初中数学抛物线与几何专题训练及答案
初中抛物线经典练习题(含详细答案)
初中数学抛物线经典试题集锦编著】黄勇权第一组题型】1、已知二次函数y=x2+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p 使△ ABP的面积为15,请直接写出p 点的坐标。
2、在平面直角坐标系xOy中,抛物线y=2x2+mx+n 经过点A(5,0 ),B(2,-6).(1)求抛物线的表达式及对称轴2)设点 B 关于原点的对称点为C,写出过A、C两点直线的表达式3、在平面直角坐标系xOy 中,已知抛物线的顶点 C 为(2,4),并在x 轴上截得的长度为 6 。
(1)写出抛物线与x 轴交点 A 、B 的坐标(2)求该抛物线的表达式(3)写出抛物线与y 轴交点P 的坐标4、直线的解析式为y=2x+4 ,交x 轴于点 A ,交y 轴于点B,若以 A 为顶点,,且开口向下作抛物线,交直线AB 于点D,交y 轴负半轴于点 C ,(1)若△ ABC 的面积为20,求此时抛物线的解析式(2)若△ BDO 的面积为8,求此时抛物线的解析式答案】1、已知二次函数y=x2+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p 使△ ABP的面积为15,请直接写出p 点的坐标解:【第一问】因为函数y=x2+bx+c过点A(2,0),C(0, -8)分别将x=2,y=0 代入y=x2+bx+c,得0=4+2b+c -①将x=0,y=-8 代入y=x2+bx+c,得-8=c -------- ②将②代入①,解得:b=2 ------------------------------------ ③此时,将② ③代入y=x2+bx+c,所以:二次函数的解析式y=x2+ 2x -8 【第二问】1△ABP的面积= 2│AB│*│y p│------------- ④因为A、B 两点在x 轴上,令x2+ 2x -8=0 (x-2)(x+4)=0 解得:x1=2,x2= -4所以:│ AB│=│X1- X2│=│2-(- 4)│ =6 ---- ⑤又△ ABP的面积=15 --------------------------------- ⑥1由④ ⑤ ⑥,得:2 *6* │y p│=15y p =5故有:y p= ± 5即:p 点的纵坐标为 5 或-5.把y=5 代入y=x2+ 2x -8 ,即:5=x2+ 2x -8x2+ 2x -13=0解得:x= -1 ± 14那么,此时p 点坐标(-1+ 14,5),(-1- 14,5)---- ⑦把y=-5 代入y=x2+ 2x -8,即:-5=x2+ 2x -8x2+ 2x -3=0 (x-1)(x+3)=0 解得:x= 1 或x= -3 那么,此时p 点坐标(1,-5),(-3,-5)⑧由⑦ ⑧得,使△ ABP的面积为15,p 点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x2+mx+n 经过点A(5,0 ),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点 B 关于原点的对称点为C,写出过A、C两点直线的表达式。
初中数学 抛物线 练习题(含答案)
第十讲 抛物线一般地说来,我们称函数c bx ax y ++=2 (a 、b 、c 为常数,0≠a )为x 的二次函数,其图象为一条抛物线,与抛物线相关的知识有:1.a 、b 、c 的符号决定抛物线的大致位置;2.抛物线关于ab x 2-=对称,抛物线开口方向、开口大小仅与a 相关,抛物线在顶点(ab 2-,a b ac 442-)处取得最值; 3.抛物线的解析式有下列三种形式:①一般式:c bx ax y ++=2;②顶点式:k h x a y +-=2)(;③交点式:))((21x x x x a y --=,这里1x 、2x 是方程02=++c bx ax 的两个实根.确定抛物线的解析式一般要两个或三个独立条件,灵活地选用不同方法求出抛物线的解析式是解与抛物线相关问题的关键.注:对称是一种数学美,它展示出整体的和谐与平衡之美,抛物线是轴对称图形,解题中应积极捕捉、创造对称关系,以便从整体上把握问题,由抛物线捕捉对称信息的方式有:(1)从抛物线上两点的纵坐标相等获得对称信息;(2)从抛物线的对称轴方程与抛物线被x 轴所截得的弦长获得对称信息.【例题求解】【例1】 二次函数c bx x y ++=2的图象如图所示,则函数值0<y 时,对应x 的取值范围是 .思路点拨 由图象知抛物线顶点坐标为(一1,一4),可求出b ,c 值,先求出0=y 时,对应x 的值.【例2】 已知抛物线c bx x y ++=2(a <0)经过点(一1,0),且满足024>++c b a .以下结论:①0>+b a ;②0>+c a ;③0>++-c b a ;④2252a ac b >-.其中正确的个数有( )A .1个B .2个C .3个D .4个思路点拨 由条件大致确定抛物线的位置,进而判定a 、b 、c 的符号;由特殊点的坐标得等式或不等式;运用根的判别式、根与系数的关系.