「精品」高三物理圆周运动专题复习试题试卷及参考答案

合集下载

高中物理生活中的圆周运动试题(有答案和解析).docx

高中物理生活中的圆周运动试题(有答案和解析).docx

高中物理生活中的圆周运动试题( 有答案和解析 )一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在 B 点连接,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C, g 取 10 m/s 2.求:(1)小球脱离弹簧时的速度大小;(2)小球从 B 到 C 克服阻力做的功;(3)小球离开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J【解析】【分析】【详解】(1)根据机械能守恒定律E p=1mv12 ?①212Ep=7m/s ②v =m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能通过最高点,故mg m v22④R由②③④得W f=24 J(3)根据动能定理:mg 2R E k 1mv22 2解得: E k25J故本题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度 ,从而根据动能定理求解从 B 至 C 过程中小球克服阻力做的功 ;(3)小球离开 C 点后做平抛运动 ,只有重力做功,根据动能定理求小球落地时的动能大小2.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不相互重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块到达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1)11m / s (2)9m / s(3)72J【解析】【分析】【详解】(1)物块从 A 到 B 运动过程中,根据动能定理得:mgL11mv B21mv02 22解得: v B11m / s(2)物块从 B 到 C 运动过程中,根据机械能守恒得:1mv B21mv C2mg·2R 22解得: v C9m / s(3)物块从 B 到 D 运动过程中,根据动能定理得:mgL201mv B2 2解得: L230.25m对整个过程,由能量守恒定律有:Q 1mv020 2解得: Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.3.如图所示,竖直平面内的光滑的正上方, AD 为与水平方向成3/4 的圆周轨道半径为R, A 点与圆心O 等高, B 点在 O θ =45°角的斜面, AD 长为 72 R.一个质量为m 的小球(视为质点)在 A 点正上方 h 处由静止释放,自由下落至 A 点后进入圆形轨道,并能沿圆形轨道到达 B 点,且到达 B 处时小球对圆轨道的压力大小为mg,重力加速度为g,求:(1)小球到 B 点时的速度大小vB(2)小球第一次落到斜面上 C 点时的速度大小v(3)改变 h,为了保证小球通过 B 点后落到斜面上,h 应满足的条件【答案】 (1) 2gR (2)10gR (3) 3R h 3R2【解析】【分析】【详解】(1)小球经过 B 点时,由牛顿第二定律及向心力公式,有2mg mg mv BR解得v B2gR(2)设小球离开 B 点做平抛运动,经时间t ,下落高度y,落到 C 点,则y 1gt 2 2y cot v B t两式联立,得2v B24gRy4Rg g对小球下落由机械能守恒定律,有1mv B2mgy 1 mv222解得vv22gy2gR8gR 10gRB(3)设小球恰好能通过 B 点,过 B 点时速度为 v1,由牛顿第二定律及向心力公式,有mg m v12R又mg (h R)1mv122得h 3 R2可以证明小球经过 B 点后一定能落到斜面上设小球恰好落到 D 点,小球通过 B 点时速度为 v2,飞行时间为 t ,(72R2R)sin 1 gt22(72R2R)cos v2t解得v2 2 gR又mg (h R)1mv222可得h3R故 h 应满足的条件为 3 R h 3R2【点睛】小球的运动过程可以分为三部分,第一段是自由落体运动,第二段是圆周运动,此时机械能守恒,第三段是平抛运动,分析清楚各部分的运动特点,采用相应的规律求解即可.4.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m、2m的小球 A 和小物块B,开始时 B 静止在细管正下方的水平地面上。

最新高考物理生活中的圆周运动题20套(带答案)

最新高考物理生活中的圆周运动题20套(带答案)

最新高考物理生活中的圆周运动题20套(带答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小;(2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。

(完整版)圆周运动高考题(含答案),推荐文档

(完整版)圆周运动高考题(含答案),推荐文档

1 f; T匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为v =s=2r t T其方向沿轨迹切线,国际单位制中单位符号是m/s;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为==2t T在国际单位制中单位符号是rad/s;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是Hz;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r/min.2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v=rω.T =,v =2,= 2 f 。

