污水生物脱氮除磷新工艺PPT课件
合集下载
废水生物脱氮除磷技术148页PPT
![废水生物脱氮除磷技术148页PPT](https://img.taocdn.com/s3/m/ea13ac58d4d8d15abe234eec.png)
概述
废水生物脱氮利用自然界氮素循环的原理, 在水处理构筑物中营造出适宜于不同微生物 种群生长的环境,通过人工措施,提高生物 硝化反硝化速率,达到废水中氮素去除的目 的。废水生物脱氮一般由三种作用组成:氨 化作用、硝化作用和反硝化作用。
氨化作用
在未经处理的原废水中,含氮化合物主要以
有机氮如蛋白质、尿素、胺类化合物、硝基 化合物以及氨基酸等形式存在,此外还含有 部分氨态氮如NH3和NH+4-N。在细菌的作用 下,有机氮化合物分解、转化为氨态氮。以 氨基酸为例,反应式为:
亚硝酸菌
H4+ +H2CO3 + HCO3- + O2 NO3- +
H2O + 硝酸菌
(13-3)
总反应:
NH4+ + O2 + HCO3微生物细胞
生物脱氮的基本原理及影响因素
一、生物脱氮的基本原理 二、生物脱氮的影响因素
生物脱氮的基本原理
概述 1、氨化作用(Nitrogen) 2、硝化作用(Nitrification) 3、反硝化作用(Denitrification) 4、生物脱氮的新发现
概述
废水生物脱氮技术是70年代中期美国和南 非等国的水处理专家们在对化学、催化和生 物处理方法研究的基础上,提出的一种经济 有效的处理技术。废水生物脱氮有同化脱氮 与异化脱氮。同化脱氮是指微生物的合成代 谢利用水体中的氮素合成自身物质,从而将 水体中的氮转化为细胞成分而使之从废水中 分离。通常所说的废水生物脱氮是指异化脱 氮。
氮、磷污染的环境效应及现状
我国水体富营养化问题已越来越突出,成 为近几年我国水体污染中非常严峻的问题。 “富营养化”(Eutrophication)是湖泊分类 方面的概念。湖泊学家认为天然富营养化是 水体衰老的一种表现。而过量的植物性营养 元素氮、磷进入水体则是人为加速了水体的 富营养化过程。
生物脱氮除磷工艺共183页PPT
![生物脱氮除磷工艺共183页PPT](https://img.taocdn.com/s3/m/91fd2f6a02d276a201292ebc.png)
含有机氮的农药有:氢基甲酸酯类、酰胺类、脲类等。 在土壤里,会随雨水冲淋、农业排水和地表径流排入水体 中。
此外农村的家畜养殖场、牧场中的家畜废弃物、排泄物 也是农业污水中氮的来源。
生物脱氮除磷工艺
本章目录
第1节 水体中的氮、磷
二.水体中的磷 1. 水体中磷的形态
主要以游离磷和磷酸盐形式存在于污水中。 2.水体中磷的危害
3.水体中氮的来源
水体中的氮其来源是多方面的,主要由城市生活污水、工 业废水和农溉污水三方面。此外自然界的天然固氮也是一 个方面,通过雷电固定大气中的氮就占天然固氮的15%。 大气中的氮通过下雨会降解到水体,水体本身尚有许多能 固氮的微生物,如某些固氮菌和蓝绿藻,在光照充足的情 况下能将大气中的氮固定下来并进人水体。
足量氯气将废水中的有机物及其它易氧化的物质氧化后, 氯与氨离子产生反应最终形成氮气。
N 4 H O N 2 C C H H l lH 2 O
2 N 2 C H H l O N 2 3 C C H 2 l O l3 H
每mgNH4+-N被氧化为氮气,至少需要7.5mg的氯, 实际上为保证反应的完全进行,加氯应略过量,折点的 CL2与NH4+-N的重量比在8:1~10:1。由于加氯略过量, 所以常用SO2或活性炭来脱除余氯:
氨氮的吹脱过程包括将废水的PH调整到10.5~11.5,然
后再提供足够的空气并使气水接触从溶液中将氨气吹出,
通常利用苛性碱或石灰来调整PH。
进水
石灰或 石灰乳
调节pH值
沉淀池 排泥
吹
脱
出水
塔
吹脱法脱氨处理流程
生物脱氮除磷工艺
本章目录
第2节 氮磷的物化处理法
2、折点加氯法去除氨氮 通过投加足量氯气于废水中使氨氮氧化成氮气。在投加
此外农村的家畜养殖场、牧场中的家畜废弃物、排泄物 也是农业污水中氮的来源。
生物脱氮除磷工艺
本章目录
第1节 水体中的氮、磷
二.水体中的磷 1. 水体中磷的形态
主要以游离磷和磷酸盐形式存在于污水中。 2.水体中磷的危害
3.水体中氮的来源
水体中的氮其来源是多方面的,主要由城市生活污水、工 业废水和农溉污水三方面。此外自然界的天然固氮也是一 个方面,通过雷电固定大气中的氮就占天然固氮的15%。 大气中的氮通过下雨会降解到水体,水体本身尚有许多能 固氮的微生物,如某些固氮菌和蓝绿藻,在光照充足的情 况下能将大气中的氮固定下来并进人水体。
足量氯气将废水中的有机物及其它易氧化的物质氧化后, 氯与氨离子产生反应最终形成氮气。
