Matlab 图像几何操作

合集下载

MATLAB图像处理基础教程

MATLAB图像处理基础教程

MATLAB图像处理基础教程第一章:MATLAB图像处理简介MATLAB(Matrix Laboratory)是一种强大的数值计算和数据可视化软件,广泛应用于各个领域,包括图像处理。

图像处理是一门研究如何对数字图像进行分析、增强、重建和压缩的学科。

本教程将引导读者逐步了解MATLAB图像处理的基本概念和技术。

第二章:MATLAB图像的读取与显示在MATLAB中,可以使用imread函数读取不同格式的图像文件,并使用imshow函数显示图像。

此外,还可以使用imfinfo函数获取图像的详细信息,如分辨率、颜色空间和位深度等。

第三章:图像的灰度处理灰度处理是一种常见的图像预处理方法。

通过将彩色图像转换为灰度图像,可以减少图像的数据量,简化图像处理的复杂性。

在MATLAB中,可以使用rgb2gray函数将彩色图像转换为灰度图像,并使用imhist函数查看灰度图像的直方图。

第四章:图像的滤波处理滤波是一种常用的图像处理操作,用于对图像进行平滑、增强或去噪。

MATLAB提供了各种滤波函数,如均值滤波、中值滤波和高斯滤波等。

可以根据具体需求选择合适的滤波方法,并使用imfilter函数进行滤波处理。

第五章:图像的二值化处理图像的二值化是将图像转换为黑白两色的过程,常用于物体检测、识别和分割等应用。

在MATLAB中,可以使用im2bw函数将灰度图像转换为二值图像,并可以调整阈值来控制二值化的效果。

第六章:图像的几何变换几何变换是一种常见的图像处理操作,用于对图像进行旋转、缩放、平移和翻转等操作。

MATLAB提供了imrotate、imresize、imtranslate和flip函数等实现各种几何变换。

通过组合这些函数,可以实现复杂的图像变换。

第七章:图像的特征提取图像的特征提取是图像处理中的重要步骤,用于从图像中提取出具有代表性的信息。

在MATLAB中,可以使用各种特征提取函数,如imgradient、imhistogram和imcontour等。

matlab图像的几何变换

matlab图像的几何变换

实验三 图像的几何运算一、实验目的1、 理解几何运算的基本概念与定义;2、 掌握在MA TLAB 中进行插值的方法3、 运用MATLAB 语言进行图像的插值缩放和插值旋转。

二、实验原理插值是常用的数学运算,通常是利用曲线拟合的方法,通过离散的采样点建立一个连续函数来逼近真实的曲线,用这个重建的函数便可以求出任意位置的函数值。

最近邻插值是最简便的插值,在这种算法中,每一个插值输出像素的值就是在输入图像中与其最临近的采样点的值。

该算法的数学表示为:()()k f x f x = 如果1111()()22k k k k x x x x x -++<<+ 最近邻插值是工具箱函数默认使用的插值方法,而且这种插值方法的运算量非常小。

不过,当图像中包含像素之间灰度级变化的细微结构时,最近邻插值法会在图像中产生人工的痕迹。

双线性插值法的输出像素值是它在输入图像中2×2领域采样点的平均值,它根据某像素周围4个像素的灰度值在水平和垂直两个方向上对其插值。

设''''1,1,,m i m n j n a i m b j n <<+<<+=-=-,'i 和'j 是要插值点的坐标,则双线性插值的公式为:''(,)(1)(1)(,)(1)(1,)(1)(,1)(1,1)g i j a b g m n a b g m n a bg m n abg m n =--+-++-++++ 双三次插值的插值核为三次函数,其插值邻域的大小为4×4。

它的插值效果比较好,但相应的计算量也比较大,在这里不做讨论。

1、图像的缩放imresize 函数的语法格式为:B = imresize(A, m, method)2、图像的旋转imrotate 的语法格式为:B = imrotate(A, angle, method)三、实验内容及要求1. 读出girl.bmp 图像并显示。

Matlab图像几何操作

Matlab图像几何操作

figure(2)
transformtype = 'projective'; % 投影变换
transformmatrix = [ 1.1581 0
0;
-0.4228 0.6066 -0.0074;
4.2279 4.3566 1.0000 ];
% transformmatrix =[0.8 0 0; -0.2 0.8 -0.003; 3.5 1.5 1.5];
T = maketform(transformtype ,transformmatrix);
I = imread('cameraman.tif');
nI = imtransform(I,T);
subplot(1,2,1),imshow(I)
subplot(1,2,2),imshow(nI)
2.2 图像的几何变换
2.3.2 Matlab邻域操作函数
Matlab提供了可以实现邻域操作的函数,因此可以直接调用相应的邻域操作函数,完成各种邻域操 作功能: – nlfilter – colfilt – blkproc
2.3.2 Matlab邻域操作函数
nlfilter函数的一般形式为: nI =nlfilter(I,[M N],FUN)
【例】使用imtransform函数实现图像平面扭曲功能 transformtype = 'affine'; % 仿射变换 transformmatrix = [0.5 0 0; 0.5 1 0; 0 0 1]; % 仿射变换要求变换矩阵的最后一列除最后一个元素为1之外, % 其它的均为0 T = maketform(transformtype,transformmatrix); I = imread('cameraman.tif'); nI = imtransform(I,T); subplot(1,2,1),imshow(I) subplot(1,2,2),imshow(nI)

MATLAB中图像的几何操作

MATLAB中图像的几何操作

MATLAB中图像的几何操作1.1图像的裁剪:在实际应用或科研领域,很多时候要对图像裁剪操作。

图像裁剪就是在源图像或者大图像中裁剪图像块来,这个图像块一般是多边形的。

图像裁剪是图像处理中最基本的操作之一。

使用imcrop函数对图像进行裁剪操作,然后制作出动画效果,该函数有两个参数,一个用来指定裁剪的图像,另一个用来指定裁剪矩形。

一般格式如下:imcrop(A,[80,120,100,50]);[80,120,100,50]的含义是:以图像的(80,,10)点位裁剪矩形的左上角坐标,裁剪的宽度是100,高度是50。

