陕西省西安中学2020~2021学年度第一学期期末考试高一数学试题及答案
2020-2021西安市高中必修一数学上期末模拟试题(及答案)
2020-2021西安市高中必修一数学上期末模拟试题(及答案)一、选择题1.设23a log =,3b =,23c e =,则a b c ,,的大小关系是( ) A .a b c << B .b a c << C .b c a << D . a c b <<2.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ). A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<- 3.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]4.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1)A .1B .3C .5D .75.若函数()2log ,? 0,? 0x x x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1e B .e C .21e D .2e6.函数()2sin f x x x =的图象大致为( )A .B .C .D .7.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =L ),则1232022x x x x ++++=L ( ) A .1010B .2020C .1011D .2022 8.函数ln xy x =的图象大致是( )A .B .C .D .9.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 10.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( ) A .1,02⎡⎫-⎪⎢⎣⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .1,02⎛⎫- ⎪⎝⎭ D .1,2⎛⎫-+∞ ⎪⎝⎭11.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a 升,则m 的值为( )A .10B .9C .8D .5 12.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1} B .{3,5} C .{1,2,4,6} D .{1,2,3,4,5}二、填空题13.已知1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x +++≤的解集为______. 14.已知函数241,(4)()log ,(04)x f x x x x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________.15.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12b f x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 16.已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______.17.若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,则实数m 的取值范围是______;18.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.19.函数{}()min 2,2f x x x =-,其中{},min ,{,a a b a b b a b≤=>,若动直线y m =与函数()y f x =的图像有三个不同的交点,则实数m 的取值范围是______________.20.已知a >b >1.若log a b+log b a=52,a b =b a ,则a= ,b= . 三、解答题21.已知函数2()3f x x mx n =-+(0m >)的两个零点分别为1和2.(1)求m ,n 的值;(2)令()()f x g x x =,若函数()()22x x F x g r =-⋅在[]1,1x ∈-上有零点,求实数r 的取值范围.22.已知函数()()()log 1log 1a a f x x x =+--(0a >,1a ≠),且()31f =.(1)求a 的值,并判定()f x 在定义域内的单调性,请说明理由;(2)对于[]2,6x ∈,()()()log 17am f x x x >--恒成立,求实数m 的取值范围. 23.已知集合,,.(1)若,求的值; (2)若,求的取值范围. 24.泉州是全国休闲食品重要的生产基地,食品产业是其特色产业之一,其糖果产量占全国的20%.现拥有中国驰名商标17件及“全国食品工业强县”2个(晋江、惠安)等荣誉称号,涌现出达利、盼盼、友臣、金冠、雅客、安记、回头客等一大批龙头企业.已知泉州某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1元/千克,每次购买配料需支付运费90元.设该厂每隔()*x x ∈N 天购买一次配料.公司每次购买配料均需支付保管费用,其标准如下:6天以内(含6天),均按10元/天支付;超出6天,除支付前6天保管费用外,还需支付剩余配料保管费用,剩余配料按3(5)200x -元/千克一次性支付. (1)当8x =时,求该厂用于配料的保管费用P 元;(2)求该厂配料的总费用y (元)关于x 的函数关系式,根据平均每天支付的费用,请你给出合理建议,每隔多少天购买一次配料较好.附:80()f x x x=+在(0,45)单调递减,在(45,)+∞单调递增. 25.已知函数()log (1)2a f x x =-+(0a >,且1a ≠),过点(3,3).(1)求实数a 的值;(2)解关于x 的不等式()()123122x x f f +-<-.26.已知函数()()()()log 1log 301a a f x x x a =-++<<.(1)求函数()f x 的定义域;(2)求函数()f x 的零点;(3)若函数()f x 的最小值为4-,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小.【详解】因为23a log =,3b =,23c e = 令()2f x log x =,()g x x =函数图像如下图所示:则()2442f log ==,()442g ==所以当3x =时, 23log 3>,即a b <3b =,23c e = 则()66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭ 所以66b c <,即b c <综上可知, a b c <<故选:A【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.2.A解析:A【解析】由对任意x 1,x 2 ∈ [0,+∞)(x 1≠x 2),有()()1212f x f x x x -- <0,得f (x )在[0,+∞)上单独递减,所以(3)(2)(2)(1)f f f f <=-<,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行3.B解析:B【解析】由f(1)=得a 2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.4.C解析:C【解析】【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型0.70.2x ≤ 求解.【详解】因为1小时后血液中酒精含量为(1-30%)mg /mL ,x 小时后血液中酒精含量为(1-30%)x mg /mL 的,由题意知100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,所以()3002%1.x -<,0.70.2x <,两边取对数得,lg 0.7lg 0.2x < ,lg 0.214lg 0.73x >= , 所以至少经过5个小时才能驾驶汽车.故选:C【点睛】本题主要考查了指数不等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.5.A解析:A【解析】【分析】直接利用分段函数解析式,认清自变量的范围,多重函数值的意义,从内往外求,根据自变量的范围,选择合适的式子求解即可.【详解】因为函数2log ,0(),0x x x f x e x >⎧=⎨≤⎩, 因为102>,所以211()log 122f ==-, 又因为10-<, 所以11(1)f e e--==, 即11(())2f f e=,故选A. 【点睛】 该题考查的是有关利用分段函数解析式求函数值的问题,在解题的过程中,注意自变量的取值范围,选择合适的式子,求解即可,注意内层函数的函数值充当外层函数的自变量. 6.C解析:C【解析】【分析】根据函数()2sin f x x x =是奇函数,且函数过点[],0π,从而得出结论.【详解】由于函数()2sin f x x x =是奇函数,故它的图象关于原点轴对称,可以排除B 和D ; 又函数过点(),0π,可以排除A ,所以只有C 符合.故选:C .【点睛】本题主要考查奇函数的图象和性质,正弦函数与x 轴的交点,属于基础题.7.C解析:C【解析】【分析】函数()f x 和121=-y x 都关于1,02⎛⎫ ⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫ ⎪⎝⎭对称,根据对称性计算1232022x x x x ++++L 的值. 【详解】()()10f x f x ++-=Q ,()f x ∴关于1,02⎛⎫ ⎪⎝⎭对称, 而函数121=-y x 也关于1,02⎛⎫ ⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫ ⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =L ), 有1011组关于1,02⎛⎫ ⎪⎝⎭对称, 122022...101111011x x x ∴+++=⨯=.故选:C【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.8.C解析:C【解析】 分析:讨论函数ln x y x =性质,即可得到正确答案. 详解:函数ln xy x =的定义域为{|0}x x ≠ ,ln ln xxf x f x xx x --==-=-Q ()(),∴排除B ,当0x >时,2ln ln 1-ln ,,x x x y y x x x===' 函数在()0,e 上单调递增,在(),e +∞上单调递减,故排除A,D ,故选C .点睛:本题考查了数形结合的思想应用及排除法的应用. 9.D解析:D【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围.详解:f (x )的定义域为R ,f (﹣x )=﹣f (x );f′(x )=e x +e ﹣x >0;∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1);∴sin θ>m ﹣1;即对任意θ∈0,2π⎛⎤ ⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1;∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1].故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集. 10.A解析:A【解析】【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解.【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-, ∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0 112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.11.D解析:D【解析】由题设可得方程组()552{4n m n ae a a ae +==,由55122n n ae a e =⇒=,代入(5)1142m n mnae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。
2020-2021西安市高新第一中学高中必修一数学上期末试卷(及答案)
2020-2021西安市高新第一中学高中必修一数学上期末试卷(及答案)一、选择题1.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能2.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=( ) A .4B .3C .2D .13.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称4.已知131log 4a =,154b=,136c =,则( ) A .a b c >> B .a c b >>C .c a b >>D .b c a >>5.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a << B .b a c <<C .a c b <<D .c a b <<6.已知函数()2log 14x f x x ⎧+=⎨+⎩0x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .67.函数y =的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)8.已知函数f (x )=12log ,1,24,1,x x x x >⎧⎪⎨⎪+≤⎩则1(())2f f )等于( )A .4B .-2C .2D .19.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln||y x = B .3y x = C .||2x y =D .cos y x =10.已知函数f (x )=x (e x +ae ﹣x )(x ∈R ),若函数f (x )是偶函数,记a=m ,若函数f (x )为奇函数,记a=n ,则m+2n 的值为( ) A .0 B .1C .2D .﹣111.函数y =11x -在[2,3]上的最小值为( )A .2B .12 C .13D .-1212.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}二、填空题13.已知函数()f x 满足1121-+⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭x x f f x x x ,其中x ∈R 且0x ≠,则函数()f x 的解析式为__________14.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.15.已知f (x )是定义域在R 上的偶函数,且f (x )在[0,+∞)上是减函数,如果f (m ﹣2)>f (2m ﹣3),那么实数m 的取值范围是_____. 16.已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________.17.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.18.若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____. 19.已知函数1()41x f x a =+-是奇函数,则的值为________. 20.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x xe f x e =-+,则函数[()]y f x =的值域是_________. 