N 4 H O N 2 C C H H l lH 2 O
2 N 2 C H H l O N 2 3 C C H 2 l O l3 H
每mgNH4+-N被氧化为氮气,至少需要7.5mg的氯, 实际上为保证反应的完全进行,加氯应略过量,折点的 CL2与NH4+-N的重量比在8:1~10:1。由于加氯略过量, 所以常用SO2或活性炭来脱除余氯:
氨氮的吹脱过程包括将废水的PH调整到10.5~11.5,然
后再提供足够的空气并使气水接触从溶液中将氨气吹出,
通常利用苛性碱或石灰来调整PH。
进水
石灰或 石灰乳
调节pH值
沉淀池 排泥
吹
脱
出水
塔
吹脱法脱氨处理流程
生物脱氮除磷工艺
本章目录
第2节 氮磷的物化处理法
2、折点加氯法去除氨氮 通过投加足量氯气于废水中使氨氮氧化成氮气。在投加
污水厂生物脱氮除磷工艺讲座PPT
![污水厂生物脱氮除磷工艺讲座PPT](https://img.taocdn.com/s3/m/5e170af7b1717fd5360cba1aa8114431b80d8e6e.png)
厌氧—好氧生物除磷工艺 生物法与化学法结合的除磷工艺
生物除磷原理与过程
好氧条件下, 除磷菌过量 摄取磷
厌氧条件下, 除磷菌将磷 释放
I——PHB(聚羟基丁酸) S——聚合磷酸盐
高含磷污 泥的排出
一、厌氧——好氧除磷工艺(A—O工艺)
一、厌氧——好氧除磷工艺(A—O工艺)
工艺特点: 水力停留时间为3~6h; 曝气池内的污泥浓度一般在2700~3000mg/l; 磷的去除效果好(~70%),出水中磷的含量低于1mg/l; 污泥中的磷含量约为4%,肥效好; SVI小于100,易沉淀,不易膨胀。
5Ca 2
4OH
3HPO
2 4
Ca5 (OH )( PO4 )3
3H 2O
羟磷灰石
废水生物脱氮工艺与技术
一、活性污泥法脱氮传统工艺 二、缺氧—好氧活性污泥法生物脱氮系统(A—O工艺) 三、氧化沟生物脱氮工艺 四、生物转盘生物脱氮工艺
一、活性污泥法脱氮传统工艺
1、三级活性污泥法流程:
①碳化: ②氨化:
二、缺氧——好氧活性污泥脱氮系统(A—O工艺)
在反硝化反应过程中产生的碱度可补偿硝化反应消耗的碱 度的一半左右;
硝化曝气池在后,使反硝化残留的有机物得以进一步去除, 无需增建后曝气池。
三、氧化沟生物脱氮工艺
四、生物转盘硝化脱氮工艺
好氧碳化及硝化
进 水
BOD去除
缺氧 脱氮
好氧
废水生物除磷工艺与技术
生物脱氮除磷工艺
概述 生物脱氮工艺与技术 生物除磷工艺与技术 同步脱氮除磷工艺
概述
一、营养元素的危害 二、脱氮的物化法 三、除磷的物化法
一、营养元素的危害
氨氮会消耗水体中的溶解氧;
生物除磷原理与过程
好氧条件下, 除磷菌过量 摄取磷
厌氧条件下, 除磷菌将磷 释放
I——PHB(聚羟基丁酸) S——聚合磷酸盐
高含磷污 泥的排出
一、厌氧——好氧除磷工艺(A—O工艺)
一、厌氧——好氧除磷工艺(A—O工艺)
工艺特点: 水力停留时间为3~6h; 曝气池内的污泥浓度一般在2700~3000mg/l; 磷的去除效果好(~70%),出水中磷的含量低于1mg/l; 污泥中的磷含量约为4%,肥效好; SVI小于100,易沉淀,不易膨胀。
5Ca 2
4OH
3HPO
2 4
Ca5 (OH )( PO4 )3
3H 2O
羟磷灰石
废水生物脱氮工艺与技术
一、活性污泥法脱氮传统工艺 二、缺氧—好氧活性污泥法生物脱氮系统(A—O工艺) 三、氧化沟生物脱氮工艺 四、生物转盘生物脱氮工艺
一、活性污泥法脱氮传统工艺
1、三级活性污泥法流程:
①碳化: ②氨化:
二、缺氧——好氧活性污泥脱氮系统(A—O工艺)
在反硝化反应过程中产生的碱度可补偿硝化反应消耗的碱 度的一半左右;
硝化曝气池在后,使反硝化残留的有机物得以进一步去除, 无需增建后曝气池。
三、氧化沟生物脱氮工艺
四、生物转盘硝化脱氮工艺
好氧碳化及硝化
进 水
BOD去除
缺氧 脱氮
好氧
废水生物除磷工艺与技术
生物脱氮除磷工艺
概述 生物脱氮工艺与技术 生物除磷工艺与技术 同步脱氮除磷工艺
概述
一、营养元素的危害 二、脱氮的物化法 三、除磷的物化法
一、营养元素的危害
氨氮会消耗水体中的溶解氧;
脱氮除磷污水处理工艺ppt课件
![脱氮除磷污水处理工艺ppt课件](https://img.taocdn.com/s3/m/19ba798ac1c708a1294a443c.png)
合成
降解
溶解质 ATP
ADP PHB PHB ADP
ATP 无机物
厌氧段
好氧段
聚磷菌的作用机理
.
8
短程硝化反硝化、厌氧氨氧化、
反硝化除磷理论的工艺: SHARON工艺、ANAMMOX工艺、
CANON工艺、 SHARON与 ANAMMOX联合工艺、
PHOREDOX工艺、BCFS工艺
.
