GIS局部放电检测及典型图谱.pdf
GIS带电运行中局部放电检测方法
、
脉 冲电流 的实际 信号 。一 般 而言 ,脉 冲 电 流法 的灵敏 度相对 较高 ,一旦 G I S 带 电运 行 中出现局 部放 电 ,其 局部放 电 的区域将 会使 得分子 之 间产 生强烈 的撞 击 ,进 而产 生一 种强 大的压 力导致 其检测 的过程 中存
在较 大的误 差 。
验平 台
现如 今 ,电力 系统 快速 发展 ,G I S在
超 声 能 量传输 中的应用越 来越 广泛 ,但 是就 干扰 能力 , 同时 又有着较 高 的定位准 确度 , 其实 质性 而言 , 设 备在 实际 的运行 过程 中 , 但是 超声 波检测 法在检 测过 程 中由于相对 难免 存在 各种各 样 的问题 ,其局部 放 电同 较 大的噪音 和较 大 的机 械振 动 ,使得 其 超 样也 是相 对严重 的 问题 之一 。一旦 G I S 带 声 波的检 测有着 较大 的误差存 在 。 电运行 中 出现局 部放 电 ,G I S的绝缘 老 化 超 高 频 电磁 波 不 仅 仅 有 着 相 对 较 高 速度 将会 加快 ,从 而有可能 导致 G I S 发 生 的灵 敏度 ,同时在某种 程度 上对 于外界 干 故障 , 影响 电力 系统 的正 常运 行 。所 以带 扰有 着抑 制作 用 ,并 能将信 噪 比提高 。就 电运 行 中的 G I S 有必要 定期 进行局 部放 电 其 实质性 而言 ,超高频 电磁 波是一 种较 为
的试 验 。
理 想的检 测局 部放 电手段 ,只是 对高压 导
G I S带 电运行 中局部 放 电检测 试验 平 体 尖端容 易发 现 ,但 是对其 颗粒 和发丝 等 现场 的应用 效果 相对较 好 。 台主要 是在 G I S 的基 础上建 立起来 的,对 异 物类不 容易 被直接 的发 现。 . 结语 套 管 、直 线段试 管母 线 、隔离开关 、接 地 三 、G I S 带 电运 行 中局部 放 电检测 数 总 而 言 之 ,通 过 本 文 对 G I S带 电 运 开 关 以及 盆式 绝缘 子等绝缘 设备 进行试 验 方 法分 析 行中局部放电检测方法借助于试验模型进 检 测 ,试 验 的 电 源 主要 采 取 7 5 0 k V的 试 C I S带电运行中局部放电检测 ,主要 行 探讨 分 析通 和 对不 同的 电压进 行 施 加 , 验 变压 器 。 有 高压 导体尖 端检测 、地 电极尖 端检测 以 并借 助 于脉 冲电流法 以及超 声法 对其进 行 二 、G I S带 电运 行 中局部 放 电检测 方 及 悬浮尖 端检 测三种 。 测试 , 脉 冲电流 法有着 相对 较高 的灵敏 度 , 案 的确 立 ( 一) 高 压导体 尖端 检测 同时超 高频法对 局部 放 电信 号 的检测相 对
GIS局部放电检测仪
德国PDSG公司局部放电试验仪介绍ICMsystem 系列上图为ICMsys8独立8通道局放仪,内含噪讯抑制模块(闸门/Gating)、8个独立局放讯号撷取模块信道、高分辨率模拟-数字转换卡、电源供应器、通讯模块(RS-232 & GBIP)、讯号同步与8信道的试验电压撷取单元。
配置不同的组件可完成下列六大功能:一、工频(AC)、变频、极低频耐压局放。
二、直流(DC)局放三、无线电干扰电压(RIV)测量。
四、IEC认可的选频局放测量(Spectrum)五、GIS或变压器的定位测量。
六、GIS或变压器的极高频(UHF)测量ICMsys4独立4信道局放系统到货点检(内含ICMsys4主机、匹配阻抗x4、前置放大器x5、抑制噪声耦合互感器CT1 x1、标准方波校正讯号产生器x1、同轴电缆相同颜色两条x 各4组、使用手册与专用软件)本系统可分为多种应用,8通道可同时测量变压器的三相高压侧、及低压侧的局部放电(PD)、无线电干扰(RIV)、亦可选购选频的局放测量(Spectrum)、差动抑制噪声的闸门功能(Gate)为标配,根据不同的耦合传感器(选购)也可用来测量极高频的局部放电(UHF),当发现变压器有局放缺陷时,可换装超音波探头,并搭配其专用超音波局部放电定位软件、找出变压器内部的放电位置(请参考下图)。
上图为8通道试验回路示意图下图:以ICMsys4 4通道,应用于干式变压器,三相感应电压局部放电试验屏蔽室内的配置,PD的背景噪讯低于2pc右图:试验电源由发电机输出,经由自耦变及升压变,将试验电源输入到试品变压器的低压侧左图:从高压侧将感应电压讯号接至PD耦合分压器,再经由匹配阻抗将讯号分为局放、试验电压、与频率讯号,再由前放将PD讯号放大输出至ICMsys4的测量接口。
图左:二合一型的100KV分压器和PD耦合测量阻抗图右:亦可搭配现有耦合分压器,PDSG可以提供各种不同的的匹配阻抗与前置放大器上图:局部放电专用试验控制柜,可采用国内生产的工业级计算器与打印机,以方便后续的计算机维修服务,完全避免进口产品维修不易、后送国外原厂的困扰。
GIS局部放电监测及诊断系统技术交流精品资料
外置式超高频耦合器
卡式耦合器,安装在没有金属屏蔽的绝缘子。
© DMS Ltd - Page 30
ABB ELK-3 卡式耦合器
间隔绝缘子的金属环
金属环 进入内部的绝缘口
© DMS Ltd - Page 31
耦合器灵敏度定义
耦合器灵敏度 = V0 (v) / E (v.mm-1) = 有效高度 He (mm)