三、解答题21.已知函数()f x 对任意实数x ,y 都满足()()()f xy f x f y =,且()11f -=-,()1279f =,当1x >时,()()0,1f x ∈. (1)判断函数()f x 的奇偶性;(2)判断函数()f x 在(),0-∞上的单调性,并给出证明;(3)若()1f a +≤,求实数a 的取值范围. 22.已知定义域为R 的函数211()22x x f x a +=-+是奇函数.(Ⅰ)求实数a 的值;(Ⅱ)判断函数()f x 的单调性,并用定义加以证明.23.已知全集U =R ,集合{|25},{|121}M x x N x a x a =-=++剟剟. (Ⅰ)若1a =,求()R M N I ð;(Ⅱ)M N M ⋃=,求实数a 的取值范围.24.已知函数2()log (421)x xf x a a =+⋅++,x ∈R .(Ⅰ)若1a =,求方程()3f x =的解集;(Ⅱ)若方程()f x x =有两个不同的实数根,求实数a 的取值范围.25.泉州是全国休闲食品重要的生产基地,食品产业是其特色产业之一,其糖果产量占全国的20%.现拥有中国驰名商标17件及“全国食品工业强县”2个(晋江、惠安)等荣誉称号,涌现出达利、盼盼、友臣、金冠、雅客、安记、回头客等一大批龙头企业.已知泉州某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1元/千克,每次购买配料需支付运费90元.设该厂每隔()*x x ∈N天购买一次配料.公司每次购买配料均需支付保管费用,其标准如下:6天以内(含6天),均按10元/天支付;超出6天,除支付前6天保管费用外,还需支付剩余配料保管费用,剩余配料按3(5)200x -元/千克一次性支付. (1)当8x =时,求该厂用于配料的保管费用P 元;(2)求该厂配料的总费用y (元)关于x 的函数关系式,根据平均每天支付的费用,请你给出合理建议,每隔多少天购买一次配料较好.附:80()f x x x=+在单调递减,在)+∞单调递增. 26.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58.为了预测以后各月的患病人数,甲选择了模型2y ax bx c =++,乙选择了模型•xy p q r =+,其中y 为患病人数,x 为月份数,a b c p q r ,,,,,都是常数.结果4月,5月,6月份的患病人数分别为66,82,115,你认为谁选择的模型较好?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【解析】因为f (x ) 在R 上的单调增,所以由x 2+x 1>0,得x 2>-x 1,所以21121()()()()()0f x f x f x f x f x >-=-⇒+>同理得2313()()0,()()0,f x f x f x f x +>+> 即f (x 1)+f (x 2)+f (x 3)>0,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行2.D解析:D 【解析】 【分析】令()3g x ax bx =+,则()g x 是R 上的奇函数,利用函数的奇偶性可以推得(2)f -的值.【详解】令3()g x ax bx =+ ,则()g x 是R 上的奇函数,又(2)3f =,所以(2)35g +=, 所以(2)2g =,()22g -=-,所以(2)(2)3231f g -=-+=-+=,故选D. 【点睛】本题主要考查函数的奇偶性的应用,属于中档题.3.C解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 4.C解析:C 【解析】 【分析】首先将b 表示为对数的形式,判断出0b <,然后利用中间值以及对数、指数函数的单调性比较32与,a c 的大小,即可得到,,a b c 的大小关系. 【详解】因为154b=,所以551log log 104b =<=,又因为(133331log log 4log 3,log 4a ==∈,所以31,2a ⎛⎫∈ ⎪⎝⎭, 又因为131133336,82c ⎛⎫⎛⎫⎛⎫ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以3,22c ⎛⎫∈ ⎪⎝⎭, 所以c a b >>. 故选:C. 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.5.D解析:D 【解析】 【分析】 可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.6.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.7.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】由题意得:2010x x -≥⎧⎨+>⎩ 解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.8.B解析:B 【解析】121242242f ⎛⎫=+=+= ⎪⎝⎭,则()1214log 422f f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,故选B. 9.A解析:A 【解析】本题考察函数的单调性与奇偶性 由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增 0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A10.B解析:B 【解析】试题分析:利用函数f (x )=x (e x +ae ﹣x )是偶函数,得到g (x )=e x +ae ﹣x 为奇函数,然后利用g (0)=0,可以解得m .函数f (x )=x (e x +ae ﹣x )是奇函数,所以g (x )=e x +ae ﹣x 为偶函数,可得n ,即可得出结论.解:设g (x )=e x +ae ﹣x ,因为函数f (x )=x (e x +ae ﹣x )是偶函数,所以g (x )=e x +ae ﹣x 为奇函数.又因为函数f (x )的定义域为R ,所以g (0)=0, 即g (0)=1+a=0,解得a=﹣1,所以m=﹣1.因为函数f (x )=x (e x +ae ﹣x )是奇函数,所以g (x )=e x +ae ﹣x 为偶函数 所以(e ﹣x +ae x )=e x +ae ﹣x 即(1﹣a )(e ﹣x ﹣e x )=0对任意的x 都成立 所以a=1,所以n=1, 所以m+2n=1 故选B .考点:函数奇偶性的性质.11.B解析:B 【解析】 y =11x -在[2,3]上单调递减,所以x=3时取最小值为12,选B.12.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=痧.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.二、填空题13.【解析】【分析】用代换可得联立方程组求得再结合换元法即可求解【详解】由题意用代换解析式中的可得……(1)与已知方程……(2)联立(1)(2)的方程组可得令则所以所以故答案为:【点睛】本题主要考查了函 解析:()11(1)31f x x x =-≠-- 【解析】 【分析】用x -代换x ,可得1121x x f f x x x +-⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,联立方程组,求得113x f x x +⎛⎫=- ⎪⎝⎭,再结合换元法,即可求解. 【详解】由题意,用x -代换解析式中的x ,可得1121x x f f x x x +-⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,…….(1) 与已知方程1121-+⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭x x f f x x x ,……(2) 联立(1)(2)的方程组,可得113x f x x +⎛⎫=- ⎪⎝⎭, 令1,1x t t x +=≠,则11x t =-,所以()1131f t t =--,所以()11(1)31f x x x =-≠--. 故答案为:()11(1)31f x x x =-≠--. 【点睛】本题主要考查了函数解析式的求解,解答中用x -代换x ,联立方程组,求得113x f x x +⎛⎫=- ⎪⎝⎭是解答的关键,着重考查了函数与方程思想,以及换元思想的应用,属于中档试题.14.【解析】【分析】首先根据题意得到再设代入解析式即可【详解】因为是上的奇函数且满足所以即设所以所以故答案为:【点睛】本题主要考查函数的奇偶性和对称性的综合题同时考查了学生的转化能力属于中档题 解析:()6lg(6)f x x x =---+【解析】 【分析】首先根据题意得到(6)()f x f x +=-,再设(6,3)x ∈--,代入解析式即可. 【详解】因为()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,所以[3(3)][3(3)]f x f x ++=-+,即(6)()()f x f x f x +=-=-. 设(6,3)x ∈--,所以6(0,3)x +∈.(6)6lg(6)()f x x x f x +=+++=-,所以()6lg(6)f x x x =---+. 故答案为:()6lg(6)f x x x =---+ 【点睛】本题主要考查函数的奇偶性和对称性的综合题,同时考查了学生的转化能力,属于中档题.15.(﹣∞1)(+∞)【解析】【分析】因为先根据f (x )是定义域在R 上的偶函数将f (m ﹣2)>f (2m ﹣3)转化为再利用f (x )在区间0+∞)上是减函数求解【详解】因为f (x )是定义域在R 上的偶函数且f解析:(﹣∞,1)U (53,+∞) 【解析】 【分析】因为先根据f (x )是定义域在R 上的偶函数,将 f (m ﹣2)>f (2m ﹣3),转化为()()223f m f m ->-,再利用f (x )在区间[0,+∞)上是减函数求解.【详解】因为f (x )是定义域在R 上的偶函数,且 f (m ﹣2)>f (2m ﹣3), 所以()()223fm f m ->- ,又因为f (x )在区间[0,+∞)上是减函数, 所以|m ﹣2|<|2m ﹣3|, 所以3m 2﹣8m +5>0, 所以(m ﹣1)(3m ﹣5)>0, 解得m <1或m 53>,故答案为:(﹣∞,1)U (53,+∞). 【点睛】本题主要考查了函数的单调性与奇偶性的综合应用,还考查了转化化归的思想和运算求解的能力,属于中档题.16.【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的 解析:(,1]-∞【解析】 【分析】通过去掉绝对值符号,得到分段函数的解析式,求出值域,然后求解()ag x x x=+的值域,结合已知条件推出a 的范围即可. 【详解】由题意,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则()f x 与()g x 的值域的并集为R ,又()2,1112,112,1x f x x x x x x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩,结合分段函数的性质可得,()f x 的值域为[]22-,, 当0a ≥时,可知()ag x x x=+的值域为(),⎡-∞-+∞⎣U ,所以,此时有2≤,解得01a ≤≤, 当0a <时,()ag x x x=+的值域为R ,满足题意, 综上所述,实数a 的范围为(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数恒成立条件的转化,考查转化思想的应用,注意题意的理解是解题的关键,属于基础题.17.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】 【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可.【详解】Q 偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩, 即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃,故答案为()(),20,2-∞-⋃【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.18.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【 解析:25[,)6-+∞ 【解析】【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【详解】设x x t e e -=-,1x x x x t e ee e -=-=-是增函数,当0ln2x ≤≤时,302t ≤≤, 不等式()()2220x x x x a e e e e ---+++≥化为2220at t +++≥,即240t at ++≥,不等式240t at ++≥在3[0,]2t ∈上恒成立,0t =时,显然成立,3(0,]2t ∈,4a t t-≤+对3[0,]2t ∈上恒成立, 由对勾函数性质知4y t t=+在3(0,]2是减函数,32t =时,min 256y =, ∴256a -≤,即256a ≥-. 综上,256a ≥-. 故答案为:25[,)6-+∞. 【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.19.【解析】函数是奇函数可得即即解得故答案为 解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x x a a -+=----,即41214141x x x a =-=--,解得12a =,故答案为12 20.【解析】【分析】求出函数的值域由高斯函数的定义即可得解【详解】所以故答案为:【点睛】本题主要考查了函数值域的求法属于中档题 解析:{}1,0,1-【解析】【分析】求出函数()f x 的值域,由高斯函数的定义即可得解.【详解】2(1)212192()2151551x x x x e f x e e e+-=-=--=-+++Q , 11x e +>Q ,1011xe ∴<<+, 2201x e ∴-<-<+, 19195515x e ∴-<-<+,所以19(),55f x ⎛⎫∈- ⎪⎝⎭, {}[()]1,0,1f x ∴∈-,故答案为:{}1,0,1-【点睛】本题主要考查了函数值域的求法,属于中档题.三、解答题21.(1)()f x 为奇函数;(2)()f x 在(),0-∞上单调递减,证明见解析;(3)[)4,1--.【解析】【分析】(1)令1y =-,代入抽象函数表达式即可证明函数的奇偶性;(2)先证明当0x >时,()0f x >,再利用已知和单调函数的定义,证明函数()f x 在()0,∞+上的单调性,根据函数的奇偶性,即可得到函数()f x 在(),0-∞上的单调性; (3)先利用赋值法求得()3f -=再利用函数的单调性解不等式即可 【详解】解:(1)令1y =-,则()()()1f x f x f -=-.∵()11f -=-,∴()()f x f x -=-∴函数()f x 为奇函数;(2)函数()f x 在(),0-∞上单调递减.证明如下:由函数()f x 为奇函数得()()111f f =--= 当()0,1x ∈时,11x >,()10,1f x ⎛⎫∈ ⎪⎝⎭,()111f x f x =>⎛⎫ ⎪⎝⎭ 所以当0x >时,()0f x >,设120x x <<,则211x x >,∴2101x f x ⎛⎫<< ⎪⎝⎭, 于是()()()22211111x x f x f x f f x f x x x ⎛⎫⎛⎫=⋅=< ⎪ ⎪⎝⎭⎝⎭, 所以函数()f x 在()0,∞+上单调递减.