用roipoly函数进行多边形区域的裁剪,roipoly(A,c1,c2);c1,c2定义区域的向量。

1.2图像的缩放:在图像缩放过程中,涉及图像数据的删除与增加。

特别是图像放大的时候需要考虑如何自傲扩大后的空隙中加入新的图像颜色数据。

增加颜色数据的方法主要根据周围相近像素的颜色值进行插值计算。

使用imresize函数缩放图像.形式为:imreseze(A,n)A为图像,n为放大倍数。

另外一种是:imreseze(A,[n,m])把原有的图像放大为行列分别为n,m的图像。

三种插值方法:1.最近邻插值法:是imreseze默认的方法,2.双线性插值方法:格式:imreseze(A,n,'bilinear').3.双立方插值方法:格式:imreseze(A,n,'bicubic').1.3图像的选转:使用imrotate函数进行图像的旋转。

一般的格式为:imrotate(A,Angle,Method,Bbox).Angle:旋转地角度,Method:为插值的方法,可以在,nearest、bilinear、bicubic中选着,Bbox为loose是底板放大,显示整个图形,导致图形变小是默认的情况,为crop时旋转图形的底板不变图形可能被切割,一般使用crop形式。

使用Matlab进行图像处理的基本步骤

使用Matlab进行图像处理的基本步骤

使用Matlab进行图像处理的基本步骤引言:随着计算机技术的迅猛发展,图像处理技术在各个领域得到广泛应用。

而Matlab作为一种功能强大的数学软件,也被广泛应用于图像处理领域。

本文将介绍使用Matlab进行图像处理的基本步骤,以帮助读者更好地理解和运用这一工具。

一、图像的读取与显示在进行图像处理之前,我们首先需要将图像读入Matlab中。

Matlab提供了imread函数来读取图像,并将读取的图像存储为矩阵形式。

通过imshow函数,我们可以将读取的图像显示出来,以便进一步的处理。

二、图像的基本操作在图像处理过程中,我们通常需要对图像进行一些基本的操作,比如调整图像的大小、旋转图像、图像翻转等。

Matlab提供了一系列的函数来实现这些操作。

例如,imresize函数可以调整图像的大小;imrotate函数可以用来旋转图像;flipud和fliplr函数可以进行图像的垂直和水平翻转。

三、图像的滤波处理图像的滤波处理是图像处理中非常重要的一部分。

通过滤波处理,我们可以去噪、增强图像的细节、平滑图像等。

Matlab提供了一系列的滤波函数,比如均值滤波、中值滤波、高斯滤波等。

我们可以根据实际需求选择适合的滤波方法来对图像进行处理。

四、图像的灰度转换和二值化图像的灰度转换和二值化是图像处理中经常用到的技术。

通过对图像进行灰度转换,我们可以将彩色图像转换为灰度图像,这样可以降低图像处理的复杂性。

而通过对灰度图像进行二值化处理,我们可以将图像转换为黑白图像,以便进行一些特定的处理。

Matlab提供了rgb2gray函数来实现灰度转换,同时也提供了一系列的二值化函数,比如im2bw函数。

五、图像的特征提取在进行图像处理的过程中,我们经常需要从图像中提取一些特征信息,以便进行后续的分析。

Matlab提供了一系列的特征提取函数,比如corner函数可以用来检测图像的角点,regionprops函数可以用来分析图像的区域属性等。

MATLAB中的图像配准与匹配方法

MATLAB中的图像配准与匹配方法

MATLAB中的图像配准与匹配方法图像配准与匹配是计算机视觉领域的重要研究方向。

配准指的是将多幅图像在空间上对齐,使得它们之间的特定特征点或特征区域对应一致。

匹配则是在已经配准的图像中寻找相似的图像区域。

在实际应用中,图像配准与匹配常用于医学图像分析、遥感影像处理、计算机视觉等领域,具有广泛的应用前景。

MATLAB作为一种强大的数值计算与数据可视化软件,提供了丰富的图像处理和计算机视觉函数,使得图像配准与匹配任务变得更加简便和快捷。

下面将介绍几种常用的MATLAB图像配准与匹配方法。

一、基于特征点的图像配准特征点是图像中具有鲁棒性和独特性的点,常常用于图像配准任务。

在MATLAB中,可以使用SURF(Speeded-Up Robust Features)或SIFT(Scale-Invariant Feature Transform)等函数来检测图像中的特征点。