由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为v 2 a n=r 公式:=2r 42rT 21. 线速度V=s/t=2πr/T ;== v 2. 角速度 ω=Φ/t =2π/T =2πf 3. 向心加速度 a =V 2/r =ω2r =(2π/T)2r4. 向心力 F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5. 周期与频率:T =1/f6. 角速度与线速度的关系:V =ωr7. 角速度与转速的关系 ω=2πn (此处频率与转速意义相同)8. 主要物理量及单位:弧长 s:米(m);角度 Φ:弧度(rad );频率 f :赫(Hz );周期 T :秒(s );转速n :r/s ;半径 r :米(m );线速度 V :(m/s );角速度 ω:(rad/s );向心加速度:(m/s 2)。

圆周运动高考题(含答案)

圆周运动高考题(含答案)

匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v是描述质点沿圆周运动快慢的物理量,是矢量,其大小为v st2Tr;其方向沿轨迹切线,国际单位制中单位符号是m/s;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为t 2T;在国际单位制中单位符号是rad/s;(3)周期T是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是Hz;(5)转速n是质点在单位时间内转过的圈数,单位符号为r/s,以及r/min.2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v=rω.T1f,v2T,2f。

由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为a n2vr2r42r2T公式:1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F 2/r=mω2r=mr(2π/T)2=mωv=F心=mV 合5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad);频率f:赫(Hz);周期T:秒(s);转速n:r/s;半径r:米(m);线速度V:(m/s);角速度ω:(rad/s);向心加速度:(m/s2)。

2024年高考物理一轮总复习:《圆周运动》测试卷及答案解析

2024年高考物理一轮总复习:《圆周运动》测试卷及答案解析


第 7 页 共 42 页
四.解答题(共 12 小题) 30.如图所示,用长为 L=2m 的轻质细线拴一质量为 m=2kg 的小球,让小球在水平面内
做匀速圆周运动,摆线与竖直方向的夹角θ=37°,不计空气阻力。(g=10m/s2,sin37° =0.6,cos37°=0.8)求: (1)小球的轨道半径; (2)细线的拉力大小; (3)小球的线速度大小。
23.高速铁路弯道处,外轨比内轨
(选填“高”或“低”),当列车在设计规定的范
围内以大小不变的速
度通过弯道时
(选填“有”或“无”)加速度。
24.若车胎和水平路面间的动摩擦因数μ=0.5,转弯的路径近似看成一段圆弧,圆弧半径 R
=20m。为安全转弯,车速不能超 10m/s2)
m/s。(设最大静摩擦力等于滑动摩擦力,g=
第 8 页 共 42 页
31.一物体在水平面内沿半径 R=20cm 的圆形轨道做匀速圆周运动,线速度 v=0.2m/s,那 么: (1)它的向心加速度为多少? (2)它的周期为多少?
第 9 页 共 42 页
32.杂技演员在做“水流星”表演时,用一根细绳系着盛水的杯子,抡起绳子,让杯子在竖 直面内做圆周运动。如图所示,杯内水的质量 m=0.5kg,绳长 L=60cm。求:(g=10m/s2) (1)在最高点水不流出的最小速率。 (2)水在最高点速率 v=3m/s 时,水对杯底的压力大小。
25.图为自行车的传动装置示意图。已知某型号自行车的大齿轮半径 r1=12cm,小齿轮半
径 r2=6.28cm,后轮半径 r3=40cm。如某人骑车转速为 60 转/分,则可估算大齿轮边缘
上一点的向心加速度为
m/s2,该自行车的行驶速度为
第 6 页 共 42 页