∵函数()f x 为奇函数,∴函数()f x 在(),0-∞上单调递减.(3)∵()1279f =,且()()()()327393f f f f ==⎡⎤⎣⎦,∴()3f = 又∵函数()f x 为奇函数,∴()3f -= ∵()1f a +≤()()13f a f +≤-,函数()f x 在(),0-∞上单调递减. 又当0x ≥时,()0f x ≥.∴310a -≤+<,即41a -≤<-,故a 的取值范围为[)4,1--.【点睛】本题考查了抽象函数表达式的意义和运用,函数奇偶性的定义和判断方法,函数单调性定义及其证明,利用函数的单调性解不等式的方法22.(Ⅰ)1α= (Ⅱ)在R 上单调递增,证明见解析【解析】【分析】(1)函数的定义域为R ,利用奇函数的必要条件,(0)0f =,求出a ,再用奇函数的定义证明;(2)判断()f x 在R 上单调递增,用单调性的定义证明,任取12x x <,求出函数值,用作差法,证明()()12f x f x <即可.【详解】 解:(Ⅰ)∵函数21()22x x f x a =-+是奇函数,定义域为R , ∴(0)0f =,即11012a -=+, 解之得1α=,此时2121()2122(21)x x x x f x -=-=++ ()()2112()()221212x xx x f x f x -----===-++, ()f x ∴为奇函数,1a \=;(Ⅱ)由(Ⅰ)知,()2121()212221x x x x f x -=-=++, 设12,x x R ∈,且12x x <,()()212121212122121x x x x f x f x ⎛⎫---=- ⎪++⎝⎭()()2211222121x x x x =++-∵12x x <,∴1222x x <,∴()()120f x f x -<,即()()12f x f x <故()f x 在R 上单调递增.【点睛】本题考查函数奇偶性的应用,注意奇偶性必要条件的运用,减少计算量但要加以证明,考查函数单调性的证明,属于中档题.23.(Ⅰ)(){|22R M C N x x =-≤<I 或35}x <≤(Ⅱ)2a ≤【解析】【分析】(Ⅰ)1a =时,化简集合B ,根据集合交集补集运算即可(Ⅱ)由M N M ⋃=可知N M ⊆,分类讨论N =∅,N ≠∅即可求解.【详解】(Ⅰ)当1a =时,{}|23N x x =≤≤ ,{|2R C N x x =<或}3x > .故 (){|22R M C N x x =-≤<I 或35}x <≤.(Ⅱ),M N M ⋃=QN M ∴⊆当N =∅时,121a a +>+,即0a <;当N ≠∅时,即0a ≥.N M ⊆Q ,12215a a +≥-⎧∴⎨+≤⎩ 解得02a ≤≤.综上:2a ≤.【点睛】本题主要考查了集合的交集,补集运算,子集的概念,分类讨论,属于中档题.24.(Ⅰ){}1(Ⅱ)13a -<<-【解析】【分析】(Ⅰ)将1a =代入直接求解即可;(Ⅱ)设2x t =,得到()()2110t a t a +-++=在()0,+∞有两个不同的解,利用二次函数的性质列不等式组求解即可.【详解】(Ⅰ)当1a =时,()()2log 4223x x f x =++=, 所以34222x x ++=,所以4260x x +-=,因此()()23220x x +-=,得22x =解得1x =,所以解集为{}1.(Ⅱ)因为方程()2log 421x x a a x +⋅++=有两个不同的实数根,即4212x x x a a +⋅++=,设2x t =,()()2110t a t a +-++=在()0,+∞有两个不同的解, 令()()()211f t t a t a =+-++,由已知可得()()()2001021410f a a a ⎧>⎪-⎪->⎨⎪⎪=--+>⎩n解得13a -<<-【点睛】本题主要考查了对数函数与指数函数的复合函数的处理方式,考查了函数与方程的思想,属于中档题.25.(1)78;(2)221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩,N x ∈,9天. 【解析】【分析】(1)由题意得第6天后剩余配料为(86)200400-⨯=(千克),从而求得P ;(2)由题意得221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈. 求出分段函数取得最小值时,对应的x 值,即可得答案.【详解】(1)第6天后剩余配料为(86)200400-⨯=(千克), 所以3(85)6040078200P ⨯-=+⨯=; (2)当6x ≤时,200109021090y x x x =++=+, 当6x >时,23(5)2009060200(6)3167240200x y x x x x -=+++⋅⋅-=++, 所以221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈. 设平均每天支付的费用为()f x 元,当06x ≤≤时,2109090()210x f x x x+==+, ()f x 在[0,6]单调递减,所以min ()(6)225f x f ==;当6x >时,2316724080()3167x x f x x x x ++⎛⎫==++ ⎪⎝⎭, 可知()f x在单调递减,在)+∞单调递增,又89<<,(8)221f =,2(9)2203f =,所以min 2()(9)2203f x f == 综上所述,该厂9天购买一次配料才能使平均每天支付的费用最少.【点睛】本题考查构建函数模型解决实际问题、函数的单调性和最值,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对勾函数图象的应用.26.乙选择的模型较好.【解析】【分析】由二次函数为2y ax bx c =++,利用待定系数法求出解析式,计算456x =、、时的函数值;再求出函数•x y p q r =+的解析式,计算456x =、、时的函数值,最后与真实值进行比较,可决定选择哪一个函数式好.【详解】依题意,得222•1?152•2?254•3?358a b c a b c a b c ⎧++=⎪++=⎨⎪++=⎩, 即5242549358a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得1152a b c =⎧⎪=-⎨⎪=⎩∴甲:2152y x x =-+,又123•52•54•58p q r p q r p q r ⎧+=⎪+=⎨⎪+=⎩①②③, 2132••2••4p q p q p q p q --=--=①②,④②③,⑤, 2q ÷=⑤④,,将2q =代入④式,得1p =将21q p ==,代入①式,得50r =, ∴乙:2250x y =+计算当4x =时,126466y y ==,;当5x =时,127282y y ==,;当6x =时,1282114y y ==,.可见,乙选择的模型与实际数据接近,乙选择的模型较好.【点睛】本题考查了根据实际问题选择函数类型的应用问题,也考查了用待定系数法求函数解析式的应用问题,意在考查灵活运用所学知识解决实际问题的能力,是中档题。
2020-2021学年陕西省西安市一中高一上学期期末考试试卷
【解析】
试题分析:分别由两圆的方程找出两圆心坐标和两个半径R和r,然后利用两点间的距离公式求出两圆心的距离d,比较d与R﹣r及d与R+r的大小,即可得到两圆的位置关系.
解:把x2+y2﹣8x+6y+9=0化为(x﹣4)2+(y+3)2=16,又x2+y2=9,
所以两圆心的坐标分别为:(4,﹣3)和(0,0),两半径分别为R=4和r=3,
B、各个侧面都是正方形的棱柱一定是正棱柱
C、对角面是全等的矩形的直棱柱是长方体
D、两底面为相似多边形,且其余各面均为梯形的多面体必为棱台
9.将直线2x-y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ的值为()
A.-3或7B.-2或8
C.0或10D.1或11
10.如图,已知 , ,从点 射出的光线经直线 反射后再射到直线 上,最后经直线 反射后又回到 点,则光线所经过的路程是()
C不正确,对角面是全等的矩形的直棱柱的底面可能是等腰梯形;
D不正确,不能保证此多面体的各侧棱交于一点.
考点:几何体的概念问题.
9.A
【解析】
试题分析:根据直线平移的规律,由直线2x﹣y+λ=0沿x轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值.
考点:点到线的距离.
4.B
【解析】
试题分析:①正确,因为梯形中有两边平行,而两平行线只确定一个平面;
②不正确,三条平行线可能共面也可能异面,如直三棱柱的三条侧棱;
③不正确;当三点不共线时两平面必重合,当三点共线时两平面不一定重合.
2020-2021学年陕西省西安市中学高一数学理期末试题含解析
2020-2021学年陕西省西安市中学高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的定义域是()A.; B.; C.; D.(-1,0)参考答案:C2. 已知函数,下列结论中正确的是A.f(x)的最小正周期是B.f(x)的一条对称轴是C.f(x)的一个对称中心是D.是奇函数参考答案:D3. 设等差数列满足:,且公差. 若当且仅当时,数列的前项和取得最大值,则首项的取值范围是( )A. B. C. D.参考答案:D略4. 若样本的平均数为10,其方差为2,则对于样本的下列结论正确的是A. 平均数为20,方差为8B. 平均数为20,方差为10C. 平均数为21,方差为8D. 平均数为21,方差为10参考答案:A【分析】利用和差积的平均数和方差公式解答.【详解】由题得样本的平均数为,方差为.故选:A【点睛】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.5. 与直线2x+y-1=0关于点(1,0)对称的直线方程是()A. 2x+y-3=0B. 2x+y+3=0C. x+2y+3=0D. x+2y-3=0参考答案:A在所求直线上取点(x,y),关于点(1,0)对称的点的坐标为(a,b),则∴a=2-x,b=-y,∵(a,b)在直线2x+y-1=0上∴2a+b-1=0∴2(2-x)-y-1=0∴2x+y-3=0故选A6. 在边长为2的菱形ABCD中,,E是BC的中点,则A. B. C. D. 9参考答案:D【分析】选取向量为基底,用基底表示,然后计算.【详解】由题意,,.故选D.【点睛】本题考查向量的数量积,平面向量的线性运算,解题关键是选取基底,把向量用基底表示.7. 下列四组函数中,在上为增函数的是()A B C D参考答案:C略8. 函数f(x)=2x﹣的零点所在的区间可能是( )A.(1,+∞)B.(,1)C.(,)D.(,)参考答案:B【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】将函数的零点问题转化为求两个函数的交点问题,结合函数的图象及性质容易解出.【解答】解:令f(x)=0,∴2x=,令g(x)=2x,h(x)=,∵g()=,g(1)=2,h()=2,h(1)=1,结合图象:∴函数h(x)和g(x)的交点在(,1)内,∴函数f(x)的零点在(,1)内,故选:B.【点评】本题考察了函数的零点问题,指数函数,反比例函数的性质问题,渗透了转化思想,是一道基础题.9. 已知=(4,2),=(6,y),若⊥,则y等于()A.3 B.﹣12 C.﹣3 D.12参考答案:B【考点】平面向量数量积的运算.【分析】运用向量垂直的条件:数量积为0,结合数量积的坐标表示,解方程即可得到所求值.【解答】解: =(4,2),=(6,y),若⊥,则?=4×6+2y=0,解得y=﹣12.故选:B.10. 不共面的四点可以确定平面的个数为 ( )A. 2个 B. 3个 C. 4个 D.无法确定参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 给出下列五个命题:①函数的图象与直线可能有两个不同的交点;②函数与函数是相等函数;③对于指数函数与幂函数,总存在,当时,有成立;④对于函数,若有,则在内有零点.⑤已知是方程的根,是方程的根,则.其中正确的序号是 .参考答案:12. 已知数列满足,则它的前项和___________.参考答案:S n=略13. 在区间中随机地取出两个数,则两数之和小于的概率是_____ .参考答案:14. 如果,且是第四象限的角,那么。
2020-2021学年西安中学高一上学期期末数学试卷(附答案解析)
2020-2021学年西安中学高一上学期期末数学试卷一、单选题(本大题共12小题,共48.0分)1.若2a+lna=3b+lnb,则a、b的大小关系正确的是()A. a>bB. a≥bC. a<bD. a≤b2.已知a=0.33,b=30.3,c=0.23,则a,b,c的大小关系为()A. a<b<cB. c<a<bC. b<a<cD. c<b<a3.用斜二测法作一梯形的直观图是一个等腰梯形,且等腰梯形的面积为,则原梯形的面积为()A. 2B.C. 2D. 44.设a=log85,b=log43,c=23,则a,b,c的大小顺序为()A. a>b>cB. b>a>cC. c>b>aD. b>c>a5.给出下列四个命题,其中正确的个数为()①两条相交直线确定一个平面;②两条平行直线确定一个平面;③一条直线和一点确定一个平面.④经过三点确定一个平面A. 0B. 1C. 2D. 36.减函数f(x)=3ax−2a+1,若存在x0∈(−1,1),使f(x0)=0,则实数a的取值范围是()A. −1<a<15B. a<−1或a>15C. a>15D. −1<a<07.如图是某一几何体的三视图,则该几何体的体积是()A. 34B. 1C. 54D. 328.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是().A. 若α⊥β,m⊂α,n⊂β,则m⊥nB. 若α//β,m⊂α,n⊂β,,则m//nC. 若m⊥n,m⊂α,n⊂β,则α⊥βD. 若m⊥α,m//n,n//β,则α⊥β9.已知集合M={x|x<1},N={x|2x>1},则M∪N=()A. ⌀B. {x|0<x<1}C. {x|x<0}D. R10.已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(−∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=()A. {x|x≤0或1≤x≤4}B. {x|0≤x≤4}C. {x|x≤4}D. {x|0≤x≤1或x≥4}11.任何一个函数都可以表示成一个奇函数与一个偶函数和或差的形式,若已知函数f(x)=2e x,若将f(x)表示成一个偶函数g(x)和一个奇函数ℎ(x)的差,且[ℎ(x)]2+ag(x)≥1对x∈R恒成立,则实数a的取值范围为()A. [13,+∞) B. [1,+∞) C. [12,+∞) D. [−14,+∞)12.某厂的产值若每年平均比上一年增长10%,经过x年后,可以增长到原来的2倍,在求x时,所列的方程正确的是()A. (1+10%)x−1=2B. (1+10%)x=2C. (1+10%)x+1=2D. x=(1+10%)2二、单空题(本大题共4小题,共16.0分)13.14、二次函数的函数值组成的集合是__________.14.设f(x)是定义在R上的奇函数,若当x>0时,f(x)=x2−sinx+1,则f(x)的解析式为.15.正方形ABCD的边长为4,中点为M,球O与正方形ABCD所在的平面相切于M点,过点M的球的直径另一端点为N,线段NA与球O的球面积的交点为E,且E恰为线段NA的种中点,则球O的表面积为______ .16.正四面体ABCD的棱长为2,则所有与A,B,C,D距离相等的平面截这个四面体所得截面的面积之和为______.三、解答题(本大题共6小题,共56.0分)17.已知圆A:x2+y2+6y+5=0,圆B:x2+y2−4x−6y+4=0.(Ⅰ)求经过圆A与圆B的圆心的直线方程;(Ⅱ)已知直线l:x+y−7=0,设圆心A关于直线l的对称点为A′,点C在直线l上,当△A′BC的面积为14时,求点C的坐标.18.已知全集为实数集R,A={x|1≤x<5},B={x|−a<x≤a+3}.(1)若a=1,求A∪B,(∁R A)∩B;(2)若A∩B=B,求a的取值范围.19.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本)。