输出波形 waveform
© DMS Ltd - Page 19
局部放电监测的原理
• 超高频方法可以固有地屏蔽外部“空气电晕”噪声, 因为它是以较低的频率发生。
• 这是因为在SF6 或油 “快速”PD脉冲产生比平常 “空气电晕”频率更高的强信号。
© DMS Ltd - Page 20
超高频局部放电原理
• 是全球高压设备局部放电在先监测即诊断技术推广 使用的先驱者,具有遥遥领先的地位,超过180套 投入商业运行的系统使得DMS公司在全球市场占有 量达85%以上;
© DMS Ltd - Page 5
DMS公司的业务活动
• DMS公司是全球唯一的可提供变电站、电厂高压设备在 线监测总体解决方案的最有经验的公司;
需要帮助。 • PDM提供给用户一个专业的软件,它可以成功地对
PD信号进行分类。 • 这个系统是DMS的核心产品之一,它优越于所有的
竞争对手。
© DMS Ltd - Page 54
© DMS Ltd - Page 11
GIS 故障
其他 12.3%
漏气 12.4%
机械故障 18.1%
绝缘缺陷 57.3%
© DMS Ltd - Page 12
主要故障原因
主要故障发生率: 1.8 CB/ 100CB-每年 主要故障原因: 绝缘性故障57.3%
GIS典型缺陷局部放电测量与分析
水电阻:水电阻是指利用电解液的阻值特性,通过调节极板间距离来实现电机的软启动或者调速软起动装置用于大中型高压鼠笼(绕线式)交流异步电动机或异步起动的高压同步电动机,作降压起动之用。
使用该装置起动的电机具有起动电流小且恒定、转矩逐步增加的软起动特性,起动过程中无电流冲击和机械冲击,起动时对电网影响小,无电磁干扰、是起动电抗器和自耦降压起动器的理想替代产品 , 相对于高压变频软起动器而言,又具有明显的操作简单、免维护、无谐波污染等优势。
包络信号:将一段时间长度的高频信号的峰值点连线,就可以得到上方(正的)一条线和下方(负的)一条线,这两条线就叫包络线。
包络线就是反映高频信号幅度变化的曲线。
对于等幅高频信号,这两条包络线就是平行线。
当用一个低频信号对一个高频信号进行幅度调制(即调幅)时,低频信号就成了高频信号的包络线。
这样的信号称为调幅信号。
从调幅信号中将低频信号解调出来的过程,就叫做包络检波。
也就是说,包络检波是幅度检波。
包络就是信号每点幅值的连线。
反映该信号的局部最大值的变化情况。
红线就是对于信号(由黑线表示)的包络函数,也可以叫包络信号。
兔耳现象:1)高压导杆上金属尖刺缺陷物理模型:电晕放电2)悬浮电位缺陷物理模型:容性放电3)绝缘子表面导电胶尖刺物理模型:导电胶放电,导电胶尖刺产生的电晕性的局部放电;导电胶的存在, 缩短了高压母线和筒壁之间的绝缘距离, 这样在导电胶靠近筒壁的一端易产生沿面局部放电。
4)绝缘子表面污染物缺陷物理模型:单个放电脉冲波形为多峰脉冲, 脉冲包络可视为单指数振荡衰减波形, 第1 个峰上升沿很陡, 约几ns, 整个脉冲持续时间约800 ns;放电信号能量主要集中在10MHz 以下, 整个过程中, 由于电晕放电的稳定化作用, 使得放电不易发展, 放电信号相对较弱。
问题:PRPD谱图未画出放电信号的分布?结论:1) 导杆金属尖刺电晕放电幅值较小。
整个放电过程中由于电晕放电稳定化作用, 使得放电不易发展。
GIS局部放电检测技术
GIS局部放电检测技术实际故障的统计分析表明,绝缘故障是影响设备正常运行的主要原因。
而局部放电是造成绝缘劣化的主要原因,也是绝缘劣化的主要表现形式,与设备绝缘的劣化和击穿过程密切相关,能有效地反映设备内部绝缘的故障。
因此,对电力设备进行有效的局部放电检测对于电力设备的安全稳定运行具有重要意义。
GIS (Gas Insulater Switchgear)指气体绝缘金属封闭开关设备,是一种兴起于20世纪60年代的成套封闭式高压电器设备。
它是将除变压器之外的所有设备,如断路器、避雷器、电压互感器、电流互感器、隔离开关、接地开关、套管、母线等多种高压电器组合、封闭在接地的金属外壳内,壳内充以0.3MPa-0.4MPa的SF6气体作为绝缘和灭弧介质。
GIS的突出特点是体积小、占地面积少,GIS变电站占地面积仅为常规变电站的10%-15%,且不受环境和海拔的影响,运行维护工作量小、检修周期长、安全可靠性高,因此近些年来得到了越来越广泛的应用。
标签:GIS;局部放电;检测;技术;分析1导言GIS设备局放检测技术局部放电检测是以发生局部放电时产生的电、光、声等现象为依据,来判断局部放电的状态,包括定位和放电的程度。
GIS局放常用的检测方法主要为超声波和特高频检测联合检测法。
2超声波检测法GIS设备发生局部放电时,放电使通道气体压力骤增,在GIS内部(气室)气体中产生压力声波,以纵波的方式传播到GIS外壳。
超声波检测是通过设置在GIS设备金属外壳上的声传感器,来检测、识别和定位局部放电缺陷。
超声波法检测范围相对较小,需要与被测设备的表面实施完全接触,适合定位测量,主要用于检测套管、终端、绝缘子的表面放电,对于其他放电类型不敏感。
3特高频检测法运行中的GIS内部充有SF6气体,其绝缘强度和击穿场强都很高。
当局部放电在很小的范围内发生时,将产生很陡的脉冲电流,脉冲向四周辐射出的特高频电磁波。
GIS有许多法兰连接的盆式绝缘子、拐弯结构和T形接头、隔离开关及断路器等不连续点,特高频信号在GIS内传播过程中经过这些结构时,可以通过这些盆式绝缘子透射出来。