高考物理生活中的圆周运动题20套(带答案)含解析

高考物理生活中的圆周运动题20套(带答案)含解析

高考物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .2.如图甲所示,轻质弹簧原长为2L ,将弹簧竖直放置在水平地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L .现将该弹簧水平放置,如图乙所示.一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5L 的水平轨道,B 端与半径为L 的光滑半圆轨道BCD 相切,半圆的直径BD 在竖直方向上.物块P 与AB 间的动摩擦因数0.5μ=,用外力推动物块P ,将弹簧压缩至长度为L 处,然后释放P ,P 开始沿轨道运动,重力加速度为g .(1)求当弹簧压缩至长度为L 时的弹性势能p E ;(2)若P 的质量为m ,求物块离开圆轨道后落至AB 上的位置与B 点之间的距离; (3)为使物块P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.【答案】(1)5P E mgL = (2) 22S L = (3)5532m M m # 【解析】 【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设P 到达B 点时的速度大小为,由能量守恒定律得:设P 到达D 点时的速度大小为,由机械能守恒定律得:物体从D 点水平射出,设P 落回到轨道AB 所需的时间为θ θ 22S L =(3)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点的速度不能小于零 得54mgL MgL μ> 52M m <要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C ,得212BMv MgL '≤ 2142p BE Mv MgL μ='+3.如图所示,一质量为m 的小球C 用轻绳悬挂在O 点,小球下方有一质量为2m 的平板车B静止在光滑水平地面上,小球的位置比车板略高,一质量为m的物块A以大小为v0的初速度向左滑上平板车,此时A、C间的距离为d,一段时间后,物块A与小球C发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ,重力加速度为g,若A碰C之前物块与平板车已达共同速度,求:(1)A、C间的距离d与v0之间满足的关系式;(2)要使碰后小球C能绕O点做完整的圆周运动,轻绳的长度l应满足什么条件?【答案】(1);(2)【解析】(1)A碰C前与平板车速度达到相等,设整个过程A的位移是x,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A与小球C发生碰撞,碰撞时两者的速度互换,C以速度v开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A碰C前与平板车速度达到相等,由动量守恒定律列出等式;A减速的最大距离为d,由动能定理列出等式,联立求解。

高考物理生活中的圆周运动题20套(带答案)含解析

高考物理生活中的圆周运动题20套(带答案)含解析

高考物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤3.如图所示,半径为4l,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内). ①小球恰好离开竖直杆时,竖直杆的角速度0ω多大? ②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)1515T mg = (2)①ω0=15215g l②2g l ω≥【解析】 【详解】(1)设轻绳a 与竖直杆的夹角为α15cos α=对小球进行受力分析得cos mgT α=解得:41515T mg =(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。

高中物理生活中的圆周运动题20套(带答案)及解析

高中物理生活中的圆周运动题20套(带答案)及解析

高中物理生活中的圆周运动题20套(带答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。

【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,一质量为m 的小球C 用轻绳悬挂在O 点,小球下方有一质量为2m 的平板车B 静止在光滑水平地面上,小球的位置比车板略高,一质量为m 的物块A 以大小为v 0的初速度向左滑上平板车,此时A 、C 间的距离为d ,一段时间后,物块A 与小球C 发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ ,重力加速度为g ,若A 碰C 之前物块与平板车已达共同速度,求: (1)A 、C 间的距离d 与v 0之间满足的关系式;(2)要使碰后小球C 能绕O 点做完整的圆周运动,轻绳的长度l 应满足什么条件?【答案】(1);(2)【解析】(1)A 碰C 前与平板车速度达到相等,设整个过程A 的位移是x ,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A 与小球C 发生碰撞,碰撞时两者的速度互换, C 以速度v 开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A 碰C 前与平板车速度达到相等,由动量守恒定律列出等式;A 减速的最大距离为d ,由动能定理列出等式,联立求解。

高考物理生活中的圆周运动题20套(带答案)

高考物理生活中的圆周运动题20套(带答案)
在E点,由牛顿第二定律有
解得物体受到的支持力
根据牛顿第三定律,物体对轨道的压力大小为 ,方向竖直向下.
(3)设物体刚好到达D点时的速度为 此时有
解得:
设物体恰好通过D点时释放点距B点的距离为 ,有动能定理可知:
联立解得:
则:
答案:(1) ; (2) ;(3)
10.
如图所示,位于竖直平面内的光滑有轨道,由一段倾斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R.一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动.要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg(g为重力加速度).求物块初始位置相对于圆形轨道底部的高度h的取值范围.
(1)小球通过第二个圆形轨道的最高点时的速度;
(2)小球通过第一个圆轨道最高点时对轨道的压力的大小;
(3)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球从A点释放时的高度的范围是多少?
【答案】(1)1m/s (2)40N (3) 或
【解析】
⑴小球恰能通过第二个圆形轨道最高点,有:
求得:υ2= =1m/s①
(1)物体释放后,第一次到达B处的速度大小,并求出物体做往返运动的整个过程中在AB轨道上通过的总路程s;
(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力的大小;
(3)为使物体能顺利到达圆弧轨道的最高点D(E、O、D为同一条竖直直径上的3个点),释放点距B点的距离L应满足什么条件.
【答案】(1) ; (2) ;(3)
A到D,根据机械能守恒定律:mgh2=mg2R+
联立得h2=4R
释放点至水平轨道高度的范围为 ≤h≤4R
(2)h=4R时,C点速度最大,压力最大

