2018高考文科数学答题技巧

合集下载

2018年高考数学选择题、填空题答题策略与答题技巧

2018年高考数学选择题、填空题答题策略与答题技巧

2018年高考数学答题策略与答题技巧一、2012-2017历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。

如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。

当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。

一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。

当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所”,取“暂时性放弃以题目的难易只能由自己确定。

一般来说,小题思考 1 分钟还没有建立解答方案,则应采把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。

切记不要“小题大做”。

注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。

虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。

多写不会扣分,写了就可能得分。

三、答题技巧1.函数或方程或不等式的题目,先直接思考后建立三者的联系,首先考虑定义域。

2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。

如所过的定点,二次函数的对称轴或是⋯⋯;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,;漏不遗分类讨论的思想,分类讨论应该不重复7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设根的判别而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用;点)的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊4.求椭圆或是双曲线的离心率,建立关于a、b、c 之间的关系等式即可;5.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;6.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n 项和公式,体会方程的思想;7.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;8.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;3.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为 1 是检验正确与否的重要途径;9.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量;10.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;11.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;12.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;13.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;14.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

2018高考数学应战策略

2018高考数学应战策略

2018高考数学应战策略一、提高解答选择题的速度、填空题的准确度。

数学高考卷中的选择题是对知识的灵活运用,解题要求是只要结果、不要过程。

若能把握得好,容易的一分钟一题,难题也不超过五分钟。

由于选择题的特殊性,由此提出解答选择题要求“快、准、巧”,忌讳“小题大做”。

解答选择题的常用方法:排除法、特殊值检验法、极端性原则、顺推破解法、逆推验证法(代答案入题干验证法)、正难则反法、数形结合法、递推归纳法、特征分析法和估算法等。

填空题也是只要结果、不要过程,因此要力求“完整、严密”。

填空题中常见的规范性问题:①解与解集:方程的结果一般用解表示(除非强调求解集);不等式、三角方程的结果一般用解集(集合或区间)表示。

②在写区间或集合时,要正确地书写圆括号、方括号或花括号,区间的两端点之间,几何的元素之间用逗号隔开。

二、解答题要牢记分段得分的原则,规范答题。

解答题需注意跳步得分,如果同一解答题的后一问需要用到前一问的证明结论或数字结果,前一问并没有完全解答出来,则可以在后一问中直接应用前一问的数值或结论,这样不影响第二问得分。

如果有些水平高的学生解题中用了高等数学或中学数学教材之外的结论,用结论前应有简单的文字说明或铺垫。

会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。

带单位的解答题,最后结果必须带单位;特别是应用题解题结束后一定要写符合题意的“答”。

排列组合题,无特别声明,要求出数值。

需分类讨论的题目,一般要写综合性结论;函数问题一般要注明定义域。

三、阅卷教师希望看到的是能够减轻阅读量的卷面,具体包括以下六点:①卷面清洁,这是最基本的要求;②书写工整,字迹清晰;③在规定的答题区域答题,否则做无用功;④表述是要根据分值思考要点,尽量细分,用分号或①②③④等符号清楚表述;⑤语言要简洁,答中要害;⑥语言表述要规范,尽量用专业术语。

注意1.答题工具:答选择题时,必须用合格的2B铅笔填涂,如需要对答案进行修改,应使用绘图橡皮轻擦干净,注意不要擦破答题卡。

★2018年高考数学通用解题方法有哪些.doc

★2018年高考数学通用解题方法有哪些.doc

★2018年高考数学通用解题方法有哪些新学期开学了,2018年高考已经悄然袭来,相信很多新高三学生都想在高考中取得好成绩,这就要求大家掌握一些技巧,下面为大家带来2018年高考数学通用解题方法有哪些这篇内容,希望大家能够认真阅读。

高考数学万能解题法--认真审题对于一道具体的习题,解题时最重要的环节是审题,审题的第一步是读题,这是获取信息量和思考的过程,读题要慢一边读,一边想,应特别注意每一句话的内在含义,并从中找到隐含条件。

在有些学生没有养成读题,思考的习惯,心理着急,匆匆一看,就开始解题没结果常常溜掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了,所以,在实际解题时,应特别注意,审题要认真仔细。

高考数学万能解题法--函数值域函数值域是函数概念中三要素之一,是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终,而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求。

所以,我们应该掌握一些简单函数的值域求解的基本方法。

高考数学万能解题法--画图画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。

有些试题,只要分析一画出来,其中的关键就变得一目了然,尤其是对于几何题,包括解析几何题,若不会画图,有时候简直是无从下手。

因此要牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。

高考数学万能解题法--数列求和方法数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识,数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要的地位。

