,是保证真空灭弧室机械寿命的重要零件。

真空灭弧室在安装、调整及使用过程中,应避免波纹管受过量的压缩,过量的拉开,以确保波纹管的使用寿命。

2真空灭弧室的基本工作原理真空灭弧室是用密封在真空中的一对触头来实现电力电路的接通与分断功能的一种电真空器件,是利用高真空度绝缘介质。

当其断开一定数值的电流时,动、定触头在分离的瞬间,电流收缩到触头刚分离的某一点或某几点上,表现电极间电阻剧烈增大和温度迅速提高,直至发生电极金属的蒸发,同时形成极高的电场强度,导致剧烈的场强发射和间隙的击穿,产生了真空电弧,当工作电流接近零时,同时触头间距的增大,真空电弧的等离子体很快向四周扩散,电弧电流过零后,触头间隙的介质迅速由导电体变为绝缘体,于是电流被分断,开断结束。

3真空灭弧室使用前的检查(1)外形、外观检查。

检查包装是否完好,开箱后应检查外观、核对产品与合格证是否相符。

正常产品在用手摇动时,管内无异响,玻璃或陶瓷外壳完整,无机械损伤。

(2)工频耐压检查。

真空灭弧室在使用前应进行一次工频耐压测试。

测试前应用干布或酒精润湿的擦布清洁表面。

测试规范为:在额定开距时,在两端加额定工频耐受电压的70%,稳定Imin,然后在Imin内升至额定工频耐受电压,保持Imin无指示仪表指针突变及跳闸现象即为合格。

真空灭弧室原理(一)

真空灭弧室原理(一)

真空灭弧室原理(一)
真空灭弧室原理解析
1. 是什么
•真空灭弧室是一种用于电力系统中的电流负载开关,用于灭弧并有效地隔离故障电弧的设备。

2. 构成和工作原理
•真空灭弧室主要由灭弧室和操作机构两部分组成。

•操作机构用于控制开关的状态,而灭弧室则用于灭弧和隔离电弧。

•真空灭弧室的工作原理基于核心技术,利用真空介质的高绝缘能力和电子冷发射效应来灭弧。

3. 真空介质的高绝缘能力
•真空灭弧室内部是一个高真空环境,其压力极低。

•相比于其他介质,真空具有极高的绝缘能力,可以有效地隔离电弧,避免电流的继续传导和损耗。

4. 电子冷发射效应
•电子冷发射效应是真空灭弧室灭弧的核心原理。

•极低的真空压力下,金属电极表面的电子可以通过冷发射的方式从表面跃迁到真空中。

•电极上的电子在高压电场作用下受到加速,从而形成电子密集区域。

•当电流发生故障时,电弧在电极间形成,但电弧中的电流会导致电极表面的电子冷发射增强,从而在电弧内部形成电子云团,从而迅速耗散电弧的能量并灭弧。

5. 优势和应用
•真空灭弧室相比于其他灭弧设备具有较多的优势,包括灵敏的动作特性、可靠的断路能力、低电弧后持续时间等。

•真空灭弧室广泛应用于输变电和工业领域中的电力系统中,确保电流负载的安全运行,防止火灾和设备损坏。

高压真空灭弧室的基本结构

高压真空灭弧室的基本结构

一、真空灭弧室基本结构组成真空灭弧室的主要结构件为绝缘外壳、动静盖板、触头、波纹管、屏蔽罩、动静导电杆、导向套等,分别根据相应的功用选用不同的材料,采用真空钎焊工艺将相应的零部件封接成密闭的真空腔室,借助真空优良的绝缘性能与熄弧性能,在切断电源后能迅速熄弧并抑制电流,1、结构简图1—静端盖板2—主屏蔽罩3—动静触头4—波纹管5—动端盖板6—静导电杆7—绝缘外壳8—动导电杆2、各个主要零部件的作用1)绝缘外壳一般选用Al2O3陶瓷管壳。

