实数复习课教案

合集下载

实数(单元复习)标准教案

实数(单元复习)标准教案

实数(单元复习)标准教案第一章:实数的概念与性质1.1 实数的定义与分类引入实数的概念,讲解实数的定义区分有理数和无理数,讲解它们的分类及特点强调实数集的完备性和有序性1.2 实数的运算复习实数的加法、减法、乘法和除法运算规则举例讲解实数运算的性质和定律,如交换律、结合律、分配律等1.3 实数的平方根与立方根讲解实数的平方根和立方根的定义引导学生掌握求解实数平方根和立方根的方法强调平方根和立方根的性质和运算规律第二章:实数的绝对值与指数2.1 实数的绝对值引入绝对值的概念,讲解绝对值的定义和性质举例说明绝对值在数轴上的表示方法复习绝对值的运算规则,如绝对值的加法、减法和乘法等2.2 实数的指数引入指数的概念,讲解指数的定义和性质讲解实数的乘方运算规则,如幂的乘方和积的乘方等引导学生掌握指数的换底公式和指数函数的性质第三章:实数的三角函数3.1 三角函数的定义与性质引入三角函数的概念,讲解正弦、余弦和正切函数的定义讲解三角函数的周期性、奇偶性和单调性等性质强调三角函数在单位圆上的表示方法,如角度与弧度的转换等3.2 三角函数的图像与变换引导学生掌握三角函数的图像特征,如正弦函数的波形、余弦函数的波动等讲解三角函数的平移、伸缩和翻转等变换规律强调三角函数图像的性质和应用,如相位变换、振幅变换等第四章:实数的函数性质与应用4.1 函数的定义与性质引入函数的概念,讲解函数的定义和性质讲解函数的域、值域、单调性、连续性等基本性质强调函数的图像在分析函数性质方面的作用4.2 函数的图像变换与应用讲解函数的图像变换规律,如平移、伸缩、翻转等引导学生掌握函数图像的应用,如解不等式、求函数值等强调函数图像在解决实际问题中的重要性第五章:实数的极限与导数5.1 极限的概念与性质引入极限的概念,讲解极限的定义和性质讲解极限的基本性质,如保号性、单调性、夹逼性等强调极限在数学分析中的重要性5.2 导数的定义与性质引入导数的概念,讲解导数的定义和性质讲解导数的运算法则,如和差、积、商的导数等强调导数在研究函数变化率方面的应用第六章:实数的积分与不定积分6.1 积分的概念与性质引入积分的概念,讲解定积分和不定积分的定义讲解积分的性质,如线性性、保号性、可加性等强调积分在几何和物理中的应用6.2 积分的计算方法引导学生掌握基本积分公式,如幂函数、指数函数、对数函数的积分讲解换元积分和分部积分的方法和技巧强调积分的计算在实际问题中的应用第七章:实数的级数与收敛性7.1 级数的概念与性质引入级数的概念,讲解级数的定义和性质讲解级数的基本性质,如收敛性和发散性强调级数在数学分析中的重要性7.2 级数的收敛性判断引导学生掌握级数收敛性的判断方法,如比值判别法、根值判别法等讲解级数收敛性的应用,如求解函数极限等强调级数在实际问题中的应用第八章:实数的常微分方程8.1 微分方程的概念与性质引入微分方程的概念,讲解微分方程的定义和性质讲解微分方程的解法和分类,如常微分方程和偏微分方程强调微分方程在自然科学和工程中的应用8.2 常微分方程的求解方法引导学生掌握常微分方程的求解方法,如分离变量法、积分因子法等讲解常微分方程的解的性质和应用,如解的存在性和唯一性等强调常微分方程在实际问题中的应用第九章:实数的概率论与数理统计9.1 概率论的基本概念引入概率论的基本概念,讲解概率、随机事件、样本空间等讲解概率的计算方法和性质,如互斥事件、独立事件的概率计算强调概率论在数学和实际问题中的应用9.2 数理统计的基本概念和方法引入数理统计的基本概念,讲解统计量、样本、估计等讲解数理统计的基本方法,如点估计、置信区间、假设检验等强调数理统计在数据分析和社会科学中的应用第十章:实数的综合应用与复习10.1 实数的综合应用案例分析分析实数在不同领域的应用案例,如物理学、工程学、经济学等强调实数在解决实际问题中的重要作用10.2 实数的复习与练习复习本单元的重点知识和技能,讲解常见错误和难点提供练习题,引导学生巩固和提高实数的理解和应用能力强调复习和练习在掌握实数知识方面的必要性重点和难点解析一、实数的定义与分类:理解实数的概念,区分有理数和无理数,掌握实数集的完备性和有序性。

实数(单元复习)标准教案

实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标:1. 理解实数的定义及分类,掌握有理数和无理数的特点。

2. 掌握实数的运算规则,包括加、减、乘、除、乘方和开方等。

3. 能够运用实数解决实际问题,提高运用数学知识解决问题的能力。

二、教学内容:1. 实数的定义及分类2. 有理数和无理数的特点3. 实数的运算规则4. 实数在实际问题中的应用三、教学重点与难点:1. 教学重点:实数的定义及分类,实数的运算规则,实数在实际问题中的应用。

2. 教学难点:实数的运算规则,特别是乘方和开方运算。

四、教学方法:1. 采用讲授法,讲解实数的定义、分类和运算规则。

2. 运用案例分析法,分析实数在实际问题中的应用。

3. 组织学生进行小组讨论,培养学生的合作意识。

4. 利用信息技术手段,如PPT、网络资源等,辅助教学。

五、教学过程:1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。

2. 讲解实数的运算规则,通过例题展示运算过程,让学生熟练掌握。

3. 开展小组讨论:让学生运用实数解决实际问题,分享解题心得。

4. 总结课堂内容:回顾本节课所学,强调实数的重要性。

5. 布置作业:设计适量作业,巩固课堂所学。

6. 课后反思:根据学生作业完成情况,总结教学效果,调整教学策略。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业评价:检查学生作业的完成质量,评估学生对实数运算规则的掌握程度。

3. 测试评价:组织单元测试,评估学生对实数知识的整体掌握情况。

七、教学资源:1. 教材:实数相关章节教材,用于引导学生学习。

2. PPT:制作精美PPT,辅助讲解实数概念和运算规则。

3. 网络资源:收集相关实数应用案例,供学生课后拓展学习。

4. 练习题库:准备各类实数练习题,巩固学生所学知识。

八、教学进度安排:1. 第1-2课时:讲解实数的定义及分类。

2. 第3-4课时:讲解实数的运算规则。

实数经典复习教案(精品)