数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。

此类问题中除了利用等差数列和等笔数列求和公式外,大部分数列的求和都需要一定的技巧。

2018年高考数学通用解题方法有哪些这篇内容为大家带来过了,希望大家能够在平时学以致用这些技巧,这样才能在高考考试中轻松得分。

2018年高考数学解题的12种方法总结.doc

2018年高考数学解题的12种方法总结.doc

2018年高考数学解题的12种方法总结数学是高考考试中最能拉分的科目,因此大家在备考数学考试的时候要多下功夫,下面为大家带来2018年高考数学解题的12种方法总结这篇内容,希望能够帮助大家轻松应对2018年高考数学考试。

方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于空白状态,创设数学情境,进而酝酿数学思维,提前进入角色,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

方法二、内紧外松,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

方法三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生旗开得胜的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的门坎效应,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

方法四、六先六后,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行六先六后的战术原则。

1、先易后难。

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2、先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。

2018年做好高考数学题的12种方法-范文word版 (4页)

2018年做好高考数学题的12种方法-范文word版 (4页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==做好高考数学题的12种方法方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

方法二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

方法三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

方法四、“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

1.先易后难。

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。

2018届高考文科数学(通用版)选择填空题解题技巧

2018届高考文科数学(通用版)选择填空题解题技巧

2018届高考文科数学(通用版)选择填空题解题技巧选择题是高考试题的三大题型之一,其特点是难度中低、小巧灵活、知识覆盖面广,解题只要结果不看过程。

解选择题的基本策略是充分利用题干和选项信息,先定性后定量,先特殊再一般,先排除后求解,避免“小题大做”。

解答选择题主要有直接法和间接法两大类。

直接法是最基本、最常用的方法,但为了提高解题的速度,我们还要研究解答选择题的间接法和解题技巧。

直接法是最常用的解答选择题方法。

直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密地推理和准确地运算,从而得出正确的结论,然后对照题目所给出的选项“对号入座”,作出相应的选择。

涉及概念、性质的辨析或运算较简单的题目常用直接法。

特例法是解答选择题的间接法之一。

通过构造或寻找特殊情况,从而得到解题思路和答案。

特例法适用于一些比较抽象、比较难以直接运算的题目。

但需要注意的是,特例法只能得到部分答案,不能代表所有情况。

在解答选择题时,需要准确地把握题目的特点,提高用直接法解选择题的能力。

同时,在稳的前提下求快,避免“小题大做”,用简便的方法巧解选择题,是建立在扎实掌握基础知识的基础上的。

特例法是解决数学题的一种方法,通过选取特殊情况代入,将问题特殊化或构造满足条件的特殊函数或图形位置,进行判断。

特殊化法适用于含有字母或一般性结论的选择题,特殊情况可能是特殊值、特殊点、特殊位置、特殊数列等。

例如,对于已知O是锐角△XXX的外接圆圆心,∠A=60°,·AB+·AC=2m·AO,求sinCsinB的值,我们可以选取△ABC为正三角形的情况,此时A=B=C=60°,取D为BC的中点,AO=AD,则有AB+AC=2m·AO,化简得到m=3/2.因此,sinCsinB=(√3/2)^2=3/4,答案为A。

需要注意的是,取特例要尽可能简单,有利于计算和推理;若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解。

2018年高考数学答题技巧及知识点归纳总结【精品推荐】

2018年高考数学答题技巧及知识点归纳总结【精品推荐】

掌握高考数学答题技巧,力求正常发挥1.摸透“题情”刚刚拿到试卷,一般心里比较紧张,不要忙于作答,要从头到尾通览全卷,从卷面上获取最多的信息,为实施正确的集体策略做全面调查。

2.信心十足答题中,见到简单题要细心,莫忘乎所以。

面对偏难的题,要有耐心,千万不要着急,力求做到:坚定信心,稳扎稳打,步步为营。

整个过程中要记住:人易我易,我不大意。

人难我难,我不畏惧。

3.两先两后即“先易后难”和“先高后低”。

所谓先高后低指后半段时间如后两题都会做,则先做高分题,后作低分题。

即使时间不足也少丢分,到最后十分钟,也应对那些拿不下来的题目就高分题“分段得分”,以增加在时间不足前提下的得分。

4.讲求方法做选择题时,除用直接法外,要牢记另外一些常用的,有效地方法,如排除法,特例检验法,估算法,数形结合法等。

5.分段得分分段得分的基本精神:会作的题目力求不失分,部分理解的题目力争多得分。

(1)缺步解答若遇到一个很困难的问题,聪明的策略是:将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,特别是那些集体层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。