Al2O3陶瓷材料具有优异电绝缘性能、较高的机械强度、高温下不易分解与蒸发等一系列优点,即能保证真空灭弧室在生产及运行过程中的气密性又不易损坏。

2)波纹管波纹管是真空灭弧室中不可缺少的重要元件。

是唯一可动的外壳部分,因此它的作用也称为“动密封”。

既能保证灭弧室的密封,又能借助于它来实现触头的相对运动,波纹管的允许伸缩量决定了所能获得的最大触头开距。

波纹管的材料壁厚仅为0.10——0.16mm,开关在每次合分动作时都会使波纹管的波状薄壁产生一次较大幅度的机械变形。

由于剧裂而频繁的机械变形很容易使波纹管因疲劳而损坏,最终导致灭弧室漏气而报废。

某种程度上,波纹管的疲劳寿命也就决定了真空灭弧室的机械寿命,所以说,整个寿命期间,一定严禁扭伤或划伤波纹管。

波纹管的疲劳寿命还和工作条件的受热温度有关,真空灭弧室在分断大的短路电流后,导电杆的余热传递到波纹管上,使波纹管的温度升高,当温升达到一定程度时,这也会影响波纹管的疲劳强度。

3)触头真空灭弧室是真空开关的心脏,而触头则是真空灭弧室的心脏,因此触头材料和触头结构等对真空灭弧室的性能影响极大。

①触头材料主要从开断能力、耐受电压能力、抗电腐蚀性、抗熔焊能力、截流值、含气量等方面来选择。

目前断路器用真空灭弧室的触头材料大都采用铜铬合金,铜与铬各占50%。

②触头结构对灭孤室的开断能力有很大影响。

采用不同结构触头产生的灭弧效果有所不同的,早期采用简单的圆柱形触头,结构虽简单,但开断能力不能满足断路器的要求,仅能开断10kA以下电流,目前仅有真空负荷开关、高压真空接触器等用真空灭弧室才采用。

真空灭弧室的基本知识

真空灭弧室的基本知识

真空灭弧室的基本知识一真空灭弧室的基本知识1什么是真空真空是指在给定的空间内,远低于一个环境大气压的气体状态。

真空状态下气体的稀薄程度通常用真空度来描述,以压强值来表示。

l大气压= 760mmHg×133.3Pa/mmHg=1.013×105Pa(帕斯卡)或0.1013MPa压强越高则真空度越低;压强越低则真空度越高。

2什么是真空灭弧室真空灭弧室也叫真空开关管或真空泡,是真空开关的核心器件。

它是用一对密封在真空中的电极(触头)和其它零件,借助真空优良的绝缘和熄弧性能,实现电路的关合或分断,在切断电源后能迅速熄弧并抑止电流的真空器件。

3真空灭弧室的工作原理要说明真空灭弧室的工作原理必须要弄清楚电弧、真空电弧、扩散电弧、集聚电弧、横向磁场、纵向磁场的概念3.1电弧电弧或弧光放电是气体放电的一种形式。