实数经典复习教案(精品)
教学内容
课题: 实数复习
掌握本章节知识点及疏导成系统知识点网络 寻找实数题型的知识点的夯实 实数相关提醒的解题思路及其技巧
教学目标 重 难 点 点
一、基础测试 1. 算术平方根: 如果一个正数 x 0 的算术平方根是 。 等于 a, 即 x2=a, 那么这个 x 正数就叫做 a 的算术平方根, 记作 ,
26.若
3
0.3670 0.7160, 3 3.670 1.542,则 3 367 __________ ___
27、若 x x 有意义,则 x 1 =
, 若 102.01 10.1 ,则± 1.0201 =
28、已知 5+ 11 的小数部分为 a,5- 11 的小数部分为 b,求:(1)a+b 的值; 的值. 29.已知 2a 1 的平方根是 3 , 3a b 1 的算术平方根是 4,求 a 2b 的平方根. 30、若 x 2 则,化简 ( x 2)2 3 x =( 31、若 a =3,
2/8
【例 1】(2010 年浙江省金华)在 -3,- 3 , -1, 0 这四个实数中,最大的是( A. -3 B.- 3 C. -1 D. 0 ) D. a 1

【例 2】二次根式 1 a 中,字母 a 的取值范围是( A. a 1 专题 5 二次根式的运算 B.a≤1 C.a≥1
2.平方根:如果一个数 x 的 等于 a,即 x2=a 那么这个数 a 就叫做 x 的平方根(也叫做二次方根式),正 数 a 的平方根记作 .一个正数有 平方根,它们 ;0 的平方根是 ;负数 平方根.
特别提醒:负数没有平方根和算术平方根.
3.立方根:如果一个数 x 的 等于 a,即 x3= a,那么这个数 x 就叫做 a 的立方根,记作 数的立方根是 ,0 的立方根是 ,负数的立方根是 。 4、实数的分类 .正

(完整版)《实数》复习课教案

(完整版)《实数》复习课教案

《实数》复习课教案一、教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.二、教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、教学准备课件、计算器.四、教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗? 生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数02.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解) 1.求下列各数的平方根:(1)972;(2)25;(3)252⎪⎭⎫ ⎝⎛-. 师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根. 生:(1)是求925的平方根;(2)是求5的平方根;(3)是求254的平方根. 由学生独立完成.2.x 取何值时,下列各式有意义.(1)x -2; (2)12+x .师:a 在什么情况下有意义?生:对于a ,必须满足a ≥0,它才有意义,所以被开方数必须是非负数. (1)2-x ≥0;(2)x 2+1≥0.师:如何求出x 的范围呢?生:我们讨论后,得出如下结论:(1)x ≤2;(2)不论x 取什么实数,x 2≥0,x 2+1>0,即x 的取值范围是:x 为全体实数.3.求下列各数的值:(1)()23π-;(2)122+-x x (x ≥1).师:如何化简2a 呢?生:我们认为首先应考虑2a 中a 的范围.(1)当a ≥0时,2a =a ;(2)当a <0时,2a =-a .师:求下列各数的值,必须先确定a 的范围.生:因为3-π<0,所以()23π-=-(3-π)=π-3.师:如何化简122+-x x 呢?生:将122+-x x 化为2a 的形式,即()22112-=+-x x x再考虑x -1的范围,由学生独立完成.4.已知:|x -2|+3-y =0,求:x +y 的值.师:认真审题,考虑一下所给的这些数有什么特点.生:|x -2|和3-y 都是非负数.师:两个非负数的和可能是0吗?生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0. 由学生独立完成.师:哪些数为非负数呢?生:实数a 的绝对值,表示为|a |,|a |是非负数;实数a 的平方,表示为a 2,a 2是非负数;非负实数a 的算术平方根表示为a ,a 是非负数.师:非负数有什么特点?生:(1)几个非负数的和仍为非负数;(2)若几个非负数的和为0,则每一个非负数都必须为0.师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉.5.计算:32725-+(精确到0.01). 师:无理数是开方开不尽的数,那么如何计算呢?生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.因为精确到0.01,所以在计算过程中可用2.236代替、5,1.732代替3. 由学生独立完成.6.在实数2-、13.0 、3π、71、0.80108中,无理数的个数为_______个. 师:如何判断一个数是无理数?生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环. 7.|x |<2π,x 为整数,求x师:|x |=2π,x 的值是多少?生:当x =2π,x =-2π时,|x |=2π,所以|x |<2π时,x =±2π.师:|x |=2π的含义?生:实数x在数轴上所对应点到原点的距离等于2π.师:|x|<2π的含义呢?生:实数x在数轴上所对应点到原点的距离小于2π.师:结合数轴,你能说出满足|x|<2π这一条件的点在数轴的什么位置上吗?生:→在如图所示的范围内,因为x为整数,所以x=6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.师:非常好!三、查缺补漏,归纳提升.1.通过今天的探究学习,你们有哪些收获?2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.3.对于本章的内容你还有那些疑问?四、作业1.教科书第19页复习题A组五、板书设计第6章实数1.知识疏理2.巩固训练3.归纳提升六、教学反思(略)七、课堂小卷(1)填一填:1.16的平方根记作_______,等于________.16________.3.31-2-3(1)_______.55.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x 2-则x=_______,y=_______.7.已知x 的平方根是±8,则x 的立方根是________.(2)选一选:8.4的平方根是( )A.2B.-2C.±29.下列各式中,无意义的是( )B. 10.下列各组数中,互为相反数的一组是( )A.-2与B.-2C.-2与-12D.│-2│与2 11. 下列说法正确的是 ( )A.1的平方根是1;B.1的算术平方根是1;C.-2是2的平方根;D.-1的平方根是-1(3)做一做:12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214; (513. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.14. a≥0a 的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:(1 (2; (3 (415.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.。

实数(单元复习)标准教案

实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标1. 知识与技能:(1)理解和掌握实数的定义及分类,包括有理数和无理数;(2)熟练运用实数的基本性质,如加、减、乘、除、乘方等;(3)掌握实数的运算规则,如负数的运算、分数的运算、根式的运算等。

2. 过程与方法:(1)通过复习和练习,提高学生对实数的认识和理解;(2)培养学生运用实数解决实际问题的能力;(3)引导学生运用数形结合的方法,加深对实数概念的理解。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生的团队合作精神,提高学生沟通交流能力;(3)引导学生认识数学在生活中的重要性,培养学生的数学应用意识。

二、教学内容1. 实数的定义及分类;2. 实数的基本性质;3. 实数的运算规则;4. 实数在实际问题中的应用。

三、教学重点与难点1. 教学重点:实数的定义及分类,实数的基本性质和运算规则,实数在实际问题中的应用。

2. 教学难点:实数的概念理解和运用,实数的运算规则,实数在实际问题中的运用。

四、教学方法1. 采用讲解法,引导学生理解和掌握实数的定义及分类,实数的基本性质和运算规则;2. 采用案例分析法,分析实数在实际问题中的应用,培养学生的数学应用意识;3. 采用小组讨论法,激发学生的思考,提高学生的团队合作精神;4. 采用练习法,巩固学生对实数的理解和运用。