9
中温亚硝化(SHARON)
.
13
.
14
除磷脱氮 DOKHAVEN污水处理厂在它1987年投入运行后已升级多次。除经济利益的驱动外,主要是因为环境标准的不断提
高。出水对磷的限制早在1995年便已非常严格,要求出水磷的浓度最高标准为1 mgP/L。这意味着原始设计不能满足 排放要求,处理工艺必须升级。因受场地限制,一种精心设计的化学方法被选择在 A段曝气池进行除磷,这是因为若 在B段曝气池实施化学除磷会影响硝化过程。一种铁盐、一种混凝剂、一种絮凝剂被结合在一起用于化学除磷,这种 方法称为“三药剂”方法。这种特殊的方法比传统化学方法能节省40%的运行费用。因此,可做到环境与经济效益上 的双赢。[KG)]
脱氮除磷污水处理工艺
.
1
.
2
.
3
.
4
.
5
生物法脱氮的理论基础:
废水中的氮一般以有机氮、氨氮、亚硝酸盐氮、硝酸盐
氮等四种形态存在。其中有机氮占生活污水含氮量的 40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮 仅占0%~5%。因此在传统的生物处理中将
氨化菌 硝化菌
↓
↓
有机氮—→氨氮—→亚硝态氮、硝态氮
↓ ←反硝化菌
氮气
《废水脱氮除磷》PPT课件
![《废水脱氮除磷》PPT课件](https://img.taocdn.com/s3/m/9c938dde7cd184254a353550.png)
编辑编辑pptppt4444混合液回流搅拌搅拌沉淀池原污水处理出水厌氧反应器缺氧反应器好氧反应器磷释放bod去除硝化磷吸收污泥回流剩余污泥污泥回流混合液回流进水剩余污泥msbr工艺传统ao工艺msbr脱氮除磷工艺编辑编辑pptppt4545内循环回流混合液回流混合液回流进水q缺氧池一泥水分离池缺氧池二主曝气池上清液出水qmsbr池平面图msbr单元工作状态编辑编辑pptppt4646编辑编辑pptppt4747unitank工艺编辑编辑pptppt4848yaao工艺进水预缺氧出水碳源分流污泥回流编辑编辑pptppt4949四主要的脱氮除磷活性污泥法功能表及影响因素脱氮除磷工艺及功能表编辑编辑pptppt5050脱氮除磷活性污泥法的影响因素环境因素如温度ph溶解氧
危害:促进藻类等浮游生物的繁殖,破坏水体耗氧和复氧 平衡;使水质迅速恶化,危害水产资源。
有机磷 有机磷包括磷酸甘油酸、磷肌酸等
含磷化合物 无机磷
磷酸盐:正磷酸盐(PO43-)、磷酸氢盐(HPO42-) 、
磷酸二氢盐H2PO4-、偏磷酸盐(PO3-)
聚合磷酸盐:焦磷酸盐(P2O74-) 、三磷酸盐(P3O105-)、
总反应式为:
N 4 2 H O 2 硝 化 N 细 3 2 O H 菌 H 2 O
N 4 2 N e H 2 O 羟 H 2 H N e硝 胺 酰 O 2 N e 2 酰 2 H N e O 3
硝化细菌是化能自养菌,生长率低,对环境条件
吹脱过程包括将废水的pH提高至10.5~11.5,然后曝
气,这一过程在吹脱塔中进行。
编辑ppt
7
编辑ppt
8
(2) 折点加氯法: 含氨氮的水加氯时,有下列反应:
C 2 lH 2 O HO H C C ll N 4 H H O N 2 C C H H l lH 2 O
危害:促进藻类等浮游生物的繁殖,破坏水体耗氧和复氧 平衡;使水质迅速恶化,危害水产资源。
有机磷 有机磷包括磷酸甘油酸、磷肌酸等
含磷化合物 无机磷
磷酸盐:正磷酸盐(PO43-)、磷酸氢盐(HPO42-) 、
磷酸二氢盐H2PO4-、偏磷酸盐(PO3-)
聚合磷酸盐:焦磷酸盐(P2O74-) 、三磷酸盐(P3O105-)、
总反应式为:
N 4 2 H O 2 硝 化 N 细 3 2 O H 菌 H 2 O
N 4 2 N e H 2 O 羟 H 2 H N e硝 胺 酰 O 2 N e 2 酰 2 H N e O 3
硝化细菌是化能自养菌,生长率低,对环境条件
吹脱过程包括将废水的pH提高至10.5~11.5,然后曝
气,这一过程在吹脱塔中进行。
编辑ppt
7
编辑ppt
8
(2) 折点加氯法: 含氨氮的水加氯时,有下列反应:
C 2 lH 2 O HO H C C ll N 4 H H O N 2 C C H H l lH 2 O
污水生物脱氮除磷教程PPT课件
![污水生物脱氮除磷教程PPT课件](https://img.taocdn.com/s3/m/6aa45d6eb9d528ea80c779df.png)
第32页/共65页
• ANAMMOX微生物的增长率与产率是非常低的。 • 但是氮的转换率却为0.25mgN/(mgSS·d),这与传