高考物理生活中的圆周运动题20套(带答案)含解析

高考物理生活中的圆周运动题20套(带答案)含解析
(3)P、Q和弹簧组成的系统动量守恒,
则有
mvP=MvQ
解得
vP=1 m/s
对P、Q和弹簧组成的系统,由能量守恒定律有
解得
Ep=3 J
9.如图所示,将一质量m=0.1 kg的小球自水平平台顶端O点水平抛出,小球恰好无碰撞地落到平台右侧一倾角为α=53°的光滑斜面顶端A并沿斜面下滑,斜面底端B与光滑水平轨道平滑连接,小球以不变的速率过B点后进入BC部分,再进入竖直圆轨道内侧运动.已知斜面顶端与平台的高度差h=3.2 m,斜面高H=15 m,竖直圆轨道半径R=5 m.取sin 53°=0.8,cos 53°=0.6,g=10 m/s2,求:
F=59.04N
由牛顿第三定律得:粘合体S对轨道的压力F′=59.04N,方向沿OB向下。
8.如图所示,在光滑水平桌面EAB上有质量为m=2 kg的小球P和质量为M=1 kg的小球Q,P、Q之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E处放置一质量也为M=1 kg的橡皮泥球S,在B处固定一与水平桌面相切的光滑竖直半圆形轨道。释放被压缩的轻弹簧,P、Q两小球被轻弹簧弹出,小球P与弹簧分离后进入半圆形轨道,恰好能够通过半圆形轨道的最高点C;小球Q与弹簧分离后与桌面边缘的橡皮泥球S碰撞后合为一体飞出,落在水平地面上的D点。已知水平桌面高为h=0.2 m,D点到桌面边缘的水平距离为x=0.2 m,重力加速度为g=10 m/s2,求:
小物块经过B点时,有:
解得:
根据牛顿第三定律,小物块对轨道的压力大小是62N
(2)小物块由B点运动到C点,根据动能定理有:
在C点,由牛顿第二定律得:
代入数据解得:
根据牛顿第三定律,小物块通过C点时对轨道的压力大小是60N
(3)小物块刚好能通过C点时,根据

高中物理生活中的圆周运动题20套(带答案)含解析

高中物理生活中的圆周运动题20套(带答案)含解析

高中物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,高为 L 的倾斜直轨道 AB 、CD 与水平面的夹角均为53°,分别与竖直平面内的光滑圆弧轨道相切于 B 、D 两点,圆弧的半径也为 L 。

质量为m 的小滑块从A 点由静止下滑后,经轨道 CD 后返回,再次冲上轨道AB 至速度为零时,相对于水平线BD 的高度为6L。

已知滑块与轨道AB 间的动摩擦因数μ1=0.5,重力加速度为g ,(取sin530.8cos530.6︒︒==,)求:(1)求滑块第一次经过 B 点的速度大小;(2)滑块第一次经过圆弧轨道最低点时对轨道的压力大小; (3)滑块与轨道 CD 间的动摩擦因数μ2。