2020-2021西安高新第一中学初中校区东区初级中学高中必修一数学上期末试题(附答案)
2020-2021西安高新第一中学初中校区东区初级中学高中必修一数学上期末试题(附答案)一、选择题1.已知a =21.3,b =40.7,c =log 38,则a ,b ,c 的大小关系为( ) A .a c b <<B .b c a <<C .c a b <<D .c b a <<2.已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( )A .[]2,0-B .(],8∞--C .[)2,∞+D .(],0∞- 3.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞)D .(-∞,-2]5.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c << B .c b a << C .c a b <<D .a b c <<6.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =L ),则1232022x x x x ++++=L ( ) A .1010 B .2020 C .1011D .20227.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x + B .(1)f x -C .()1f x +D .()1f x -8.函数ln x y x=的图象大致是( )A .B .C .D .9.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073D .109310.曲线1(22)y x =-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 11.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}12.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞ B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞二、填空题13.已知函数()22f x mx x m =-+的值域为[0,)+∞,则实数m 的值为__________14.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.15.己知函数()221f x x ax a =-++-在区间[]01,上的最大值是2,则实数a =______.16.已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________. 17.若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____.18.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.19.函数2sin 21=+++xy x x 的最大值和最小值之和为______ 20.若存在实数(),m n m n <,使得[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,其中0a >且1a ≠,则实数t 的取值范围是______.三、解答题21.已知函数31()31x xf x -=+. (1)证明:()f x 为奇函数;(2)判断()f x 的单调性,并加以证明; (3)求()f x 的值域. 22.计算或化简:(1)1123021273log 161664π⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭; (2)6log 2332log 27log 2log 36lg 2lg 5+⋅-++.23.已知集合,,.(1)若,求的值;(2)若,求的取值范围.24.已知函数()log (1)2a f x x =-+(0a >,且1a ≠),过点(3,3). (1)求实数a 的值;(2)解关于x 的不等式()()123122xx f f +-<-.25.已知()()122x x f x a a R +-=+∈n .(1)若()f x 是奇函数,求a 的值,并判断()f x 的单调性(不用证明); (2)若函数()5y f x =-在区间(0,1)上有两个不同的零点,求a 的取值范围.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用指数函数2xy =与对数函数3log y x =的性质即可比较a ,b ,c 的大小. 【详解】1.30.7 1.4382242c log a b =<<===<Q ,c a b ∴<<.故选:C . 【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.2.A解析:A 【解析】 【分析】根据偶函数的性质,可知函数在(],0-∞上是减函数,根据不等式在[)1,x ∈+∞上恒成立,可得:21x a x +≤-在[)1,+∞上恒成立,可得a 的范围. 【详解】()f x Q 为偶函数且在[)0,+∞上是增函数()f x ∴在(],0-∞上是减函数对任意[)1,x ∈+∞都有()()21f x a f x +≤-恒成立等价于21x a x +≤-2121x x a x ∴-+≤+≤- 311x a x ⇒-+≤≤- ()()max min 311x a x ∴-+≤≤-当1x =时,取得两个最值3111a ∴-+≤≤- 20a ⇒-≤≤ 本题正确选项:A 【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.3.B解析:B 【解析】【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.B解析:B 【解析】 由f(1)=得a 2=, ∴a=或a=-(舍), 即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.5.D解析:D 【解析】 【分析】函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,再通过数形结合得到a ,b ,c 的大小关系. 【详解】令2()2log 0x f x x =+=,则2log 2x x =-.令12()2log 0xg x x -=-=,则2log 2x x -=-. 令2()2log 10x x h x =-=,则22log 1x x =,21log 22x xx-==. 所以函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log y x =与函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,如图所示,可知01a b <<<,1c >, ∴a b c <<.故选:D . 【点睛】本题主要考查函数的零点问题,考查对数函数和指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.C解析:C 【解析】 【分析】 函数()f x 和121=-y x 都关于1,02⎛⎫⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫⎪⎝⎭对称,根据对称性计算1232022x x x x ++++L 的值. 【详解】()()10f x f x ++-=Q ,()f x ∴关于1,02⎛⎫⎪⎝⎭对称,而函数121=-y x 也关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =L ), 有1011组关于1,02⎛⎫ ⎪⎝⎭对称,122022...101111011x x x ∴+++=⨯=.故选:C 【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.7.D解析:D 【解析】 【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x , 再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +, 该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.8.C解析:C 【解析】 分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-Q ()(), ∴排除B , 当0x >时,2ln ln 1-ln ,,x x xy y xx x===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.9.D解析:D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.10.A解析:A 【解析】试题分析:1(22)y x =-≤≤对应的图形为以()0,1为圆心2为半径的圆的上半部分,直线24y kx k =-+过定点()2,4,直线与半圆相切时斜率512k =,过点()2,1-时斜率34k =,结合图形可知实数k 的范围是53(,]124考点:1.直线与圆的位置关系;2.数形结合法11.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=痧.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.12.C解析:C 【解析】 【分析】由()()2g x f x =-是奇函数,可得()f x 的图像关于()2,0-中心对称,再由已知可得函数()f x 的三个零点为-4,-2,0,画出()f x 的大致形状,数形结合得出答案. 【详解】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 【点睛】本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档题.二、填空题13.1【解析】【分析】根据二次函数的值域为结合二次函数的性质列出不等式组即可求解【详解】由题意函数的值域为所以满足解得即实数的值为1故答案为:1【点睛】本题主要考查了二次函数的图象与性质的应用其中解答中解析:1 【解析】 【分析】根据二次函数的值域为[0,)+∞,结合二次函数的性质,列出不等式组,即可求解. 【详解】由题意,函数()22f x mx x m =-+的值域为[0,)+∞,所以满足2440m m ⎧∆=-=⎨>⎩,解得1m =.即实数m 的值为1. 故答案为:1. 【点睛】本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质是解答的关键,着重考查了推理与计算能力,属于基础题.14.【解析】【分析】首先根据题意得到再设代入解析式即可【详解】因为是上的奇函数且满足所以即设所以所以故答案为:【点睛】本题主要考查函数的奇偶性和对称性的综合题同时考查了学生的转化能力属于中档题 解析:()6lg(6)f x x x =---+【解析】 【分析】首先根据题意得到(6)()f x f x +=-,再设(6,3)x ∈--,代入解析式即可. 【详解】因为()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,所以[3(3)][3(3)]f x f x ++=-+,即(6)()()f x f x f x +=-=-. 设(6,3)x ∈--,所以6(0,3)x +∈.(6)6lg(6)()f x x x f x +=+++=-,所以()6lg(6)f x x x =---+. 故答案为:()6lg(6)f x x x =---+ 【点睛】本题主要考查函数的奇偶性和对称性的综合题,同时考查了学生的转化能力,属于中档题.15.或【解析】【分析】由函数对称轴与区间关系分类讨论求出最大值且等于2解关于的方程即可求解【详解】函数对称轴方程为为;当时;当即(舍去)或(舍去);当时综上或故答案为:或【点睛】本题考查二次函数的图像与解析:1-或2. 【解析】 【分析】由函数对称轴与区间关系,分类讨论求出最大值且等于2,解关于a 的方程,即可求解. 【详解】函数()22221()1f x x ax a x a a a =-++-=--+-+,对称轴方程为为x a =;当0a ≤时,max ()(0)12,1f x f a a ==-==-;当2max 01,()()12a f x f a a a <<==-+=,即2110,2a a a +--==(舍去),或12a -=(舍去); 当1a ≥时,max ()(1)2f x f a ===, 综上1a =-或2a =. 故答案为:1-或2. 【点睛】本题考查二次函数的图像与最值,考查分类讨论思想,属于中档题.16.【解析】【分析】分别求出的值域对分类讨论即可求解【详解】的值域为当函数值域为此时的值域相同;当时当时当所以当时函数的值域不同故的取值范围为故答案为:【点睛】本题考查对数型函数的值域要注意二次函数的值 解析:(]0,1【解析】【分析】分别求出(),()f x g x 的值域,对a 分类讨论,即可求解.【详解】()()222,log log a R f x x a a +∈=+≥,()f x 的值域为2[log ,)a +∞,()()22log ([()])g x f f x f x a ==+⎡⎤⎣⎦,当22201,log 0,[()]0,()log a a f x g x a <≤<≥≥,函数()g x 值域为2[log ,)a +∞,此时(),()f x g x 的值域相同;当1a >时,2222log 0,[()](log )a f x a >≥,222()log [(log )]g x a a ≥+,当12a <<时,2222log 1,log (log )a a a a <∴<+当22222,log 1,(log )log a a a a ≥≥>,222log (log )a a a <+,所以当1a >时,函数(),()f x g x 的值域不同,故a 的取值范围为(]0,1.故答案为:(]0,1.【点睛】本题考查对数型函数的值域,要注意二次函数的值域,考查分类讨论思想,属于中档题. 17.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【 解析:25[,)6-+∞ 【解析】【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【详解】设x x t e e -=-,1x x x x t e e e e -=-=-是增函数,当0ln2x ≤≤时,302t ≤≤,不等式()()2220x x x x a e e e e ---+++≥化为2220at t +++≥,即240t at ++≥,不等式240t at ++≥在3[0,]2t ∈上恒成立, 0t =时,显然成立,3(0,]2t ∈,4a t t-≤+对3[0,]2t ∈上恒成立, 由对勾函数性质知4y t t=+在3(0,]2是减函数,32t =时,min 256y =, ∴256a -≤,即256a ≥-. 综上,256a ≥-. 故答案为:25[,)6-+∞. 【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.18.【解析】【分析】先根据图象可以得出f(x)的图象可以在OC 或CD 中选取一个再在AB 或OB 中选取一个即可得出函数f(x)的解析式【详解】由图可知线段OC 与线段OB 是关于原点对称的线段CD 与线段BA 也是解析:()1x f x ⎧=⎨⎩1001x x -<<<< 【解析】【分析】先根据图象可以得出f (x )的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,即可得出函数f (x ) 的解析式.