五、教学过程1. 引入:通过数轴,引导学生回顾实数的概念,理解实数的定义及分类;2. 讲解:讲解实数的基本性质和运算规则,结合实际例子,让学生深刻理解;3. 案例分析:分析实数在实际问题中的应用,让学生体会数学的价值;4. 小组讨论:引导学生进行小组讨论,分享各自的思考和理解,提高团队合作精神;5. 练习:布置练习题,巩固学生对实数的理解和运用。

六、教学评价1. 课堂表现评价:观察学生在课堂中的参与程度、提问回答情况,以及小组讨论的表现,了解学生的学习状态和理解程度。

2. 练习题评价:对学生的练习题进行批改,评估学生对实数的理解和运用能力,发现并纠正学生的错误。

八年级实数复习课教案

八年级实数复习课教案

八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的概念。

(2)掌握实数的性质,如相反数、绝对值、平方等。

(3)学会运用实数解决实际问题。

2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。

(2)运用实例分析,培养学生解决实际问题的能力。

3. 情感态度与价值观:(2)培养学生团队协作精神,提高课堂参与度。

二、教学内容1. 实数的定义及分类(1)有理数:整数和分数的统称。

(2)无理数:不能表示为两个整数比的数。

2. 实数的性质(1)相反数:符号相反、绝对值相等的两个数。

(2)绝对值:数轴上表示一个数的点到原点的距离。

(3)平方:一个数与自身的乘积。

三、教学重点与难点1. 重点:实数的定义及分类,实数的性质。

2. 难点:实数在实际问题中的应用。

四、教学方法1. 采用讲授法,讲解实数的定义、性质及分类。

2. 运用举例法,分析实数在实际问题中的应用。

3. 组织小组讨论,培养学生的团队协作能力。

五、教学过程1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。

2. 讲解实数的性质,如相反数、绝对值、平方等,并通过实例进行分析。

3. 练习巩固:布置练习题,让学生独立完成,检验对实数性质的理解。

4. 课堂小结:总结本节课所学内容,强调实数在实际问题中的应用。

5. 课后作业:布置课后作业,巩固实数的定义、性质及分类。

6. 课后反思:教师对课堂教学进行反思,针对学生的掌握情况,调整教学策略。

六、教学评价1. 评价目标:(1)学生能准确理解实数的定义及分类。

(2)学生能熟练运用实数的性质解决实际问题。

2. 评价方法:(1)课堂问答:检查学生对实数概念的理解。

(2)练习题:评估学生运用实数性质解决问题的能力。

(3)小组讨论:观察学生在团队中的参与程度和协作效果。

七、教学资源1. 教材:八年级数学教材。

2. 课件:实数复习的相关课件。

3. 练习题:针对实数性质的练习题。

《实数复习课》教学设计

《实数复习课》教学设计

《实数复习课》教学设计教学目标1.使学生进一步理解一个数的平方根、算术平方根及立方根的意义;2.理解无理数和实数的意义;3.熟练地求出一个正数的平方根、算术平方根和实数的立方根;4.会对实数分类以及进行实数的近似计算.教学重点和难点重点:平方根、算术平方根、实数的概念及其计算.难点:算术平方根、实数的综合运算和代数与几何的综合运用.教学过程设计一、复习基本概念1.什么叫一个数a的平方根,怎样表示?什么叫数a的算术平方根?怎样表示?其中a可以分别表示什么数?2.什么叫一个数a的立方根?怎样表示?其中a可以表示什么数?3.任何实数都有平方根吗?都有立方根吗?4.什么叫无理数?什么叫实数?实数与数轴的点有什么关系?答:1.如果一个数的平方等于a,这个数就叫做a的平方根,表示为±a数.的非负的平方根叫做算术平方根,表示为a,其中a≥0.2.如果一人数的立方等于a,这个数就叫做a的立方根,表示为3a,其中a为任意实数.3.正数和0有平方根,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,任何实数都有一个立方根.4.无限不循环小数叫做无理数.有理数和无理数统称为实数.实数与数轴上的点一一对应.二、例题例1 a为何值时,下列各式有意义?(1)a2;(2)-a;(3)a+2;(4)3 a-1;(5)a+-a;(6)3 2a+1 a.要判断a为何值时各式有意义,首先要弄清各式都表示什么,成立的条件是什么.(1),(2),(3)式都表示算术平方根,(5)为两个算术平方根的和,各式被开方数都应为非负数,(4),(6)式都表示立方根.任何实数都可以进行立方运算,但应注意,当被开方数是分数时,分数的分母不能为0.解(1)因为a为任何实数时,a2≥0,所以a为任意实数时,a2有意义.(2)因为要使-a有意义,必须使-a≥0,即a≤0,所以当a≤0时,-a有意义.(3)因为要使a+2有意义,必须a+2≥0,即a≥-2,所以当a≥-2时,a+2有意义.(4)因为3 a-1有意义,a-1可取任意实数,即a为任意实数,所以当a为任意实数时3a-1的意义.(5)因为要使a有意义,必须使a≥0;要使-a有意义,必须使-a≥0,即a≤0,所以要使a+-a有意义,a必须等于0.因此仅当a=0时,a+-a有意义.(6)因为2a+1a是分式,当a≠0时有意义,所以当a≠0时,3 2a+1a 有意义.例2 计算:(1)求5的算术平方根与2的平方根之和;(保留三位有效数字)(2)|2-5|-|5+2|;(精确到0.01)(3)|a-π|+|2-a|(2<a<π).(精确到0.001)上列各题是进行实数运算.问:计算各式的思路和方法是什么?答:根据各题的要求分别取其近似值,转化为有理数进行计算.含有绝对值的式子应先根据实数绝对值的意义,去掉绝对值的符号,再进行计算.解(1)因为5的算术平方根为5,2的平方根是±2.所以5的算术平方根与2的平方根之和为5±2.又因为5≈2.236,2≈1.414,所以5+2≈2.236+1.414=3.65,5-2≈2.236-1.414≈0.82.(2)因为2<5所以2-5=-(5-2).所以|2-5|-|5+2|=5-2-5-2=-22≈-2×1.414≈-2.83.(3)因为2<a<π,所以|a-π|=-(a-π)=π-a,|2-a|=-(2-a)=-2+a.因此|a-π|+|2-a|=π-a-2+a=π-2≈3.142-1.414=1.73.指出:1.例2中的有关运算实际是进行实数运算,有理数的运算律和运算性质,在实数范围内仍然成立.2.无理数的运算,可以转化为用相应的(或题目指定)近似有限小数进行,有的题目可根据问题的要求取其近似值,转化成有理数进行运算.例3 (1)如图,已知正方形ABCD的面积是4a2,E,F,G,H分别为正方形四条边的中点,依次连结E,F,G,H得到一个正方形.求这个正方形的边长(用带根号的数表示).(2)当a=4时,正方形EFGH的边长是多少?(精确到0.01).分析:求正方形EFGH的边长,首先应求出正方形ABCD的边长.由于正方形的面积等于它的一边的平方,所以它的一条边是面积的算术平方根.已知E,F,G,H是正方形ABCD的各边的中点,所以BF=BE,再在直角三角形EBF中,用勾股弦定理可求出EF的长.解(1)在正方形ABCD中,AB=BC=CD=DA,∠A=∠B=∠C=∠D=90°.因为正方形ABCD的面积=AB2抽以AB2=4a2.因为4a2>0,a>0,所以AB=4a2=2a.同理,BC=2a.因为E是AB中点,F是B中点,所以BE=12AB=a,BF=12BC=a.在Rt△EBF中,EF2=BE2+BF2=a2+a2=2a2,所以EF=2a2=2a(a>0).(2)当a=4时,EF=42≈4×1.414=5.66.三、小结1.在解答有关被开方数是字母的式子是否有意义的问题,要根据所涉及的概念的意义去考虑,如例1中的(1),(2),(3),(5)各式都表示算术平方根,因此被开方数必须是非负数,从这个意义去考虑使式子有意义的字母的取值范围.2.在进行实数运算时,可根据各题的要求分别取无理数的近似值,转化成有理数进行计算.对于含绝对值的式子,应先根据实数的绝对值的意义,去掉绝对值的符号再进行计算,有理数的运算性质和运算律在实数范围内仍然成立.3.在代数中解答几何题,是代数和几何的综合,是数和形的结合,在解答过程中一定要结合图形的几何性质,把论证和计算结合起来.。