放电在性质上和外观上是各种各样的。

在正常状态下,气体有良好的电气绝缘性能。

但当在气体间隙的两端加上足够强的电场时,就可以引起电流通过气体,这种现象称为放电。

放电现象与气体的种类和压强、电极的材料和几何形状、两极间的距离以及加在间隙两端的电压等因素有关。

例如在正常状态下,给气体间隙两端的电极加电压到一定程度时,空气中游离的电子在电场作用下高速运动,与气体分子碰撞后产生较多的电子和离子。

新生的电子和离子又同中性原子碰撞,产生更多的电子和离子,使气体开始发光,两电极变为炽热,电流迅速增大。

这种性质上的转变称为气体间隙的击穿,其所需的电压称为击穿电压。

这时,由于电场的支持,放电并不停止,故称为自持放电。

电弧则是气体自持放电的一种形式。

电弧具有电流密度大和阴极电位降低的特点。

3.2真空电弧在真空环境中,气体非常稀薄,真空度高于1.33x10-2Pa时气体分子极少。

在1.33x10-2Pa 的真空中,每立方厘米空间中含有的气体分子数仅为标准大气压环境下的千万分之一。

在这样稀薄的气体中即使真空间隙中存在电子,它们从一个电极飞向另一个电极时,也很少有机会与气体分子碰撞造成真空间隙的电击穿。

真空灭弧室工作原理

真空灭弧室工作原理

真空灭弧室工作原理
真空灭弧室是一种利用真空环境来消除电弧的设备。

其工作原理如下:
1. 真空环境:真空灭弧室内部的空气被抽空,形成低压或高真空环境。

真空环境可以有效地隔离气体分子之间的电离和集中电荷的移动,减少或消除电弧的形成。

2. 弧气生成:当高电压出现时,电极之间的空气可能会发生电离,生成电弧。

电弧产生的主要过程包括电离、电子和离子的碰撞、电子和离子的再复合等。

3. 真空灭弧:在真空环境下,电离程度较低,电子和离子之间的碰撞频率较小。

由于气体分子密度减小,以及电离和复合反应的限制,电弧的发展得到抑制。

4. 弧气排除:在真空灭弧室内部设有排气系统,可将产生的较少数量的气体排出。

通过排气系统,将电弧产生过程中生成的气体以及复合过程中释放的热能排出,使真空环境得到维持。

5. 安全措施:真空灭弧室还配备了其他安全措施,如绝缘材料、电弧传感器等,以保证设备的安全运行。

总之,真空灭弧室通过将电弧产生环境设置为真空,降低电离程度和气体密度,限制电子和离子的碰撞和复合,从而有效地消除电弧的形成。

这种工作原理使得真空灭弧室在高压、高电流的电力系统中,能够快速灭除电弧并保护设备的安全。

真空灭弧室结构与原理4

真空灭弧室结构与原理4
真空灭弧原理真空灭弧原理在交流回路中当电流过零前后的短暂时间在交流回路中当电流过零前后的短暂时间支持电弧燃烧的金属蒸汽和电场能量不足以维持支持电弧燃烧的金属蒸汽和电场能量不足以维持电弧的燃烧电弧中的等离子微粒迅速扩散在电弧的燃烧电弧中的等离子微粒迅速扩散在数微秒的时间里真空间隙的绝缘强度迅速恢复数微秒的时间里真空间隙的绝缘强度迅速恢复如果工频恢复电压的上升速度小于真空间隙绝缘如果工频恢复电压的上升速度小于真空间隙绝缘强度的恢复速度真空间隙不再击穿就可实现强度的恢复速度真空间隙不再击穿就可实现电路的开断
2.4 屏蔽系统
• 作用:
2.4.1 屏蔽和吸收电弧生成物,防止绝缘外壳 的污染。 2..4.2 均衡系统电场分布,提高灭弧室绝缘水 平。 • 要求: 2.4.3 绝缘水平高,耐高温,易于真空去气。
2.5 波纹管
• 作用:
2.5.1 使灭弧室动端电极在一定范围可动。 2.5.2 保持灭弧室内部的高真空环境。 • 要求: 2.5.3 足够长的机械寿命。 2.5.4 耐腐蚀,耐高温。
真空灭弧室结构与原理
一、真空灭弧室结构简介
1.简述 • 利用真空为绝缘介质和熄灭电弧的介质,用于真空开关电器之 中具有交流电流开断能力的电真空器件。也称为真空开关管、 真空泡等。 • 真空灭弧室是高技术产品。是真空电弧与放电理论、电磁场理 论、材料科学、电真空技术的结合和进步的结果。 • 分类。 按功能用途分:断路器用、负荷开关用、接触器用、重合器 用、真空熔断器等。 按电压等级分:低压(<3kv)、中压(3-24kv)、高压(24kv以 上)。 也有按外壳材料、电极类型分类。我公司灭弧室型号充分反 映了灭弧室的分类特征。
三、真空灭弧室主要技术参数
1. 真空灭弧室主要技术参数。 • 额定电流、电压、频率。 • 额定工频短时耐受电压、雷电冲击耐压。 • 额定短路开断电流、短时耐受电流(热稳定电 流)、峰值耐受电流(动稳定电流)。 • 机械寿命、电寿命。 • 自闭力、额定开距下的触头反力。 • 平均分闸速度、平均合闸速度(合闸弹跳)。 • 额定触头压力、额定触头压力下的接触电阻。