局部放电标准图谱
局部放电标准图谱附录一高频局部放电检测标准高频局部放电测试结果图谱特征放电幅值说明缺陷具有典型局部放电的检测图谱且放电幅值较大放电相位图谱具有明显180度特征,且幅值正负分明大于500mV,并参考放电频率。
缺陷应密切监视,观察其发展情况,必要时停电检修。
通常频率越低,缺陷越严重。
异常具有局部放电特征且放电幅值较小放电相位图谱180度分布特征不明显,幅值正负模糊小于500mV大于100mV,并参考放电频率。
异常情况缩短检测周期。
正常无典型放电图谱没有放电特征没有放电波形按正常周期进行附录二高频局部放电检测典型图谱放电类型图谱类型图谱特征电晕放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形内部放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形沿面放电相位图谱分类图谱附录三GIS超高频局部放电检测典型图谱定义:1、单周期检测数据:检测一个50Hz周期局部放电的峰值与相位角。
2、峰值检测数据:检测50Hz周期的相位角与局部放电信号的峰值和放电速率的关系。
3、PRPD检测数据获取局部放电信号峰值时,数据显示不同大小峰值的局部放电信号个数与50Hz周期相位角的关系。
GIS超高频局部放电典型图谱:电晕放电单周期检测图谱峰值检测图谱PRPD检测图谱自由金属颗粒放电单周期检测图谱峰值检测图谱PRPD检测图谱空隙(空穴、气隙)放电单周期检测图谱峰值检测图谱PRPD检测图谱移动电极局部放电(悬浮放电)单周期检测图谱峰值检测图谱PRPD检测图谱GIS超高频典型干扰图谱:雷达噪音单周期检测图谱峰值检测图谱PRPD检测图谱横轴是幅值,纵轴是相位马达噪音单周期检测图谱峰值检测图谱PRPD检测图谱闪光噪音单周期检测图谱峰值检测图谱PRPD检测图谱移动电话噪音单周期检测图谱峰值检测图谱PRPD检测图谱附录四高压电缆局部放电典型图谱及检测标准序号项目周期标准说明高压电缆局部放电电缆本体及接头局部放电试验1)2年2)必要时正常:无典型放电图谱。
局部放电实用标准规定图谱
附录一高频局部放电检测标准附录二高频局部放电检测典型图谱放电类型图谱类型图谱特征电晕放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形内部放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形相位图谱沿面放电分类图谱附录三GIS超高频局部放电检测典型图谱定义:1、单周期检测数据:检测一个50Hz周期局部放电的峰值与相位角。
2、峰值检测数据:检测50Hz周期的相位角与局部放电信号的峰值和放电速率的关系。
3、PRPD检测数据获取局部放电信号峰值时,数据显示不同大小峰值的局部放电信号个数与50Hz周期相位角的关系。
GIS超高频局部放电典型图谱:电晕放电单周期检测图谱峰值检测图谱PRPD检测图谱自由金属颗粒放电单周期检测图谱峰值检测图谱PRPD检测图谱空隙(空穴、气隙)放电单周期检测图谱峰值检测图谱PRPD检测图谱移动电极局部放电(悬浮放电)单周期检测图谱峰值检测图谱PRPD检测图谱GIS超高频典型干扰图谱:雷达噪音单周期检测图谱峰值检测图谱PRPD检测图谱横轴是幅值,纵轴是相位马达噪音单周期检测图谱峰值检测图谱PRPD检测图谱闪光噪音单周期检测图谱峰值检测图谱PRPD检测图谱移动电话噪音单周期检测图谱峰值检测图谱PRPD检测图谱附录四高压电缆局部放电典型图谱及检测标准序号项目周期标准说明高压电缆局部放电电缆本体及接头局部放电试验1)2年2)必要时正常:无典型放电图谱。
正常35kV Q<20pC110kV Q<10pC220kV Q<10pC异常:具有局部放电特征但放电量较小。
异常(I,II)35kV20pC<Q<100pCQ>100pC110kV10pC<Q<40pC40pC<Q<80pC1)曾经发生事故的电缆线路应密切关注,并适当缩短监测周期。
2)与标准图谱(附录B 高频局部放电检测典型图谱)比较,确定局部放电及类型。
3)异常及缺陷应根据处理标准进行处理。
局部放电缺陷检测典型案例和图谱库
电缆线路局部放电缺陷检测典型案例(第一版)案例1:高频局放检测发现10kV电缆终端局部放电(1)案例经过2010年5月6日,利用大尺径钳形高频电流传感器配Techimp公司PDchenk 局放仪,在某分界小室内的10kV电缆终端进行了普测,发现1-1路电缆终端存在局部放电信号,随后对不同检测位置所得结果进行对比分析,初步判断不同位置所得信号属于同一处放电产生的局放信号,判断为电缆终端存在局放信号。
2010年6月1日通过与相关部门协调对其电缆终端进行更换,更换后复测异常局放信号消失。
更换下来的电缆终端经解体分析发现其制作工艺不良,是造成局放的主要原因。
(2)检测分析方法测试系统主机和软件采用局放在线检测系统,采用电磁耦合方法作为大尺径高频传感器的后台。
信号采集单元主要有高频检测通道、同步输入及通信接口。
高频检测通道共有3个,同时接收三相接地线或交叉互联线上采集的局部放电信号,采样频率为100 MHz,带宽为16 kHz~30 MHz,满足局部放电测试要求。
同步输入端口接收从电缆本体上采集的参考相位信号,通过光纤、光电转换器与电脑的RS232串口通信,将主机中的数据传送至电脑中,从而对信号进行分离、分类及放电模式识别。