八年级实数复习课教案

八年级实数复习课教案

八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解和掌握实数的概念,能够正确运用实数进行运算。

(2)了解实数在数轴上的表示方法,能够根据实数的大小关系进行排序。

(3)掌握实数的性质,如相反数、倒数等,并能运用性质解决实际问题。

2. 过程与方法:(1)通过复习实数的概念,加深对实数体系的理解。

(2)借助数轴,直观地理解实数的大小关系。

(3)运用实数的性质,解决实际问题,提高解决问题的能力。

3. 情感态度与价值观:(1)培养学生的数学思维能力,提高对实数的认识。

(2)激发学生学习数学的兴趣,培养学生的自主学习能力。

二、教学内容1. 实数的概念及其分类:有理数、无理数、实数。

2. 实数的运算:加法、减法、乘法、除法。

3. 实数在数轴上的表示:数轴的概念、实数与数轴的关系、实数的大小比较。

4. 实数的性质:相反数、倒数、绝对值。

5. 实数与实际问题的结合:运用实数解决实际问题。

三、教学重点与难点1. 教学重点:(1)实数的概念及其分类。

(2)实数的运算规则。

(3)实数在数轴上的表示方法。

(4)实数的性质及其应用。

2. 教学难点:(1)实数的大小比较。

(2)实数的性质的理解与运用。

四、教学过程1. 复习导入:(1)回顾实数的概念,引导学生复习实数的分类:有理数、无理数、实数。

(2)通过实例,让学生回顾实数的运算规则。

2. 课堂讲解:(1)讲解实数在数轴上的表示方法,引导学生理解实数与数轴的关系。

(2)讲解实数的性质,如相反数、倒数、绝对值,并通过实例演示性质的应用。

3. 练习与讨论:(1)布置练习题,让学生巩固实数的运算规则。

(2)分组讨论,让学生合作解决实际问题,培养学生的团队合作能力。

五、课后作业1. 完成练习册上的相关题目。

教学反思:本节课通过复习导入、课堂讲解、练习与讨论等环节,使学生对实数的概念、分类、运算、数轴表示、性质等有了更深入的理解。

在教学过程中,要注意引导学生主动参与,激发学生的学习兴趣,培养学生的自主学习能力。

初中数学实数复习课教案

初中数学实数复习课教案

一、教学目标1. 理解实数的定义及分类,掌握有理数、无理数和实数之间的关系。

2. 掌握相反数、绝对值的概念及求法,能够运用数轴理解其意义。

3. 了解平方根、立方根的定义及求法,能够熟练运用根号表示数的平方根、立方根。

4. 掌握科学记数法、近似数与有效数字的概念,并能进行相关计算。

二、教学内容1. 实数的定义及分类2. 相反数、绝对值的概念及求法3. 平方根、立方根的定义及求法4. 科学记数法、近似数与有效数字的概念及应用三、教学重点和难点1. 教学重点:实数的定义及分类,相反数、绝对值的概念及求法,平方根、立方根的定义及求法,科学记数法、近似数与有效数字的概念及应用。

2. 教学难点:平方根、立方根的求法,科学记数法、近似数与有效数字的运用。

四、教学方法启发式教学法、讲练结合法。

通过提问、讨论、练习等方式,激发学生的学习兴趣,引导学生主动探索、积极思考,提高学生的数学素养。

五、教学过程1. 导入新课通过复习小学学过的加减乘除等运算,引导学生思考:这些运算都是在处理哪些数?(有理数)那么,有没有一种运算可以处理无理数呢?从而引出实数的概念。