(2)退步解答“以退求进”是一个重要的解题策略。

当某个问题不易解决时,可以考虑问题的特殊形势,局部情形等,有时往往茅塞顿开。

(3)辅助解答辅助解答的内容十分广泛,如准确做图,书写规范,完整,字迹清楚等都是辅助解答。

有些选择题,“大胆猜测”也是辅助解答。

6.立足中下题目,力争高水平中下题目在全卷占百分之八十,是试卷的主旋律,是得分的重要来源。

能拿下这些题目,实际上就已经打了个胜仗。

以上是答题技巧的几点建议,另外要特别注意考前的状态,提前进入角色也很重要。

※热门问答问:选择题怎么才能拿到高分?答:选择题主要体现了对双基的考查,知识点是轮换的,除了通常的直选法(由条件求得正确的答案来)外,还得注意解题的特殊技巧,比如用特殊代替一般,排除法,验证法;此外还应注意数形结合、合理猜想等等。

2018届高三文科数学解析几何解题方法规律技巧详细总结版

2018届高三文科数学解析几何解题方法规律技巧详细总结版

2018届高三文科数学解析几何解题方法规律技巧详细总结版【简介】圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.【3年高考试题比较】通过比较近三年的高考题,不难发现,集中考察的是圆、抛物线和椭圆,均主要考察的是直线与圆、椭圆或抛物线的位置关系,以坐标运算为主,难度适中.从考查形式上分析,主要是求解圆锥曲线方程,轨迹问题(也涉及到挖点),直线与圆、椭圆、抛物线的位置关系、定点定值问题、范围问题、证明问题等.【必备基础知识融合】一、椭圆1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质二、双曲线1.双曲线的定义平面内与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|且大于零),则点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:(1)若a<c时,则集合P为双曲线;(2)若a=c时,则集合P为两条射线;(3)若a>c时,则集合P为空集.2.双曲线的标准方程和几何性质1三、抛物线1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:|MF |=d (其中d 为点M 到准线的距离). 2.抛物线的标准方程与几何性质3. 1122(1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ;|AB |=x 1+x 2+p ;(3)若F 为抛物线焦点,则有1|AF |+1|BF |=2p. 四、曲线与方程 1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上点的坐标与一个二元方程f (x ,y )=0的实数解满足如下关系: (1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 2.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P (x ,y ). (3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,将其转化为x ,y 的方程式,并化简. (5)证明——证明所求方程即为符合条件的动点轨迹方程. 3.两曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解. 若此方程组无解,则两曲线无交点. 五、直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程,即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2|=1+1k2·|y 1-y 2|【解题方法规律技巧】典例1:已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.【规律方法】求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程;(3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.典例2:已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明:直线l过定点.(2)证明由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2), 将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.由根与系数的关系得,x 1+x 2=8-2bkk 2,①x 1x 2=b 2k2,②因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2x 2+1,即y 1(x 2+1)+y 2(x 1+1)=0, (kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0③将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0).【规律方法】利用直接法求轨迹方程(1)利用直接法求解轨迹方程的关键是根据条件准确列出方程,然后进行化简. (2)运用直接法应注意的问题①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.②若方程的化简过程是恒等变形,则最后的验证可以省略.典例3:已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.【规律方法】(1)求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(2)理解解析几何中有关曲线的定义是解题关键.(3)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.典例4:如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D四点.点A 1,A 2分别为C 2的左,右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程. 解 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0);由曲线的对称性, 得B (x 0,-y 0), 设点M 的坐标为(x ,y ),直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y = -y 0x 0-3(x -3).②由①②相乘得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).【规律方法】“相关点法”的基本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 0,y 0);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 0=f (x ,y ),y 0=g (x ,y );(3)代换:将上述关系式代入主动点满足的曲线方程,便可得到所求被动点的轨迹方程. 典例5:已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.则x 0=x 1+x 22=-34m ,y 0=x 0+m =14m ,即D ⎝⎛⎭⎫-34m ,14m . 因为AB 是等腰三角形PAB 的底边,所以PD ⊥AB ,即PD 的斜率k =2-m 4-3+3m 4=-1,解得m =2.此时x 1+x 2=-3,x 1x 2=0,则|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=32, 又点P 到直线l :x -y +2=0的距离为d =32, 所以△P AB 的面积为S =12|AB |·d =92.【规律方法】(1)求椭圆方程的基本方法是待定系数法,先定形,再定量,即首先确定焦点所在位置,然后根据条件建立关于a ,b 的方程组,如果焦点位置不确定,可设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),求出m ,n 的值即可.(2)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. (3)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). 提醒 利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.典例6:已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8. (1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△FAB 的面积.