利用局部放电测试系统,在实验电缆中心导体处注入图1-1的脉冲信号,此传感器可直接套在电缆屏蔽层外提取泄漏出来的电磁波信号,在电缆中心导体处注入脉冲信号,耦合到的信号如图1-2所示。
图1-1 输入5 ns脉冲信号图1-2输入5 ns脉冲信号响应信号将传感器放置不同距离时耦合的脉冲信号如图1-3所示。
距电缆终端不同距离耦合的脉冲信号随其距离的增长而减小(见图1-4),这样就可以判断放电是来自开关柜内还是线路侧。
a)距电缆终端0.1 m b)距电缆终端1.5 m图1-3 局部放电系统的耦合信号图1-4 不同位置耦合的脉冲信号2010年5月6日,在某分界小室内的10kV电缆终端进行了普测,在距离1-1路进线电缆0.5 m和1.0 m处分别发现局放信号,测试结果如图1-5及图1-6所示。
GIS超高频局部放电典型图谱
单周期检测图谱单周期检测图谱单周期检测图谱单周期检测图谱单周期检测图谱单周期检测图谱单周期检测图谱1毛刺放电1. 1 基本特征接地体和带电体部分上的突起(毛刺放电)的特征表现为:•局部场强增加•由于电晕球的保护作用,工频耐压水平不受影响•雷电冲击电压水平会大幅度下降•毛刺如果大于 1-2 mm 就认为是有害的导体上的毛刺与壳体上的毛刺放电图谱是一样的,但导体上的毛刺位于气室中心,其产生的压力波会呈扇形在整个气室传递,在壳体外能在较广的范围内接收到信号,而壳体上的毛刺信号较集中,在放电处信号最强。
也可以根据SF6气体对高频信号的衰减特性,调整带通滤波器的上限频率,如果信号明显降低,表明是壳体上的毛刺放电,如果信号变化不大,表明是导体上的毛刺放电。
一般导体上的毛刺放电更具危险性。
1.2 典型图谱毛刺放电的典型图谱如下:毛刺放电故障连续模式下有效值和峰值都会增大,信号稳定,而50HZ相关性明显,100HZ 相关性较弱。
在相位模式下,一个周期内会有一簇较集中的信号聚集点。
1.3经验判据根据现有经验,毛刺一般在壳体上,但导体上的毛刺更危险。
如果毛刺放电发生在母线壳体上,信号的峰值Vpeak < 2mV, 认为不是很危险,可继续运行。
如果毛刺放电发生在导体上,信号的峰值Vpeak > 3 mV, 建议停电处理或密切监测。
对于不同的电压等级,如110KV/220KV, 可参照上述标准执行。
对于330KV/500KV/750KV,由于母线筒直径大,信号有衰减,并且设备重要性提高,应更严格要求,建议标准提高一些。
其它气室,如开关气室,由于内部结构更复杂,绝缘间距相对短,应更严格要求,建议标准提高一些。
在耐压过程中发现毛刺放电现象,即使低于标准值,也应进行处理,使缺陷消灭在初始阶段。
注意:只要信号高于背景值,都是有害的,应根据工况酌情处理。
2 自由颗粒2.1 基本特征自由颗粒,其表现特征为:•雷电冲击电压影响很小•工频耐压会有很大的降低•超声传感器接收到典型的机械撞击信号•飞入高场强区非常危险•信号表征不重复,随机性强2.2 典型图谱颗粒故障的连续模式图谱中,有效值和峰值会很大,往往达几百上千毫伏,其信号不稳定,表现为周期性的波动,而100HZ和50HZ相关性没有。
电缆线路局部放电缺陷检测典型案例和图谱库(第二版)
表 2-2 超高频局部放电诊断装置结果
相别
监测数据
结果
A相
具有明 显放电 特征
信号 采集处
表 2-3 频谱分析仪结果 频谱测试
特征描述
在 0~1.5GHz 频段
A相
存在高频信号成
分,且有时域特征
频域信号
时域信号
表 2-4 超声波局部放电探测仪结果
现象
位置(示意图)
在终端法兰盘与护层保护器的连接螺栓上听到 A 相有明显的噼啪声,幅值 17dB。B、C 相无明 显异常
a)距电缆终端 0.1 m
b)距电缆终端 1.5 m
图 1-3 局部放电系统的耦合信号
图 1-4 不同位置耦合的脉冲信号
2010 年 5 月 6 日,在某分界小室内的 10kV 电缆终端进行了普测,在距离 1-1 路进线电缆 0.5 m 和 1.0 m 处分别发现局部放电信号,测试结果如图 1-5 及图 1-6 所示。可见利用大尺径高频电流传感器,发现在 0.5 m 处存在局部放电相位 特征的放电波形,幅值为 190 mV,在 1.0 m 处存在具有局部放电相位特征的放 电波形,幅值为 120 mV;在距离电缆终端 1.0 m 处的局部放电信号相对于 0.5 m
利用局部放电测试系统,在实验电缆中心导体处注入图 1-1 的脉冲信号,此 传感器可直接套在电缆屏蔽层外提取泄漏出来的电磁波信号,在电缆中心导体处
注入脉冲信号,耦合到的信号如图 1-2 所示。
图 1-1 输入 5 ns 脉冲信号
图 1-2 输入 5 ns 脉冲信号响应信号
将传感器放置不同距离时耦合的脉冲信号如图 1-3 所示。距电缆终端不同距 离耦合的脉冲信号随其距离的增长而减小(见图 1-4),这样就可以判断放电是来 自开关柜内还是线路侧。
GIS局部放电测试报告2
GIS局部放电测试报告2GIS局部放电测试报告2测试项目:GIS局部放电测试测试日期:20XX年XX月XX日测试地点:XX变电站1.测试目的本次测试旨在对GIS(气体绝缘开关设备)的局部放电进行检测,以评估设备的性能和可靠性,以及确定是否存在潜在的故障点。
2.测试方法本次测试采用了以下的测试方法和仪器设备:(1)局部放电检测仪(PD检测仪):用于检测设备的局部放电情况;(2)高压测试仪:用于施加高压电源以激发设备的局部放电;(3)数据记录仪:用于记录测试过程中的相关数据。