然后可以通过计算特征点间的相似度或使用一致性约束等方法来对图像进行配准。

二、基于图像区域的图像配准除了特征点外,图像的局部区域也可以作为配准的参考。

一种常用的方法是使用归一化互相关(Normalized Cross Correlation)来度量两幅图像之间的匹配度。

在MATLAB中,可以使用normxcorr2函数来实现归一化互相关操作。

该函数将两幅图像进行归一化,并计算它们之间的互相关系数,从而确定最佳的配准位置。

三、基于形态学的图像配准形态学图像处理是一种基于形态学运算的图像处理方法。

它利用图像中的形状、结构和拓扑信息来进行图像处理和分析。

在图像配准中,形态学操作可以用来提取图像区域的形状信息,并进行形状匹配。

在MATLAB中,可以使用bwmorph函数进行形态学操作,例如腐蚀、膨胀、开运算、闭运算等,从而实现图像的配准与匹配。

四、基于变换模型的图像配准图像配准中常常涉及到图像的几何变换,例如平移、旋转、缩放、投影变换等。

在MATLAB中,可以使用imwarp函数来对图像进行几何变换和配准。

matlab图像处理,图像点运算,代数运算,几何运算,邻域操作

matlab图像处理,图像点运算,代数运算,几何运算,邻域操作

附录1 课程实验报告格式实验二:图像的代数运算:A:加法运算:代码如下:I=imread('rice.png');imshow(I),title('rice');J=imread('cameraman.tif');figure,imshow(J),title('cameraman');K=imadd(I,J,'uint16'); %(写出该命令的目的)figure,imshow(K),title('i+j');K2=imadd(I,J,'uint16');figure,imshow(K2,[])RGB=imread('flowers.tif');RGB2=imadd(RGB,50); %(写出该命令的目的)imshow(RGB)figure,imshow(RGB2)RGB3=imadd(RGB,100);figure,imshow(RGB3)运行结果如下实例:选取一幅图片flowers.tif,作如下变换:RGB=imread('flowers.tif');RGB2=imadd(RGB,50); %(写出该命令的目的)imshow(RGB)figure,imshow(RGB2)RGB3=imadd(RGB,100);figure,imshow(RGB3)subplot(221),imshow(RGB),title('RGB');subplot(222),imshow(RGB2),title('RGB2');subplot(223),imshow(RGB3),title('RGB3');运行结果:B:减法运算I=imread('rice.png');imshow(I)background = imopen(I,strel('disk',15)); %(写出该命令的目的)figure, imshow(background);I2=imsubtract(I,background); %(写出该命令的目的)figure, imshow(I2)subplot(221),imshow(I),title('rice');subplot(222),imshow(background),title('background');subplot(223),imshow(I2),title('I2');运行结果:C:乘法运算:I=imread('moon.tif');J=immultiply(I,1.2); %(写出该命令的目的)K=immultiply(I,0.5);imshow(I)figure,imshow(J)figure,imshow(K)subplot(131),imshow(I),title('I');subplot(132),imshow(J),title('J');subplot(133),imshow(K),title('K');D:除法运算Rice = imread('rice.tif');I = double(rice);%(写出该命令的目的)J= I * 0.43 + 90;Rice2 = uint8(J);Ip = imdivide(rice, rice2);%(写出该命令的目的)Imshow(Ip, []);实验三:图像的几何运算A:缩放运算I=imread('trees.tif');J=imresize(I,1.25); %(写出该命令的目的)K=imresize(I,0.8); %(写出该命令的目的)imshow(I),title('I')figure,imshow(J),title('J')figure,imshow(K),title('K')Y=imresize(I,[100,150]); %(写出该命令的目的)figure,imshow(Y)I = imread('cameraman.tif');figure,imshow(I);scale = 0.5;J = imresize(I,scale); %(写出该命令的目的)figure,imshow(J);B:图像翻转I=imread('trees.tif');J=imrotate(I,30,'bilinear'); %(写出该命令的目的)J1=imrotate(I,30,'bilinear','crop'); %(写出该命令的目的)imshow(I)figure,imshow(J)figure,imshow(J1)subplot(121),imshow(I),title('I');subplot(122),imshow(J1),title('J1');J2=imrotate(I,-15,'bilinear'); %(写出该命令的目的)figure,imshow(J2)I = imread('cameraman.tif');figure,imshow(I);theta = 30;K = imrotate(I,theta); % Try varying the angle, theta.figure, imshow(K)C:图像剪切通过交互式操作,从一幅图像中剪切一个矩形区域。

(学习matlab基本实验) MATLAB图像基本操作命令

(学习matlab基本实验) MATLAB图像基本操作命令

实验一MATLAB图像基本操作命令一、实验目的本次实验是基础实验,旨在加强学生的实验操作水平和使用MTALB软件能力,包括以下几个部分:a)开始使用MA TLABb)显示图像,理解图像的模型c)使用图像的不同格式,理解图像压缩的意义d)对图像做简单的操作本次实验需要熟练使用以下几个MA TLAB命令:imread, imwrite, imshow,figure二、实验准备实验基于MA TLAB软件,实验课开始前安装好MA TLAB软件以及相关的实验数据三、实验步骤a)开始使用MA TLABMA TLAB软件安装好后在其安装目录下有一个work文件夹,是MA TLAB的默认工作目录。

将本目录下的实验图像拷入MA TLAB下的work文件夹内。

实验图像一文件夹中放置了作为本次实验素材的原始图像。

启动Matlab。

图1 MA TLAB启动后在图1所指示command window窗口中键入cd pic命令,如图2所示。

以后的操作都在”>>”后键入命令。

图2 MA TLAB启动后b)显示图象1.显示灰度图像命令格式Image=imread('灰度图像文件名');imshow(Image,[])此实验分两步完成,先用imread命令将图像文件读入图像像素矩阵Image,然后用imshow命令将该矩阵在屏幕上显示,如图3所示。

其中‘灰度图像文件名’必须是pic 文件夹中所包含灰度图像的名字。

例1Image=imread('aa.bmp ');imshow(Image,[]);图3为执行的结果。

图32.彩色图像显示和分解将三维像素值矩阵分解成三个矩阵,并将它们分别显示出来,可以看到RGB文件的三原色分解。

命令格式Image=imread('彩色图像文件名');imshow(Image,[]);imread和imshow也用来显示彩色图像,其中‘彩色图像文件名’必须是pic文件夹中所包含彩色图像的名字。