统好氧硝化的转换率相当。
第33页/共65页
• ANAMMOX反应在10~43℃的温度范围内具有活 性,适宜的pH为6.7~8.3。
• ANAMMOX无需有机碳源存在,碳酸盐/二氧化碳 是ANAMMOX微生物生长所需的无机碳源。
• 虽然目前CANON工艺在世界范围内仍处于研发阶段,还没有真正的工程应用,但是它必将会给污水脱氮技 术带来革命性的变革。
第46页/共65页
•2.2 除磷新工艺
• 反硝化除磷细菌 • 反硝化除磷工艺
第47页/共65页
反硝化除磷细菌
• 脱氮要经历好氧(硝化)/厌氧(反硝化), • 除磷要经历厌氧(释放磷)/好氧(积聚 磷). • 如果能使反硝化细菌同时具有生物摄/ 放磷作用则可以将反硝化脱氮与生物除 磷有机地合二为一。
+
CO2
→→→→ 2 3N + 6HCO3- + 7H2O
• 节约 CH3OH 40%
第25页/共65页
图3 亚硝化细菌和硝化细菌的 最小污泥龄与温度关系
0.8d 0.4d
第26页/共65页
• SHARON工艺的基本工作原理便是利用温度高有 利于亚硝化细菌增殖这一特点,使硝化细菌失去 竞争。
第27页/共65页
第59页/共65页
▪(缺氧/好氧)混合池 ▪主要功能是脱氮,正常情况 下该池可不充氧,缺氧条件可 通过好氧池回流的混合液来维 持。
第60页/共65页
• 好氧池 • 同常规的处理工艺一样,其主要功能是去除COD、BOD及氨氮的硝化。
第61页/共65页
• ANAMMOX微生物的增长率与产率是非常低的。 • 但是氮的转换率却为0.25mgN/(mgSS·d),这与传
统好氧硝化的转换率相当。
第33页/共65页
• ANAMMOX反应在10~43℃的温度范围内具有活 性,适宜的pH为6.7~8.3。
• ANAMMOX无需有机碳源存在,碳酸盐/二氧化碳 是ANAMMOX微生物生长所需的无机碳源。
• 虽然目前CANON工艺在世界范围内仍处于研发阶段,还没有真正的工程应用,但是它必将会给污水脱氮技 术带来革命性的变革。
第46页/共65页
•2.2 除磷新工艺
• 反硝化除磷细菌 • 反硝化除磷工艺
第47页/共65页
反硝化除磷细菌
• 脱氮要经历好氧(硝化)/厌氧(反硝化), • 除磷要经历厌氧(释放磷)/好氧(积聚 磷). • 如果能使反硝化细菌同时具有生物摄/ 放磷作用则可以将反硝化脱氮与生物除 磷有机地合二为一。
+
CO2
→→→→ 2 3N + 6HCO3- + 7H2O
• 节约 CH3OH 40%
第25页/共65页
图3 亚硝化细菌和硝化细菌的 最小污泥龄与温度关系
0.8d 0.4d
第26页/共65页
• SHARON工艺的基本工作原理便是利用温度高有 利于亚硝化细菌增殖这一特点,使硝化细菌失去 竞争。
第27页/共65页
第59页/共65页
▪(缺氧/好氧)混合池 ▪主要功能是脱氮,正常情况 下该池可不充氧,缺氧条件可 通过好氧池回流的混合液来维 持。
第60页/共65页
• 好氧池 • 同常规的处理工艺一样,其主要功能是去除COD、BOD及氨氮的硝化。
第61页/共65页
污水生物脱氮除磷新工艺(共41张PPT)
![污水生物脱氮除磷新工艺(共41张PPT)](https://img.taocdn.com/s3/m/64aa836df6ec4afe04a1b0717fd5360cba1a8dc1.png)
响厌氧产物PHB的合成,进而影响到后续除磷效果。
▪ 一般而言,要同时达到氮磷的去除目的,城 市污水中碳氮比(COD/TKN)至少为 9。当城 市污水中碳源低于此要求时,由于大多数处 理工艺流程都把缺氧反硝化置于厌氧释磷之 后,反硝化效果受到碳源量的限制,大量的 未被反硝化的硝酸盐随回流污泥进入厌氧区 ,干扰厌氧释磷的正常进行,最终影响到整 个营养盐去除系统的稳定运行。
▪ 一、脱氮除磷的传统工艺
▪ 1、 脱氮的传统工艺 ▪ 2 、除磷的传统工艺
▪ 1、 脱氮的传统工艺 ▪ 自然界中氮一般有四种形态:
▪ 有机氮、
▪ 氨氮、 ▪ 亚硝酸盐氮 ▪ 硝酸盐氮
▪ 生活污水中的氮主要形态是有机氮和氨氮。
▪ 有机氮占生活污水含氮量的40-60%, ▪ 氨氮占50-60%,
▪ 亚硝酸盐和硝酸盐氮仅占0-5%。
▪ 总反应
▪ NH4+ + O2 + HCO3- →
▪
NO3- + H2O + H2CO3 + 微生物细胞
▪ 反硝化反应如下:
▪
▪ NO3- + CH3OH + H2CO3 → ▪ N2↑+H2O + HCO3-+微生物细胞 ▪
生物脱氮工艺
▪ 传统生物脱氮存在问题?