真空灭弧室基本知识

真空灭弧室基本知识
真空灭弧室基本知识介绍
内部培训资料
大纲
1. 真空灭弧室的基本概念及工作原理 2. 真空灭弧室的基本结构及主要零件的作用 3. 真空灭弧室的触头结构 4. 真空灭弧室的封排方式 5. 真空灭弧室主要技术参数介绍 6. 真空断路器主要机械特性对真空灭弧室性能的影响 7. 真空断路器型式试验的主要项目介绍
2.真空灭弧室的基本结构及主要零件的作 用
波纹管 材料:波纹管主要由厚度为0.1~0.2mm的不锈钢制成。 主要作用:波纹管主要担负动电极在一定范围内运动、
及高真空密封的功能。真空灭弧室要求波纹管具有很 高的机械寿命。
2.真空灭弧室的基本结构及主要零件的作 用
屏蔽筒 材料:屏蔽筒可由无氧铜、不锈钢、电工纯铁或铜铬合
➢ 压强越高则真空度越低;压强越低则真空度越高。
1.2什么是真空灭弧室
➢ 真空灭弧室也叫真空开关管或真空泡,是真空开关的 核心器件。它是用一对密封在真空中的电极(触头) 和其它零件,借助真空优良的绝缘和熄弧性能,实现 电路的关合或分断,在切断电源后能迅速熄弧并抑止 电流的真空器件。
1.3真空灭弧室的工作原理
1.3.3真空电弧的形态
➢ 集聚型真空电弧 当真空电弧电流很大时,如对铜电极而
言,当电弧电流超过10KA时,电弧的外形将突然发生 变化,阴极斑点不再向四周作扩散运动,而是相互吸 引,结果所有的阴极斑点都聚集成一个斑点团,阴极 斑点团的直径可达1~2CM。此时阳极上出现了阳极斑 点,阴极表面和阳极表面均有强烈的光柱,阴极光柱 与阳极光柱自由地向电极的四周扩散成为数条连续的 闪光,有时偶尔也与电极平行。真空电弧一旦聚集, 阴极斑点与阳极斑点便不再移动或以很缓慢的速度运 动,阳极和阴极表面被局部强烈加热,导致严重熔化, 这种真空电弧叫做集聚型真空电弧。见图一