Δ=64+32m >0,∴m >-2.y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍),∴直线l 2:x =y +8,M (8,0). 故S △FAB =S △FMB +S △FMA =12·|FM |·|y 1-y 2|=3(y 1+y 2)2-4y 1y 2=24 5. 【规律方法】(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.(3)涉及弦的中点、斜率时,一般用“点差法”求解.典例7:已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x+3与椭圆E 有且只有一个公共点T . (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|PA |·|PB |,并求λ的值.由方程组⎩⎨⎧x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2), 由Δ>0,解得-322<m <322.由②得x 1+x 2=-4m3,x 1x 2=4m 2-123.所以|PA |=⎝⎛⎭⎫2-2m 3-x 12+⎝⎛⎭⎫1+2m 3-y 12=52⎪⎪⎪⎪2-2m 3-x 1,同理|PB |=52⎪⎪⎪⎪2-2m 3-x 2.所以|PA |·|PB |=54⎪⎪⎪⎪⎝⎛⎭⎫2-2m3-x 1⎝⎛⎭⎫2-2m 3-x 2 =54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3(x 1+x 2)+x 1x 2 =54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3⎝⎛⎭⎫-4m 3+4m 2-123 =109m 2. 故存在常数λ=45,使得|PT |2=λ|PA |·|PB |.【规律方法】有关圆锥曲线弦长问题的求解方法:涉及弦长的问题中,应熟练的利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解. 典例8:设抛物线过定点A (-1,0),且以直线x =1为准线. (1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围.所以y 0=-12k +m .所以m =y 0+12k =34y 0.由点P ⎝⎛⎭⎫-12,y 0在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3.所以-334<m <334,且m ≠0.【规律方法】处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解. 典例9:已知椭圆x 2a 2+y 2b 2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x轴正半轴和y 轴分别交于Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →. (1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.典例10:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (1)求椭圆的方程;(2)过点S ⎝⎛⎭⎫0,-13的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.解 (1)∵椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b =c .又斜边长为2,即2c =2,故c =b =1,a =2,椭圆方程为x 22+y 2=1.(2)当l 与x 轴平行时,以线段AB 为直径的圆的方程为x 2+⎝⎛⎭⎫y +132=169; 当l 与y 轴平行时,以线段AB 为直径的圆的方程为x 2+y 2=1.【规律方法】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.典例11:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知c a =32,12ab =1.又a 2=b 2+c 2,解得a =2,b =1,c = 3.∴|AN |=|2-x N |=⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪1+2y 0x 0-2=⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2,所以|AN |·|BM |=4.故|AN |·|BM |为定值. 【规律方法】圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值; (2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得; (3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.典例12:设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e |FA |,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0.解得x =2或x =8k 2-64k 2+3.由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因为直线MH 的方程为y =-1k x +9-4k212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k 消去y ,解得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |, 即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64或⎣⎡⎭⎫64,+∞.典例13:已知圆x 2+y 2=1过椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b 2=1相交于A ,B 两点.记λ=OA →·OB →,且23≤λ≤34.(1)求椭圆的方程; (2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围.λ=OA →·OB →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=k 2+11+2k 2,由23≤λ≤34,得12≤k 2≤1, 即k 的取值范围是⎣⎡⎦⎤-1,-22∪⎣⎡⎦⎤22,1. (3)|AB |2=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2-2(2k 2+1)2, 由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d , 则S =12|AB |d =12|AB |,所以64≤S ≤23.即△OAB 的面积S 的取值范围是⎣⎡⎦⎤64,23.【规律方法】解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系; (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.典例14:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x +4y +6=0与圆x 2+(y -b )2=a 2相切. (1)求椭圆C 的方程;(2)已知过椭圆C 的左顶点A 的两条直线l 1,l 2分别交椭圆C 于M ,N 两点,且l 1⊥l 2,求证:直线MN 过定点,并求出定点坐标;(3)在(2)的条件下求△AMN 面积的最大值.①m ≠±1时,k MN =5m4(m 2-1),l MN :y =5m 4(m 2-1)⎝⎛⎭⎫x +65.此时过定点⎝⎛⎭⎫-65,0. ②m =±1时,l MN :x =-65,过点⎝⎛⎭⎫-65,0. ∴l MN 恒过定点⎝⎛⎭⎫-65,0. (3)由(2)知S △AMN =12×45|y M -y N |=25⎪⎪⎪⎪4m m 2+4+4m 4m 2+1=8⎪⎪⎪⎪⎪⎪m 3+m 4m 4+17m 2+4=8⎪⎪⎪⎪m +1m 4⎝⎛⎭⎫m +1m 2+9=84⎪⎪⎪⎪m +1m +9⎪⎪⎪⎪m +1m . 令t =⎪⎪⎪⎪m +1m ≥2,当且仅当m =±1时取等号, ∴S △AMN ≤1625,且当m =±1时取等号.∴(S △AMN )max =1625.