3.测试过程(1)设备准备:确保GIS设备处于正常运行状态,并关闭相关的告警和保护装置,以免干扰测试过程。
(2)测试装置搭建:根据设备型号和测试需求,搭建相应的测试装置,包括连接PD检测仪和高压测试仪。
(3)测试参数设置:根据设备规格和制造商建议,设置合适的测试参数,如测试电压、测试频率等。
(4)测试开始:根据测试计划,逐个测试GIS设备的不同部位,包括连接处、隔离开关、闸刀、引下线等。
(5)记录数据:使用数据记录仪记录每个测试点的局部放电情况和相应的测试参数,包括放电强度、放电频率等。
(6)测试结束:测试完成后,将测试装置拆除,并恢复正常运行状态,打开相关的告警和保护装置。
4.测试结果根据测试数据和观察,我们得出以下结论:(1)在未施加测试电压的情况下,未观察到任何局部放电现象,说明设备在正常运行状态下没有潜在的局部放电问题。
(2)在施加不同测试电压下,我们观察到了一些局部放电现象,但放电强度较小,且未达到制造商规定的警戒值,因此可以认为设备在正常范围内。
(3)我们在测试中发现了一些局部放电的热点,这些热点可能由于材料缺陷、接触不良等原因导致,建议进行进一步的检修和维护。
5.结论和建议根据测试结果,我们得出以下结论和建议:(1)GIS设备在正常运行状态下没有潜在的局部放电问题,表现出良好的性能和可靠性。
(2)局部放电热点可能存在于设备的一些特定部位,建议进行检修和维护,以提高设备的可靠性和使用寿命。
GIS 设备局部放电检测技术
GIS 设备局部放电检测技术返回技术文献首页一、概述:GIS 、GCB 及GIT 等SF6 电气设备没有外部露出的带电部分,采用SF6 气体绝缘,可靠性较高,检修工作量小,但通过发展外部诊断、监视法可减小不必要的拆卸检修工作量。
即一种不解体设备而用确切简易的办法从外部进行各种(在线的、离线的、带电的、停电)测量,监视、诊断设备内部状态及性能的好坏,包括故障定位。
GIS 、GCB 及GIT 等SF6 电气设备的绝缘性能是确保其安全运行的重要条件。
设备内部中的金属微粒、粉末和水分等导电性杂质是引发GIS 等设备故障的原因。
设备存在导电性杂质时,因局部放电而发出不正常声音、振动、产生放电电荷、发光、产生分解气体等异常现象。
因此局部放电是GIS 、GCB 及GIT 等设备状态监测重要对象之一。
二、主要监测方法:1. 电磁波检测法:局放产生在GIS 室内传播的电磁波。
选择电磁波拾取天线来检测从GIS 腔体盆式绝缘子处泄漏出来的电磁波,来判断局放和故障定位。
2. 特高频检测法:GIS 放电引起的脉冲电信号上升,频谱中高频分量可达GHz 数量级。
可选择特高频段进行局部放电的检测和定位。
3. 高频接地电流法:高频电流被局放激励,而电流流入地线,通过测量接地电流值,评判GIS 安全状况。
4. 声发射/ 振动法:局部放电会发生声波,监测由此引起的腔体振动,判断局放情况。
5. SF6 气体的监测:SF6 电气设备是采用SF6 气体绝缘和灭弧的,其性能状态将是影响设备的重要参数,因此其将是GIS 等设备状态监测重要对象之一。
通过对SF6 气体特性的监测,判断设备的健康状况,主要包括:①气体压力监视:GIS 局放会引起该区域温度升高,表现为该腔体的压力值陡升,通过监视SF6 气体的压力变化,来判断局放和故障定位。
②气体泄漏监测:用检漏仪监测SF6 气体的泄漏量或监测气室压力下降量判断泄漏。
③气体湿度监测:根据露点法等原理,用微水仪监测SF6 气体的微水含量。
GIS局部放电检测技术
GIS局部放电检测技术1、局部放电的检测方法局部放电:指绝缘结构中由于电场分布不均匀、局部电场过高而导致的绝缘介质中局部范围内的放电或击穿现象。
存在的范围:它可能产生在固体绝缘孔隙中、液体绝缘气泡中或不同介质特性的绝缘层间。
如果电场强度高于介质所具有的特定值,也可能发生在液体或固体绝缘中。
局部放电的检测都是以局部放电所产生的各种现象为依据,通过能表述该现象的物理量来表征局部放电的状态及特性。
局部放电过程中会产生电脉冲、电磁辐射、超声波、光以及一些新的生成物,并引起局部过热。
因此,相应地出现了脉冲电流检测法、UHF方法、超声波检测法、光测法、化学检测法、红外检测法等多种检测方法。
不同检测方法的优缺点如下:脉冲电流检测法:测量频率低,不能避开空气电晕干扰,不适合在线监测,是目前唯一具有标准的检测方法;超声波检测法:难以定量,且不易区分运行中设备干扰信号;光测法:尚未成熟;红外检测法:适用检测设备外部接线端等过热现象,不易监测运行中设备内部状况;化学检测法:在线监测结果可靠性高,但对突发性故障反应较慢;UHF方法:检测频带高,可避开电晕干扰;能反映放电的强度,对突发性故障也能及时反应,适合在线监测。
总的来说,根据现场经验,目前对于特高频法和超声波法比较认可,也是现场常用的两种检测方法。
2、特高频检测方法UHF信号的产生:在绝缘强度很高的介质中(如SF6气体、油纸绝缘等),如果发生了一个微小放电,则会产生一个前沿很陡的电流脉冲,从而辐射出高频电磁波信号,信号频率可达到上GHz。
特高频法的抗干扰性能好,特别是对变电站的电晕干扰具有良好的抑制能力。
对于特高频法,目前尚未有专门的标准,IEC42478(高电压试验技术-局部放电的电磁波和超声波检测)是有IECTC42工作组制定的一个与特高频检测相关的草案,目前还在制定过程中,还未正式发布。