【答案】(15gL(2)6120mg (3)276123μ= 【解析】 【详解】(1)A B →由动能定理:211(cos53)0sin 532B L mgL mg mv μ-⋅=-oo12554B gL gL v ⎛⎫== ⎪⎝⎭(2)B 到最低点由动能定理得:2211(1cos53)22B mgL mv mv -=-o在最低点由牛顿第二定律得:2v N mg m L-=6120N mg =所以,对轨道的压力为6120mg (3)从B 到CD 斜面的最高点由动能定理得:()221sin 53cos5302B mg mg x mv μ︒︒-+=-从CD 斜面最高点到停止位置由动能定理得:211(sin 53cos53)(sin 53cos53)006sin 53L mg mg x mg mg o o o o oμμ--+⋅=- 276123μ=2.如图所示,物体A 置于静止在光滑水平面上的平板小车B 的左端,物体在A 的上方O 点用细线悬挂一小球C(可视为质点),线长L =0.8m .现将小球C 拉至水平无初速度释放,并在最低点与物体A 发生水平正碰,碰撞后小球C 反弹的速度为2m/s .已知A 、B 、C 的质量分别为m A =4kg 、m B =8kg 和m C =1kg ,A 、B 间的动摩擦因数μ=0.2,A 、C 碰撞时间极短,且只碰一次,取重力加速度g =10m/s 2.(1)求小球C 与物体A 碰撞前瞬间受到细线的拉力大小; (2)求A 、C 碰撞后瞬间A 的速度大小;(3)若物体A 未从小车B 上掉落,小车B 的最小长度为多少? 【答案】(1)30 N (2)1.5 m/s (3)0.375 m 【解析】 【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m 0gl 12=m 0v 02 代入数据解得:v 0=4m/s ,对小球,由牛顿第二定律得:F ﹣m 0g =m 020v l代入数据解得:F =30N(2)小球C 与A 碰撞后向左摆动的过程中机械能守恒,得:212C mv mgh = 所以:22100.22C v gh ==⨯⨯=m/s小球与A 碰撞过程系统动量守恒,以小球的初速度方向为正方向, 由动量守恒定律得:m 0v 0=﹣m 0v c +mv A 代入数据解得:v A =1.5m/s(3)物块A 与木板B 相互作用过程,系统动量守恒,以A 的速度方向为正方向, 由动量守恒定律得:mv A =(m+M )v 代入数据解得:v =0.5m/s由能量守恒定律得:μmgx 12=mv A 212-(m+M )v 2 代入数据解得:x =0.375m ;3.如图所示,竖直平面内有一光滑的直角细杆MON ,其中ON 水平,OM 竖直,两个小物块A 和B 分别套在OM 和ON 杆上,连接AB 的轻绳长为L =0.5m ,.现将直角杆MON 绕过OM 的轴O 1O 2缓慢地转动起来.已知A 的质量为m 1=2kg ,重力加速度g 取10m/s 2。

高考物理圆周运动专项测试含答案

高考物理圆周运动专项测试含答案

高考物理圆周运动专项测试含答案高考物理圆周运动专项测试一、选择题1.物体以角速度&omega;做匀速圆周运动,以下说法中正确的选项是( )A.轨道半径越大线速度越大B.轨道半径越大线速度越小C.轨道半径越大周期越大D.轨道半径越大周期越小2.某质点绕圆轨道做匀速圆周运动,以下说法中正确的选项是( )A.由于它速度大小一直不变,所以它做的是匀速运动B.它速度大小不变,但方向时辰改动,是变速运动C.该质点速度大小不变,因此减速度为零,处于平衡形状D.该质点做的是变速运动,具有减速度,故它受合外力不等于零3.运动在地球上的物体都要随地球一同转动,以下说法正确的选项是( )A.它们的运动周期都是相反的B.它们的线速度都是相反的C.它们的线速度大小都是相反的D.它们的角速度是不同的4.一皮带传送装置,a、b区分是两轮边缘上的两点,c 处在O1轮上,且有ra=2rb=2rc,那么以下关系正确的有( )A.va=vbB.