【例3】 如图,有一块铁皮,拱形边缘呈抛物线状,MN =4分米,抛物线顶点处到边MN 的距离是4分米,要在铁皮上截下一矩形ABCD ,使矩形顶点B 、C 落在边MN 上,A 、D 落在抛物线上,问这样截下的矩形铁皮的周长能否等于8分米?思路点拨 恰当建立直角坐标系,易得出M 、N 及抛物线顶点坐标,从而求出抛物线的解析式,设A(x ,y ),建立含x 的方程,矩形铁皮的周长能否等于8分米,取决于求出x 的值是否在已求得的抛物线解析式中自变量的取值范围内.注: 把一个生产、生活中的实际问题转化,成数学问题,需要观察分析、建模,建立直角坐标系下的函数模型是解决实际问题的常用方法,同一问题有不同的建模方式,通过分析比较可获得简解.【例4】 二次函数223212-++-=m x x y 的图象与x 轴交于A 、两点(点A 在点B 左边),与y 轴交于C 点,且∠ACB =90°.(1)求这个二次函数的解析式;(2)设计两种方案:作一条与y 轴不重合,与△A BC 两边相交的直线,使截得的三角形与△ABC 相似,并且面积为△BOC 面积的41,写出所截得的三角形三个顶点的坐标(注:设计的方案不必证明).思路点拨 (1)A 、B 、C 三点坐标可用m 的代数式表示,利用相似三角形性质建立含m 的方程;(2)通过特殊点,构造相似三角形基本图形,确定设计方案.注: 解函数与几何结合的综合题,善于求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互助,把证明与计算相结合是解题的关键.【例5】 已知函数1)1(2)2(22+--+=x a x a y ,其中自变量x 为正整数,a 也是正整数,求x 何值时,函数值最小.思路点拨 将函数解析式通过变形得配方式,其对称轴为23)2(212++-=+-=a a a a x ,因1230≤+<a ,12122-≤+-<-a a a a ,故函数的最小值只可能在x 取2-a ,2-a ,212+-a a 时达到.所以,解决本例的关键在于分类讨论.学历训练 1.如图,若抛物线2ax y =与四条直线1=x 、2=x 、1=y 、2=y 所围成的正方形有公共点,则a 的取值范围是 .2.抛物线c bx ax y ++=2与x 轴的正半轴交于A ,B 两点,与y 轴交于C 点,且线段AB 的长为1,△ABC 的面积为1,则b 的值为 .3.如图,抛物线的对称轴是直线1=x ,它与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、C 的坐标分别为(-l ,0)、(0,23),则(1)抛物线对应的函数解析式为 ;(2)若点P 为此抛物线上位于x 轴上方的一个动点,则△ABP 面积的最大值为 .4.已知二次函数c bx ax y ++=2的图象如图所示,且OA =OC ,则由抛物线的特征写出如下含有a 、b 、c 三个字母的式子①1442-=-ab ac ,②01=++b ac ,③0>abc ,④0>+-c b a ,>0,其中正确结论的序号是 (把你认为正确的都填上).5.已知1-<a ,点(1-a ,1y ),(a ,2y ),(1+a ,3y )都在函数2x y =的图象上,则( )A .321y y y <<B .231y y y <<C .123y y y <<D .312y y y <<6.把抛物线c bx x y ++=2的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为532+-=x x y ,则有( )A .3=b ,7=cB .9-=b ,15-=cC .3=b ,c =3D .9-=b ,21=c7.二次函数c bx ax y ++=2的图象如图所示,则点(b a +,ac )所在的直角坐标系是( )A .第一象限B .第二象限C .第三象限D .第四象限8.周长是4m 的矩形,它的面积S(m 2)与一边长x (m)的函数图象大致是( )9.阅读下面的文字后,回答问题:“已知:二次函数c bx ax y ++=2的图象经过点A(0,a ),B(1,-2) ,求证:这个二次函数图象的对称轴是直线2=x .题目中的横线部分是一段被墨水污染了无法辨认的文字.(1)根据现有的信息,你能否求出题目中二次函数的解析式?若能,写出求解过程;若不能,说明理由.(2)请你根据已有信息,在原题中的横线上,填加一个适当的条件,把原题补充完整.10.如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1. 8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?11.如图,抛物线和直线k kx y 4-= (0<k )与x 轴、y 轴都相交于A 、B 两点,已知抛物线的对称轴1-=x 与x 轴相交于C 点,且∠ABC =90°,求抛物线的解析式.12.抛物线c bx ax y ++=2与x 轴交于A 、B 两点,与y 轴交于点C ,若△ABC 是直角三角形,则=ac .13.如图,已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于 .14.