MATLAB图像处理入门指南

MATLAB图像处理入门指南

MATLAB图像处理入门指南第一章:MATLAB图像处理基础知识在这个章节中,我们将介绍MATLAB图像处理的基础知识。

首先,我们会简要介绍MATLAB是什么以及它在图像处理领域的应用。

然后,我们会介绍图像的表示和存储方式,包括灰度图像和彩色图像。

接着,我们会介绍MATLAB中常用的图像处理函数,并通过一些实例演示它们的使用方法。

第二章:MATLAB图像的读取和显示这一章节将详细介绍如何在MATLAB中读取和显示图像。

首先,我们会介绍MATLAB中读取图像的函数,并举例说明如何读取不同格式的图像文件。

然后,我们会详细介绍如何显示图像,并演示一些常用的图像显示函数的使用方法。

最后,我们会介绍如何在MATLAB中保存处理后的图像。

第三章:MATLAB图像的基本操作在这一章节中,我们将学习MATLAB中图像的基本操作。

首先,我们会介绍如何对图像进行裁剪、旋转和缩放等基本操作,以及如何调整图像的对比度和亮度。

接着,我们会介绍如何进行图像的平移和镜像操作。

最后,我们会介绍如何在图像上绘制几何图形和文本。

第四章:MATLAB图像的滤波处理这一章节将介绍MATLAB中图像的滤波处理方法。

首先,我们会介绍图像的平滑处理,包括均值滤波和高斯滤波等方法。

然后,我们会介绍图像的锐化处理,包括拉普拉斯滤波和Sobel滤波等方法。

接着,我们会介绍图像的边缘检测方法,包括Canny边缘检测和Sobel边缘检测等方法。

最后,我们会介绍图像的噪声去除方法,包括中值滤波和小波降噪等方法。

第五章:MATLAB图像的特征提取和目标识别这一章节将介绍MATLAB中图像的特征提取和目标识别方法。

首先,我们会介绍图像的特征提取方法,包括灰度共生矩阵、方向梯度直方图和尺度不变特征变换等方法。

然后,我们会介绍图像的目标识别方法,包括模板匹配和基于特征向量的目标识别等方法。

接着,我们会介绍MATLAB中常用的目标识别工具箱,并演示其使用方法。

第六章:MATLAB图像的分割和重建这一章节将介绍MATLAB中图像的分割和重建方法。

matlab实现图像的放大及旋转

matlab实现图像的放大及旋转

实验三图像的几何操作一、图像的基本运算1、加法运算图像相加一般用于对同一场景的多幅图像求平均效果,以便有效地降低具有叠加性质的随机噪声。

直接采集的图像品质一般都较好,不需要进行加法运算处理,但是对于那些经过长距离模拟通信方式传送的图像(如卫星图像),这种处理是必不可少的。

在MA TLAB7.0中,如果要进行两幅图像的加法,或者给一幅图像加上一个常数,可以调用imadd函数来实现。

imadd函数将某一幅输入图像的每一个像素值与另一幅图像相应的像素值相加,返回相应的像素值之和作为输入图像。

imadd函数的调用格式可参考图像处理的工具箱。

下面的程序可将图1两幅图像叠加在一起,叠加效果如图2所示。

imshow('rice.png');imshow('cameraman.tif');I=imread('rice.png');J=imread('cameraman.tif');K=imadd(I,J,'uint16');%大小必须一样imshow(K,[])图1 图2给图像的每一个像素加上一个常数可以使图像的亮度增加。

例如以下程序示例的处理效果如图3所示。

I=imread('rice.png');J=imadd(I,50);subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);图32、减法运算图像减法也称为差分方法,是一种常用于检测图像变化及运动物体的图像处理方法。