2. 教学实数的定义及分类(1)实数的定义:实数是包括有理数和无理数的所有数。

(2)实数的分类:有理数和无理数。

3. 教学相反数、绝对值的概念及求法(1)相反数的定义:一个数的相反数是与它的数值相等,但符号相反的数。

(2)绝对值的定义:一个数的绝对值是它到原点的距离。

(3)相反数、绝对值的求法:通过数轴理解相反数、绝对值的概念,并能熟练求出相反数和绝对值。

4. 教学平方根、立方根的定义及求法(1)平方根的定义:一个数的平方根是它的二次方等于这个数的数。

(2)立方根的定义:一个数的立方根是它的三次方等于这个数的数。

(3)平方根、立方根的求法:通过实例讲解平方根、立方根的求法,让学生熟练掌握。

5. 教学科学记数法、近似数与有效数字的概念及应用(1)科学记数法的定义:将一个数表示成a×10^n的形式,其中1≤|a|<10,n为整数。

《实数》复习课教案

《实数》复习课教案

第2章实数回顾与思考一、学生起点分析本章学习至此,学生已经认识了无理数,学习了实数概念及相关运算,从而将原有有理数扩充到了实数范围,使得对数的认识更进一步深入,让学生感受到了数系扩充的必要性与作用.在前面的探究活动中,学生已经掌握了相关数学知识,并具备了一定的数学能力,掌握了类比、数形结合等数学思想方法,也具备了一定的合作学习经验,为学习本节“知识回顾与思考”奠定了基础.二、教学任务分析本章是在学习了勾股定理及有理数等知识的基础上,进行的数系第二次扩张,使学生对数的认识进一步深入.本课是对整章内容的复习与归纳,在教学过程中不必多过地追求概念,只要学生能够结合具体情境,从意义上理解主要概念即可.作为复习归纳课,学生虽对相关知识基本掌握,但是知识间的联系还不够清楚,对于一些综合性较强的题在方法上还有所欠缺,因此本节的教学中应将整章知识点进行梳理整合,并以典型题作为载体让学生从题中悟知识点,从题中悟数学思想与方法.因此,本节课的教学目标是:①复习无理数、算术平方根、平方根、立方根、实数、二次根式及相关概念,会用根号表示,并会求数的平方根、立方根并进行相关运算;②在实数的有关概念和运算律、运算法则的教学中,让学生体会类比的思想;③通过复习提高学生归纳整理的能力,并在师生互动、生生互动的过程中让学生学会倾听学会交流;本章概念较多,学生容易混淆,因此本节的重点应帮助学生理清无理数、算术平方根、平方根、立方根、实数、二次根式的概念.本章的难点体现在以下几处:①算术平方根的双重非负性有着重要的作用,常与平方、绝对值等具有非负性的知识结合在一起应用;②实数的混合运算也一向是学生计算的难点,学生往往在运算顺序、运算法则上出错;③本章对学生数形结合的能力有较高要求,如实数与几何知识勾股定理结合在一起就是学生掌握的难点.本章的知识结构框图222333(0)x a x a x a x a x ax a a x x a x a x a x a x a a a ⎧⎧⎨⎪⎪⎩⎨⎧⎪⎨⎪⎩⎩⎧=⎪⎪==±⎨⎪=⎪⎩⎧=⎪⎨==⎪⎩≥整数有理数分数实数分类正无理数无理数负无理数定义:如果一个数的平方等于,即,那么这个数叫做的平方根平方根表示:若,则算术平方根:若,则的算术平方根为定义:如果一个数的立方等于,即,那么这个数叫做的立方根立方根表示:若,则实数定义:式子叫做二次根式二次根式最简二次223333()(0)()(0,0)(0,0)a a a a a a a a a a b ab a b a a a b b b ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎨⎪⎪⎩⎪⎪⎧=≥⎪⎪⎪⎪=⎪⎪⎪=⎪⎪⎪⎪⎨=⎪⎪⎪⎪⋅=≥≥⎪⎪⎪⎪=≥≥⎪⎪⎩⎪⎪⎩根式:被开方数不含分母,也不含能开得尽方的因数或因式重要性质实数的性质应用三、教学过程设计本节课设计了五个教学环节:第一环节:知识回顾;第二环节:典例精析;第三环节:运用巩固;第四环节:课堂小结;第五环节:布置作业.第一环节 知识回顾知识点填空:(1) 无限不循环小数 叫做无理数.(2) 有理数和无理数 统称为实数.⎧⎧⎪⎪⎨⎪⎪⎩⎨⎧⎪⎪⎨⎪⎪⎩⎩整数有理数分数实数分类正无理数无理数负无理数. (3) 实数 和数轴上的点是一一对应的.(4)=2a a ;)0()(2≥=a a a ;a a =33)(;a a =33;)0,0(≥≥=⋅b a ab b a ;)0,0(≥≥=b a ba b a. (5)把分母中的根号化去,叫做 分母有理化 .(6)最简二次根式应满足的条件是被开方数不含分母,也不含能开得尽方的因数或因式 .(7)同类二次根式:几个二次根式化成 最简二次根式 后,如果被开方数相同,这几个二次根式就叫做同类二次根式;化简时,有同类二次根式要合并,可以约分的分式要约分.设计说明:以上7个填空题老师可带着学生共同完成,通过填空让学生清晰本章的几个重要概念,特别是(4)中的几个易混点可通过此环节帮助学生理清楚.这样也为解决下一环节中的经典例题做好知识点的扎实铺垫.第二环节 典例精析(一)实数的相关概念例1、下列各数中,哪些是有理数,哪些是无理数?23,35,3.14159265,9,π-,31-,2(5)-,3.1010010001…(相邻两个1之间0的各数逐次加1)设计说明:此题考查概念.整数和分数统称为有理数,这是有理数的判断方法.无理数是无限不循环的小数,这是无理数的判断方法.而无限不循环小数主要有以下几种:①开方开不尽的方根;②含π的数;③是无限小数且不循环.在判断时还应注意,一定要抓住概念的本质而不是根据数的形式,如此题中的9,2(5)-虽然都含有根号,但它们都是有理数.所以此题中的有理数有:3.14159265,9,2(5)-;无理数有:23,35,π-,31-,3.1010010001…(相邻两个1之间0的各数逐次加1)(二)实数的相关性质及运算例2、实数a 、b 在数轴上的位置如图所示,化简2()a b b a ++-.设计说明:此题考查算术平方根的意义,也培养学生的读图能力,体现数学中的数形结合思想方法.由数轴上a 、b 的位置可知0a b +<,0b a ->,从而根据算术平方根与绝对值的意义有:2()()2a b b a a b b a a b b a a ++-=-++-=--+-=-例3、计算:(1)14010- (2) 4821319125+- 设计说明:意在复习实数的运算法则及二次根式的化简.111019104041021010101010-=-=-=- 11113512948543916310392310333239332233-+=-+=-⋅+=-+=例4、(1)已知a 、b 满足230a b -++=,求2013()a b +的值(2)已知242423y x x =---+,求y x 的值.设计说明:运用算术平方根的双重非负性解决此题,这也是本章的难点之一.解:(1)20,30a b -≥+≥ 又230a b -++=20,30a b ∴-=+=2,3a b ∴==-201320132013()(23)(1)1a b ∴+=-=-=-(2)240,420x x -≥-≥24420x x ∴-=-=2x ∴=0033y ∴=-+=328y x ∴==(三)实数中的数形结合例5、已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8,则边BC 的长为多少?设计说明:此题是关于运用实数相关知识解决三角形中线段长度的问题.其易错点是△ABC 的形状有两种情况,学生容易忽略钝角三角形的情况.通过此题意在提高学生运用分类讨论的思想解决数学问题的能力.分析:(1)当△ABC 为锐角三角形时,易求BD =15,DC =6,从而求得BC =15+6=21.(2)当△ABC 为钝角三角形时,易求BD =15,DC =6,从而求得BC =15-6=9. 第三环节 运用巩固1.下列说法错误的是( )A .4的算术平方根是2B .2是2的平方根C .-1的立方根是-1D .-3是2(3)-的平方根2.当32<<x 时,求代数式21616426x x x -++-的值.3.若12x x +-有意义,求x 的取值范围. 4.一等腰三角形的腰长与底边之比为5:6,它底边上的高为68,求这个等腰三角形的周长与面积.设计说明:通过这几道题意在巩固第二环节的学习效果,让学生自己动笔练习,并在独立完成后通过小组合作来进行交流订正.答案:1.D 2.2 3.2x > 4.817ABC C ∆=,51ABC S ∆=BC AD B C AD第四环节 课堂小结请同学们认真思考下列问题:1、通过本堂课的学习我收获了什么?2、我还有哪些没有解决的困惑?设计说明:用2分钟左后时间让学生思考这两个问题,并请学生回答,及时肯定学生的收获并加以归纳,同时发现学生的困惑及时答疑.第五环节 布置作业完成课本4951P 复习题知识技能1题、4题、10题;数学理解14题;问题解决21题.设计说明:1题是关于有理数与无理数概念的题;4题为实数的运算题;10题考查的是“实数与数轴上的点一一对应”这一知识点,巩固数形结合的思想方法;14题看似简单,其实考查了本章的众多概念,特别适合用于检验学生对基础知识的掌握情况;21题为实数的应用,在考查计算的同时也锻炼了学生作图、读图、数形结合的综合能力.四、教学设计反思1.选择性的使用例题在此教学设计中,例题数量并不少,针对不同的学生群体,老师可适当删减,做到有的放矢,但是建议概念例题保留.2.给予学生充分的表达和交流的机会老师可以在前四个环节中根据具体情况采用不同的教学方法,可以师生互动也可以生生互动,通过交流讨论让学生学会表达、学会倾听、学会归纳.其实教学活动最主要的意图就是让学生主动起来,应多给予学生交流的时间与机会.3.注意收集学生生成性的学习资源在师生的问答活动中、在学生的独立思考中、在生生之间的互动交流中都会迸发出许多我们难以预料的惊喜或困惑,也许是一些精彩的发言、也许是一个精妙的方法、也许是一个典型的错误、也许一个重要的经历、也许是一串宝贵的收获…这些在课堂中新生成的资源是学生学习过程中的宝贵财富,因此我们应鼓励学生多收集这些闪光点用以形成自己可以学习借鉴的学习资源.。