真空灭弧室原理

真空灭弧室原理

真空灭弧室原理一、引言真空灭弧室是一种用于高压开关设备中的重要装置,其主要作用是在开关操作过程中,有效地灭除电弧并保证电气设备的安全运行。

本文将介绍真空灭弧室的原理和工作过程。

二、真空灭弧室的原理真空灭弧室的原理基于真空状态下电弧无法维持的特性。

在真空中,由于缺乏气体分子进行离子化和电子的再组合,电弧无法持续存在,从而实现了有效的灭弧。

三、真空灭弧室的结构真空灭弧室通常由灭弧室主体、灭弧室触头和灭弧室导电触头等组成。

灭弧室主体是一个密封的容器,内部充满高真空。

灭弧室触头和导电触头则是用于断开和接通电路的关键部件。

四、真空灭弧室的工作过程1. 断开过程:当开关需要断开电路时,灭弧室触头会迅速分离,电流在触点间形成电弧。

在真空环境下,电弧无法得到维持,随着触点间距的增大,电弧被迅速熄灭。

2. 熄灭过程:当电弧熄灭后,灭弧室主体内部的真空环境能够迅速吸收和散热电弧释放的能量,确保电弧不会重新点燃。

同时,灭弧室导电触头会保持导电状态,以确保电路的正常通断。

3. 接通过程:当需要接通电路时,灭弧室触头会迅速闭合,以确保电流能够正常流动。

在闭合过程中,灭弧室的导电触头能够保持稳定的导电状态,确保电路通畅。

五、真空灭弧室的优势相比其他灭弧装置,真空灭弧室具有以下优势:1. 高灭弧能力:真空环境下,电弧能够迅速熄灭,确保电气设备的安全运行。

2. 高绝缘性能:真空灭弧室可以提供较高的绝缘水平,有效预防绝缘击穿。

3. 长寿命:真空灭弧室的主要部件采用高品质材料制造,具有较长的使用寿命。

4. 低维护成本:真空灭弧室无需额外的维护和保养,降低了使用成本。

六、真空灭弧室的应用真空灭弧室广泛应用于高压开关设备中,如变压器、断路器和隔离开关等。

其可靠的灭弧性能和高绝缘水平保证了电气设备的安全运行。

七、总结真空灭弧室利用真空环境下电弧无法维持的原理,通过迅速熄灭电弧保证了电气设备的安全运行。

其优势包括高灭弧能力、高绝缘性能、长寿命和低维护成本。

真空灭弧室基本知识

真空灭弧室基本知识

1.3.3真空电弧的形态
➢ 集聚型真空电弧 当真空电弧电流很大时,如对铜电极而
言,当电弧电流超过10KA时,电弧的外形将突然发生 变化,阴极斑点不再向四周作扩散运动,而是相互吸 引,结果所有的阴极斑点都聚集成一个斑点团,阴极 斑点团的直径可达1~2CM。此时阳极上出现了阳极斑 点,阴极表面和阳极表面均有强烈的光柱,阴极光柱 与阳极光柱自由地向电极的四周扩散成为数条连续的 闪光,有时偶尔也与电极平行。真空电弧一旦聚集, 阴极斑点与阳极斑点便不再移动或以很缓慢的速度运 动,阳极和阴极表面被局部强烈加热,导致严重熔化, 这种真空电弧叫做集聚型真空电弧。见图一
真空灭弧室基本知识介绍
内部培训资料
大纲
1. 真空灭弧室的基本概念及工作原理 2. 真空灭弧室的基本结构及主要零件的作用 3. 真空灭弧室的触头结构 4. 真空灭弧室的封排方式 5. 真空灭弧室主要技术参数介绍 6. 真空断路器主要机械特性对真空灭弧室性能的影响 7. 真空断路器型式试验的主要项目介绍
导致发热温度迅速提高,致使触头表面金属产生蒸发。 同时微小的触头距离下也会形成极高的电场强度,造 成强烈的场致发射,间隙击穿,继而形成真空电弧。 真空电弧一旦形成,就会出现电流密度在104A/cm2 以上的阴极斑点,使阴极表面局部区域的金属不断熔 化和蒸发,以维持真空电弧。在电弧熄灭后,电极之 间与电极周围的金属蒸气迅速扩散,密度快速下降直 到零,触头间恢复高真空绝缘状态。
1.3.4真空灭弧室的灭弧原理 ----小电流真空电弧的熄弧原理
➢ 真空灭弧室切断交流真空电弧成功与否,与触头之间 弧区电流过零前的金属蒸汽浓度密切相关。当电流过 零前弧区的金属蒸汽浓度很小时,电弧在电流过零时 不足以维持便熄灭;反之当电流过零前弧区的金属蒸 汽浓度很大,在电流过零时仍足以维持,电弧便不会 熄灭。金属蒸汽来自触头的电弧斑点,电弧斑点和金 属蒸汽都随着电弧电流瞬时值的增减而变化。电弧电 流过零点前一小段时间里,触头间金属蒸汽浓度降低 的速度取决于电弧斑点的冷却时间常数。

真空灭弧室工作原理

真空灭弧室工作原理

真空灭弧室工作原理
嘿,朋友们!今天咱们来聊聊真空灭弧室的工作原理。

想象一下,真空灭弧室就像是一个特别厉害的“电力小卫士”。

在这个小卫士的身体里,有两个触头,就像两个小伙伴手牵手。

当电流通过的时候,它们就开始工作啦。

正常情况下,这两个触头好好地接触着,电流就可以顺畅地通过。

但是呢,要是遇到需要断开电路的情况,比如说发生故障啦,这时候真空灭弧室就大显身手了。

它会迅速地把这两个触头分开,就好像两个小伙伴突然松开了手。

而因为是在真空环境里呀,没有了空气这个捣乱分子,电弧就很难持续燃烧啦。

这样一来,就能快速、安全地切断电路,保护我们的电器设备不受到损害。

可以说真空灭弧室就像是一个默默守护我们电力世界的小英雄,虽然它平时不太起眼,但关键时刻可少不了它呢!是不是很神奇呀?哈哈!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真空灭弧室结构及原理◆ 电弧◆ 真空和真空度◆ 真空电弧◆ 交流真空电弧◆ 真空击穿◆ 灭弧原理◆ 真空灭弧室的寿命1、电弧电弧或弧光放电是气体放电的一种形式。