【规律方法】处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【归纳常用万能模板】1.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,点(2,2)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值.所以直线OM的斜率与直线l的斜率的乘积为定值.12分❶列出方程组,解出a 2,b 2得4分.❷设出直线l 的方程后与椭圆方程联立消去y 得到关于x 的方程准确者得4分.❸求出点M 的坐标得1分,再得到直线OM 的斜率与直线l 的斜率的乘积为定值得2分. ❹结论得1分.解答圆锥曲线中的定点、定值问题的一般步骤第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点、定值. 第二步:探究一般情况.探究一般情形下的目标结论. 第三步:下结论,综合上面两种情况定结论.2. (本小题满分12分)(2016·全国Ⅰ卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.(2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN|=1+k2|x1-x2|=12(k2+1)4k2+3.6分得分点③高考状元满分心得1.正确使用圆锥曲线的定义:牢记圆锥曲线的定义,能根据圆锥曲线定义判断曲线类型,如本题第(1)问就涉及椭圆的定义.2.注意分类讨论:当用点斜式表示直线方程时,应分直线的斜率存在和不存在两种情况求解,易出现忽略斜率不存在的情况,导致扣分,如本题第(2)问中的得分10分,导致失2分.3.写全得分关键:在解析几何类解答题中,直线方程与圆锥曲线方程联立后得到的一元二次方程,根据一元二次方程得到的两根之和与两根之积、弦长、目标函数等一些关键式子和结果都是得分点,在解答时一定要写清楚.解题程序第一步:利用条件与几何性质,求|EA|+|EB|=4.第二步:由定义,求点E 的轨迹方程x 24+y 23=1(y ≠0). 第三步:联立方程,用斜率k 表示|MN |. 第四步:用k 表示出|PQ |,并得出四边形的面积.第五步:结合函数性质,求出当斜率存在时S 的取值范围. 第六步:求出斜率不存在时面积S 的值,正确得出结论.【易错易混温馨提醒】一、忽视椭圆的焦点轴导致方程出错.易错1:已知椭圆2222:1(0)y x W a b a b +=>>的焦距与椭圆22:14x y Ω+=的短轴长相等,且W 与Ω的长轴长相等,这两个椭圆在第一象限的交点为A ,直线l 与直线OA (O 为坐标原点)垂直,且l 与W 交于,M N 两点. (1)求W 的方程;(2)求MON ∆的面积的最大值.【答案】(1)22143y x +=(2试题解析:(1)由题意可得2224{ 1a a b =-=,∴ 224{ 3a b ==,故W 的方程为22143y x +=.二、多解问题的取舍.易错2:已知椭圆2222:1(0)x yC a ba b+=>>的左、右焦点分别为1F,2F,B为椭圆的上顶点,12BF F∆为A为椭圆的右顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于,M N 两点(,M N 不是左、右顶点),且满足MA NA ⊥,试问:直线l 是否过定点?若过定点,求出该定点的坐标,否则说明理由.【答案】(Ⅰ) 22143x y +=;(Ⅱ)直线l 过定点,定点坐标为207⎛⎫⎪⎝⎭,.三、巧用均值不等式求最值,避免大量运算.易错3:已知椭圆()222210x y a b a b +=>>的离心率e =左、右焦点分别为12,F F ,且2F 与抛物线24y x =的焦点重合.(1)求椭圆的标准方程;(2)若过1F 的直线交椭圆于,B D 两点,过2F 的直线交椭圆于,A C 两点,且AC BD ⊥,求AC BD +的最小值.【答案】(1)椭圆的标准方程为22132x y +=;(2)AC BD +.解析:(1)抛物线24y x =的焦点为()1,0,所以1c =,又因为13c e a a ===a = 所以22b =,所以椭圆的标准方程为22132x y +=. (2)(i )当直线BD 的斜率k 存在且0k ≠时,直线BD 的方程为()1y k x =+,代入椭圆方程22132x y +=, 并化简得()2222326360k x k x k +++-=.设()11,B x y , ()22,D x y ,则2122632k x x k +=-+, 21223632k x x k -=+,12BD x x =-=)22132k k +=+.易知AC 的斜率为1k-,所以)221112332k k AC k k⎫+⎪+⎝⎭==+⨯+. )2221113223AC BD k k k ⎛⎫+=++ ⎪++⎝⎭)()())()()22222222211322332232k k k k k k ++=≥++⎡⎤+++⎢⎥⎢⎥⎣⎦)()222212514k k +==+. 当21k =,即1k =±时,上式取等号,故AC BD +. (ii )当直线BD的斜率不存在或等于零时,易得AC BD +=>综上, AC BD +. 四、多元的最值问题.易错4:平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO交椭圆E 于点Q . (ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值.(ⅰ)设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.五、不能完全用韦达定理代换的坐标的处理..易错5:已知椭圆2222:1(0)x y C a b a b -=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点1F ,2F 为顶点的三角形的周长为)41.(1)求椭圆C 的标准方程;(2)设该椭圆C 与y 轴的交点为M , N (点M 位于点N 的上方),直线y=kx+4与椭圆C 相交于不同的两点,A B ,求证:直线MB 与直线NA 的交点D 在定直线上.【答案】(1) 22184x y += (2)见解析(2)设(),4A A A x kx +, (),4B B B x kx + ,则由联立方程组2228{4x y y kx +==+,化简得()222116240k x kx +++=,由()232230k =->解得232k >,由韦达定理,得21621A B k x x k -+=+, 22421A Bx x k =+ 直线MB 的方程22B B kx y x x +=+ ① 直线NA 的方程62A Akx y x x +=- ②联立①②,得()233A B A B B Akx x x x y x x ++==- 222241622212116421B B k k x k k K x K -⎛⎫++ ⎪++⎝⎭--+ 82221116421B B k x k k x k ⎛⎫+ ⎪+⎝⎭==++,即1cy =∴直线MB 与直线NA 的交点D 在定直线1y =上 六、求曲线方程时的挖点问题易错6:已知定点()3,0A -、()3,0B ,直线AM 、BM 相交于点M ,且它们的斜率之积为19-,记动点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)设直线l 与曲线C 交于P 、Q 两点,若直线AP 与AQ 斜率之积为118-,求证:直线l 过定点,并求定点坐标.【答案】(1)曲线C 的方程为2219x y += ()3x ≠±;(2)直线l 过定点,定点坐标为()1,0.故曲线C 的方程为2219x y += ()3x ≠±.七、设直线斜率前要对于直线斜率存在否要进行讨论.易错7:已知圆M 的半径为3,圆心在x 轴正半轴上,直线3490x y -+=与圆M 相切. (1)求圆M 的标准方程;(2)过点()0,3N -的直线L 与圆M 交于不同的两点()()1122,,,A x y B x y ,而且满足221212212x x x x +=,求直线L 的方程.【答案】(1) (x ﹣2)2+y 2=9 (2) x ﹣y ﹣3=0,17x ﹣7y ﹣21=0,x=0 【解析】试题分析:(1)可设圆心坐标为(),0(0)a a >,由直线与圆相切,知圆心M 到切线的距离等于半径,可求得a ,从而得圆的标准方程;(2)注意分类讨论,当直线l 斜率不存在时,代入求出A 、B 两点坐标,检验是否符合题意;当直线l 斜率存在时,设斜率为k ,得直线方程为3y kx =-,代入圆的方程,由韦达定理得1212,x x x x +,代入已知等式221212212x x x x +=可求得k 的值,从而得直线方程. 试题解析:(I )设圆心为M (a ,0)(a >0), ∵直线3x ﹣4y +9=0与圆M 相切∴=3.解得a=2,或a=﹣8(舍去),所以圆的方程为:(x ﹣2)2+y 2=9。