已知二次函数c bx ax y ++=2,一次函数4)1(2k x k y --=.若它们的图象对于任意的实数是都只有一个公共点,则二次函数的解析式为 .15.如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A ,B ,E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系式中不能总成立的是( )A .b=0B .S △ADC =c 2 C .ac =一1D .a+c =016.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数c bx x y ++=2的图象过点(1,0)…求证:这个二次函数的图象关于直线2=x 对称.根据现有信息,题中的二次函数不具有的性质是( )A .过点(3,0)B .顶点是(2,一2)C .在x 轴上截得的线段长为2D .与y 轴的交点是(0,3)17.已知A(x 1,2002),B(x 2,2002)是二次函数52++=bx ax y (0≠a )的图象上两21x x x += 时,二次函数的值是( )A .522+a bB .542+-ab C . 2002 D .518.某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1所示);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2所示).若生产出的产品都能在当年销售完,问年产量是多少吨时,所获毛利润最大?(毛利润=销售额一费用).19.如图,已知二次函数222-=x y 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,直线:x =m(m>1)与x 轴交于点D .(1)求A 、B 、C 三点的坐标;(2)在直线x =m (m>1)上有一点P (点P 在第一象限),使得以P 、D 、B 为顶点的三角形与以B 、C 、O 为顶点的三角形相似,求P 点坐标(用含m 的代数式表示);(3)在(2)成立的条件下,试问:抛物线222-=x y 上是否存在一点Q ,使得四边形ABPQ 为平行四边形?如果存在这样的点Q ,请求出m 的值;如果不存在,请简要说明理由.20.已知二次函数22--=x x y 及实数2->a ,求(1)函数在一2<x ≤a 的最小值;(2)函数在a ≤x ≤a+2的最小值.21.如图,在直角坐标:x O y 中,二次函数图象的顶点坐标为C(4,3-),且在x 轴上截得的线段AB 的长为6.(1)求二次函数的解析式;(2)在y 轴上求作一点P (不写作法)使PA+PC 最小,并求P 点坐标;(3)在x 轴的上方的抛物线上,是否存在点Q ,使得以Q 、A 、B 三点为顶点的三角形与△ABC 相似?如果存在,求出Q 点的坐标;如果不存在,请说明理由.22.某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要结论.一是发现抛物线y=ax 2+2x+3(a≠0),当实数a 变化时,它的顶点都在某条直线上;二是发现当实数a 变化时,若把抛物线y=ax 2+2x+3的顶点的横坐标减少a 1,纵坐标增加,得到A 点的坐标;若把顶点的横坐标增加a 1,纵坐标增加a1,得到B 点的坐标,则A 、B 两点一定仍在抛物线y=ax 2+2x+3上.(1)请你协助探求出当实数a 变化时,抛物线y=ax 2+2x+3的顶点..所在直线的解析式; (2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;(3)在他们第二个发现的启发下,运用“一般——特殊—一般”的思想,你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立请说明理由.参考答案。
中考压轴题专项训练1——抛物线专题(带答案解析)
中考压轴题专项训练1——抛物线专题考点分析:命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3—6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决复杂的图形综合问题。
二次函数常考点汇总:1. 两点间的距离公式:22)()(AB B A B A x x y y -+-=2. 中点坐标公式:已知A ),(A A y x ,B ),(B B y x ,则线段AB 的中点C 的坐标为⎪⎭⎫⎝⎛++2,2B A B A y y x x 。
3. 在平面直角坐标系中求面积的方法:公式法、割补法(做铅垂高或水平宽) 4. 几何分析法:特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形时,利用几何分析法能给解题带来方便。