气体放电在性质上和外观上是各种各样的。

在正常状态下,气体有良好的电气绝缘性能。

但当在气体间隙的两端加上足够大的电场时,就可以引起电流通过气体。

这种现象称为放电。

放电现象与气体的种类和压力、电极的材料和几何形状、两极间的距离以及加在间隙两端的电压等因素有关。

例如在正常状态下,给气体间隙两端的电极加压到一定程度时,普通空气中电子在电场作用下高速运动,与气体分子碰撞后产生较多的电子和离子,新生的电子和离子又同中性原子碰撞,产生更多的电子和离子,这时,气体开始发光,两电极变为炽热,电流迅速增大。

这种性质上的转变称为气体间隙的击穿,其所需的电压称为击穿电压。

这时,由于电场的支持,放电并不停止,故称为自持放电。

电弧则是气体自持放电的一种形式。

电弧具有电流密度大和阴极电位降低的特点。

2、真空和真空度低于1个大气压的气体状态,都称为真空。

描述真空程度的量叫真空度,用该气体的压力大小来表示。

l大气压= 760×133.332Pa=1.013×105Pa(帕斯卡)或0.1013MPa 真空技术中将广阔的真空度范围划分为粗、低、高、超高、极高等区域。

其中高真空区域的气体压力为 10-1~10-6Pa,这一区域的后半段,即 1.33 ×10-3~1.33 ×10-6就是真空灭弧室通常采用的真空度范围。

在高真空区域中,单位体积内的气体分子数目大大减少了,气体分子之间碰撞的几率大大减少,气体分子之间的平均距离大大增加。

真空度的高低对灭孤能力有影响。

实验表明:灭孤室真空度在10-3Pa数量级时就能够可靠地灭弧。

真空灭弧定制造厂在产品出厂时,提高了灭孤室的真空度,达到 10-5~ 10-6 Pa,待经过20年的使用或贮存期,或多或少产生外部渗气等现象使其真空度下降到10-3Pa范围,仍能保证它的灭孤能力。

3、真空电弧在真空环境中,气体非常稀薄,残存气体的电离可忽略不记。

一对带电触头在这种高真空环境中的分离,便会产生真空电弧。

真空电弧是这样产生的:当触头行将分离前,触头上原先施加的接触压力开始减弱,动静触头间的接触电阻开始增大,由于负荷电流的作用,发热量增加。

在触头刚要分离瞬间,动静触头之间仅靠几个尖峰联系着,此时负荷电流将密集收缩到这几个尖峰桥上,接触电阻急剧增大,同时电流密度又剧增,导致发热温度迅速提高,致令触头表面金属产生蒸发,同时微小的触头距离下也会形成极高的电场强度,造成强烈的场致发射,间隙击穿,继而形成真空电弧。

真空电弧一旦形成,就会出现电流密度在104A/cm2 以上的阴极斑点,使阴极表面局部区域的金属不断熔化和蒸发,以维持真空电弧。

在电弧熄灭后,电极之间与电极周围的金属蒸气密度不断下降直到零,仍然恢复高真空状态。

3.1真空中电弧的形式:真空中的电弧有两种形式,扩散形电弧和收缩形电弧。

3.1.1扩散型真空电弧:当真空电弧电流不大时,阴极斑点将不停地运动,通常是由电极中心向边缘运动。

当阴极斑点到达边缘,等离子锥便弯曲,接着阴极斑点就突然熄灭,在电极中心又会继续不断地产生新的阴极斑点。

如果电流保持不变,阴极表面存在的阴极斑点数基本上维持不变。

当电弧电流增大或减小时,阴极斑点也随之增加或减少。

这种存在许多阴极斑点的真空电弧,随着阴极斑点的运动不断地向四周扩散,所以叫扩散型真空电弧。

3.1.2收缩型真空电弧若用铜作电极,当电弧电流增加超过10000A时,电弧的外形将突然发生变化,阴极斑点不再向四周作扩散运动,而是相互吸引,结果所有的阴极斑点都聚集成一个斑点团,阴极斑点团的直径可达1~2CM。