图像减法可以作为许多图像处理过程的准备步骤。

例如,可以使用图像减法来检测一系列相同场景图像的差异。

图像减法与阈值化处理的综合使用通常是建立机器视觉系统最有效的方法之一。

当然,在利用图像减法处理图像时,往往需要考虑背景的更新机制,尽量补偿因天气、光线等因素对图像显示效果造成的影响。

在MATLAB7.0中,使用imsubtract函数可以将一幅图像从另一幅图像中减去,或者从一幅图像中减去一个常数。

Matlab中的空间变换与几何校正方法

Matlab中的空间变换与几何校正方法

Matlab中的空间变换与几何校正方法引言Matlab是一种功能强大的数学软件,它在图像处理和计算机视觉领域有着广泛的应用。

其中,空间变换和几何校正是两个重要的方面。

本文将介绍Matlab中的空间变换方法和几何校正方法,并分析它们的原理和应用。

一、空间变换方法空间变换是指对图像进行平移、旋转、缩放和扭曲等操作,以实现图像的几何变换。

Matlab提供了多种空间变换方法,包括仿射变换、透视变换和弹性变形等。

1. 仿射变换仿射变换是一种保持直线和平行线间距比例的变换。

在Matlab中,可以使用imtransform函数实现仿射变换。

具体操作包括定义仿射变换矩阵,将变换矩阵作为输入参数传递给imtransform函数,然后将变换后的图像进行显示或保存。

2. 透视变换透视变换是一种非线性的空间变换,它可以将一个平面上的图像转换成位于另一个平面上的图像。

在Matlab中,可以使用fitgeotrans函数估计透视变换参数,并使用imwarp函数进行透视变换。

透视变换常用于图像矫正、立体视觉和摄像头标定等领域。

3. 弹性变形弹性变形是一种基于物理模型的变换方法,它可以对图像进行局部扭曲和形变。

Matlab中的imspecular函数可用于实现弹性变形。

它可以根据一组控制点的位置和形变力场参数,实现图像的弹性变形处理。

弹性变形常用于医学图像分析、形变测量和表面拟合等应用。

二、几何校正方法几何校正是指对图像进行校正和修正,以纠正因成像设备和拍摄条件引起的几何变形和畸变。

Matlab提供了多种几何校正方法,包括相机标定、图像纠正和立体校正等。

1. 相机标定相机标定是指确定相机内外参数的过程。

在Matlab中,可以使用cameraCalibrator应用或相机标定工具箱进行相机标定。

相机标定可以获取相机的畸变模型和内外参数,进而进行图像校正、立体匹配和虚拟现实等应用。

2. 图像纠正图像纠正是指纠正图像中的畸变和变形。

MATLAB图像处理之平移,旋转,倾斜,放缩

MATLAB图像处理之平移,旋转,倾斜,放缩

MATLAB图像处理之平移,旋转,倾斜,放缩实验内容:如何对号灰度图像(或彩色图像)进行方所、平移、旋转和综合变换实验内容一:图像的放缩实验程序:%注意,当处理图像大小过大时,请先使用size函数得出矩阵大小,否则处理之后图像会提示内存不足,或者先压缩图像,又或者可以改变电脑运行内存,具体方法可以根据具体情况通过论坛查询,这里就不再过多赘述. x1=imread('0045.jpg');%导入真彩图片0045.jpg,是三维矩阵b=imresize(x1,20);%将原图像放大20倍c=imresize(x1,0.05);%将原图像缩小为原来的20倍figure,subplot(131),imshow(x1),title('原始图像');%此区域内显示1行3列个图像,该图像位于第1个,显示x1的图像,并命名为“原始图像”subplot(132),imshow(b),title('放大20倍');%此区域内显示1行3列个图像,该图像位于第2个,显示b的图像,并命名为“放大200倍”subplot(133),imshow(c),title('缩小20倍');%此区域内显示1行3列个图像,该图像位于第3个,显示c的图像,并命名为“缩小20倍”实验结果:实验内容二:图像的旋转实验程序:clear allclc%imrotate(A,angle,method,bbox)%功能:将矩阵(图片)A旋转任意角度%参数:A——待操作矩阵,angle——需要旋转的角度,method——插值方法,bbox——输出图像大小%将矩阵A旋转angle度(任意),其中angle应用角度制表示;method包括'nearest'、'bilinear'、%'bicubic'分别为“邻近插值法”、“双线性插值法”、“三次卷积插值法”;%bbox(Bounding ? ? box defining size of output image)包括'crop'、'loose',%分别表示将旋转后的图像剪裁为输入图像大小后输出和已旋转后图像大小输出%x1=imread('0045.jpg');%导入真彩图片0045.jpg,是三维矩阵x2=rot90(x1,1);%将图片旋转整数倍个90度figure;%生成图像subplot(272);%此区域生成2行7列个图像,该图像位于第2个imshow(x1);%显示x1生成的图像title('原始图像');%命名x1图像为“原始图像”subplot(275);%此区域生成2行7列个图像,该图像位于第5个imshow(x2);%显示x2生成的图像title('旋转90度');%命名x1图像为“旋转90度”x3=imrotate(x1,30,'nearest','loose');%使用最邻近法逆时针将图像旋转30度,使用loose形式输出图像x5=imrotate(x1,30,'nearest','crop');%使用最邻近法逆时针将图像旋转30度,使用crop形式输出图像x4=imrotate(x1,30,'bilinear','crop');%使用双线性插值法逆时针将图像旋转30度,使用crop形式输出图像x6=imrotate(x1,30,'bilinear','loose');%使用双线性插值法逆时针将图像旋转30度,使用loose形式输出图像subplot(278);%此区域生成2行7列个图像,该图像位于第8个imshow(x3);%显示x3生成的图像title('最邻近法逆时针旋转30度1');%命名x3图像为“最邻近法逆时针旋转30度”subplot(2,7,12);%此区域生成2行7列个图像,该图像位于第12个imshow(x4);%显示x4生成的图像title('双线性插值法逆时针旋转30度1');%命名x4图像为“双线性插值法逆时针旋转30度”subplot(2,7,10);%此区域生成2行7列个图像,该图像位于第10个imshow(x5);%显示x5生成的图像title('最邻近法逆时针旋转30度2');%命名x5图像为“最邻近法逆时针旋转30度2”subplot(2,7,14);%此区域生成2行7列个图像,该图像位于第14个imshow(x6);%显示x6生成的图像title('双线性插值法逆时针旋转30度2');%命名x6图像为“双线性插值法逆时针旋转30度2”实验结果:实验内容三:图像的平移3.1将图像从一个位置平移到另一个位置实验程序:x1=imread('0045.jpg');%导入真彩图片0045.jpg,是三维矩阵figure(1);%生成图像subplot(121),imshow(x1),title('原始图像');%此区域生成1行2列个图像,该图像位于第1个,并命名为“原始图像”,显示x1的图像se1=translate(strel(1),[100 -100]);%形态学膨胀后j1就是平移后的图像j1=imdilate(x1,se1);%对x1,se1进行膨胀操作subplot(122),imshow(j1),title('左下平移');%此区域生成1行2列个图像,该图像位于第2个,并命名为“左下平移”,显示j1的图像实验结果:实验内容四:图像的倾斜实验程序:A=imread('0045.jpg');%将图像导入工作区tform=affine2d([2 0.33 0;0 1 0;0 0 1]);%创建定义仿射几何变换的affine2d 对象B=imwarp(A,tform);%使用 imwarp 对图像应用几何变换。

图像几何变换matlab

图像几何变换matlab

二、图像几何变换
由于拍摄图像的角度、距离等原因,可能
会需要对图像进行适当的几何变换。
几何变换又称为空间变换,是将一幅图像
中的坐标位置映射到另外一幅图像中的新 坐标位置。它不改变图像的像素值,只是 在图像平面上进行像素的重新安排。
三、解决几何变换问题的思路
一般要考虑原图像中的某个像素点的
x
y1 y0


y
2. 垂直镜像的变换公式
(x0,y0)是原图像上的点,中心轴如图所示, 垂直镜像对应的新坐标点为: x1=x0; y1=Nx0
y0;
y0
0
x1 x 垂 直 像
y1

N y
3. 程序实现:
4. MATLAB中实现镜像的函数
水平镜像和垂直镜像的变换矩阵:
[ x1 y1 1] [ x0 y0
(x0,y0)是原图像上的点,图像水平平移量为
a,垂直平移量为b,如图所示。
平移后的新坐标点为: x1=x0+a; y1=y0+b;
x0 0 a 平 移 x1 x
y0 b
y1 y
2. 程序实现:
3. 知识

2.2 图像平移
2.3 图像镜像 2.4 图像转置 2.5 图像缩放 2.6 图像旋转
G = rgb2gray(F); % 将F对应的RGB彩色图像数据 转换为灰度图像数据,存入G中
关于图像的函数和命令(2)
imwrite(G,‘rice1.bmp’); %将图像数据G写入文件
rice1中,存为新图片。
imshow(F); %显示图像数据F对应的图像
figure;
subplot(2,2,1);
坐标(x0,y0) 和此像素点映射到新图像