例题精讲:1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2.如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.3.已知,在平面直角坐标系xoy 中,点A 的坐标为(0,2),点P (m ,n )是抛物线2114y x =+上的一个动点.(1)①如图1,过动点P 作PB ⊥x 轴,垂足为B ,连接PA ,求证:PA=PB ; ②如图2,设C 的坐标为(2,5),连接PC ,AP+PC 是否存在最小值?如果存在,求点P 的坐标;如果不存在,请说明理由;(2)如图3,过动点P 和原点O 作直线交抛物线于另一点D ,若AP=2AD ,求直线OP 的解析式.4.【变式】在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B.(1)直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3) 已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.5.如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.6.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标; (3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.7.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.答案解析1.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.2.【解答】解:(1)∵y=﹣x2+(a+1)x﹣a令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=﹣3,(a=4舍去)(2)设直线AC:y=kx+b,由A(﹣3,0),C(0,3),可得﹣3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(﹣,)∴线段AC的垂直平分线解析式为:y=﹣x,线段AB的垂直平分线为x=﹣1代入y=﹣x,解得:y=1∴△ABC外接圆圆心的坐标(﹣1,1)(3)作PM⊥x轴,则=∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x﹣1联立解得:∴点P坐标为(﹣4,﹣5)又∵∠P AQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=﹣4,m=﹣8(当m=﹣8时,∠P AQ≠∠AQB,故应舍去)∴Q坐标为(﹣4,﹣1)3.【解答】解:(1)①设P(m,n)∴n=m2+1,∵PB⊥x 轴,∴PB=m2+1,∵A(0,2)∴AP==m2+1,∴PB=PA;②过点P作PB⊥x轴于B,由(1)得PA=PB,所以要使AP+CP最小,只需当BP+CP最小,因此当C,P,B共线时取得,此时点P的横坐标等于点C(2,5)的横坐标,所以点P的坐标为(2,2),(2)如图,作DE⊥x轴于E,作PF⊥x轴于F,由(1)得:DA=DE,PA=PF∵PA=2DA,∴PF=2DE,∵△ODE∽△OPF,∴==,设P(m,m2+1),则D(m,m2+)∵点D在抛物线y=x2+1上,∴m2+=(m)2+1,解得m=±2,∴P 1(,3),直线OP 的解析式为y=x , P 2(﹣,3)直线OP 的解析式为y=﹣x , 综上所求,所求直线OP 的解析式为y=x 或y=﹣x .4.【解答】解:(1)21(2)4A n n +,,()B n n ,. (2) d =AB=A B y y -=2124n n -+.∴ d =2112()48n -+=2112()48n -+.∴ 当14n =时,d 取得最小值18. 当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB=PM. (如图)(3) ∵对一切实数x 恒有 x ≤y ≤2124x +, ∴对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ①当0x =时,①式化为 0≤c ≤14.xy111APBMO∴整数c 的值为0.此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠) 即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩ 对一切实数x 均成立. 由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴()210,10.a b >⎧⎪⎨∆=-≤⎪⎩ 由⑤得整数b 的值为1.此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠) 即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠) 当a=2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴由④,⑥,⑦得 0 <a ≤1.∴整数a 的值为1.∴整数a ,b ,c 的值分别为1a =,1b =,0c =.5.