中考数学实数的运算复习教案

中考数学实数的运算复习教案

中考数学实数的运算复习教案【教学目标】1.复习实数的概念和特性。

2.复习实数的四则运算。

3.复习实数的混合运算。

4.加强解决实际问题的能力。

【教学重点】1.实数的概念和特性。

2.实数的四则运算。

3.实数的混合运算。

【教学难点】实数的混合运算和实际问题的解决。

【教学方法】知识点讲解、示例分析、学生练习、解题讲评。

【教学准备】教材、黑板、白板、教学投影仪。

【教学过程】Step 1 知识点讲解(8分钟)1.复习实数的概念和基本性质,引出实数的运算。

2.讲解实数的四则运算规则:加法、减法、乘法和除法。

3.引导学生讨论混合运算的步骤和技巧。

Step 2 示例分析(10分钟)1.以例子讲解实数的四则运算步骤和规则。

2.分析典型实例,引导学生找出解题的关键点。

Step 3 学生练习(20分钟)1.学生在课本上独立完成练习题。

2.教师巡视指导,发现问题及时纠正。

3.鼓励学生与同桌合作,共同解决难点问题。

Step 4 解题讲评(15分钟)1.教师选取几道典型题目进行讲解。

2.鼓励学生上台讲解解题思路和步骤。

3.全班讨论解题过程和答案的准确性。

Step 5 实际问题解决(15分钟)1.提供几个实际问题,要求学生用实数的四则运算解答。

2.鼓励学生分组讨论,并找出问题的关键信息。

3.鼓励学生提出解决问题的方法和步骤。

Step 6 总结讲评(10分钟)1.教师总结实数的运算规则和解题技巧。

2.引导学生总结实数的四则运算步骤。

【教学反思】通过这堂数学复习课,学生对实数的概念和运算规则有了更深入的理解。

同时,学生通过实际问题的解答,提高了解决实际问题的能力。

但是,在学生练习环节,部分学生的注意力稍有不集中,需要教师在课堂上更加精心地引导和激发学生的学习兴趣。

为了更好地提高课程效果,可以在教学中增加一些游戏化的活动,让学生在实际操作中体会实数的运算规律。

实数(单元复习)标准教案

实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标:1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的特点。

(2)掌握实数的性质,如相反数、绝对值、平方等。

(3)学会实数的运算方法,包括加、减、乘、除、乘方等。

2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。

(2)运用实数运算方法,培养学生解决实际问题的能力。

3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。

二、教学重点与难点:1. 教学重点:(1)实数的定义及分类。

(2)实数的性质和运算方法。

2. 教学难点:(1)实数分类的理解和运用。

(2)实数运算的灵活应用。

三、教学过程:1. 导入新课:回顾实数的定义,引导学生思考实数的分类和性质。

2. 知识讲解:(1)讲解实数的分类,包括有理数和无理数。

(2)阐述实数的性质,如相反数、绝对值、平方等。

(3)介绍实数的运算方法,如加、减、乘、除、乘方等。

3. 例题解析:选取典型例题,讲解实数的运算方法和应用。

4. 课堂练习:设计练习题,让学生巩固实数的分类、性质和运算方法。

5. 总结提升:对本节课的内容进行总结,强调实数在数学中的重要性。

四、课后作业:1. 复习实数的定义、分类和性质。

2. 练习实数的运算方法,解决实际问题。

3. 总结实数在实际生活中的应用。

五、教学评价:1. 学生对实数的定义、分类和性质的掌握程度。

2. 学生实数运算方法的运用能力。

3. 学生解决实际问题的能力。

4. 学生对数学学科的兴趣和积极性。

六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究实数的性质和运算方法。

2. 通过小组讨论,培养学生合作学习的能力。

3. 利用信息技术辅助教学,如数学软件、网络资源等。

4. 设计富有挑战性的数学问题,激发学生的创新思维。

七、教学实践与拓展:1. 结合实际生活中的问题,让学生运用实数知识和方法解决问题。

2. 开展数学竞赛,提高学生的学习积极性。

八年级实数复习课教案

八年级实数复习课教案

八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解实数的定义及分类,包括有理数和无理数。

(2)掌握实数的性质,如整数、分数、正数、负数、相反数、绝对值等。

(3)学会实数的运算方法,包括加、减、乘、除、乘方等。

2. 过程与方法:(1)通过复习实数的定义和性质,加深对实数概念的理解。

(2)通过例题讲解和练习,提高学生解决实数运算问题的能力。

(3)培养学生的逻辑思维能力和数学表达能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养积极的学习态度。