&omega;a=&omega;bC.va=vcD.&omega;a=&omega;c5.汽车在公路下行驶普通不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某国产轿车的车轮半径约为30 cm,当该型号轿车在高速公路下行驶时,驾驶员面前的速率计的指针指在〝120 km/h〞上,可预算出该车车轮的转速为( )A.1 000 r/sB.1 000 r/minC.1 000 r/hD.2 000 r/s6.某一皮带传动装置,自动轮的半径为r1,从动轮的半径为r2.自动轮做顺时针转动,转速为n,转动进程中皮带不打滑.以下说法正确的选项是( )A.从动轮做顺时针转动B.从动轮做逆时针转动C.从动轮的转速为nD.从动轮的转速为n二、非选择题7.所示的传动装置中,B、C两轮固定在一同绕同一轴转动,A、B两轮用皮带传动,三轮半径关系为rA=rC=2rB.假定皮带不打滑,求A、B、C轮边缘的a、b、c三质点的角速度之比和线速度之比.8.两轮经过边缘接触,构成摩擦传动装置,设接触处无打滑现象.大轮B的半径是小轮A的半径的2倍,设自动轮A 转动时其边缘点的角速度为&omega;,线速度为v.求:(1)A、B两轮的转动周期之比;(2)B轮边缘上一点的线速度;(3)B轮转动的角速度.9.小球A在润滑的半径为R的圆形槽内做匀速圆周运动,当它运动到图中a点时,在圆形槽中心O点正上方h处,有一小球B沿Oa方向以某一初速度水平抛出,结果恰恰在a 点与A球相碰,求:(1)B球抛出时的水平初速度;(2)A球运动的线速度最小值.高考物理圆周运动专项测试含答案1.A [由v=r&omega;可知,角速度一定,r越大,线速度越大,即选项A正确,B错误,周期T=,角速度一定,周期T一定,故C、D错误.]2.BD [匀速圆周运动是指线速度大小不变的圆周运动,但方向时辰改动,因此是变速运动,减速度不为零,所以B、D正确.]3.A [如下图,地球绕自转轴转动时,一切地球上各点的周期及角速度都是相反的.地球外表物体做圆周运动的平面是物体所在纬度线平面,其圆心散布在整条自转轴上,不同纬度处的物体圆周运动的半径是不同的,只要同一纬度处物体转动半径相等,线速度的大小才相等.但即使物体的线速度大小相反,方向也各不相反.]4.AD [由于是皮带传动,故两轮边缘上的a、b两点线速度相等,即va=vb,A正确;a、b两点的转动半径不同,那么角速度&omega;a&lt;&omega;b,B错误;a、c同轴故其角速度相等,半径不同线速度不相等,C错,D对.]5.B [由v=r&omega;,&omega;=2&pi;n得n== r/s&asymp;17.7 r/s&asymp;1 000 r/min]6.BC [自动轮顺时针转动时,皮带带动从动轮逆时针转动,A项错误,B项正确;由于两轮边缘线速度大小相反,依据v=2&pi;rn,可得两轮转速与半径成正比,所以C项正确,D项错误.]7.1∶2∶2 1∶1∶2解析A、B两轮经过皮带传动,皮带不打滑,那么A、B两轮边缘的线速度大小相等,即va=vb或va∶vb=1∶1①由v=&omega;r得&omega;a∶&omega;b=rB∶rA=1∶2②B、C两轮固定在一同绕同一轴转动.那么B、C两轮的角速度相反,即&omega;b=&omega;c或&omega;b∶&omega;c=1∶1③由v=&omega;r得vb∶vc=rB∶rC=1∶2④由②③得&omega;a∶&omega;b∶&omega;c=1∶2∶2由①④得va∶vb∶vc=1∶1∶2.8.(1)1∶2(2)v (3)&omega;9.(1)R (2)2&pi;R解析(1)小球B做平抛运动,其在水平方向上做匀速直线运动,那么R=v0t①在竖直方向上做自在落体运动,那么h=gt2②由①②得v0==R .(2)A球的线速度vA===2&pi;Rn当n=1时,其线速度最小,即vmin=2&pi;R .。