【详解】由图可知,线段OC 与线段OB 是关于原点对称的,线段CD 与线段BA 也是关于原点对称的,根据题意,f (x) 与g (x) 的图象关于原点对称,所以f (x)的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,比如其组合形式为: OC 和AB , CD 和OB , 不妨取f (x )的图象为OC 和AB ,OC 的方程为: (10)y x x =-<<,AB 的方程为: 1(01)y x =<<,所以,10()1,01x x f x x -<<⎧=⎨<<⎩, 故答案为:,10()1,01x x f x x -<<⎧=⎨<<⎩【点睛】本题主要考查了函数解析式的求法,涉及分段函数的表示和函数图象对称性的应用,属于中档题.19.4【解析】【分析】设则是奇函数设出的最大值则最小值为求出的最大值与最小值的和即可【详解】∵函数∴设则∴是奇函数设的最大值根据奇函数图象关于原点对称的性质∴的最小值为又∴故答案为:4【点睛】本题主要考 解析:4【解析】【分析】设()2sin 1x g x x x =++,则()g x 是奇函数,设出()g x 的最大值M ,则最小值为M -,求出2sin 21=+++x y x x 的最大值与最小值的和即可. 【详解】 ∵函数2sin 21=+++x y x x , ∴设()2sin 1x g x x x =++,则()()2sin 1x g x x g x x --=-=-+, ∴()g x 是奇函数,设()g x 的最大值M ,根据奇函数图象关于原点对称的性质,∴()g x 的最小值为M -,又()max max 22g x y M =+=+,()min min 22g x y M =+=-,∴max min 224y y M M +=++-=,故答案为:4.【点睛】本题主要考查了函数的奇偶性与最值的应用问题,求出()2sin 1x g x x x =++的奇偶性以及最值是解题的关键,属于中档题. 20.【解析】【分析】由已知可构造有两不同实数根利用二次方程解出的范围即可【详解】为增函数且时函数的值域也为相当于方程有两不同实数根有两不同实根即有两解整理得:令有两个不同的正数根只需即可解得故答案为:【 解析:10,4⎛⎫ ⎪⎝⎭【解析】【分析】由已知可构造()2log x a at x +=有两不同实数根,利用二次方程解出t 的范围即可.【详解】()2()log x a f x a t =+Q 为增函数,且[],x m n ∈时,函数()()2log x a f x a t =+的值域也为[],m n ,(),()f m m f n n ∴==,∴相当于方程()f x x =有两不同实数根,()2log x a a t x ∴+=有两不同实根,即2x x a a t =+有两解,整理得:20x x a a t -+=,令,0xm a m => , 20m m t ∴-+=有两个不同的正数根,∴只需1400t t ∆=->⎧⎨>⎩即可, 解得104t <<, 故答案为:10,4⎛⎫ ⎪⎝⎭【点睛】本题主要考查了对数函数的单调性,对数方程,一元二次方程有两正根,属于中档题.三、解答题21.(1)证明见详解;(2)函数()f x 在R 上单调递,证明见详解;(3)(1,1)-【解析】【分析】(1)判断()f x 的定义域,用奇函数的定义证明可得答案;(2)判断()f x 在R 上单调递增,用函数单调性的定义证明可得答案;(2)由312()13131x x x f x -==-++,可得30x >,可得231x +及231x -+的取值范围,可得()f x 的值域.【详解】证明:(1)易得函数()f x 的定义域为R ,关于原点对称, 且3113()()3131x xx x f x f x -----===-++,故()f x 为奇函数; (2)函数()f x 在R 上单调递增,理由如下:在R 中任取12x x <,则1233x x -<0,131x +>0,231x +>0, 可得1212121212123131222(33)()()(1)(1)31313131(31)(31)x x x x x x x x x x f x f x ----=-=---=++++++<0故12()()0f x f x -<,函数()f x 在R 上单调递增;(3)由312()13131x x x f x -==-++,易得30x >,311x +>, 故231x +0<<2,231x +-2<-<0,故2131x -+-1<<1, 故()f x 的值域为(1,1)-. 【点睛】本题主要考查函数单调性及奇偶性的判断与证明及求解函数的值域,综合性大,属于中档题.22.(1)12-(2)3 【解析】【分析】(1)根据幂的运算法则计算;(2)根据对数运算法则和换底公式计算.【详解】解:(1)原式1313249314164⎡⎤⎛⎫⎛⎫=+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥+⎣⎦ 731444=++- 12=-. (2)原式33log 312lg10=+-+3121=+-+3=.【点睛】本题考查幂和对数的运算法则,掌握幂和对数运算法则是解题关键.23.(1) 或;(2). 【解析】试题分析:(1)由题意结合集合相等的定义分类讨论可得:的值为或.(2)由题意得到关于实数a 的不等式组,求解不等式组可得. 试题解析:(1)若,则,∴. 若,则,,∴. 综上,的值为或. (2)∵,∴∴.24.(1)2(2){}2log 5x|2<x <【解析】【分析】(1)将点(3,3)代入函数计算得到答案.(2)根据函数的单调性和定义域得到1123122x x +<-<-,解得答案.【详解】(1)()()3log 3123,log 21,2a a f a =-+=∴=∴=∴ ()()2log 12f x x =-+. (2)()()2log 12f x x =-+Q 的定义域为{}|1x x >,并在其定义域内单调递增, ∴()()1123122,123122x x x x f f ++-<-∴<-<-,不等式的解集为{}22<log 5x x <. 【点睛】本题考查了函数解析式,利用函数单调性解不等式,意在考查学生对于函数知识的综合应用.25.(1)答案见解析;(2)253,8⎛⎫ ⎪⎝⎭. 【解析】试题分析:(1)函数为奇函数,则()()0f x f x -+=,据此可得2a =-,且函数()f x 在R 上单调递增;(2)原问题等价于22252x x a =-⋅+⋅在区间(0,1)上有两个不同的根,换元令2x t =,结合二次函数的性质可得a 的取值范围是253,8⎛⎫ ⎪⎝⎭. 试题解析:(1)因为是奇函数,所以()()()()1122222220x x x x x x f x f x a a a -++---+=+⋅++⋅=++=, 所以; 在上是单调递增函数; (2)在区间(0,1)上有两个不同的零点, 等价于方程在区间(0,1)上有两个不同的根, 即方程在区间(0,1)上有两个不同的根, 所以方程在区间上有两个不同的根, 画出函数在(1,2)上的图象,如下图,由图知,当直线y=a与函数的图象有2个交点时,所以的取值范围为.点睛:函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.26.见解析【解析】【分析】根据题意,在数轴上表示出集合,A B,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。
2020-2021西安市高一数学上期末一模试题(附答案)
2020-2021西安市高一数学上期末一模试题(附答案)一、选择题1.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则A B =I ( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,22.函数()12cos 12x x f x x ⎛⎫-= ⎪+⎝⎭的图象大致为()n n A .B .C .D .3.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>5.已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时,3()f x x =,则212f ⎛⎫= ⎪⎝⎭( )A .278-B .18-C .18D .2786.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( )A .(1)f x +B .(1)f x -C .()1f x +D .()1f x -7.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃8.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:x1 2 1.5 1.625 1.75 1.875 1.8125()f x -6 3 -2.625 -1.459 -0.14 1.3418 0.5793则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.99.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( )A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭10.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .4 11.下列函数中,既是偶函数又存在零点的是( )A .B .C .D .12.若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( ) A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-二、填空题13.定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f (4)=0,则不等式f (x )≥0的解集是___.14.若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m 的取值范围是__________.15.函数()()25sin f x xg x x =--=,,若1202n x x x π⎡⎤∈⎢⎥⎣⎦,,……,,,使得()()12f x f x ++…()()()()()()1121n n n n f x g x g x g x g x f x --++=++++…,则正整数n 的最大值为___________.16.函数()()4log 521x f x x =-+-________.17.已知()f x 、()g x 分别是定义在R 上的偶函数和奇函数,且()()2xf xg x x -=-,则(1)(1)f g +=__________.18.若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.19.已知函数222y x x -=+,[]1,x m ∈-.若该函数的值域为[]1,10,则m =________.20.已知sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <>则1111()()66f f -+为_____ 三、解答题21.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-.(1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围.22.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同祥强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投人固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210200,040()100008019450,40x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩…,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(Ⅰ)求出2020年的利润()Q x (万元)关于年产量x (千部)的函数关系式(利润=销售额-成本);(Ⅱ)2020年产量x 为多少(千部)时,企业所获利润最大?最大利润是多少? (说明:当0a >时,函数ay x x=+在单调递减,在)+∞单调递增) 23.已知函数2()log (421)x xf x a a =+⋅++,x ∈R .(Ⅰ)若1a =,求方程()3f x =的解集;(Ⅱ)若方程()f x x =有两个不同的实数根,求实数a 的取值范围.24.义域为R 的函数()f x 满足:对任意实数x,y 均有()()()2f x y f x f y +=++,且()22f =,又当1x >时,()0f x >.(1)求()()0.1f f -的值,并证明:当1x <时,()0f x <; (2)若不等式()()()222221240f aa x a x ----++<对任意[] 1,3x ∈恒成立,求实数a 的取值范围.25.攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y (y 值越大产品的性能越好)与这种新合金材料的含量x (单位:克)的关系为:当0≤x <7时,y 是x 的二次函数;当x ≥7时,1()3x m y -=.测得部分数据如表:(1)求y 关于x 的函数关系式y =f (x );(2)求该新合金材料的含量x 为何值时产品的性能达到最佳. 26.已知函数()224x x a f x =-+,()()log 0,1a g x x a a =>≠.(1)若函数()f x 在区间[]1,m -上不具有单调性,求实数m 的取值范围; (2)若()()11f g =,设()112t f x =,()2t g x =,当()0,1x ∈时,试比较1t ,2t 的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .2.C解析:C 【解析】函数f (x )=(1212xx-+)cosx ,当x=2π时,是函数的一个零点,属于排除A ,B ,当x ∈(0,1)时,cosx >0,1212x x -+<0,函数f (x )=(1212xx-+)cosx <0,函数的图象在x 轴下方. 排除D . 故答案为C 。
陕西省西安高一上学期期末考试数学试卷有答案
线 CD的位置关系是
.
C G
A
D
B
HE F
题 15 图
16.已知某几何体的俯视图是如图所示的矩形,主视图是一个底边长为 8,高为
4 的等腰三角形, 左视图是一个底边为 6,高为 4 的等腰三角形, 则该几何体
的体积是
.
6
三、解答题(共 48 分)
8 ( 俯视图 )
题 16 图
17.(10 分)已知正方体 ABCD-A 1B1C1D1,O 是底面 ABCD 对角线的交点 .
AC BC 又 CC1 面 ABC CC1 AC , CC1 BC C
AC 面 BCC1 AC BC1
( 2) 连 结 B1C 交 BC1 于点 E,则 E 为 BC1 的中点,连结 DE,则在 ABC1 中,DE // AC1 ,
又 DE 面 CDB1 ,则 AC1 // 面 B1CD
3
19. 解:(1)当直线过原点时 , 过点 (2,3) 的直线为 y
3
39
A.球的三视图总是三个全等的圆
B.正方体的三视图总是三个全等的正方形
C.水平放置的正四面体的三视图都是正三角形
D.水平放置的圆台的俯视图是一个圆
6.在空间四边形 ABCD的各边 AB,BC,CD,DA上依次取点 E,F,G,H,
若 EH、FG所在直线相交于点 P,则 ( )
A
A.点 P 必在直线 AC上 C.点 P 必在平面 DBC外
C1
(2) AC1 // 平面 CDB 1 .
B1
A1
C
B D A
19. (1)(8 分)求过点 P(2,3) ,且在两坐标轴上的截距相等的直线方程 ; (2)( 8 分)已知直线 l 平行于直线 4x 3y 7 0 ,直线 l 与两坐标轴围成 的三角形的周长是 15,求直线 l 的方程.