MATLAB图像处理高级教程

MATLAB图像处理高级教程

MATLAB图像处理高级教程第一章:图像预处理1.1 图像读取与显示在MATLAB中使用imread函数读取图像文件,并使用imshow 函数显示图像。

图像可以以灰度或彩色的方式进行显示。

1.2 图像的基本操作MATLAB提供了多种图像操作函数,如图像的尺寸调整、图像的剪裁、图像的旋转等。

这些操作可以通过调用相应的函数轻松实现。

1.3 图像滤波图像滤波是改变图像的空间域特性的一种常用技术。

在MATLAB中,可以使用一维、二维及自定义核函数进行图像滤波,如均值滤波、中值滤波、高斯滤波等。

第二章:图像增强2.1 图像灰度变换图像灰度变换是将图像从一种灰度级转换为另一种灰度级的过程。

在MATLAB中,可以通过调用imadjust函数实现对图像的灰度变换操作。

2.2 直方图均衡化直方图均衡化是一种通过改变图像的灰度分布来增强图像对比度的方法。

在MATLAB中,可以使用histeq函数实现对图像的直方图均衡化处理。

2.3 边缘增强边缘增强可以使图像中的边缘特征更加清晰和突出。

MATLAB提供了多种边缘增强算法,如Sobel算子、Canny算子等。

第三章:图像分割与检测3.1 阈值分割阈值分割是一种简单和常用的图像分割方法。

在MATLAB中,可以使用graythresh函数自动确定图像的阈值,或者通过手动设定阈值进行分割。

3.2 区域生长算法区域生长算法是一种基于图像像素相似性原理的图像分割方法。

在MATLAB中,可以使用regiongrowing函数进行区域生长分割操作。

3.3 目标检测目标检测是在图像中找到特定目标的位置和边界的过程。

MATLAB提供了多种目标检测算法,如Haar特征分类器、HOG 特征分类器等。

第四章:图像处理应用4.1 图像标注与测量通过在图像上添加标注和测量工具,可以对图像上的目标进行标记和测量。

在MATLAB中,可以使用imdistline函数添加距离标尺,或者使用imellipse函数添加椭圆标记。

Matlab技术图像变换方法

Matlab技术图像变换方法

Matlab技术图像变换方法图像处理是数字信号处理的重要应用之一,而Matlab作为一款强大的数学计算软件,其在图像处理领域也有着广泛的应用。

图像变换是图像处理的重要环节,通过变换可以改变图像的表现形式,提取图像的有用信息,实现图像的增强、去噪、特征提取等目标。

本文将重点介绍Matlab中常用的图像变换方法,并探讨其原理和应用。

一、灰度图像变换灰度图像变换是图像处理中最为基础的操作之一,可以通过调整像素值的亮度、对比度等来改变图像的视觉效果。

Matlab提供了多种函数来实现灰度图像变换,如imadjust、histeq等。

imadjust函数通过调整图像的亮度和对比度来改变图像的整体视觉效果。

其基本原理是通过对原始图像的像素值进行非线性变换,将像素值映射到指定的亮度范围内。

具体而言,imadjust函数根据输入的亮度调整阈值,将图像的低灰度和高灰度值进行映射,实现对图像亮度的调整。

例如,可以通过提高亮度调整阈值,增加图像的对比度。

histeq函数通过直方图均衡化来改变图像的灰度分布,实现对图像的自适应增强。

其基本原理是通过映射原始图像的灰度直方图到一个均匀分布的形式,从而使得图像的灰度值分布更加均衡。

直方图均衡化能够增强图像的对比度,凸显图像的细节信息。

例如,可以使用histeq函数来增强图像中的暗部细节。

二、几何图像变换几何图像变换是通过对图像的坐标进行变换,改变图像的形状或尺寸。

Matlab提供了多种函数来实现几何图像变换,如imresize、imrotate等。

imresize函数通过改变图像的尺寸来实现图像的缩放。

其基本原理是通过插值算法,在输入的图像基础上生成一个新的图像。

可以通过指定缩放比例来控制图像尺寸的变化,也可以通过指定输出图像的大小来实现图像的精确缩放。

imrotate函数通过旋转图像的角度来实现图像的旋转变换。

其基本原理是通过对输入图像的每个像素位置进行变换,从而得到旋转后的图像。

图文详解matlab原始处理图像几何变换

图文详解matlab原始处理图像几何变换

图⽂详解matlab原始处理图像⼏何变换⽬录(⼀)图像⼏何变换理论知识(1)图像的平移与⽐例(2)关于旋转变换(3)关于对称变换(4)复合变换(⼆)matlab编程实现变换(1)对图像的理解(2)⽐例变换(3)对称变换总结(⼀)图像⼏何变换理论知识(1)图像的平移与⽐例图像的平移很简单,平移前后的坐标分别为(x,y)和(x',y'),则满⾜的关系式为x'= x +Tx;y'= y +Ty;其中Tx与Ty分别为对应的偏移量。

图像的⽐例也很简单,可以描述为:x'=S_x * x; y'=S_y * y;那么上述的关系怎么⽤⼀个矩阵来表⽰呢?⼀个很重要的矩阵来了,那就是变换矩阵T,并且对于⼆维坐标下的点,⼀般转化为笛卡尔坐标系下进⾏计算,⽤⼀个三维点表⽰⼆维的,只不过把最后⼀项值置为1,这样⼀个⼆维坐标(x,y)就变为(x,y,1)了。

在把上述的平移等式关系转化为矩阵形式为:⽐例等式关系为:(2)关于旋转变换对于某个点,在坐标系中的变换为(旋转⾓度为θ,并且逆时针旋转为正):那么可以看出,这个时候对应的旋转矩阵为T就如图上所⽰。

(3)关于对称变换对称变换⽐较简单,还是以点的变换为例,⽐如变换前的点P(x,y)和变换后的点P'=(x',y'),那么对称变换包括点关于x 轴、y轴、原点、y=x、y=-x等等,点的变换可以⾃⼰推导下,这样也就可以得到对应的变换矩阵T了。

⽐如,关于x对称的话,T=[1,0,0;0,-1,0;0,0,1],关于原点对称的话,T=[-1,0,0;0,-1,0;0,0,1];关于y=x对称的话,T=[0,1,0;1,0,0;0,0,1];等等。

(4)复合变换下⾯再重点介绍下复合变换,因为有的变换不是简单的初等变换,但是有⼀点需要明确的是任何复合变换都可以⽤初等变换⼀步步变换⽽来。

⽐如前⾯的旋转变换,旋转点选取的是原点,这样才有的那个公式,那要是旋转点不是原点怎么办?⽐如任⼀点s(X_f,Y_f),那么点P绕着点s旋转⼀定的⾓度θ该怎么表⽰呢?这⾥就要把这个复合变换化成为3个简单的初等变换,具体步骤为:⾸先把s点平移操作⾄原点(这个过程中,相当于所有的点都按照⼀定的⽅向平移了),然后相当于在原点对平移后的P点进⾏旋转变换,变换完后再把这个店反平移回去,这样是不是就相当于完成了那个复合变换。

MATLAB数字图像处理实验--图像基本运算

MATLAB数字图像处理实验--图像基本运算

MATLAB数字图像处理实验--图像基本运算一、实验目的1.理解图像点运算、代数运算、几何运算的基本定义和常见方法;2.掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法;3.掌握在MATLAB中进行插值的方法4.运用MATLAB语言进行图像的插值缩放和插值旋转5.进一步熟悉了解MATLAB语言的应用。