该草案对定义了电磁波和超声波检测的频带范围(UHF:300MHz——3GHz),给出了相关物理定义,简单给出了灵敏度校验过程。
GIS局部放电检测及典型图谱.pdf
局部放电是指绝缘结构中由于电场分布不均匀、局部场强过高而导致的绝缘介质中局部范围内的放电或击穿现象,是造成绝缘劣化的主要原因,也是劣化的重要征兆和表现形式,与绝缘材料的劣化和击穿密切相关。
因此,对局部放电的有效检测对电力设备的安全稳定运行具有重要意义。
局部放电的检测是以局部放电所产生的各种现象为依据,通过能表述该现象的物理量来表征局部放电的状态及特性。
由于局部放电的过程中会产生电脉冲、电磁辐射、超声波、光以及一些化学生成物,并引起局部过热,相应地出现了脉冲电流法、超高频(UHF)法、超声波法、光测法、化学检测法、红外检测法等多种检测方法。
传统的局部放电检测方法,其测量信号的响应频率一般不超过 1 MHz,易受外界干扰的影响,很难用于电力设备的现场检测。
同传统的检测方法相比,超高频检测技术具有检测频率高、抗干扰性强和灵敏度高等优点,更适合局部放电在线监测,它通过接收电力变压器局部放电产生的超高频电磁波,实现局部放电的检测。
局部放电测量还有助于发现以SF6气体作为绝缘介质的气体绝缘金属封闭开关设备(以下简称GIS,包括HGIS和罐式断路器等)内部的多种绝缘缺陷,是诊断GIS健康状态的重要手段。
在GIS制造、安装、运行和检修的各个环节,凡是具备条件的,都应该进行局部放电检测。
检测原理电气设备在使用过程中,由于某些原因逐步产生缺陷,在局部出现的微小放电的物理状况。
检测局部放电是诊断电力设备绝缘状态的重要办法。
电力变压器内的油纸绝缘,由于自身老化或生产工艺,会导致绝缘缺陷。
绝缘缺陷的存在会造成电场不均匀而产生局部放电,使绝缘介质逐步受到侵蚀和损伤,最终导致变压器出现绝缘性故障,造成巨大的经济损失以及人身伤害。
所以局部放电的检测对电力变压器有着十分重要的意义。
变压器内部的典型局部放电形式有四种,他们分别是油中气隙放电、油纸隔板结构放电、悬浮电极放电和针板电极放电这四种。
我们利用超高频法检测变压器内部的局部放电。
GIS局部放电检测技术
特高频检测技术 特高频局部放电检测及监测
传感器
特高频检测技术
外置式传感器
内置式传感器
特高频检测技术
根据实际应用,大多GIS UHF局部放电(PD)检测传感器为外置 传感器,一类放置于没有保护金属环GIS盆式绝缘子处(图1-2), 检测频带500MHz-1500MHz(图1-3)。
基于风险评估的 检修策略
在综合考虑设备全寿 命周期安全、效能、 成本指标基础上,确 定设备检修策略,提 高设备全寿命使用效 益。
基于资产全寿命管理 的检修策略
以公司整体绩效水平 为目标,确定设备检 修的范围和类型,通 过精益化方法,实现 公司整体绩效目标
基于绩效管理的检 修策略
事故后检 修
定期检修
状态检修
特高频检测技术 数据分析
信号特征提取、局放信号谱图是判断局部放电类型的主要方 法。
局放检测仪工作流程
特高频检测技术
局部放电测量中的干扰分类:
1.周期性干扰: ⑴连续的周期性干扰信号:如广播,电力系统中的载波通讯,
手机通讯,高频保护信号,谐波,工频干扰等等,其波形 一般是正弦形。 ⑵脉冲型周期性干扰信号:例如可控硅整流设备在可控硅开 闭时产生的脉冲干扰信号。其特点是该脉冲干扰周期性地 出现在工频的某相位上。 2.脉冲型随机干扰: 高压输电线的电晕放电,相邻电气设备的内部放电,以及雷 电,开关继电器的断、合,电焊操作等无规律的随机性干 扰。旋转电机电刷和滑环间的电弧等
特高频检测技术
❖GIS局放信号的特征
PD信号时域波形
PD信号频谱
时间上:放电时间极短(ns级),并且迅速湮灭 频率上:包含频率高达1GHz,因为GIS气室的共振作用,形成多种模式的超高 频谐振电磁波
局部放电标准图谱
附录一高频局部放电检测标准
附录二高频局部放电检测典型图谱
附录三 GIS超高频局部放电检测典型图谱定义:
1、单周期检测数据:
检测一个50Hz周期局部放电的峰值与相位角。
2、峰值检测数据:
检测50Hz周期的相位角与局部放电信号的峰值和放电速率的关系。
3、PRPD检测数据
获取局部放电信号峰值时,数据显示不同大小峰值的局部放电信号个数与50Hz周期相位角的关系。
GIS超高频局部放电典型图谱:
附录四高压电缆局部放电典型图谱及检测标准
自由颗粒、金属微粒三维图谱(特高频)
超声波脉冲模式
超声波相位模式
机械振动相位模式(超声波)。
GIS特高频与超声波局部放电检测技术
1、典型缺陷图谱分析与诊断
峰值检测谱图
PRPD谱图
悬 浮 电 位 放 电
放电信号通常在工频相位的正、负半周均会出现,且具有一定对称性,放电信 号幅值很大且相邻放电信号时间间隔基本一致,放电次数少,放电重复率较低。 PRPS谱图具有“内八字”或“外八字”分布特征。
类 型
PRPS谱图
1、典型缺陷图谱分析与诊断
2.2 特高频局放检测的测试注意事项
1. 特高频局放检测仪适用于检测盆式绝缘子为非屏蔽状态的GIS 设备,若GIS的盆式绝缘子为屏蔽状态则无法检测;
2. 检测中应将同轴电缆完全展开,避免同轴电缆外皮受到刮蹭 损伤;
3. 传感器应与盆式绝缘子紧密接触,且应放置于两根禁锢盆式 绝缘子螺栓的中间,以减少螺栓对内部电磁波的屏蔽及传感 器与螺栓产生的外部静电干扰;
类 型
PRPS谱图
1、典型缺陷图谱分析与诊断