▪ 首先,需要充分地氧化氨氮到硝酸氮,要消
内回流
污泥回流
图3 MUCT工艺
▪ MUCT工艺有两个缺氧池,前一个接受二沉池回流污泥,后一个接受好 氧区硝化混合液,使污泥的脱氮与混合液的脱氮分开,进一步减少硝酸 盐进入厌氧区的可能。
OWASA工艺
进水
初沉池 污泥
混合液内回流
厌氧
缺氧
▪ 一般而言,要同时达到氮磷的去除目的,城 市污水中碳氮比(COD/TKN)至少为 9。当城 市污水中碳源低于此要求时,由于大多数处 理工艺流程都把缺氧反硝化置于厌氧释磷之 后,反硝化效果受到碳源量的限制,大量的 未被反硝化的硝酸盐随回流污泥进入厌氧区 ,干扰厌氧释磷的正常进行,最终影响到整 个营养盐去除系统的稳定运行。
▪ 一、脱氮除磷的传统工艺
▪ 1、 脱氮的传统工艺 ▪ 2 、除磷的传统工艺
▪ 1、 脱氮的传统工艺 ▪ 自然界中氮一般有四种形态:
▪ 有机氮、
▪ 氨氮、 ▪ 亚硝酸盐氮 ▪ 硝酸盐氮
▪ 生活污水中的氮主要形态是有机氮和氨氮。
▪ 有机氮占生活污水含氮量的40-60%, ▪ 氨氮占50-60%,
▪ 亚硝酸盐和硝酸盐氮仅占0-5%。
▪ 总反应
▪ NH4+ + O2 + HCO3- →
▪
NO3- + H2O + H2CO3 + 微生物细胞
▪ 反硝化反应如下:
▪
▪ NO3- + CH3OH + H2CO3 → ▪ N2↑+H2O + HCO3-+微生物细胞 ▪
生物脱氮工艺
▪ 传统生物脱氮存在问题?
▪ 首先,需要充分地氧化氨氮到硝酸氮,要消
内回流
污泥回流
图3 MUCT工艺
▪ MUCT工艺有两个缺氧池,前一个接受二沉池回流污泥,后一个接受好 氧区硝化混合液,使污泥的脱氮与混合液的脱氮分开,进一步减少硝酸 盐进入厌氧区的可能。
OWASA工艺
进水
初沉池 污泥
混合液内回流
厌氧
缺氧
《生物脱氮除磷》课件
![《生物脱氮除磷》课件](https://img.taocdn.com/s3/m/b09538c4bdeb19e8b8f67c1cfad6195f312be8d4.png)
生物除磷
1
机理
通过将废水中的磷转化为无机磷和有机
A2 /O生物脱氮除磷工艺
2
磷,再通过微生物代谢过程去除。
结合好氧、厌氧和沉淀等工艺,实现废
水中氮、磷的去除。
3
Bardenpho工艺
在好氧、厌氧、好氧的条件下,通过不
SBR污水处理工艺
4
同污泥的代谢过程实现氮、磷的去除。
利用SBR反应器对废水进行交替好氧/厌 氧处理,最终实现氮、磷的去除。
《生物脱氮除磷》PPT课 件
生物脱氮除磷技术是一种高效、环保、可持续发展的废水处理技术。本课件 将为大家详细介绍生物脱氮除磷技术的定义、分类与应用实例。
概述
定义
生物脱氮除磷是利用微生物代谢特性,将废水中的氮、磷物质转化为气体、微量元素等不容 易造成环境污染和资源浪费的物质。
作用与意义
生物脱氮除磷技术能够达到国家排放标准,不仅是治理污水的有效手段,同时也是重要的水 资源再生和开发途径。
现状与展望
现状
生物脱氮除磷技术在全球范围得到了广泛的应用和 推广,成为污水处理领域的基础性技术。
发展趋势
生物脱氮除磷技术还有进一步完善和提升的空间, 例如膜技术、基因工程技术等将对其进行更进一步 的优化和推广。
结论
1
优势与不足
生物脱氮除磷技术具有高效、环保等优
未来前景
2
势,但同时也存在设备投入成本高的不 足。
分类
生物脱氮除磷技术可分为好氧法、厌氧法和好氧/厌氧复合法三大类。
生物脱氮
机理
通过微生物氧化还原过程实现废水中的氮质转化和 去除。
好氧乙烯氧化法
将氨氮依次氧化成亚硝酸盐态氮和硝酸盐态氮,并 在好氧环境下脱除。
《生物脱氮除磷》课件
![《生物脱氮除磷》课件](https://img.taocdn.com/s3/m/ec79b792370cba1aa8114431b90d6c85ec3a8801.png)
有机物浓度和泥龄对生物除磷的影响也 较大,适宜的有机物浓度和泥龄需要针 对不同的工艺进行优化。
溶解氧浓度对生物除磷的影响较大,适 宜的溶解氧浓度范围为0.5-3mg/L。
温度对生物除磷的影响较大,适宜的温 度范围为10-30℃。
pH值对生物除磷的影响也较大,适宜的 pH值范围为6.5-8.5。
04 生物脱氮除磷技 术案例分析
温度
温度对生物脱氮效率有显著影 响,适宜的温度范围是20-30℃
。
pH值
pH值对硝化细菌和反硝化细菌 的生长和活性有重要影响,适 宜的pH值范围是7.0-8.0。
溶解氧
溶解氧对硝化反应和反硝化反 应均有影响,适宜的溶解氧浓 度是2-4mg/L。
碳源
碳源的种类和浓度对反硝化反 应有重要影响,常用的碳源有
某污水处理厂生物脱氮除磷运行管理
运行管理要点