(2)培养学生的团队合作精神,学会与他人交流和讨论。

二、教学内容1. 实数的定义及分类:有理数和无理数。

2. 实数的性质:整数、分数、正数、负数、相反数、绝对值等。

3. 实数的运算方法:加、减、乘、除、乘方等。

三、教学重点与难点1. 教学重点:(1)实数的定义及分类。

(2)实数的性质和运算方法。

2. 教学难点:(1)无理数的概念及其与有理数的区别。

(2)实数运算的复杂问题解决方法。

四、教学过程1. 导入新课:(1)复习实数的定义及分类,引导学生回顾已学知识。

(2)提问学生实数的性质和运算方法,检查学生的掌握情况。

2. 教学实数的定义及分类:(1)通过讲解和示例,引导学生理解实数的定义。

(2)介绍有理数和无理数的分类,并举例说明。

3. 教学实数的性质:(1)通过讲解和示例,引导学生掌握实数的性质。

(2)进行实数性质的练习,巩固学生的理解。

4. 教学实数的运算方法:(1)通过讲解和示例,引导学生学会实数的运算方法。

(2)进行实数运算的练习,提高学生的运算能力。

五、作业布置2. 完成课后练习题,巩固所学知识。

3. 准备课堂小测验,测试学生对实数的掌握程度。

六、教学评估1. 课堂问答:通过提问学生实数的定义、性质和运算方法,评估学生对知识的掌握程度。

2. 课后作业:检查学生完成的课后练习题,评估学生对实数运算的掌握情况。

3. 课堂小测验:进行课堂小测验,评估学生对实数的整体掌握程度。

《实数》复习课教学设计

《实数》复习课教学设计
3、实际问题的运算.
小结
引导、总结
由学生小结
五、作业
1、计算:
2、先化简,再求值:
其中
课题:实数(复习)
教学目标:
1、加强对实数的有关概念、性质及其运算规律的理解。
3、能运用实数的运算解决简单的实际问题,提高学生的应用能力。
教学重点:
平方根、算术平方根、立方根概念与性质,二次根式的运算法则。
教学难点:
利用平方根、算术平方根、立方根进行有关计算,化简二次根式,注意平方根与算术平方根的区别
教学过程:
教学步骤
设计意图
教师活动
学生活动
教学媒体和教学形式
一、知识网络
1、实数的分类:
(1)按定义分类
(2)按正、负分类
2、实数的相关概念:
(2)绝对值、相反数、倒数的意义与有理数相同.
(3)实数与数轴上的点是一一对应的.
(4)实数的运算法则、运算律与有理数相同.
让学生对本章所学的知识
提问
回答。
出示知识网络
巩固二次根式
提问
回答。
显示复习内容
二、做一做
1、把下列各数分别填入相应的集合内:
(相邻两个5之间的7的个数逐次加1)
正数集合:__________________________
有理数集合:__________________________
无理数集合:___________________________
3、实数的基本性质、法则
加深理解实数的基本性质、法则
提问
回答。
显示实数的基本性质、法则
4、二次根式
1、二次根式的定义
一般地,形如 的式子叫做二次根式, 叫做被开方数。

实数(单元复习)标准教案

实数(单元复习)标准教案

实数(单元复习)标准教案第一章:实数的概念与分类一、教学目标:1. 理解实数的定义及其分类;2. 掌握有理数和无理数的特点;3. 能够正确区分各种实数类型。

二、教学内容:1. 实数的定义;2. 有理数的概念及其分类;3. 无理数的概念及其分类;4. 实数的性质。

三、教学重点与难点:1. 实数的分类;2. 有理数与无理数的区别;3. 实数的性质。

四、教学方法:1. 讲授法:讲解实数的定义、分类及性质;2. 案例分析法:分析具体案例,引导学生理解实数的分类;3. 讨论法:组织学生讨论实数的性质。

五、教学步骤:1. 引入实数的概念,让学生回顾实数的定义;2. 讲解有理数的概念及其分类,让学生通过实例理解有理数的性质;3. 讲解无理数的概念及其分类,让学生通过实例理解无理数的性质;4. 组织学生讨论实数的性质,总结实数的特点;5. 布置练习题,巩固所学内容。

第二章:实数的运算一、教学目标:1. 掌握实数的运算方法;2. 能够熟练进行实数运算;3. 理解实数运算的性质。

二、教学内容:1. 实数的加减乘除运算;2. 实数的乘方与开方运算;3. 实数运算的性质。

三、教学重点与难点:1. 实数运算的规则;2. 实数运算的性质。

四、教学方法:1. 讲授法:讲解实数的运算方法及性质;2. 练习法:让学生通过练习题巩固实数运算的方法;3. 小组合作法:组织学生分组讨论实数运算的问题。

五、教学步骤:1. 复习实数的运算方法,让学生回顾加减乘除运算的规则;2. 讲解实数的乘方与开方运算,让学生理解乘方与开方的意义;3. 组织学生进行实数运算的练习,让学生熟练掌握运算方法;4. 讲解实数运算的性质,让学生理解运算的规律;5. 布置练习题,巩固所学内容。

第三章:实数与函数一、教学目标:1. 理解实数与函数的关系;2. 掌握函数的定义及性质;3. 能够运用实数解决函数问题。

二、教学内容:1. 实数与函数的关系;2. 函数的定义及其性质;3. 函数的图像与实数的关系。

初三数学实数复习教案

初三数学实数复习教案

初三数学实数复习教案【篇一:初中数学复习实数的运算教案】第二课实数的运算知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字。

大纲要求:1.了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。

2.了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。

3.了解近似数和准确数的概念,会根据指定的正确度或有效数字的个数,用四舍五入法求有理数的近似值(在解决某些实际问题时也能用进一法和去尾法取近似值),会按所要求的精确度运用近似的有限小数代替无理数进行实数的近似运算。

考查重点:1.2.考查近似数、有效数字、科学计算法;考查实数的运算;实数的运算(1)加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。

取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;任何数与零相加等于原数。

(2)减法a-b=a+(-b)(3)乘法两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即|a||b|(a,b同号)ab|a|?|b|(a,b异号)0(a或b为零)?(4)除法?a?(b?0)(5)乘方 an?aa?an个ab1b(6)开方如果x2=a且x≥0,那么a=x;如果x3=a,那么a?x 在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.3.实数的运算律(1)加法交换律 a+b=b+a(2)加法结合律 (a+b)+c=a+(b+c)(3)乘法交换律 ab=ba.(4)乘法结合律 (ab)c=a(bc)(5)分配律 a(b+c)=ab+ac其中a、b、c表示任意实数.运用运算律有时可使运算简便.典型题型与习题一、填空题:2.1.5972精确到百分位的近似数是;我国的国土面积约为9600000平方干米,用科学计数法表示为平方干米。