此时阳极上出现了阳极斑点,阴极表面和阳极表面均有强烈的光柱,阴极光柱与阳极光柱自由地向电极的四周扩散成为数条连续的闪光,有时偶尔也与电极平行。

真空电弧一旦聚集,阴极斑点与阳极斑点便不在移动或以很缓慢的速度运动,阳极和阴极表面被局部强烈加热,导致严重熔化,这种真空电弧叫做收缩型真空电弧。

任何一种真空电弧对真空灭弧室的灭弧及其电气寿命均有重大不良影响。

4、交流真空电弧上面介绍的扩散型电弧、收缩型电弧等,都是在直流情况下讨论的。

但在交流电路中,上述的概念仍然适用。

交流电流方向虽在交变,但每一个瞬时,或在很小一段时间内,电流仍是单向的,仍是直流,只不过其瞬时值不断在改变罢了。

当运用于交流时,请记住下列动态变化:5、真空击穿真空击穿是一个综合的复杂的物理过程,主要因素有:真空度,电极材料,电极距离,压力的影响,老练作用,开断电流的大小,操作条件的影响等。

真空间隙的电击穿有两方面因素:一是场发射,一是微粒撞击。

对于小间隙场致发射作用较大,大间隙中微粒撞击可能性较多。

1).场致发射--经过机械磨光和洗净的电极两面,微观上仍然存在凹凸不平,存在许多微米级的尖峰突出物,尖峰处的局部电场可能增加上百倍,会发射电子流。

如果电极表面有杂质或氧化物存在,电极表面的逸出功会降低,场致发射更易产生。

尖峰发射的电子流虽不大,但因其面积小,电流密度却很大,会使局部发热,不仅电子发射增强,还可能产生蒸发、熔化,释放出金属蒸气,金属原子又与发射电子碰撞造成游离,出现击穿。

2). 微粒撞击--电极表面总是存在一些金属微粒,微粒在电场作用下携带电荷离开电极,加速撞击对方电极,由动能转为热能,引起局部加热、汽化,释放大量金属蒸气,形成金属云,导致间隙击穿。

6、灭弧原理:真空电弧是依靠电极不断地产生金属蒸汽来维持的,因此,要熄灭真空电弧的唯一方只有将电弧电流减小到一定程度,不足以维持电弧的时候才有可能将其熄灭。

在交流情况下,真空电弧电流有一个过零的时刻,这就给出了熄弧的条件;在直流情况下,必须设置一个电力转向装置,使直流真空电弧有一个过零的机会,以创造一个同样的熄弧条件。

6.1灭弧方法和电极触头的选择真空灭弧室切断交流真空电弧成功与否,与触头之间弧区过零前的金属蒸汽浓度密切有关,金属蒸汽来自电极触头的热斑点,热斑点和金属蒸汽都随着电弧电流瞬时值的增减而变化。

电弧电流过零点前一小段时间里,触头间金属蒸汽降低的速度取决于斑点的冷却时间常数。

对于扩散型电弧,它只有阴极斑点而无阳极斑点,各支弧均布于触头表面上且处于移动状态,所以热斑点熔区的面积小,深度浅,热惯性小,其冷却时间常数仅有数微秒,有足够的时间让阴极斑点冷却,使金属蒸汽浓度足够的低,同时金属蒸汽因温差、浓度差和压力差的作用迅速向孤区外扩散,电弧不能维持而熄灭。

对于收缩型电弧,则这些熄弧条件比扩散型电弧差劣许多。

在开断10KA及以上的短路电流时,先后开发了横向磁场触头和纵向磁场触头。

6.1.1横向磁场灭弧原理横向磁场触头的工作原理是利用触头本身在开断电流时产生的横向磁场驱使真空电弧不断在触头表面运动,以防止触头表面严重熔化。

螺旋槽触头在分断很大电流时,具有相当高的介质恢复速度。

采用螺旋槽型触头就有横向磁场灭弧的特性。

6.1.2纵向磁场熄弧原理采用纵向磁场提高真空开关的分断能力与采用横向磁场的情况截然不同,纵向磁场的加入可以提高由扩散性电弧转变到收缩型电弧的转换电流值。

实验表明,在足够的纵向磁场下,大电流真空电弧仍具有扩散性真空电弧的基本特征,电弧斑点在电极触头表面均匀分布,触头表面不会产生局部严重熔化,并具有电弧电压低,电弧能量小的优良特征,这对于弧后强度恢复,提高分断能力是十分有益的。