高考物理生活中的圆周运动专项训练100(附答案)及解析

高考物理生活中的圆周运动专项训练100(附答案)及解析

高考物理生活中的圆周运动专项训练100(附答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =2.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧.在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.4.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

高考物理生活中的圆周运动真题汇编(含答案)及解析

高考物理生活中的圆周运动真题汇编(含答案)及解析

高考物理生活中的圆周运动真题汇编(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。

【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。

【物理】 高考物理生活中的圆周运动专项训练100(附答案)及解析

【物理】 高考物理生活中的圆周运动专项训练100(附答案)及解析

【物理】 高考物理生活中的圆周运动专项训练100(附答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.3.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功.【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:vy =m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 2==m/s 物块到达P 的速度:P v ===3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .4.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m5.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,6.如图所示,竖直平面内有一光滑的直角细杆MON ,其中ON 水平,OM 竖直,两个小物块A 和B 分别套在OM 和ON 杆上,连接AB 的轻绳长为L =0.5m ,.现将直角杆MON 绕过OM 的轴O 1O 2缓慢地转动起来.已知A 的质量为m 1=2kg ,重力加速度g 取10m/s 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动专题复习
(附参考答案)
考点一.圆周运动中的运动学分析
1.如图所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一
点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮
上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘
上,若在转动过程中,皮带不打滑,则()
A.a点与b点的线速度大小相等B.a点与b点的角速度大小相等
C.a点与c点的线速度大小相等D.a点与d点的向心加速度大小相等2.如图所示,B和C是一组塔轮,即B和C半径不同,但固定在同
一转动轴上,其半径之比为R B∶R C=3∶2,A轮的半径大小与C轮
相同,它与B轮紧靠在一起,当A轮绕过其中心的竖直轴转动时,由
于摩擦作用,B轮也随之无滑动地转动起来.a、b、c分别为三轮边
缘的三个点,则a、b、c三点在运动过程中的()
A.线速度大小之比为3∶2∶2 B.角速度之比为3∶3∶2
C.转速之比为2∶3∶2 D.向心加速度大小之比为9∶6∶4
考点二.圆周运动中的向心力来源问题
1.在高速公路的拐弯处,通常路面都是外高内
低.如图所示,在某路段汽车向左拐弯,司机左
侧的路面比右侧的路面低一些.汽车的运动可看
做是半径为R的圆周运动.设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于()
A.gRh
L B.
gRh
d C.
gRL
h D.
gRd
h
2.“飞车走壁”是一种传统的杂技艺术,演员骑车在倾角很大的桶面上做圆周运动而不掉下来.如图所示,已知桶壁的倾角为θ,车和人的总质量为m,做圆周运动的半径为r,若使演员骑车做圆周运动时不受桶壁的摩擦力,下列说法正确的是()
A.人和车的速度为grtanθB.人和车的速度为grsinθ
C.桶壁对车的弹力为mg
cosθD.桶壁对车的弹力为
mg sinθ
3.公路急转弯处通常是交通事故多发地带.如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处()
A.路面外侧高内侧低
B.车速只要低于v c,车辆便会向内侧滑动
C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动
D.当路面结冰时,与未结冰时相比,v c的值变小
考点三.水平面内的圆周运动
1.如图所示,质量M=0.64 kg的物体置于可绕竖直轴匀速转动的平台上,
M用细绳通过光滑的定滑轮与质量为m=0.3 kg的物体相连.假定M与轴
O的距离r=0.2 m,与平台的最大静摩擦力为2 N.为使m保持静止状态,
水平转台做圆周运动的角速度ω应在什么范围?(取g =10 m/s 2)
2.如图所示,水平转台上放着A 、B 、C 三个物体,质量分别是2m 、m 、m ,离转轴距离分别是R 、R 、2R ,与转台摩擦系数相同,转台旋转时,下列说法正确的是:
A .若三物均未动,C 物向心加速度最大
B .若三物均未动,B 物所受向心力最小
C .转速增大,C 物先动
D .转速增大,A 物和B 物先动,且一起动
3.如图所示,两个可视为质点的、相同的木块A 和B 放在转盘上且
木块A 、B 与转盘中心在同一条直线上,两木块用长为L 的细绳连
接,木块与转盘的最大静摩擦力均为各自重力的k 倍,A 放在距离转
轴L 处,整个装置能绕通过转盘中心的转轴O 1O 2转动.开始时,绳恰好伸直但无弹力,现让该装置从静止转动,角速度缓慢增大,以下说法不正确的是( )
A .当ω> 2kg 3L 时,A 、
B 会相对于转盘滑动 B .当ω> kg 2L
时,绳子一定有弹力 C .ω在 kg 2L <ω< 2kg 3L
范围内增大时,B 所受摩擦力变大 D .ω在0<ω< 2kg 3L
范围内增大时,A 所受摩擦力一直变大
考点四.竖直面内的圆周运动
1.如图所示,质量为m 的物块从半径为R 的半球形碗边向碗底滑动,滑到最低
点时的速度为v ,若物块滑到最低点时受到的摩擦力是F f ,则物块与碗的动摩擦
因数为( )
A .F f mg
B .F f mg +m v 2R
C .F f mg -m v 2R
D .F f m v 2R
2.如图是滑道压力测试的示意图,光滑圆弧轨道与光滑斜面相切,滑道底
部B 处安装一个压力传感器,其示数F N 表示该处所受压力的大小.某滑块
从斜面上不同高度h 处由静止下滑,通过B 时,下列表述正确的有( )
A .F N 小于滑块重力
B .F N 大于滑块重力
C .F N 越大表明h 越大
D .F N 越大表明h 越小
3.如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动.当圆筒的角速度增大的过程中,下列说法正确的是( )
A .物体所受弹力增大,摩擦力也增大了
B .物体所受弹力增大,摩擦力减小了
C .物体所受弹力增大,摩擦力不变
D .物体所受弹力和摩擦力都减小了
4.一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,
即把整条曲线用一系列不同半径的小圆弧来代替.如图甲所示,曲线上A 点
的曲率圆定义为:通过A 点和曲线上紧邻A 点两侧的两点作一圆,在极限情
况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径.现将一
物体沿与水平面成α角的方向以速度v 0抛出,如图乙所示.则在其轨迹最高
点P 处的曲率半径是( )。

相关文档
最新文档