2020-2021学年陕西省西安中学高一上学期期末数学试题(解析版)
2020-2021学年陕西省西安中学高一上学期期末数学试题一、单选题1.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确的有( ) A .1个B .2个C .3个D .4个 【答案】A【分析】利用三个公理及其推论逐项判断后可得正确的选项.【详解】对于①,三个不共线的点可以确定一个平面,所以①不正确; 对于②,一条直线和直线外一点可以确定一个平面,所以②不正确;对于③,若三点共线了,四点一定共面,所以③正确;对于④,当三条平行线共面时,只能确定一个平面,所以④不正确.故选:A.2.已知,αβ是两相异平面,,m n 是两相异直线,则下列错误的是( )A .若,m m αβ⊥⊂,则αβ⊥B .若//m α,n αβ=,则//m nC .若//m n ,m α⊥,则n α⊥D .若m α⊥,n β⊥,//m n ,则//αβ 【答案】B【分析】利用位置关系的判定定理和性质定理逐项判断后可得正确的选项.【详解】对于A ,由面面垂直的判定定理可知,β经过面α的垂线m ,所以αβ⊥成立;对于B ,若//m α,n αβ=,m 不一定与n 平行,不正确; 对于C ,若//m n ,m α⊥, 则n α⊥正确;对于D ,若m α⊥,n β⊥,//m n ,则//αβ正确.故选:B.3.对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( ) A .平行B .相交C .垂直D .异面【答案】C【详解】对于任意的直线l 与平面α,分两种情况①l 在平面α内,l 与m 共面直线,则存在直线m ⊥l 或m ∥l ;②l 不在平面α内,且l ⊥α,则平面α内任意一条直线都垂直于l ; 若l 于α不垂直,则它的射影在平面α内为一条直线,在平面α内必有直线m 垂直于它的射影,则m 与l 垂直;若l ∥α,则存在直线m ⊥l .故选C.4.如图,正方形O A B C ''''的边长为1,它是一个水平放置的平面图形的直观图,则原图形的周长为( )A .4B .6C .8D .222+【答案】C 【分析】根据斜二测画法求解.【详解】直观图如图所示:由图知:原图形的周长为13138OA AB BC CO +++=+++=,故选:C5.已知圆221680C x y y +-+=:,圆222:870C x y x +-+=,则两圆12,C C 的位置关系为( )A .相离B .相外切C .相交D .相内切 【答案】A【分析】利用半径之和与圆心距的关系可得正确的选项.【详解】圆221680C x y y +-+=:,即()2231x y +-=,圆心为(0,3),半径为1, 圆222:870C x y x +-+=,即()2249x y -+=,圆心为(4,0),半径为3. 221243513C C =+=>+.所以两圆相离,故选:A.6.已知P 是圆O :221x y +=上的动点,则点P 到直线l:0x y +-=的距离的最小值为( )A .1BC .2 D.【答案】A【分析】先利用点到直线的距离公式求得圆心到直线的距离,再用此距离减去半径,即得所求.【详解】解:因为圆O :221x y +=的圆心()0,0O 到直线l:0x y +-=的距离2d ==,且圆的半径等于1,故圆上的点P 到直线的最小距离为211d r -=-=故选:A【点睛】本题考查圆上的点到直线的距离的最值问题,属于基础题.7.两条直线1:210l ax y +-=,23110:()+++=l x a y 互相平行,则实数a 的值是( )A .1B .2C .3D .4 【答案】B【分析】由11112222:0,:0l A x B y C l A x B y C ++=++=平行,则1221122100A B A B AC A C -=⎧⎨-≠⎩求解.【详解】因为两条直线1:210l ax y +-=,23110:()+++=l x a y 互相平行, 所以()()1230130a a a ⎧+-⨯=⎪⎨--⨯≠⎪⎩, 解得2a =,故选:B8.若直线y=x+b与曲线3y =有公共点,则b 的取值范围是A.1,1⎡-+⎣B.1⎡-+⎣C .122,3⎡⎤-⎣⎦D .12,3⎡⎤-⎣⎦【答案】C【详解】试题分析:如图所示:曲线234y x x =--即 (x-2)2+(y-3)2=4(-1≤y≤3),表示以A (2,3)为圆心,以2为半径的一个半圆,直线与圆相切时,圆心到直线y=x+b 的距离等于半径2,可得232b-++=2,∴b=1+22,b=1-22当直线过点(4,3)时,直线与曲线有两个公共点,此时b=-1结合图象可得122-≤b≤3故答案为C9.已知三棱锥的主视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的左视图可能是( ).A .B .C .D .【答案】B【解析】根据正视图和俯视图,作出该三棱锥的几何直观图,如图所示,则侧视图为直角三角形,且底边边长为3AD =,高为||2OC =, 本题选择B 选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.正方体与球各自的三视图相同,但圆锥的不同.10.如图,四面体ABCD 中,4CD =,2AB =,E ,F 分别是,AC BD 的中点,若EF AB ⊥,则EF 与CD 所成的角的大小是( )A .6πB .4πC .3πD .2π 【答案】A【分析】取BC 的中点G ,连接EG ,FG ,易得FEG ∠,EFG 分别为异面直线EF 与AB ,EF 与CD 所成的角,然后根据EF AB ⊥,4CD =,2AB =,在EFG 中求解.【详解】如图所示:取BC 的中点G ,连接EG ,FG ,因为E ,F ,G 都为中点,所以//,//EG AB FG CD ,所以FEG ∠,EFG 分别为异面直线EF 与AB ,EF 与CD 所成的角,因为EF AB ⊥,所以90∠=FEG又因为4CD =,2AB =,所以 1,2EG FG == 所以1sin 2EFG ∠=, 因为(0,]2EFG π∠∈, 所以6EFG π∠=故选:A11.如图,正方体1111ABCD A B C D -的棱长为1,线段 11B D 上有两个动点E 、F ,且 12EF =,则下列结论中错误的是A .AC BE ⊥B .//EF ABCD 平面C .三棱锥A BEF -的体积为定值D .AEF BEF ∆∆的面积与的面积相等【答案】D【解析】可证11AC D DBB AC BE ⊥⊥平面,从而,故A 正确;由∥平面ABCD ,可知//EF ABCD 平面,B 也正确;连结BD 交AC 于O ,则AO 为三棱锥A BEF -的高,,三棱锥A BEF -的体积为为定值,C正确;D 错误.选D . 12.已知球的半径为4,球面被互相垂直的两个平面所截,得到的两个圆的公共弦长为22.若球心到这两个平面的距离相等,则这两个圆的半径之和为( ) A .4B .6C .8D .10【答案】B【分析】设两圆的圆心分别为O 1、O 2,球心为O ,公共弦为AB ,其中点为E ,则OO 1EO 2为正方形,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.【详解】解:如下图所示,设两圆的圆心为O 1、O 2,球心为O ,公共弦为AB ,中点为E ,因为圆心到这两个平面的距离相等,则OO 1EO 2为正方形,两圆半径相等,设两圆半径为r ,2116OO r =-,2322OE r =-又|OE |2+|AE |2=|OA |2,即32﹣2r 2+2=16,则r 2=9,r =3,所以,这两个圆的半径之和为6,故选B .【点睛】本题主要考查球的有关概念以及两平面垂直的性质,是对基础知识的考查.解决本题的关键在于得到OO 1EO 2为矩形.二、填空题13.在空间直角坐标系O xyz -中,点(1,2,4)A -关于平面yOz 的对称点是B ,点(3,1,1)C -和点(1,1,3)D -的中点是E ,则||BE =___________.【答案】【分析】先利用对称性求得点B 坐标,再利用中点坐标公式求得点E 坐标,然后利用两点间距离公式求解.【详解】因为点(1,2,4)A -关于平面yOz 的对称点是(1,2,4)B ,点(3,1,1)C -和点(1,1,3)D -的中点是(1,0,2)E -,所以||BE ==故答案为:14.若圆锥的侧面展开图是圆心角为90︒的扇形,则该圆锥的侧面积与底面积之比为___________.【答案】4:1【分析】设圆锥的底面半径为r ,母线长为l ,根据圆锥的侧面展开图是圆心角为90︒的扇形,有22l r ππ=,即4l r ,然后分别求得侧面积和底面积即可. 【详解】设圆锥的底面半径为r ,母线长为l ,由题意得:22l r ππ=,即4l r ,所以其侧面积是214S rl r ππ==,底面积是22S r π=,所以该圆锥的侧面积与底面积之比为4:1故答案为:4:115.已知一个棱长为1的正方体内接于半球体,即正方体的上底面的四个顶点在球面上,下底面的四个顶点在半球体的底面圆内,则该半球体(包括底面)的表面积为_________.【答案】92π 【分析】根据正方体和半球的关系,作出对应的轴截面,根据对应关系求得求得半径,结合面积公式,即可求解.【详解】作出半球和正方体的轴截面,如图所示,设求得的半径为R ,因为正方体的棱长为1,所以正方体的对角线长2AB =, 在直角OBC 中,2226()122R OC ==+=, 半球的表面积为2222161694()4()22222S R R πππππ=+⨯=⨯+⨯=. 故答案为:92π.16.在平面直角坐标系xOy 中,点A 为直线:2l y x =上位于第一象限内的点,定点(5,0)B ,以AB 为直径的圆与直线l 交于另一点D ,圆心为点C ,若AB CD ⊥,则点A 的横坐标为___________.【答案】3【分析】设A (),2a a ,根据(5,0)B ,写出圆C 的方程,与直线2y x =联立,求得点D 的坐标,再根据AB CD ⊥,由1AB CD k k ⋅=-求解.【详解】设A (),2a a ,因为(5,0)B ,所以5,2a C a +⎛⎫ ⎪⎝⎭, 所以圆C 的方程为:()()()520x a x y a y --+-=,联立()()()2520y x x a x y a y =⎧⎨--+-=⎩,解得()1,2D , 因为AB CD ⊥,所以1AB CD k k ⋅=-,即()()()322502a a a a +-+-=,解得3a =或1a =-,因为0a >,所以3a =,所以点A 的横坐标为3.故答案为:3三、解答题17.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限; (Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 【分析】(Ⅰ)根据任意角的转化,即可把角α写成2k πβ+的形式.进而根据β的值确定α所在的象限;(Ⅱ)根据γ与α的终边相同且(4,3)γππ∈--,即可确定γ的值.【详解】(Ⅰ)9203360160-︒=-⨯︒+︒,81609π︒=, 920α∴=-︒=8(3)29ππ-⨯+. 角α与89π终边相同, ∴角α是第二象限角.(Ⅱ)角γ与α的终边相同,∴设82()9k k Z πγπ=+∈. (4,3)γππ∈--, 由84239k ππππ-<+<-,可得2235918k -<<-. 又k Z ∈,2k ∴=-.828499ππγπ∴=-+=-. 【点睛】本题考查了角度与弧度的转化,任意角转为()0,2π的角,根据角判断所在象限,属于基础题.18.已知ABC 的三个顶点分别为(2,1),(2,3),(0,3)A B C --.(1)求BC 边的垂直平分线的方程;(2)求ABC 的面积.【答案】(1)310x y -+=;(2)10.【分析】(1)求出边BC 的中点D ,再由直线BC 的斜率13k =-,可得直线BC 的垂直平分线的斜率213k =,根据点斜式即可求解. (2)根据两点间的距离公式求出BC ,再利用点到直线的距离公式求出(2,1)A 到直线BC 的距离即可求解.