目前,大容量的真空灭弧室多采用纵磁场触头,这是因为纵磁场触头具有电磨损小,使用寿命长和分断能力大等优点。

带斜槽的杯状触头兼有横向磁场和和纵向磁场的特性,可以较好地灭弧。

同时为了保证杯状触头具有抗熔焊能力,在触头端部焊有一定抗熔焊能力的铜铬合金材料,也可装置不熔融或截流水平低的电极触头。

以达到更好的灭弧效果。

7、真空灭弧室的寿命真空灭弧室是一种电真空器件,其寿命包括四个方面,如有一项达到寿命终结,则该灭弧室即报废而需更换。

1)触头导电系统机械强度寿命。

2)波纹管疲劳寿命:波纹管的作用是维持内腔的真空度,在多次操作过程中材料疲劳破裂导致漏气是波纹管失效的主要原因。

3)内腔的真空度寿命:真空度寿命是指灭弧室自制成之日起,经运输、存放、安装、使用等时间,其内腔真空度逐渐低到最低允许真空度的时间间隔。

4)电寿命:衡量触头材料的耐腐蚀能力,即额定短路电流开断次数之能力,就称为电寿命,以开断次数表示。

8、真空灭弧室过电压保护真空间隙具有较高的介质恢复速度,有良好的媳弧能力等特点同时也可能带来对电力系统绝缘造成危害的各种过电压。

为抑制过电压的产生,避免造成危害,我们可以一方面从真空灭弧室使用材料选择和技术设计着手,另一方面通过加装限压保护装置来达到目的。

具体办法有:1)研究和制造低截流水平的触头材料。

2)研制低重燃率的真空开关管,如提高内腔洁净度,适当地进行电压老练和电流老练。

3)断路器合闸尽量做到无弹跳。

如有弹跳,时间不应长于2ms。

4)在感性负载端上并联电容器,这样可以降低波阻抗从而降低截流过电压,不仅降低过电压峰值,还能减缓过电压的前沿陡度。

5)负载端上并联RC吸收回路,其中C的作用如上述的并联电容,R则用于高频振荡中的能量消耗。

安装无间隙氧化锌避雷器,用以限制过电压的幅值。

真空灭弧室的基本结构和工作原理真空灭弧室,又名真空开关管,是中高压电力开关的核心部件,其主要作用是,通过管内真空优良的绝缘性使中高压电路切断电源后能迅速熄弧并抑制电流,避免事故和意外的发生,主要应用于电力的输配电控制系统,还应用于冶金、矿山、石油、化工、铁路、广播、通讯、工业高频加热等配电系统。

具有节能、节材、防火、防爆、体积小、寿命长、维护费用低、运行可靠和无污染等特点。

真空灭弧室从用途上又分为断路器用灭弧室和负荷开关用灭弧室,断路器灭弧室主要用于电力部门中的变电站和电网设施,负荷开关用灭弧室主要用于电网的终端用户。

我公司生产的多种型号的真空灭弧室,按其用途、参数、开断容量可分为断路器用真空灭弧室、负荷开关用真空灭弧室、接触器用真空灭弧室、重合器用真空灭弧室和分段器用真空灭弧室等。

其结构形式均由气密绝缘外壳、导电回路、屏蔽系统、波纹管等部分组成。

1.排气管保护罩2.排气管密封刀口3.环氧树脂填料4.定端盖版5.定导电杆6.屏蔽筒7.玻壳(或陶瓷壳)8.定触头座9.定触头10.动触头11.动触头座12.动导电杆13.波纹管14.均压罩15.动端盖版16.导向套1、气密绝缘系统由玻璃或陶瓷制成的气密绝缘外壳、动端盖板、定端盖板,不锈钢波纹管组成了气密绝缘系统。

为了保证玻璃、陶瓷与金属之间有良好的气密性,除了封接时要有严格的操作工艺外,还要求材料本身的透气性尽量小和内部放气量限制到极小值。

相关文档
最新文档