为确保生物脱氮除磷工艺的稳定运行,需要定期对工艺参数进行监测与调整,如溶解氧、 pH值、温度等。同时,需要加强设备维护与保养,确保设备的正常运行。
应急处理措施
针对可能出现的异常情况,如污泥膨胀、污泥流失等,制定相应的应急处理措施,确保工 艺的可靠性。
人员培训与安全管理
某污水处理厂生物脱氮除磷效果分析
1 2 3
脱氮效果
通过合理的工艺控制,该污水处理厂的生物脱氮 效率较高,总氮去除率达到85%以上,满足国家 排放标微生物的聚磷作用,有效去除 磷元素,总磷去除率达到90%以上,显著降低水 体富营养化的风险。
经济效益与社会效益
该工艺的运行不仅提高了污水处理效果,减少了 污染物排放,同时也为污水处理厂带来了经济效 益和社会效益。
原理
生物脱氮基于硝化反硝化原理,通过好氧硝化和缺氧反硝化过程实现氮的去除 ;生物除磷则通过聚磷菌在厌氧和好氧环境下的代谢作用实现磷的去除。
废水脱氮除磷处理工艺 教学PPT课件
![废水脱氮除磷处理工艺 教学PPT课件](https://img.taocdn.com/s3/m/1f4ce147ec3a87c24128c401.png)
硝化和反硝化两个生化过程构成。 ► 单级A/O工艺是用一个缺氧反应器和一个好
氧反应器组成的联合系统。
10
活性污泥回流
缺
废
氧
水
反
硝
化
好好 氧氧 脱硝 碳化
回流
二沉池
出水
混合液回流
A/O脱氮工艺
11
(一) A/O(anoxic oxic)工艺
► A/O工艺流程中,原水先进入缺氧池,再进 入好氧池。
► A/O工艺将好氧池的混合液与沉淀池的污泥 一起回流到缺氧池,为缺氧池提供了丰富的 硝酸盐氮和充足的微生物,保证了反硝化过 程的顺利进行。
生物吸收法无害物质。常用的固体颗粒有土壤和 生物洗涤法堆肥。 生物过利滤用法微生物利和用培污养水液处组理成厂的剩微余生的物活吸性收污液
处理废气,泥然配后置在混进合行液好,氧作处为理吸,收去剂除处液 体中吸收的理污废染气物。。这种方法适合于处理 可溶性的气态污染物。
21
依靠固自体然界废广弃泛分物布的处微理生物方,法人为地促
► 厌氧生物分解有机物的过程
水解阶段 发酵(酸化)阶段 产乙酸阶段 产甲烷阶段
27
内源代谢残留物
内源代谢产物(CO2 内源 、H2O、NH3)+能 代谢 量
CO2,H2O,NH3, +能量
热
分解 SO42-,PO43-
26
厌氧生物处理的基本原理
► 厌氧生物处理(Anaerobic process):在 无氧条件下,利用多种厌氧微生物的代谢活 动,将有机物转化为CH4和CO2以及少量细胞 物质的过程。
4
生物脱氮的基本原理
2、反硝化作用
反硝化由一群异养微生物完成,主要是将 硝酸盐氮还原成气态氮或氮氧化物,反应在 无分子氧的状态下进行。 细菌:反硝化细菌(兼性厌氧菌) 反应:NO3-N反硝化还原为N2,溢出水面释放 到大气中。
氧反应器组成的联合系统。
10
活性污泥回流
缺
废
氧
水
反
硝
化
好好 氧氧 脱硝 碳化
回流
二沉池
出水
混合液回流
A/O脱氮工艺
11
(一) A/O(anoxic oxic)工艺
► A/O工艺流程中,原水先进入缺氧池,再进 入好氧池。
► A/O工艺将好氧池的混合液与沉淀池的污泥 一起回流到缺氧池,为缺氧池提供了丰富的 硝酸盐氮和充足的微生物,保证了反硝化过 程的顺利进行。
生物吸收法无害物质。常用的固体颗粒有土壤和 生物洗涤法堆肥。 生物过利滤用法微生物利和用培污养水液处组理成厂的剩微余生的物活吸性收污液
处理废气,泥然配后置在混进合行液好,氧作处为理吸,收去剂除处液 体中吸收的理污废染气物。。这种方法适合于处理 可溶性的气态污染物。
21
依靠固自体然界废广弃泛分物布的处微理生物方,法人为地促
► 厌氧生物分解有机物的过程
水解阶段 发酵(酸化)阶段 产乙酸阶段 产甲烷阶段
27
内源代谢残留物
内源代谢产物(CO2 内源 、H2O、NH3)+能 代谢 量
CO2,H2O,NH3, +能量
热
分解 SO42-,PO43-
26
厌氧生物处理的基本原理
► 厌氧生物处理(Anaerobic process):在 无氧条件下,利用多种厌氧微生物的代谢活 动,将有机物转化为CH4和CO2以及少量细胞 物质的过程。
4
生物脱氮的基本原理
2、反硝化作用
反硝化由一群异养微生物完成,主要是将 硝酸盐氮还原成气态氮或氮氧化物,反应在 无分子氧的状态下进行。 细菌:反硝化细菌(兼性厌氧菌) 反应:NO3-N反硝化还原为N2,溢出水面释放 到大气中。
污水生物脱氮除磷新工艺PPT课件
![污水生物脱氮除磷新工艺PPT课件](https://img.taocdn.com/s3/m/80761cfc33687e21af45a9f0.png)
成。硝化过程可以分为两个过程,分别由亚硝酸菌 和硝酸菌完成。
硝化反应式如下:
氨化反应:
RC2 C HO N O O H 2 N H3 H C2 O RCOOH
硝化反应:
NH
4
1.5O2
NO2
H2O
2H
NO2 0.5O2 NO3
硝化过程总反应式
NH
4
2O2
NO3
H2O 2H
反硝化菌为异养型兼性厌氧菌,在有氧气存在时,它会 以氧气为电子受体进行好氧呼吸;在无氧而有硝酸盐氮或 亚硝酸盐氮存在时,则以硝酸盐氮或亚硝酸盐氮为电子受 体,以有机碳为电子供体进行反硝化反应。
上较小的完全混合式反应格串联组成,在各反应 段具有良好的基质浓度梯度分布。 (2)污泥龄短、负荷高,运行速率高,除磷效果好。
4.MSBR工艺 MSBR是SBR和A2/O工艺的组合,污水和脱
氮后的活性污泥一并进入厌氧区,聚磷污泥在此 充分放磷,然后泥水混合液交替进入缺氧区和好 氧区,分别完成反硝化、有机物的好氧降解和吸 磷作用,最后在SBR池中沉淀出水。
由于硝化菌是自养菌,水中的C/N 不宜过高,否则将有助于异养菌的 迅速增殖,微生物中的硝化菌的比 例下降。
在反硝化反应中,最大的问题 就是污水中可用于反硝化的有 机碳的多少及其可生化程度。
硝酸菌的停留时间必须大于其最小 世代时间
2.新的硝化-反硝化脱氮原理
同步硝化反硝化:在供氧受限或缺少有机碳源的厌氧 条件下发生同步硝化反硝化,这时氨和亚硝酸盐分别充当电子 供体和电子受体,致使曝气能耗和有机碳源需求量大大减少。 与其他活性污泥法工艺相比,同步硝化反硝化在氧化沟工艺中 最为显著。究其原因是在氧化沟中独特的表面曝气,打散了活 性污泥絮体,形成了新的活性污泥絮体,使活性污泥能够很好 地进行新陈代谢。另外,氧化沟工艺较长的HRT缓解了同步硝化 反硝化速率较低的问题。
硝化反应式如下:
氨化反应:
RC2 C HO N O O H 2 N H3 H C2 O RCOOH
硝化反应:
NH
4
1.5O2
NO2
H2O
2H
NO2 0.5O2 NO3
硝化过程总反应式
NH
4
2O2
NO3
H2O 2H
反硝化菌为异养型兼性厌氧菌,在有氧气存在时,它会 以氧气为电子受体进行好氧呼吸;在无氧而有硝酸盐氮或 亚硝酸盐氮存在时,则以硝酸盐氮或亚硝酸盐氮为电子受 体,以有机碳为电子供体进行反硝化反应。
上较小的完全混合式反应格串联组成,在各反应 段具有良好的基质浓度梯度分布。 (2)污泥龄短、负荷高,运行速率高,除磷效果好。
4.MSBR工艺 MSBR是SBR和A2/O工艺的组合,污水和脱
氮后的活性污泥一并进入厌氧区,聚磷污泥在此 充分放磷,然后泥水混合液交替进入缺氧区和好 氧区,分别完成反硝化、有机物的好氧降解和吸 磷作用,最后在SBR池中沉淀出水。
由于硝化菌是自养菌,水中的C/N 不宜过高,否则将有助于异养菌的 迅速增殖,微生物中的硝化菌的比 例下降。
在反硝化反应中,最大的问题 就是污水中可用于反硝化的有 机碳的多少及其可生化程度。
硝酸菌的停留时间必须大于其最小 世代时间
2.新的硝化-反硝化脱氮原理
同步硝化反硝化:在供氧受限或缺少有机碳源的厌氧 条件下发生同步硝化反硝化,这时氨和亚硝酸盐分别充当电子 供体和电子受体,致使曝气能耗和有机碳源需求量大大减少。 与其他活性污泥法工艺相比,同步硝化反硝化在氧化沟工艺中 最为显著。究其原因是在氧化沟中独特的表面曝气,打散了活 性污泥絮体,形成了新的活性污泥絮体,使活性污泥能够很好 地进行新陈代谢。另外,氧化沟工艺较长的HRT缓解了同步硝化 反硝化速率较低的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反硝化过程反应式:
N 3 O 2 H ( 电 -有 子 机 N 供 2 物 O H 2 体 O) N2 O 5 H ( 电 -有 子 机 0 供 .5 N 2 物 体 2 H 2 O ) OH
影响因素 温度
pH值 溶解氧
C/N 污泥龄θc
硝化-反硝化过程的影响因素
硝化过程
反硝化过程
在好氧条件下,聚磷菌进行有氧呼吸,从污水中 大量地吸收磷,其数量大大超出其生理需求,通过 PHB的氧化代谢产生能量,用于磷的吸收和聚磷的合 成,能量以聚合磷酸盐的形式存储在细胞内,磷酸 盐从污水中得到去除;同时合成新的聚磷菌细胞, 产生富磷污泥,将产生的富磷污泥通过剩余污泥的 形式排放,从而将磷从系统中除去。
由于硝化菌是自养菌,水中的C/N 不宜过高,否则将有助于异养菌的 迅速增殖,微生物中的硝化菌的比 例下降。
在反硝化反应中,最大的问题 就是污水中可用于反硝化的有 机碳的多少及其可生化程度。
硝酸菌的停留时间必须大于其最小 世代时间
2.新的硝化-反硝化脱氮原理