2018高考数学考场答题技巧【三篇】

2018高考数学考场答题技巧【三篇】

2018高考数学考场答题技巧【三篇】导读:本文2018高考数学考场答题技巧【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【填空题解题方法】一、直接法从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

二、特殊化法当填空题的结论或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。

三、数形结合法对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

四、等价转化法将问题等价地转化成便于解决的问题,从而得出正确的结果。

解决恒成立问题通常可以利用分离变量转化为最值的方法求解。

【选择题解题方法】一、直接法直接从题设的条件出发,运用有关的概念、性质、定理、法则和公式等知识,通过严密的推理和计算来得出题目的结论。

二、特例法包括选取符合题意的特殊数值、特殊位置、特殊函数、特殊数列、特殊图形等,代入或者比照选项来确定答案。

这种方法叫做特值代验法,是一种使用频率很高的方法。

三、数形结合画出图形或者图象能够使问题提供的信息更直观地呈现,降低思维难度,是解决数学问题的有力策略。

四、估值判断有些问题,属于比较大小或者确定位置的问题,对数值进行估算,或者对位置进行估计,就可以避免因为精确计算和严格推演而浪费时间。

五、排除法(代入检验法)充分运用选择题中的单选的特征,即有且只有一个正确选项这一信息,通过分析、推理、计算、判断,逐一排除,最终达到目的的一种解法。

六、还可用极限法、放缩法和探究归纳法等【审题要慢做题要快】 1.调整好状态,控制好自我。

(1)保持清醒。

数学的考试时间在下午,建议同学们中午休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)按时到位。

今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。

建议同学们提前15-20分钟到达考场。

2018高考数学解题方法与经验【三篇】

2018高考数学解题方法与经验【三篇】

2018高考数学解题方法与经验【三篇】导读:本文2018高考数学解题方法与经验【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇:雷区和得分技巧】无谓失误1:计算出错计算能力是高考数学考查的一项基本能力,但目前反映出来的问题是,很多考生计算能力非常不足。