【详解】解:(1)因为(2,3)B -,(0,3)C -,所以边BC 的中点D 的坐标为(1,0)D -,又因为直线BC 的斜率13k =-,则直线BC 的垂直平分线的斜率213k =, 所求直线的方程为10(1)3y x -=+,即310x y -+=.(2)因为(2,3),(0,3)B C --,所以||BC ==又直线BC 的方程为330x y ++=,则(2,1)A 到直线BC 的距离为d ==所以ABC 的面积为11||1022s BC d ==⨯=. 19.已知圆22:(4)1M x y +-=,直线:20l x y -=,点P 在直线l 上,过点P 作圆M的切线,PA PB ,切点为A ,B .(1)若点P 的坐标为(1,2),过P 作直线与圆M 交于C ,D 两点,当||2CD 时,求直线CD 的方程;(2)经过A ,P ,M 三点的圆与圆M 的公共弦是否过定点,若过定点,求出该定点的坐标,若不过定点,请说明理由.【答案】(1)30x y +-=或790x y +-=;(2)过定点,定点为115,24⎛⎫ ⎪⎝⎭.【分析】(1)根据||2CD ,得到圆心到直线CD 的距离2d =,设出直线CD 的方程,由圆心到直线的距离为2求解. (2)设(,2)P a a ,根据过A 、P 、M 三点的圆即以PM 为直径的圆,写出方程,与22(4)10x y +--=相减得到公共弦所在的直线方程求解.【详解】(1)因为||2CD ,所以圆心到直线CD 的距离22d =, 当直线CD 的斜率不存在时,直线方程为; 1x =,而1d =,不成立,当直线CD 的斜率存在时,设直线方程为:2(1)y k x -=-,则2221k =+, 解得7k =-或1k =-所以直线CD 的方程为30x y +-=或790x y +-=.(2)设(,2)P a a ,过A 、P 、M 三点的圆即以PM 为直径的圆,其方程为()(4)(2)0x x a y y a -+--=,整理得224280x y ax y ay a +---+=与22(4)10x y +--=相减得, (42)8150a y ax a --+-=,即(28)4150x y a y --++-=,由4150280y x y -=⎧⎨--+=⎩,得12154x y ⎧=⎪⎪⎨⎪=⎪⎩, 所以两圆的公共过定点号115,24⎛⎫⎪⎝⎭. 20.如图,三棱锥A BCD -中,AB ⊥平面,BCD CD BD ⊥.(1)求证:CD ⊥平面ABD ;(2)若1AB BD CD ===,M 为AD 中点,求三棱锥A MBC -的体积.【答案】(1)见解析.(2)112A MBC V -=.【解析】试题分析:(1)由AB ⊥平面BCD ,CD ⊂平面BCD ,得到AB CD ⊥.进一步即得CD ⊥平面ABD .(2)思路一:由AB ⊥平面BCD ,得AB BD ⊥. 确定1124ABM ABD S S ∆∆==. 根据CD ⊥平面ABD ,知三棱锥C-ABM 的高1h CD ==,得到三棱锥A MBC -的体积A MBC C ABM V V --=.思路二:由AB ⊥平面BCD 知,平面ABD ⊥平面BCD ,根据平面ABD ⋂平面BCD=BD ,通过过点M 作MN BD ⊥交BD 于点N.得到MN ⊥平面BCD ,且1122MN AB ==, 利用A MBC A BCD M BCD V V V ---=-计算三棱锥A MBC -的体积.试题解析:解法一:(1)∵AB ⊥平面BCD ,CD ⊂平面BCD ,∴AB CD ⊥.又∵CD BD ⊥,AB BD B ⊥=,AB ⊂平面ABD ,BD ⊂平面ABD ,∴CD ⊥平面ABD .(2)由AB ⊥平面BCD ,得AB BD ⊥.∵1AB BD ==,∴12ABD S ∆=. ∵M 是AD 的中点, ∴1124ABM ABD S S ∆∆==. 由(1)知,CD ⊥平面ABD ,∴三棱锥C-ABM 的高1h CD ==,因此三棱锥A MBC -的体积11•312A MBC C ABM ABM V V S h --∆===.解法二:(1)同解法一.(2)由AB ⊥平面BCD 知,平面ABD ⊥平面BCD ,又平面ABD ⋂平面BCD=BD ,如图,过点M 作MN BD ⊥交BD 于点N.则MN ⊥平面BCD ,且1122MN AB ==, 又,1CD BD BD CD ⊥==, ∴12BCD S ∆=. ∴三棱锥A MBC -的体积 111••3312A MBC A BCD M BCD BCD BCD V V V AB S MN S ---∆∆=-=-=. 【解析】垂直关系,几何体的体积,“间接法”、“等积法”.21.已知圆C 经过点()0,0A ,()7,7B ,圆心在直线43y x =上 (1)求圆C 的标准方程;(2)若直线l 与圆C 相切且与,x y 轴截距相等,求直线l 的方程.【答案】(1)22(3)(4)25x y -+-=;(2)3:527052704l y x x y x y =-++=+-=或或 【分析】(1)由已知线段AB 为圆C 的弦,圆心C 定在弦AB 的垂直平分线上,写出线段AB 垂直平分线方程,与直线43y x =联立,即得圆心C 坐标,计算|AC |长,即为圆C 半径,从而可得圆的标准方程;(2)分两种情况考虑:当与坐标轴的截距为0时,设切线方程为y =kx ;当与坐标轴的截距不为0时,设切线方程为x +y =b ,利用圆心到直线的距离等于半径,可得切线方程.【详解】(1)由题意可知AB 为圆C 的弦,其垂直平分线过圆心C ,∵A (0,0)和B (7,7),∴k AB =1,线段AB 垂直平分线的斜率为-1,又线段AB 的中点坐标为(72,72), ∴线段AB 的垂直平分线的方程为:y ﹣72=-(x-72),即x +y-7=0, 又圆心在直线4x -3y =0上,联立得:43070x y x y -=⎧⎨+-=⎩,解得:x 34y =⎧⎨=⎩,即圆心C 坐标为(3,4), ∴圆C 的半径|AC |=5,则圆C 的方程为:(x -3)2+(y ﹣4)2=25;(2)若直线过原点,设切线方程为y =kx ,即kx ﹣y =0,圆心C 到切线的距离d5r ==,整理得:16k 2+24k +9=0,解得:k =3-4, 所求切线的方程为:y =3-x 4; 若截距不为0时,设圆的切线方程为:x +y =b ,圆心C 到切线的距离dr =5,解得b =7±,所求切线方程为7070x y x y ++=+-=或,综上,所有满足题意的切线方程有3条,分别为370704y x x y x y =-++=+-=或或. 【点睛】本题考查圆的标准方程和直线方程的求法,考查圆的切线方程的求法,属于基础题.22.如图所示,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 是AB 的中点.(1)证明:1//BD 平面1A DE ;(2)证明:11D E A D ⊥;(3)求二面角1D EC D --的正切值.【答案】(1)证明见解析;(2)证明见解析;(3)22. 【分析】(1)连接1AD 交1A D 于点O ,连接EO ,易得1//OE BD ,再利用线面平行的判定定理证明.(2)由长方体的特征得到1AB AD ⊥,再由11A D AD ⊥,利用线面垂直的判定定理证得1A D ⊥平面1AD E 即可.(3)易得CE DE ⊥,再由1D D ⊥平面,ABCD CE ⊂平面ABCD ,得到1CE D D ⊥,可得CE ⊥平面1D DE ,由1D ED ∠是二面角1D EC D --的平面角求解.【详解】(1)如图所示:连接1AD 交1A D 于点O ,连接EO ,则O 为1AD 的中点.∵E 是AB 的中点,∴1//OE BD又OE ⊂平面1A DE ,1BD ⊄平面1A DE ,∴1//BD 平面1A DE .(2)由题意可知,四边形11ADD A 是正方形,∴11A D AD ⊥.∵AB ⊥平面11ADD A ,1A D ⊂平面11ADD A ,∴1AB AD ⊥.∵AB 平面1AD E ,1AD ⊂平面1AD E ,1AB AD A =,∴1A D ⊥平面1AD E .又1D E ⊂平面1AD E ,∴11A D D E ⊥,即11D E A D ⊥.(3)在CED 中,2CD =,DE ==,CE ∴CE DE ⊥∵1D D ⊥平面,ABCD CE ⊂平面ABCD ,∴1CE D D ⊥.∵1D D ⊂平面1D DE ,DE ⊂平面1D DE ,1D D DE D ⋂=,∴CE ⊥平面1D DE .又∵1D E ⊂平面1D DE ,∴1CE D E ⊥.∴1D ED ∠是二面角1D EC D --的平面角.在A 1D ED 中,∵190D DE ∠=︒,11=D D ,DE =∴11tan 2D D D ED DE ∠===,∴二面角1D EC D --. 【点睛】方法点睛:几何法求线线角、线面角、二面角的常用方法:(1)求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)线面角的求法,找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解.(3)二面角的求法,二面角的大小用它的平面角来度量.平面角的作法常见的有①定义法;②垂面法.注意利用等腰、等边三角形的性质.。
陕西省西安市长安区第一中学2020-2021学年高一上学期期末考试数学试卷 含解析
易错点睛:(1)分段函数是一个函数,只有一个最值;
(2)分段函数已知函数值求自变量的取值,要分段讨论.
19.已知 ,则 __________.
————
分析:
由两角和的正切公式展开后计算.
解答:因为 ,所以 .
故答案为: .
20.已知 是定义域为 的单调函数,且对任意实数 ,都有 ,则下列关于 的说法中正确的为_________.(填序号)
又 ,所以 或 或 或 或 或 或 ,所以函数 的图象与函数 的图象交点的横坐标的和为 .
故选:A.
9.已知函数 的零点为 ,设 , ,则 , , 的大小关系为()
A. B. C. D.
————B
分析:
根据零点定义将 零点转化成函性判断出 , 值,之后比较大小即可得出答案.
(1)求 与 之间的函数关系式;
(2)求 的最大值.
————(1) , ;(2) .
分析:
(1)本题首先可根据题意得出 、 ,然后根据绿色草坪的面积等于黄色郁金香的面积得出 ,最后根据 即可求出 与 之间的函数关系式;
(2)本题首先可设 ,则 以及 ,然后根据 得出 ,再然后将 与 之间的函数关系式转化为 ,最后通过函数 的单调性即可得出结果.
(1)直接法:令 ,有几个解,函数就有几个零点;
(2)零点的存在定理法:要求函数 在区间 上连续不断的曲线,且 ,再结合函数的图象与性质确定零点的个数;
(3)图象法:利用图象交点的个数,作出两函数的图象,观察其交点的个数,得出函数 的零点个数.
14.已知 外接圆圆心为 ,G为 所在平面内一点,且 .若 ,则 ()
解答:(1) 在 上单调递减且值域为 ,
陕西省西安市航天城第一中学2020-2021学年高一数学上学期期末考试数学试题含解析
A.1B. C.2D.2
————D
分析:
利用垂径定理可求弦长.
解答:圆 的圆心坐标为 ,半径为 ,
圆心到直线 的距离为 ,
故弦长为: ,
故选:D.
11.古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数 ( 且 )的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知 ,动点 满足 ,则动点 轨迹与圆 位置关系是()
故选:D.
点拨:本题主要考查直线的方程,属于基础题.
6.平行于直线 且与圆 相切的直线的方程是( )
A. 或 B. 或
C. 或 D. 或
————A
设所求直线为 ,
由直线与圆相切得,
,
解得 .所以直线方程为 或 .选A.
7.直线 与直线 互相垂直,则这两条直线的交点坐标为( )
A. B.
C. D.
————B
C.点 到直线l的距离是1
D.过 与直线l平行的直线方程是
————D
分析:
根据直线的倾斜角、斜率、点到直线的距离公式、两直线平行的条件逐一判断各个选项即可.
解答:∵ : ,即 ,
∴直线的斜率 ,
∴ ,则A错;
又 ,则B错;
点 到直线 的距离是 ,则C错;
过 与直线 平行的直线方程是 ,即 ,则D对;
故选:A.