(完整版)实数复习课公开课教案

(完整版)实数复习课公开课教案

实数复习课教案活动目标1.复习平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.复习无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;3.复习数轴、相反数、绝对值的性质,并在实数范围内准确运用。

4. 能对实数进行运用和比较大小。

活动重点1. 平方根、立方根的概念、性质,会求一个实数的平方根、立方根。

2.对实数准确分类和比较大小。

活动难点:掌握实数的有关概念及会进行实数大小比较;会进行开平方和开立方运算,会求一个非负数的算术平方根;能够运用实数的有关性质解决问题教学准备课件、导学案活动过程一、 知识疏理(一) 平方根、算术平方根、立方根⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 设计意图:对比复习平方根、算术平方根、立方根让学生对知识之间的联系,进一步掌握它们之间的区别,达到正确求一个数的方根的目的。

一点一练我能行!1.明辩事非3是9的算术平方根 ( )0的平方根是0,0的算术平方根也是0 ( )(-2)2的平方根是2- ( )64的立方根是4± ( )-10是1000的一个立方根 ( )2.填一填25的平方根是 16的算术平方根是 27的立方根是______ 327 的平方根是_________3.火眼睛睛(1)A .3B .3-C .3±D . 9(2)下列说法中正确的是( )A .81的平方根是±3B .1的立方根是±1C .1=±1D .-5是5的平方根的相反数(3)下列式子中① 4是16的算术平方根,即4= ②4是16的算术平方根,即4=③-7是49的算术平方根,即7= ④7是(-7)²的算术平方根,即7= 其中正确的是( )A. ①③B. ②③C. ②④D. ①④(二)实数的分类、性质、比较大小、运算1.实数分类(按定义分和按正负分)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0分类中特别强调无理数的形式针对练习:(2) 73是( ): A .无理数B .有理数C .整数D .负数1、在下列各数、、、、、、、、27111311010010001.672232.0051525354.0 π 中无理数的个数是( )A .2B .3C .4D .52、把下列各数填在相应的大括号内: 1010010001.2,64,333.3,14.3,,75,13---π 整数集合:{ ……};分数集合:{ ……};有理数集合:{ };无理数集合:{ }。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数复习课教案
教学目标
1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;
2.会用计算器进行数的加、减、乘、除、乘方及开方运算;
3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;
4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.
教学重难点
1.平方根和算术平方根的概念、性质,无理数与实数的意义;
2.算术平方根的意义及实数的性质.
教学准备
课件、计算器.
教学过程
一、知识疏理,形成体系。

(课前要求学生对本章知识进行总结)
师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.
生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.
开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:
()⎩⎨⎧−−−−−→←立方根开立方
算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗?
生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立
方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.
生:我们是这样总结的:
1.分类
⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0 2.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.
师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.
二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解)
1.求下列各数的平方根:
(1)972;(2)25;(3)2
52⎪⎭⎫ ⎝⎛-.
师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根.
生:(1)是求9
25的平方根; (2)是求5的平方根;
(3)是求25
4的平方根. 由学生独立完成.
2.x 取何值时,下列各式有意义.
(1)x -2; (2)12+x .
师:a 在什么情况下有意义?
生:对于a ,必须满足a ≥0,它才有意义,所以被开方数必须是非负数.
(1)2-x ≥0;
(2)x 2+1≥0.
师:如何求出x 的范围呢?
生:我们讨论后,得出如下结论:
(1)x ≤2;
(2)不论x 取什么实数,x 2≥0,x 2+1>0,即x 的取值范围是:x 为全体实数.
3.求下列各数的值:
(1)()23π-;
(2)122+-x x (x ≥1).
师:如何化简2a 呢?
生:我们认为首先应考虑2a 中a 的范围.
(1)当a ≥0时,2a =a ;
(2)当a <0时,2a =-a .
师:求下列各数的值,必须先确定a 的范围.
生:因为3-π<0,所以()23π-=-(3-π)=π-3.
师:如何化简122+-x x 呢?
生:将122+-x x 化为2a 的形式,
即()22112-=+-x x x
再考虑x -1的范围,由学生独立完成.
4.已知:|x -2|+3-y =0,求:x +y 的值.
师:认真审题,考虑一下所给的这些数有什么特点.
生:|x -2|和3-y 都是非负数.
师:两个非负数的和可能是0吗?
生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0.
由学生独立完成.
师:哪些数为非负数呢?
生:实数a 的绝对值,表示为|a |,|a |是非负数;实数a 的平方,表示为a 2,a 2是非负数;非负实数a 的算术平方根表示为a ,a 是非负数.
师:非负数有什么特点?
生:(1)几个非负数的和仍为非负数;
(2)若几个非负数的和为0,则每一个非负数都必须为0.
师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉. 5.计算:327
25-+(精确到0.01). 师:无理数是开方开不尽的数,那么如何计算呢?
生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.
因为精确到0.01,所以在计算过程中可用2.236代替、5,1.732代替3. 由学生独立完成. 6.在实数2-、13.0 、3π、7
1、0.80108中,无理数的个数为_______个. 师:如何判断一个数是无理数?
生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环.
7.|x |<2π,x 为整数,求x
师:|x |=2π,x 的值是多少?
生:当x =2π,x =-2π时,|x |=2π,
所以|x |<2π时,x =±2π.
师:|x |=2π的含义?
生:实数x 在数轴上所对应点到原点的距离等于2π.
师:|x |<2π的含义呢?
生:实数x 在数轴上所对应点到原点的距离小于2π.
师:结合数轴,你能说出满足|x |<2π这一条件的点在数轴的什么位置上吗? 生:

在如图所示的范围内,因为x 为整数,
所以x =6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.
师:非常好!
三、查缺补漏,归纳提升.
1.通过今天的探究学习,你们有哪些收获?
2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.
3.对于本章的内容你还有那些疑问?
四、作业
1.教科书第125页复习题7
2.自编练习册第七章综合测试题。

第六章 实数课堂小卷
一、填一填:
1.16的平方根记作_______,等于________. 16________.
3.31-23(1)-=________.
_______. 5.两个无理数的和为有理数,这两个无理数可以是______和_______.
6.若│x 2-25│则x=_______,y=_______.
7.已知x 的平方根是±8,则x 的立方根是________.
二、选一选:
8.4的平方根是( )
A.2
B.-2
C.±2
D.
9.下列各式中,无意义的是( )
10.下列各组数中,互为相反数的一组是( )
A.-2
B.-2与-12
D.│-2│与2 11. 下列说法正确的是 ( )
A.1的平方根是1;
B.1的算术平方根是1;
C.-2是2的平方根;
D.-1的平方根是-1
三、做一做:
12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214
13. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.
14. a ≥0表示a 的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:
(1(2(3(4
15.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.。

相关文档
最新文档