“在评卷过程中,我们经常看到考生解题的方法和思路都正确,但就是计算出错。

很多解答题都是多步计算,中间步骤的计算出错会直接导致后续解答相应出错,造成严重丢分。

一句话:不是不会做,而是计算错!”在这些错误中,最常见的是“代数式的恒等变形(含纯数字运算)”出错,包括整式、分式和二次根式的运算,因式分解等内容;其次是求解方程(组)与不等式(组)计算出错,这是很容易预防的错误。

事实上,解方程或方程组时将所求出来的解代入到原方程或方程组进行检验即可发现正确与否,解不等式或不等式组则可以考虑用解集区间端点或一些特殊值进行检验。

无谓失误2:答题不规范高考数学解答题明确要求考生写出文字说明、证明过程和演算步骤。

考生们必须明白,做一道解答题实际是在写一篇数学作文!必须要把解答的思维过程无声地展示给评卷人员,而不是把一堆数学式子和数学符号写在试卷上即可。

很多考生的文字说明词不达意,证明过程条件不明显、推理不到位、演算步骤详略不当、卷面不整洁。

有些考生则是文字表述思路不清,令人费解,评卷老师需要猜测其解题意图。

千万不要触碰高考答题要求的“红线”:必须在指定答题区域内书写相应题号的解答。

有些考生将部分解答内容写在指定的区域之外,甚至有一些考生更改答题卡的题号,如在18题答题区域上将“18”涂改成“19”并将19题解答写在这个区域上,这些都会被作零分处理。

无谓失误3:答非所选填空题同样是考生“无谓失分”较多的。

一些考生做填空题时答非所选,即答题卡所选择的题目与实际做的题目不一致,但评卷时是根据所选题目进行评判的,当然不给分。

此外,考生给出的结果不规范也易失分。

比如答案是一个计算出来的具体数字,但考生只是给出了中间一步还没有算完的式子等等。

2018年高考数学选择题、填空题答题策略与答题技巧

2018年高考数学选择题、填空题答题策略与答题技巧

2018年高考数学答题策略与答题技巧一、2012-2017历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。

如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。

当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。

一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。

当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。

一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。

切记不要“小题大做”。

注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。

虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。

多写不会扣分,写了就可能得分。

三、答题技巧1.函数或方程或不等式的题目,先直接思考后建立三者的联系,首先考虑定义域。

2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。

如所过的定点,二次函数的对称轴或是……;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;4.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量;16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

2018年高考数学选择题、填空题答题策略与答题技巧

2018年高考数学选择题、填空题答题策略与答题技巧

2018年高考数学答题策略与答题技巧一、2012-2017历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。

如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。

当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。

一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。

当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。

一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。

切记不要“小题大做”。

注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。

虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。

多写不会扣分,写了就可能得分。

三、答题技巧1.函数或方程或不等式的题目,先直接思考后建立三者的联系,首先考虑定义域。

2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。

如所过的定点,二次函数的对称轴或是……;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;4.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量;16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018高考文科数学答题技巧
2018高考文科数学答题技巧
精品文档
2018高考文科数学答题技巧 @
答题技巧是一门学问,答题顺序、审题方式、遇到难题的处理等都大有讲究。

下面学习啦小编给大家带来高考文科数学答题技巧,希望对你有帮助。

高考文科数学答题技巧 1.带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,大题角度是个很重要的结论,如果你实在不会,也可以写出最后结论。

.圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就ok了。

.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想
不出的那个结论即可。

如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!
.立体几何中,求二面角B-OA-C的新方法。

利用三面角余弦定理。

设二面角
B-OA-C是?OA,?AOB是α,?BOC是β,?AOC是γ,这个定理就
是:cos?OA=(cosβ-cosαcosγ)/sinαsinγ。

知道这个定理,如果考试中遇到立体几何求二面角的题,套一下公式就出来了。

.数学(理)线性规划题,不用画图直接解方程更快
1 / 8
精品文档
.数学最后一大题第三问往往用第一问的结论
()判定定理:若不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行
(3)面面平行的性质:两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面
(4)线面垂直的性质:平面外与已知平面的垂线垂直的直线平行于已知平面
判定两平面平行的方法:
(1)依定义采用反证法
(2)利用判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。