【解答】解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =. ∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. ④⑤② ③ ⑥ ⑦图①图②(3)存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.6. 【解答】解:(1).3)(03,20.0,c -),,0(,.2,12.1x 2CD x //2-=∴=-=++=∴∴=-==-∴=∴=c c c c c c B c C OC OB b bl CD ,舍去或解得)点坐标为(:抛物线对称轴为直线,轴,(2)设点F 坐标为(0,m ).∵对称轴是直线,1:=x l ∴点F 关于直线l 的对称点’F 的坐标为(2,m ). ∵直线BE 经过点B (3,0),E (1,-4),∴利用待定系数法可得直线BE 的表达式为y=2x-6. ∵点’F 在BE 上,∴m=2⨯2-6=-2,即点F 的坐标为(0,-2). (3)存在点Q 满足题意。
初中数学 抛物线 练习题(含答案)
第十讲 抛物线一般地说来,我们称函数c bx ax y ++=2 (a 、b 、c 为常数,0≠a )为x 的二次函数,其图象为一条抛物线,与抛物线相关的知识有:1.a 、b 、c 的符号决定抛物线的大致位置;2.抛物线关于ab x 2-=对称,抛物线开口方向、开口大小仅与a 相关,抛物线在顶点(ab 2-,a b ac 442-)处取得最值; 3.抛物线的解析式有下列三种形式:①一般式:c bx ax y ++=2;②顶点式:k h x a y +-=2)(;③交点式:))((21x x x x a y --=,这里1x 、2x 是方程02=++c bx ax 的两个实根.确定抛物线的解析式一般要两个或三个独立条件,灵活地选用不同方法求出抛物线的解析式是解与抛物线相关问题的关键.注:对称是一种数学美,它展示出整体的和谐与平衡之美,抛物线是轴对称图形,解题中应积极捕捉、创造对称关系,以便从整体上把握问题,由抛物线捕捉对称信息的方式有:(1)从抛物线上两点的纵坐标相等获得对称信息;(2)从抛物线的对称轴方程与抛物线被x 轴所截得的弦长获得对称信息.【例题求解】【例1】 二次函数c bx x y ++=2的图象如图所示,则函数值0<y 时,对应x 的取值范围是 .思路点拨 由图象知抛物线顶点坐标为(一1,一4),可求出b ,c 值,先求出0=y 时,对应x 的值.【例2】 已知抛物线c bx x y ++=2(a <0)经过点(一1,0),且满足024>++c b a .以下结论:①0>+b a ;②0>+c a ;③0>++-c b a ;④2252a ac b >-.其中正确的个数有( )A .1个B .2个C .3个D .4个思路点拨 由条件大致确定抛物线的位置,进而判定a 、b 、c 的符号;由特殊点的坐标得等式或不等式;运用根的判别式、根与系数的关系.【例3】 如图,有一块铁皮,拱形边缘呈抛物线状,MN =4分米,抛物线顶点处到边MN 的距离是4分米,要在铁皮上截下一矩形ABCD ,使矩形顶点B 、C 落在边MN 上,A 、D 落在抛物线上,问这样截下的矩形铁皮的周长能否等于8分米?思路点拨 恰当建立直角坐标系,易得出M 、N 及抛物线顶点坐标,从而求出抛物线的解析式,设A(x ,y ),建立含x 的方程,矩形铁皮的周长能否等于8分米,取决于求出x 的值是否在已求得的抛物线解析式中自变量的取值范围内.注: 把一个生产、生活中的实际问题转化,成数学问题,需要观察分析、建模,建立直角坐标系下的函数模型是解决实际问题的常用方法,同一问题有不同的建模方式,通过分析比较可获得简解.【例4】 二次函数223212-++-=m x x y 的图象与x 轴交于A 、两点(点A 在点B 左边),与y 轴交于C 点,且∠ACB =90°.(1)求这个二次函数的解析式;(2)设计两种方案:作一条与y 轴不重合,与△A BC 两边相交的直线,使截得的三角形与△ABC 相似,并且面积为△BOC 面积的41,写出所截得的三角形三个顶点的坐标(注:设计的方案不必证明).思路点拨 (1)A 、B 、C 三点坐标可用m 的代数式表示,利用相似三角形性质建立含m 的方程;(2)通过特殊点,构造相似三角形基本图形,确定设计方案.注: 解函数与几何结合的综合题,善于求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互助,把证明与计算相结合是解题的关键.【例5】 已知函数1)1(2)2(22+--+=x a x a y ,其中自变量x 为正整数,a 也是正整数,求x 何值时,函数值最小.思路点拨 将函数解析式通过变形得配方式,其对称轴为23)2(212++-=+-=a a a a x ,因1230≤+<a ,12122-≤+-<-a a a a ,故函数的最小值只可能在x 取2-a ,2-a ,212+-a a 时达到.所以,解决本例的关键在于分类讨论.学历训练 1.如图,若抛物线2ax y =与四条直线1=x 、2=x 、1=y 、2=y 所围成的正方形有公共点,则a 的取值范围是 .2.