二、实验设备与软件1.PC计算机系统2.MATLAB软件,包括图像处理工具箱(Image Processing Toolbox)3.实验图片三、实验内容及结果分析3.1图像的点运算选择pout.tif作为实验图像,实验原理及内容参照《MATLAB图像处理编程及应用》程序代码:I=imread('pout.tif');figure;subplot(1,3,1);imshow(I);title('原图');J=imadjust(I,[0.3;0.6],[0.1;0.9]);subplot(1,3,2);imshow(J);title('线性扩展');I1=double(I);I2=I1/255;C=2;K=C*log(1+I2);subplot(1,3,3);imshow(K);title('非线性扩展');M=255-I;figure;subplot(1,3,1);imshow(M);title('灰度倒置');N1=im2bw(I,0.4);N2=im2bw(I,0.7);subplot(1,3,2);imshow(N1);title('二值化阈值0.4');subplot(1,3,3);imshow(N2);title('二值化阈值0.7');执行结果:原图线性扩展非线性扩展灰度倒置二值化阈值0.4二值化阈值0.7实验1结果图3.2图像的代数运算选择两幅图像,一幅是原图像,一幅为背景图像,采用正确的图像代数运算方法,分别实现图像叠加、混合图像的分离和图像的局部显示效果。

MATLAB图像几何处理

MATLAB图像几何处理

第16周上机实验报告学号:912104520120 姓名:鲍春霖1、内容(1)写出以图像中心点作为支点旋转任意角度,图像仍保持完整的旋转程序。

(2)写出N*N模板的对称近邻平滑滤波算法的具体实现程序。

(3)PS上机运行旋转操作。

2、原理(1)旋转程序本程序没有采用线性法,而是通过编写一个沿中心点旋转的算法来进行运用。

在实现图像旋转方式时候我认为有两个重点,一个是将旋转后的坐标点转化为整数点,另外就是画布的扩展。

clear all;A=imread('D:\cameraman.tif')[row,col]=size(A);B=A;C=A;for x=1:rowfor y=1:colB(x,y)=A(x,col+1-y);endenda=(-pi/6);xd=row*cos(a)-col*sin(a);yd=col*cos(a)-row*sin(a);for i=1:xdfor j=1:ydm0=(i*cos(a)+(j+col*sin(a))*sin(a));n0=(-i*sin(a)+(j+col*sin(a))*cos(a));m=floor(m0);n=floor(n0);p=m0-m;q=n0-n;C(i,j)=0;if m>=1&&n>=1&&m<256&&n<256C(i,j)=(1-q)*((1-p)*B(m,n)+p*B(m+1,n))+q*((1-p)*B(m,n+1)+p*B(m+1,n+1));endendendsubplot(1,2,1),imshow(A),title('ԭͼ');subplot(1,2,2),imshow(C),title('Ðýת¾µÏñºóͼÏñ');我们通过老师给予的其中一个赋值程序,得到了在顺时针时候成立的一个程序。

几何变换的matlab程序示例

几何变换的matlab程序示例

几何变换是图像处理中常见的操作,通过对图像进行旋转、平移、缩放等变换,可以实现图像的翻转、修正以及透视等效果。

MATLAB作为一种强大的数学工具,提供了丰富的函数和工具箱,可以方便地进行各种几何变换的计算和实现。

本文将结合实例,介绍如何使用MATLAB进行几何变换的程序示例,包括图像旋转、平移和缩放等操作。

1. 图像旋转图像旋转是一种常见的几何变换操作,可以通过MATLAB中的imrotate函数来实现。

该函数可以对图像进行指定角度的旋转,其基本语法为:```matlabrotated_img = imrotate(img, angle);```其中,img为待旋转的图像,angle为旋转的角度。

通过这个函数,可以实现图像的任意角度的旋转操作。

2. 图像平移图像平移是指沿着x轴和y轴的方向对图像进行移动,可以通过MATLAB中的imtranslate函数来实现。

其基本语法为:```matlabtranslated_img = imtranslate(img, [x_shift, y_shift]);```其中,img为待平移的图像,[x_shift, y_shift]为沿x轴和y轴的平移距离。

通过该函数,可以实现对图像的任意平移操作。

3. 图像缩放图像缩放是指对图像的大小进行调整,可以通过MATLAB中的imresize函数来实现。

其基本语法为:```matlabresized_img = imresize(img, scale);```其中,img为待缩放的图像,scale为缩放比例。

通过该函数,可以实现对图像的任意缩放操作。

除了以上三种基本的几何变换操作外,MATLAB还提供了一些其他相关的函数和工具箱,如仿射变换、透射变换等。

通过这些工具,可以实现更加复杂和多样化的图像处理操作。

总结通过本文的介绍,我们了解到了MATLAB中几何变换的基本操作,包括图像旋转、平移和缩放。

这些操作可以帮助我们实现对图像的各种修正和调整,从而得到我们想要的效果。

Matlab图形界面图像的旋转、平移和缩放.

Matlab图形界面图像的旋转、平移和缩放.

Matlab图形界面图像的旋转、平移和缩放姓名:班级:学号:目录问题描述 (2)摘要 (2)正文 (3)1、界面设计 (3)2、打开图片功能 (4)3、实现图片的任意角度的旋转 (5)4、图像的平移 (8)5、图像的缩放(放大与缩小) (12)实验心得 (16)附录: (16)Matlab图形界面操作------图像的旋转、平移和缩放问题描述期末运用学习的matlab知识通过图形用户界面对图片进行操作,实现如下功能。