峰值检测谱图
PRPD谱图
电 晕 放 电
放电的极性效应非常明显,通常在工频相位的负半周或正半周出现, 放电信号强度较弱且相位分布较宽,放电次数较多。但较高电压等 级下另一个半周也可能出现放电信号,幅值更高且相位分布较窄, 放电次数较少。
类 型
PRPS谱图
2、超声波局部放电检测的注意事项
(一)安全措施 局部放电检测过程中应加强安全防护,重点做好如下工作: 1)强电场下工作时,应给仪器外壳假装接地线,防止检测人员应用 传感器接触设备外壳时产生感应电。 2)登高作业时,应正确使用安全带,防止低挂高用。安全带应在有 效期内。 3)在设备耐压过程中,严禁人员靠近被试设备开展局部放电超声波 检测,防止设备击穿造成人身伤害。 4)在对电缆终端等设备进行检测时,应使用绝缘支撑杆,严禁检测 人员手持传感器直接接触被测设备。 (二)抗干扰措施 1)检测之前,应加强背景检测,背景测量位置应尽量选择被测设备 附近金属构架。 2)检测过程中,应避免敲打被测设备,防止外界振动信号对检测结 果造成影响。
局部放电标准图谱
附录一高频局部放电检测标准附录二高频局部放电检测典型图谱放电类型图谱类型图谱特征电晕放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形内部放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形相位图谱沿面放电分类图谱附录三GIS超高频局部放电检测典型图谱定义:1、单周期检测数据:检测一个50Hz周期局部放电的峰值与相位角。
2、峰值检测数据:检测50Hz周期的相位角与局部放电信号的峰值和放电速率的关系。
3、PRPD检测数据获取局部放电信号峰值时,数据显示不同大小峰值的局部放电信号个数与50Hz周期相位角的关系。
GIS超高频局部放电典型图谱:电晕放电单周期检测图谱峰值检测图谱PRPD检测图谱自由金属颗粒放电单周期检测图谱峰值检测图谱PRPD检测图谱空隙(空穴、气隙)放电单周期检测图谱峰值检测图谱PRPD检测图谱移动电极局部放电(悬浮放电)单周期检测图谱峰值检测图谱PRPD检测图谱雷达噪音单周期检测图谱峰值检测图谱PRPD检测图谱横轴是幅值,纵轴是相位单周期检测图谱峰值检测图谱PRPD检测图谱单周期检测图谱峰值检测图谱PRPD检测图谱移动电话噪音单周期检测图谱峰值检测图谱PRPD检测图谱附录四高压电缆局部放电典型图谱及检测标准序号项目周期标准说明高压电缆局部放电电缆本体及接头局部放电试验1)2年2)必要时正常:无典型放电图谱。
正常35kV Q<20pC110kV Q<10pC220kV Q<10pC异常:具有局部放电特征但放电量较小。
异常(I,II)35kV20pC<Q<100pCQ>100pC110kV10pC<Q<40pC40pC<Q<80pC220kV10pC<Q<20pC20pC<Q<50pC处理标准3个月复测,观察局部放电变化趋势密切监视(1-2周复测)或者进行在线监测缺陷:具有典型局部放电的检测图谱且放电量较大。
局部放电标准图谱
附录一高频局部放电检测标准附录二高频局部放电检测典型图谱放电类型图谱类型图谱特征电晕放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形内部放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形相位图谱沿面放电分类图谱附录三GIS超高频局部放电检测典型图谱定义:1、单周期检测数据:检测一个50Hz周期局部放电的峰值与相位角。
2、峰值检测数据:检测50Hz周期的相位角与局部放电信号的峰值和放电速率的关系。
3、PRPD检测数据获取局部放电信号峰值时,数据显示不同大小峰值的局部放电信号个数与50Hz周期相位角的关系。
GIS超高频局部放电典型图谱:电晕放电单周期检测图谱峰值检测图谱PRPD检测图谱自由金属颗粒放电单周期检测图谱峰值检测图谱PRPD检测图谱空隙(空穴、气隙)放电单周期检测图谱峰值检测图谱PRPD检测图谱移动电极局部放电(悬浮放电)单周期检测图谱峰值检测图谱PRPD检测图谱雷达噪音单周期检测图谱峰值检测图谱PRPD检测图谱横轴是幅值,纵轴是相位马达噪音单周期检测图谱峰值检测图谱PRPD检测图谱闪光噪音单周期检测图谱峰值检测图谱PRPD检测图谱移动电话噪音单周期检测图谱峰值检测图谱PRPD检测图谱附录四高压电缆局部放电典型图谱及检测标准序号项目周期标准说明高压电缆局部放电电缆本体及接头局部放电试验1)2年2)必要时正常:无典型放电图谱。
正常35kV Q<20pC110kV Q<10pC220kV Q<10pC异常:具有局部放电特征但放电量较小。
异常(I,II)35kV20pC<Q<100pCQ>100pC110kV10pC<Q<40pC40pC<Q<80pC220kV10pC<Q<20pC20pC<Q<50pC处理标准3个月复测,观察局部放电变化趋势密切监视(1-2周复测)或者进行在线监测缺陷:具有典型局部放电的检测图谱且放电量较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
局部放电是指绝缘结构中由于电场分布不均匀、局部场强过高而导致的绝缘介质中局部范围内的放电或击穿现象,是造成绝缘劣化的主要原因,也是劣化的重要征兆和表现形式,与绝缘材料的劣化和击穿密切相关。