抛物线c bx ax y ++=2与x 轴的正半轴交于A ,B 两点,与y 轴交于C 点,且线段AB 的长为1,△ABC 的面积为1,则b 的值为 .3.如图,抛物线的对称轴是直线1=x ,它与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、C 的坐标分别为(-l ,0)、(0,23),则(1)抛物线对应的函数解析式为 ;(2)若点P 为此抛物线上位于x 轴上方的一个动点,则△ABP 面积的最大值为 .4.已知二次函数c bx ax y ++=2的图象如图所示,且OA =OC ,则由抛物线的特征写出如下含有a 、b 、c 三个字母的式子①1442-=-ab ac ,②01=++b ac ,③0>abc ,④0>+-c b a ,>0,其中正确结论的序号是 (把你认为正确的都填上).5.已知1-<a ,点(1-a ,1y ),(a ,2y ),(1+a ,3y )都在函数2x y =的图象上,则( )A .321y y y <<B .231y y y <<C .123y y y <<D .312y y y <<6.把抛物线c bx x y ++=2的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为532+-=x x y ,则有( )A .3=b ,7=cB .9-=b ,15-=cC .3=b ,c =3D .9-=b ,21=c7.二次函数c bx ax y ++=2的图象如图所示,则点(b a +,ac )所在的直角坐标系是( )A .第一象限B .第二象限C .第三象限D .第四象限8.周长是4m 的矩形,它的面积S(m 2)与一边长x (m)的函数图象大致是( )9.阅读下面的文字后,回答问题:“已知:二次函数c bx ax y ++=2的图象经过点A(0,a ),B(1,-2) ,求证:这个二次函数图象的对称轴是直线2=x .题目中的横线部分是一段被墨水污染了无法辨认的文字.(1)根据现有的信息,你能否求出题目中二次函数的解析式?若能,写出求解过程;若不能,说明理由.(2)请你根据已有信息,在原题中的横线上,填加一个适当的条件,把原题补充完整.10.如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1. 8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?11.如图,抛物线和直线k kx y 4-= (0<k )与x 轴、y 轴都相交于A 、B 两点,已知抛物线的对称轴1-=x 与x 轴相交于C 点,且∠ABC =90°,求抛物线的解析式.12.抛物线c bx ax y ++=2与x 轴交于A 、B 两点,与y 轴交于点C ,若△ABC 是直角三角形,则=ac .13.如图,已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于 .14.已知二次函数c bx ax y ++=2,一次函数4)1(2k x k y --=.若它们的图象对于任意的实数是都只有一个公共点,则二次函数的解析式为 .15.如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A ,B ,E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系式中不能总成立的是( )A .b=0B .S △ADC =c 2 C .ac =一1D .a+c =016.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数c bx x y ++=2的图象过点(1,0)…求证:这个二次函数的图象关于直线2=x 对称.根据现有信息,题中的二次函数不具有的性质是( )A .过点(3,0)B .顶点是(2,一2)C .在x 轴上截得的线段长为2D .与y 轴的交点是(0,3)17.已知A(x 1,2002),B(x 2,2002)是二次函数52++=bx ax y (0≠a )的图象上两21x x x += 时,二次函数的值是( )A .522+a bB .542+-ab C . 2002 D .518.某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1所示);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2所示).若生产出的产品都能在当年销售完,问年产量是多少吨时,所获毛利润最大?(毛利润=销售额一费用).19.如图,已知二次函数222-=x y 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,直线:x =m(m>1)与x 轴交于点D .(1)求A 、B 、C 三点的坐标;(2)在直线x =m (m>1)上有一点P (点P 在第一象限),使得以P 、D 、B 为顶点的三角形与以B 、C 、O 为顶点的三角形相似,求P 点坐标(用含m 的代数式表示);(3)在(2)成立的条件下,试问:抛物线222-=x y 上是否存在一点Q ,使得四边形ABPQ 为平行四边形?