同步硝化反硝化:在供氧受限或缺少有机碳源的厌氧 条件下发生同步硝化反硝化,这时氨和亚硝酸盐分别充当电子 供体和电子受体,致使曝气能耗和有机碳源需求量大大减少。 与其他活性污泥法工艺相比,同步硝化反硝化在氧化沟工艺中 最为显著。究其原因是在氧化沟中独特的表面曝气,打散了活 性污泥絮体,形成了新的活性污泥絮体,使活性污泥能够很好 地进行新陈代谢。另外,氧化沟工艺较长的HRT缓解了同步硝化 反硝化速率较低的问题。
二. 生物除磷基本原理及影响因素 1. 基本原理
生物除磷的机理目前还没有彻底研究清楚。一般认为, 在厌氧条件下,兼性细菌将溶解性BOD5转化为低分子挥发 性有机酸(VFA)。聚磷菌吸收这些VFA或来自原污水的 VFA,并将其运送到细胞内,同化成胞内碳源存储物 (PHB/PHV),所需能量来源于聚磷水解以及糖的酵解, 维持其在厌氧环境生存,并导致磷酸盐的释放。
2. UCT工艺 与A2/O工艺不同之处在于沉淀池污泥是回流到缺
硝化反应的适宜温度为20~30℃低 于15 ℃时,反应速率迅速下降,5 ℃时反应几乎完全停止。温度不但
影响硝化菌的比增长速率,而且影 响硝化菌的活性
反硝化反应的温度范围较宽, 在5~40℃范围内都可以进行。 但温度低于15 ℃时,反硝化 速率明显下降。最适宜的温度 为20~40℃
硝化菌受pH值的影响很敏感,比 反硝化反应的适宜pH值为
短程硝化反硝化的理论核心为使硝化反应停留在 亚硝化阶段。生物脱氮的硝化过程由两类微生物 组成,AOB(氨氧化菌)和NOB(亚硝氮氧化菌)。 实现短程硝化主要办法就是使AOB在活性污泥中成 为硝化菌的优势菌,尽可能抑制NOB,防止硝化过 程第二步的进行,避免全程硝化反应,然后将中 间产物NO2-还原。
较适宜的pH值范围为7.0~8.0。硝 6.5~7.5。 pH值高于8或低于6 化过程消耗碱度,使得pH值下降, 时,反硝化速率将迅速下降。
因此需补充碱度
反硝化过程会产生碱度
溶解氧是硝化过程中的电子受体, 溶解氧会与硝酸盐竞争电子供 硝化反应必须在好氧条件下进行。 体,同活性
聚磷菌的作用机理
反应方程式: (1)聚磷菌摄取磷
C 2 H 4 O 2 0 .1 N 6 4 1 H .2 O 2 0 .2 P 4 3 O 0 .1 C 5 H 6 7 N 2 1 O .2 C 2 0 O .2 ( H 3 )聚 P () O 0 .4 磷 O 4 1 H .4 H 2 O 4
(2)聚磷菌释放磷
C2H4O2 (HP3O )(聚磷 )H2O (C2H4O2) ( 2 贮存的有 P机O43-物 3H)
2.生物除磷的影响因素
(1)厌氧/好氧条件的交替 (2)硝酸盐和易降解有机物 (3)污泥龄 (4)温度和pH值 (5)BOD5/TP
传统脱氮除磷工艺概述
一. 传统生物脱氮除磷工艺 在大多数情况下,生物除磷和生物脱氮同时发生
基本原理及影响因素
一、生物脱氮原理及影响因素 • 自然界中氮一般有四种形态: • 有机氮、 • 氨氮、 • 亚硝酸盐氮 • 硝酸盐氮
• 生活污水中的氮主要形态是有机氮和氨氮。 有机氮占生活污水含氮量的40-60%,氨氮 占50-60%,亚硝酸盐和硝酸盐氮仅占0~5%。
污水生物脱氮的可能途径
1. 传统生物脱氮原理及影响因素 传统生物脱氮一般由硝化和反硝化两个过程完
项目 细胞形状 细胞尺寸/μm 革兰氏染色 世代期/h 需养性 最大比增长速率/(μm/h) 产率系数Y/(mg细胞/mg基质) 饱和常数Ks/(mg/L)
亚硝酸菌 椭球或棒状
1~1.5 阴性 8~36 兼性厌氧 0.96~1.92 0.04~0.13 0.3~3.6
硝酸菌 椭球或棒状
0.5~1 阴性 12~59 严格好氧 0.48~1.44 0.02~0.07 0.3~1.7
在一个处理流程中。应用最广泛的生物脱氮、除磷 工艺有A/O、A2/O、Bardenpho、UCT、 Phoredox工艺、氧化沟工艺和VIP工艺等,近年来 用SBR及其各种改进型的工艺,如CASS(CAST)、 MSBR、UNITANK等。
1.A2/O除磷脱氮工艺
特点:厌氧、缺氧、好氧在不同环境条件和 不同种类微生物菌群的有机结合,能同时去 除有机物和除磷脱氮。A2/O工艺流程简单, 总水力停留时间少于其他同类工艺,并且不 需外加碳源,厌氧、缺氧段只进行缓速搅拌, 基建和运行费用都较低。
成。硝化过程可以分为两个过程,分别由亚硝酸菌 和硝酸菌完成。
硝化反应式如下:
氨化反应:
RC2 C HO N O O H 2 N H3 H C2 O RCOOH
硝化反应:
NH
4
1.5O2
NO2
H2O
2H
NO2 0.5O2 NO3
硝化过程总反应式
NH
4
2O2
NO3
H2O 2H
反硝化菌为异养型兼性厌氧菌,在有氧气存在时,它会 以氧气为电子受体进行好氧呼吸;在无氧而有硝酸盐氮或 亚硝酸盐氮存在时,则以硝酸盐氮或亚硝酸盐氮为电子受 体,以有机碳为电子供体进行反硝化反应。