●能够查找和读取计算机中存储图像。

●实现图像的旋转、平移、缩放等几何变换。

●通过matlab界面功能实现界面的完美布局。

●编写代码和回调函数实现上述功能。

摘要本次任务旨在完成以下几个任务:●整体分为四大模块:原图、旋转、平移和缩放。

●利用数字图像处理技术,以MATLAB为平台,建立一个实现设计主题的简易处理系统。

●能显示输入图像、输出图像。

●程序代码要有注释说明,调用MATLAB函数要清楚并理解函数的功能、使用范围,在设计说明书中要写清楚函数的功能和参数意义。

●完成自己课程设计说明书。

正文1、界面设计(1)在MATLAB命令窗口中输入“guide”,确定后,弹出GUI窗口。

(2)本次设计中,包含两个坐标轴(axes1、axes2),分别显示原图和处理后的图像。

包含六个按钮(Push Button),分别实现“打开图片、保存处理后的图片、旋转、平移、放大、缩小以及退出功能”。

(3)旋转功能同时可以实现选择0—360度任意的度数,当选择不同的度数后,axes2位置就会显示不同选择角度的图片。

如果需要保存该图片可以单击保存按钮进行保存。

(4)平移功能的实现,当单击平移按钮,可以有一个默认的平移位置。

在设计中预设了几个固定位置,可以选择,分别是X单位Y单位方向都可以选择。

达到平移的目的。

(5)放大和缩小功能类似,在界面上表现为选择不同的数据,反映出来不同大小的图片。

(6)操作完成后,点击退出功能,将询问是否退出,如果退出则点击“是”,不退出点击“我还要看看”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B=imread('blobs.png'); imshow(B) figure imrotate(B,30,'bilinear','crop')
– 其中,’crop’表示旋转时图像底版大小保持不变, 但图像可能被切割。
– 若是’loose’,则图像底版大小可能会发生变化。
2.1 图像的裁剪、缩放与旋转
2.1 图像的裁剪、缩放与旋转
图像缩放
– 缩小:从图像中,删除部分像素。 – 放大:向图像中,增加部分像素。增加像素的取值
是根据周围相邻像素的值进行插值计算得到的。
图像缩放的常用函数是imresize。通过查看 imresize函数的帮助信息,可以看出,imresize 可以使用三种不同的插值方法:
2.1 图像的裁剪、缩放与旋转
图像缩放:双线性插值法 'bilinear'
– 要求新增加的像素的灰度值,由周围的4个像素的 灰度值决定。
– 双线性内插值法计算量大,但缩放后图像质量高, 不会出现像素值不连续的的情况。由于双线性插值 具有低通滤波器的性质,使高频分量受损,所以可 能会使图像轮廓在一定程度上变得模糊。
第2章 图像几何操作
2.1 图像的裁剪、缩放与旋转 2.2 图像的几何变换 2.3 图像的邻域操作 2.4 图像的区域选取 2.5 图像增强 2.6 图像滤波
2.1 图像的裁剪、缩放与旋转
பைடு நூலகம் 图像裁剪
– 就是在原图像中裁剪出图像块来。
根据裁剪区域的不同,可以对图像进行:
– 矩形区域裁剪: imcrop函数(1.3节) – 多边形区域裁剪:roiploy函数(2.4节)
2.2 图像的几何变换
仿射变换是由一个线性变换接上一个平移组成 的。因此,仿射变换的矩阵表达可描述为:
a11 a12
[x', y' ] [x, y,1]a21
a22
a31 a32
或用齐次坐标表示为:
a11 a12 0 [x', y',1] [x, y,1]a21 a22 0
a31 a32 1
【例】使用imrotate函数旋转图像,制作动画效果 I = imread('blobs.png'); for i=1:20 imrotate(I,3*i,’loose'); end
2.2 图像的几何变换
图像的几何变换是指图像几何操作后, 内部结构比例等发生变化,但整体布局 与形状没有改变。
本节主要介绍图像的二维空间变换。
– 最近邻插值法: imresize函数默认的插值方法 – 双线性插值法 – 双立方插值法
2.1 图像的裁剪、缩放与旋转
图像缩放:最近邻插值法 'nearest‘
– 令新增加的像素的灰度值等于距它最近的输入像素 的灰度值。
– 其实现方法最为简单,处理速度快,但它只是将原 始象素简单复制到其邻域内,随着放大倍数的增加, 放大图像会出现相对严重的方块和锯齿,不能很好 的保留原始图像的边缘信息。
2.2 图像的几何变换
图像二维空间变换
– Matlab使用imtransform函数完成图像二维空间变换。 – imtransform函数的调用形式为:
imtransform(I,T) – 参数I:要变换的图像 – 参数T:由maketform函数产生的变换结构。根据变换结
构的不同,可以实现不同的空间变换。例如:
2.2 图像的几何变换
【例】使用imtransform函数实现图像平面扭曲功能
transformtype = 'affine'; % 仿射变换 transformmatrix = [0.5 0 0; 0.5 1 0; 0 0 1]; % 仿射变换要求变换矩阵的最后一列除最后一个元素为1之外, % 其它的均为0 T = maketform(transformtype,transformmatrix); I = imread('cameraman.tif'); nI = imtransform(I,T); subplot(1,2,1),imshow(I) subplot(1,2,2),imshow(nI)
2.1 图像的裁剪、缩放与旋转
图像缩放:双立方插值法 'bicubic'
– 能够克服以上两种算法的不足,计算精度高,但计 算量大,因为计算新增加的像素的灰度值时,需要
考虑周围的16个邻点。
2.1 图像的裁剪、缩放与旋转
图像缩放举例
I = imread('cell.tif'); figure(1),imshow(I) title('原始图像') pause for i=1:3
cos sin 0
sin
cos
0
0
0 1
旋转
2.2 图像的几何变换
使用imtransform函数实现图像缩放功能
transformtype = 'affine'; transformmatrix = [0.5 0 0; 0 0.5 0; 0 0 1]; T = maketform(transformtype,transformmatrix); I = imread('cameraman.tif'); nI = imtransform(I,T); subplot(1,2,1),imshow(I) subplot(1,2,2),imshow(nI)
二维仿射变换 投影变换
2.2 图像的几何变换
在函数maketform(P,……)中,参数P可以是以下 形式:
‘affine’
仿射变换形式
‘projective’
投影变换形式
‘custom’
自定义函数进行变换
‘box’ 依靠函数中的另外参数产生仿射变换结构
‘composite’
该参数实现多次调用tformfwd功能
nI = imresize(I,2*I,’nearest’); figure(1),imshow(nI) title(strcat('放大了',int2str(2*i),'倍')) pause end
2.1 图像的裁剪、缩放与旋转
图像旋转 –Matlab使用imrotate函数旋转图像。 –在图像旋转的过程中,也可能涉及插值问题。默认 采用最近邻插值法。 【例】
请思考:
在上例中,原图像的像素点(x,y)与变换后得到的像素点 (x’,y’)之间的关系是?
平移、比例缩放、旋转能否看成是仿射变换的特殊情况?
2.2 图像的几何变换
两种特殊的仿射变换
1 0 0
0
1
0
a 3 1 a 3 2 1
平移
a11 0 0
0
a 22
0
0 0 1
比例缩放
相关文档
最新文档