因此,对局部放电的有效检测对电力设备的安全稳定运行具有重要意义。
局部放电的检测是以局部放电所产生的各种现象为依据,通过能表述该现象的物理量来表征局部放电的状态及特性。
由于局部放电的过程中会产生电脉冲、电磁辐射、超声波、光以及一些化学生成物,并引起局部过热,相应地出现了脉冲电流法、超高频(UHF)法、超声波法、光测法、化学检测法、红外检测法等多种检测方法。
传统的局部放电检测方法,其测量信号的响应频率一般不超过 1 MHz,易受外界干扰的影响,很难用于电力设备的现场检测。
同传统的检测方法相比,超高频检测技术具有检测频率高、抗干扰性强和灵敏度高等优点,更适合局部放电在线监测,它通过接收电力变压器局部放电产生的超高频电磁波,实现局部放电的检测。
局部放电测量还有助于发现以SF6气体作为绝缘介质的气体绝缘金属封闭开关设备(以下简称GIS,包括HGIS和罐式断路器等)内部的多种绝缘缺陷,是诊断GIS健康状态的重要手段。
在GIS制造、安装、运行和检修的各个环节,凡是具备条件的,都应该进行局部放电检测。
检测原理
电气设备在使用过程中,由于某些原因逐步产生缺陷,在局部出现的微小放电的物理状况。
检测局部放电是诊断电力设备绝缘状态的重要办法。
电力变压器内的油纸绝缘,由于自身老化或生产工艺,会导致绝缘缺陷。
绝缘缺陷的存在会造成电场不均匀而产生局部放电,使绝缘介质逐步受到侵蚀和损伤,最终导致变压器出现绝缘性故障,造成巨大的经济损失以及人身伤害。
所以局部放电的检测对电力变压器有着十分重要的意义。
变压器内部的典型局部放电形式有四种,他们分别是油中气隙放电、油纸隔板结构放电、悬浮电极放电和针板电极放电这四种。
我们利用超高频法检测变压器内部的局部放电。
变压器内部局部放电的超高频信号变压器内部局部放电频谱分布图由上述两个图谱可以看出用超高频测量变压器内部的局部放电是比较有效的。
1、变压器内部油中气体放电的典型图谱:
2、变压器内部悬浮电极放电的典型图谱:
3、变压器内部油纸隔板结构放电
4、变压器内部针板电极放电
对于GIS局部放电的起因有如下几种:
1.导体上的毛刺或颗粒 4. 自由移动的带电颗粒
2.壳体上的毛刺或颗粒 5. 盆式绝缘子上的颗粒
3.悬浮屏蔽(接触不良) 6. 盆式绝缘子内部缺陷
从能量的角度来看,放电是能量的一个瞬时的爆发,是电能以声能、光能、热能、电磁能,气体形式(臭氧、一氧化二氮)等形式释放出去的一个过程,可采用多种手段进行测量。
目前局部放电的检测手段主要有如下4种:
传统检测法(实验室常用,不适合在线)
超高频(UHF)检测法(检测灵敏度高,适合现场)
超声波(AE)检测法(检测灵敏度高,适合现场)
气体分析法(检测灵敏度低,反应速度慢)
UHF检测法和AE检测法适合现场检测应用,可以相互补充。
在变电站现场,由于受电磁环境、检测设备和试验电源等条件的限制,通常难以对GIS进行常规的脉冲电流法检测。
实践经验表明,局部放电超高频检测方法具有检测灵敏高和抗干扰能力强的特点,适用于发电厂和变电站现场条件下的变压器及GIS局部放电测量。
目前电力行业内已经认可此方法,并且有相应的技术规范。
放电类型识别
在测量过程中,系统对测量的数据实时分析并进行智能判断,并将判断结果自动
分类,类别如下:
1--悬浮电位放电
2--绝缘子内部气隙放电
3--绝缘子沿面放电
4--尖端毛刺放电
5--自由颗粒放电
6—外部干扰
7--没有明显放电特征
5.5抗干扰
现场干扰将降低局部放电检测的灵敏度,甚至导致误报警和诊断错误。
因此,局部放电检测装置应能将干扰抑制到可以接受的水平。
5.5.1 主要干扰类型
GIS局部放电特高频检测中主要存在以下几类干扰形式:
1)移动通讯和雷达等无线电干扰;
2)变电站架空线上尖端放电干扰;
3)变电站高电压环境中存在的浮电位体放电干扰;
4)照明、风机等电气设备中存在的电气接触不良产生的放电干扰;
5)开关操作产生的短时放电干扰。
在局部放电带电检测中,如果检测到放电信号,并确定为GIS内部的局部放电,则可以把所测波形和图谱与典型放电波形和图谱进行比较,确定其局部放电的类型。
局部放电类型识别的准确程度取决于经验和数据的不断积累,目前尚未达到完善的程度。
在实际检测中,当检测结果和检修结果确定以后,应保留波形和图谱数据,作为今后局部放电类型识别的依据。
在局部放电带电检测中,如果检测到放电信号,同时定位结果位于重要设备如断路器、电压互感器、隔离开关、接地刀闸或盆式绝缘子处,则应尽快安排停电检修。
如果放电源位于非关键部位,则应缩短检测周期,关注放电信号的强度和放电模式的变化。
在带电测量过程中,在GIS的高电压位置,如GIS的变压器和线路出线套管,请注意保持传感器及其电缆线和裸露的高压部件的安全绝缘距离,否则可能危及
管道、人身安全。
测试人员及测试设备在移动过程中,应注意对GIS设备的SF
6
阀门及二次走线管道等的防护。
如果GIS发生绝缘击穿,GIS外壳可能出现危及人身安全的暂态电压。
测试人员应注意防护。
在GIS现场交接试验中,宜在GIS通过工频耐压试验后进行局部放电检测。
绝缘缺陷并非一定导致局部放电或持续的局部放电。
局部放电经常是断续发生的。
投运前和检修后的GIS交接试验中进行局部放电带电测量时,建议用橡胶锤敲击GIS壳体,激发浮电位局部放电以增加检测的有效性。
超高频传感对金属颗粒、浮电位部件的局部放电最为敏感,对尖端放电等长间隙放电相对不敏感。
附录A GIS 局部放电的典型图谱。