(3)利用判定定理的推论:如果一个平面内有两条相交直线平行于另一个平面内的两条直线,则这两平面平行。

(4)垂直于同一条直线的两个平面平行。

3 / 8
精品文档
(5)平行于同一个平面的两个平面平行。

证明线与线垂直的方法:
(1)利用定义(2)线面垂直的性质:如果一条直线垂直于这个平面,那么这条直线垂直于这个平面的任何一条直线。

证明线面垂直的方法:
(1)线面垂直的定义
(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。

(3)线面垂直的判定定理2:如果在两条平行直线中有一条垂直于平面,那么另一条也垂直于这个平面。

(4)面面垂直的性质:如果两个平面互相垂直那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

(5)若一条直线垂直于两平行平面中的一个平面,则这条直线必垂直于另一个平面。

高考文科数学复习方法 1.强化“三基”,夯实基础
所谓“三基”就是指基础知识、基本技能和基本的数学思想方法,从近几年的高考数学试题可见“出活题、考基础、考能力”仍是命题的主导思想。

因而在复习时应注意加强“三基”题型的训练,不要急于求成,好高骛远,抓了高深的,丢了基本的。

考生要深化对“三基”的理解、掌握和运用,高考试题改革的重点是:从“知识立意”向“能力立意”转变,考试
4 / 8
精品文档
大纲提出的数学学科能力要求是:能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。

新课标提出的数学学科的能力为:数学地提出问题、分析问题和解决问题的能力,数学探究能力,数学建模能力,数学交流能力,数学实践能力,数学思维能力。

考生复习基础知识要抓住本学科内各部分内容之间的联系与综合进行重新组合,对所学知识的认识形成一个较为完整的结构,达到“牵一发而动全身”的境界。

强化基本技能的训练要克服“眼高手低”现象,主要在速算、语言表达、解题、反思矫正等方面下功夫,尽量不丢或少丢一些不应该丢失的分数。

要注重基本数学思想方法在日常训练中的渗透,逐步提高学生的思维能力。

夯实解题基本功。

高考复习的一个基本点是夯实解题基本功,而对这个问题的一个片面做法是,只抓解题的知识因素,其实,解题的效益取决于多种因素,其中
最基本的有:解题的知识因素、能力因素、经验因素、非智力因素。

学生在答卷中除了知识性错误之外,还有逻辑性错误和策略性错误和心理性错误。

数学高考历来重视运算能力,运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要合理,并且在复习中要有意识地养成书写规范,表达准确的良好习惯。

5 / 8
精品文档
. 全面复习,系统整理知识,查漏补缺,优化知识结构
这是第一阶段复习中应该重点解决的问题。

考生在这一过程应牢牢抓住以下几点:?概念的准确理解和实质性理解;?基本技能、基本方法的熟练和初步应用;?公式、定理的正逆推导运用,抓好相互的联系、变形和巧用。

经过全面复习这一阶段的努力,应使达到以下要求:?按大纲要求理解或掌握概念;?能理解或独立完成课本中的定理证明;?能熟练解答课本上的例题、习题;?能简要说出各单元题目类型及主要解法;?形成系统知识的合理结构和解题步骤的规范化。

这一阶段的直接效益是会考得优,其根本目的是为数学素质的提高准备物质基础。

认真做好全面复习,才谈得上灵活性和综合性,才能适应高考踩分点多、覆盖面广的特点。

这一阶段复习的基本方法是从大到小、先粗后细,把教学中分割讲授的知识单点、知识片断组织合成知识链、知识体系、知识结构,使之各科内容综合化;基础知识体系化;基本方法类型化;解题步骤规范化。

这当中,辅以图线、表格、口诀等已被证明是有益的,“习题化”的复习技术亦被证明是成功的,如,基本内容填空,基本概念判断,基本公式串联,基本运算选择。

.加强对知识交汇点问题的训练
课本上每章的习题往往是为巩固本章内容而设置的,所
6 / 8
精品文档
用知识相对比较单一。

复习中考生对知识交汇点的问题应适当加强训练,实际上就是训练学生的分析问题解决问题的能力。

要形成有效的知识网络。

知识网络就是知识之间的基本联系,它反映知识发生的过程,知识所要回答的基本问题。

构建知识网络的过程是一个把厚书(课本)读薄的过程;同时通过综合复习,还应该把薄书读厚,这个厚,应该比课本更充实,在课本的基础上加入一些更宏观的认识,更个性化的理解,更具操作性的解题经验。

综合性的问题往往是可以分解为几个简单的问题来解决的,这几个简单问题有机的结合在一起。

要解决这类考题,关键在于弄清题意,将之分解,找到突破口。

由于课程内容的变化,使知识的交汇点出现了新动向,如从概率统计中产生应用型试题,从导数应用中与函数性质的联袂,从解析几何中产生与平面向量的联系、立体几何、三角函数、数列内容中渗透相关知识的综合考查(如三角与向量的结合、数列与不等式结合、概率与数列内容的结合)等。

高考文科数学答题技巧对大家有用吗,想进一步攻克高中其他课程不妨多听一些名师主讲课程,高分等你拿~
7 / 8
精品文档
8 / 8。

相关文档
最新文档