点拨:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:
①平移:平移异面直线中的一条或两条,作出异面直线所成的角;
②认定:证明作出的角就是所求异面直线所成的角;
2020-2021学年陕西省西安市凌云中学高一数学理期末试题含解析
2020-2021学年陕西省西安市凌云中学高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. .设角则的值等于()A. B.- C. D.参考答案:D略2. =A. B. C. D.参考答案:B略3. 直线的倾斜角是()(A)30°(B)120°(C)60°(D)150°参考答案:A略4. 设a,b是不同的直线,α、β是不同的平面,则下列命题:①若②若③若④若其中正确命题的个数是 ( )A.0 B.1 C.2D.3参考答案:B5. (3分)以下关于几何体的三视图的讨论中,正确的是()A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆参考答案:A考点:简单空间图形的三视图.专题:计算题;空间位置关系与距离.分析:球的三视图总是三个全等的圆;正方体、水平放置的正四面体的三视图跟摆放有关;水平放置的圆台的俯视图是两个同心圆.解答:球的三视图总是三个全等的圆,正确;正方体的三视图总是三个全等的正方形,不一定,跟摆放有关,故不正确;水平放置的正四面体的三视图都是正三角形,不一定,跟摆放有关,故不正确;水平放置的圆台的俯视图是两个同心圆,故不正确.故选:A.点评:本题考查简单空间图形的三视图,考查学生分析解决问题的能力,比较基础.6. 函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣) C.f(x)=sin(x+)D.f(x)=sin(x﹣)参考答案:B【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题.【分析】根据图象的最高点和最低点,得到A的值,根据半个周期的长度得到ω的值,写出解析式,根据函数的图象过()点,代入点的坐标,求出φ的值,写出解析式.【解答】解:由图象知A=1,∵=,∴T=π,∴ω=2,∴函数的解析式是y=sin(2x+φ)∵函数的图象过()∴0=sin(2×+φ)∴φ=kπ﹣,∴φ=∴函数的解析式是y=sin(2x﹣)故选B.【点评】本题考查由函数的图象求函数的解析式,本题解题的难点是求出解析式的初相,这里可以利用代入特殊点或五点对应法,本题是一个基础题.7. 等差数列{a n}的前n项和为S n,已知,S2m﹣1=38,则m=()A.9 B.10 C.20 D.38参考答案:B【考点】85:等差数列的前n项和.【分析】根据等差数列的性质可知,第m﹣1项与第m+1项的和等于第m项的2倍,代入a m﹣1+a m+1﹣a m2=0中,即可求出第m项的值,然后利用等差数列的前n项和的公式表示出前2m﹣1项的和,利用等差数列的性质化为关于第m项的关系式,把第m项的值代入即可求出m的值.【解答】解:根据等差数列的性质可得:a m﹣1+a m+1=2a m,则a m﹣1+a m+1﹣a m2=a m(2﹣a m)=0,解得:a m=0或a m=2,又S2m﹣1==(2m﹣1)a m,若a m=0,显然(2m﹣1)a m=38不成立,故应有a m=2此时S2m﹣1=(2m﹣1)a m=4m﹣2=38,解得m=10故选B.8. 如图,ABCD﹣A1B1C1D1为正方体,下面结论错误的是()A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1所成的角为60°参考答案:D【考点】空间中直线与直线之间的位置关系;棱柱的结构特征;空间中直线与平面之间的位置关系.【分析】A中因为BD∥B1D1可判,B和C中可由三垂线定理进行证明;而D中因为CB1∥D1A,所以∠D1AD即为异面直线所成的角,∠D1AD=45°.【解答】解:A中因为BD∥B1D1,正确;B中因为AC⊥BD,由三垂线定理知正确;C中有三垂线定理可知AC1⊥B1D1,AC1⊥B1C,故正确;D中显然异面直线AD与CB1所成的角为45°故选D【点评】本题考查正方体中的线面位置关系和异面直线所成的角,考查逻辑推理能力.9. 若函数(其中为常数)的图象如右图所示,则函数的大致图象是参考答案:D10. 如图,U是全集,M、P、S是U的3个子集,则阴影部分所表示的集合是()A. B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数f(x)满足f(x﹣1)=2x+1,若f(a)=3a,则a= .参考答案:3【考点】函数的零点.【专题】计算题;函数思想;换元法;函数的性质及应用.【分析】利用函数的解析式列出方程求解即可.【解答】解:函数f(x)满足f(x﹣1)=2x+1,f(a)=f(a+1﹣1)=3a,可得2(a+1)+1=3a,解得a=3.故答案为:3.【点评】本题考查函数的解析式的应用,考查计算能力.12. 计算=参考答案:1213. 如图,已知两个正方形和不在同一平面内,平面平面,分别为的中点,若两个正方形的顶点都在球上,且球的表面积为,则的长为参考答案:14. 已知向量,,的起点相同且满足,则的最大值为 .参考答案:3【考点】平面向量数量积的运算. 【分析】可作作=,=,=,根据条件可以得出OA=2,OB=,AC⊥BC,从而说明点C在以AB 为直径的圆上,从而当OC 过圆心时,OC 最长,即||最大,设圆心为D ,从而根据OC=OD+DC,由中线长定理,便可得出最大值.【解答】解:如图,作=,=,=,则﹣=,﹣=,∵(﹣)?(﹣)=0, ∴⊥,∴AC⊥BC,∴点C 在以AB 为直径的圆上,设圆心为D ,D 为AB 中点; 由AB=2;∴圆半径为1;∴当OC 过D 点时,OC 最大,即||最大, 由OD 为中点,由中线长定理,可得 (2OD )2+AB 2=2(OA 2+OB 2), 即有4OD 2+22=2[22+()2],解得OD=2,则OC 的最大值为2+1=3. 故答案为:3.15. 已知幂函数的图象过点,则______________.参考答案:略16. 函数的最小正周期是___________。
2021年陕西省西安市陕西中学高一数学文上学期期末试卷含解析
2021年陕西省西安市陕西中学高一数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设()A、3B、1 C. 0 D.-1参考答案:A2. 函数的零点一定位于的区间是( )A.B.C.D.参考答案:B3. 已知为圆的两条互相垂直的弦,且垂足为,则四边形面积的最大值为()(A)5 (B)10 (C)15 (D)20参考答案:A4. 若直线y=x+m与曲线有两个不同的交点,则实数m的取值范围为()A.(,) B.(1,)C.(-1,]D.[1,)参考答案:D【考点】直线与圆相交的性质.【分析】表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分,把斜率是1的直线平行移动,即可求得结论.【解答】解:表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分.作出曲线的图象,在同一坐标系中,再作出斜率是1的直线,由左向右移动,可发现,直线先与圆相切,再与圆有两个交点,直线与曲线相切时的m值为,直线与曲线有两个交点时的m值为1,则1.故选D.5. 某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4? B.k>5? C.k>6? D.k>7?参考答案:A6. 已知函数y=x2的值域是[1,4],则其定义域不可能是()A.B. C. D.参考答案:B7. 已知f(x)=2x+3,g(x)=4x﹣5,则使得f(h(x))=g(x)成立的h(x)=()A.2x+3 B.2x﹣11 C.2x﹣4 D.4x﹣5参考答案:C【考点】函数解析式的求解及常用方法.【分析】由f(x)=2x+3,可得f(h(x))=2h(x)+3,从而f(h(x))=g(x)化为2h(x)+3=4x﹣5,解出h(x)即可.【解答】解:由f(x)=2x+3,得f(h(x))=2h(x)+3,则f(h(x))=g(x)可化为2h(x)+3=4x﹣5,解得h(x)=2x﹣4,故选C.8. 设那么ω的取值范围为()A、 B、 C、 D、参考答案:B9. △ABC中,已知a=x,b=2,B=60°,如果△ABC 有两组解,则x的取值范围()A.x>2 B.x<2 C.D.参考答案:C【考点】正弦定理.【分析】△ABC 有两组解,所以asinB<b<a,代入数据,求出x的范围.【解答】解:当asinB<b<a时,三角形ABC有两组解,所以b=2,B=60°,设a=x,如果三角形ABC有两组解,那么x应满足xsin60°<2<x,即.故选C.10. 已知集合,,则().A.{1,3} B.{2,4,5} C.{1,2,3,4,5} D.参考答案:A解:∵集合,,∴,故选:.二、填空题:本大题共7小题,每小题4分,共28分11. 对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0是f(x)的一个不动点,已知f(x)=x2+ax+4在[1,3]恒有两个不同的不动点,则实数a的取值范围.参考答案:【考点】函数与方程的综合运用.【分析】不动点实际上就是方程f(x0)=x0的实数根.二次函数f(x)=x2+ax+4有不动点,是指方程x=x2+ax+4有实根.即方程x=x2+ax+4有两个不同实根,然后根据根列出不等式解答即可.【解答】解:根据题意,f(x)=x2+ax+4在[1,3]恒有两个不同的不动点,得x=x2+ax+4在[1,3]有两个实数根,即x2+(a﹣1)x+4=0在[1,3]有两个不同实数根,令g(x)=x2+(a﹣1)x+4.在[1,3]有两个不同交点,∴,即解得:a∈;故答案为:.【点评】本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,解答该题时,借用了一元二次方程的根的判别式与根这一知识点.12. 已知函数,那么不等式的解集为.参考答案:(-1,4)已知函数,可知函数是增函数,且是偶函数,不等式等价于13. 定义在R上的奇函数f(x)在(0,+∞)上单调递增,满足f(1)=0,则不等式f(x)>0的解集为__________。
陕西省西安市第三中学2020-2021学年高一数学文上学期期末试题含解析
陕西省西安市第三中学2020-2021学年高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设函数,若f(a)= a,则实数a的值为A.±1 B.-1 C.-2或-1 D.±1或-2参考答案:B2. 已知平面向量的夹角为且,则()A. B. C. D.参考答案:B3. 已知等差数列{a n}的前n项和S n有最大值,且,则满足的最大正整数n 的值为()A. 6B. 7C. 10D. 12参考答案:C【分析】先设等差数列的公差为,根据前项和有最大值,得到,再由,得到,,且,根据等差数列的求和公式以及性质,即可得出结果. 【详解】设等差数列的公差为,因为等差数列的前项和有最大值,所以,又,所以,,且,所以,,所以满足的最大正整数的值为10【点睛】本题主要考查使等差数列前项和最大的整数,熟记等差数列求和公式以及等差数列的性质即可,属于常考题型.4. 下列命题正确的是()A. 有两个面平行,其余各面都是四边形的几何体叫棱柱。
B. 有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。
C. 绕直角三角形的一边旋转所形成的几何体叫圆锥。
D. 用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。
参考答案:B【分析】根据课本中的相关概念依次判断选项即可.【详解】对于A选项,几何体可以是棱台,满足有两个面平行,其余各面都是四边形,故选项不正确;对于B,根据课本中棱柱的概念得到是正确的;对于C,当绕直角三角形的斜边旋转时构成的几何体不是圆锥,故不正确;对于D,用平行于底面的平面截圆锥得到的剩余的几何体是棱台,故不正确.故答案为:B.【点睛】这个题目考查了几何体的基本概念,属于基础题.5. 函数的图象可能是()参考答案:D6. 设f(x)=,则f[f(-1)]的值为( )A.1 B.5 C.D.4参考答案:B7. 若下框图所给的程序运行结果为S=20,那么判断框中应填入的关于的条件是()A.B.C.D.参考答案:B略8. 设实数满足约束条件,若目标函数的最大值为12,则的最小值为()A. B. C.D.4参考答案:A略9. 设,则的最小值是()A. 1B. 4C. 3D. 2参考答案:B【分析】先把代数式整理成,然后利用基本不等式可求出原式的最小值. 【详解】,当且仅当时,即当,,时,等号成立,因此,的最小值是.故选:B【点睛】本题考查利用基本不等式求代数式的最小值,解题的关键就是要对代数式进行合理配凑,考查计算能力,属于中等题.10. 函数当x>2 时恒有>1,则a的取值范围是()A. B.0C.D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 当时,函数的最小值是_______,最大值是________。