如果存在这样的点Q ,请求出m 的值;如果不存在,请简要说明理由.20.已知二次函数22--=x x y 及实数2->a ,求(1)函数在一2<x ≤a 的最小值;(2)函数在a ≤x ≤a+2的最小值.21.如图,在直角坐标:x O y 中,二次函数图象的顶点坐标为C(4,3-),且在x 轴上截得的线段AB 的长为6.(1)求二次函数的解析式;(2)在y 轴上求作一点P (不写作法)使PA+PC 最小,并求P 点坐标;(3)在x 轴的上方的抛物线上,是否存在点Q ,使得以Q 、A 、B 三点为顶点的三角形与△ABC 相似?如果存在,求出Q 点的坐标;如果不存在,请说明理由.22.某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要结论.一是发现抛物线y=ax 2+2x+3(a≠0),当实数a 变化时,它的顶点都在某条直线上;二是发现当实数a 变化时,若把抛物线y=ax 2+2x+3的顶点的横坐标减少a 1,纵坐标增加,得到A 点的坐标;若把顶点的横坐标增加a 1,纵坐标增加a1,得到B 点的坐标,则A 、B 两点一定仍在抛物线y=ax 2+2x+3上.(1)请你协助探求出当实数a 变化时,抛物线y=ax 2+2x+3的顶点..所在直线的解析式; (2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;(3)在他们第二个发现的启发下,运用“一般——特殊—一般”的思想,你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立请说明理由.参考答案。
抛物线习题精选(带答案)
抛物线习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则 =________.13.过()的焦点的弦为,为坐标原点,则=________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。
初中数学抛物线与几何专题训练及答案
b , OC t t
b , t
6
∴ | OB | | OC | | (t 即t2
b t
b )( t t
b b 2 )| | t | t 2 OA 2 , t t
t 2 , 所以当 b 2 t 3 时, 存在抛物线 F 使得 | OA | 2 | OB | | OC | .-- 2 分
2
3、(青海西宁)如图,已知半径为 1 的 O1 与 x 轴交于 A,B 两点, OM 为 O1 的 y M
点. (1)求二次函数的解析式; (2)求切线 OM 的函数解析式;
4
O
A
O1
B x
( 3)线段 OM 上是否存在一点 P ,使得以 P,O,A 为顶点的三角形与 △OO1M 相 似.若存在,请求出所有符合条件的点 P 的坐标; 若不存在,请说明理由. 4、(辽宁 12 市)如图,在平面直角坐标b 的方程;(2)讨论
t 的取值范围,来求抛物线 F 对应的二次函数的解析式。
【例 2】(江苏常州)如图,抛物线 y x 4 x 与 x 轴分别相交于点 B、 O,它的顶点为 A,连
2
接 AB,把 AB 所的直线沿 y 轴向上平移,使它经过原点 O,得到直线 l,设 P 是直线 l 上一动点.
5
(2)求抛物线的函数表达式; (3)在 x 轴的上方是否存在点 P ,点 Q ,使以点 O,B,P,Q 为顶点的平行四边形的 面积是矩形 ABOC 面积的 2 倍,且点 P 在抛物线上,若存在,请求出点 P ,点 Q 的坐标; 若不存在,请说明理由.
7、(苏州市)如图,抛物线 y=a(x+1)(x-5)与 x 轴的交点为 M、N.直线 y=kx+b 与 x 轴 交 于 P(- 2, 0), 与 y 轴 交 于 C. 若 A、 B 两 点 在 直 线 y= kx+ b 上 , 且
抛物线专题练习(含解析)
抛物线专题练习1.(2020·吉林省长春模拟)点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的标准方程是( )A .x 2=112yB .x 2=112y 或x 2=-136yC .x 2=-136yD .x 2=12y 或x 2=-36y2.(2020·江西省安义中学模拟)已知抛物线y =px 2(其中p 为常数)过点A (1,3),则抛物线的焦点到准线的距离等于( )A.92B.32C.118D.163.(2020·山东省乳山市第一中学模拟)顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4xB .x 2=4yC .y 2=-4x 或x 2=4yD .y 2=4x 或x 2=-4y4.(2020·河南省信阳市第一中学模拟)已知AB 是抛物线y 2=8x 的一条焦点弦,|AB |=16,则AB 中点C 的横坐标是( )A .3B .4C .6D .85.(2020·四川省自贡市一中模拟)若直线AB 与抛物线y 2=4x 交于A ,B 两点,且AB ⊥x 轴,|AB |=42,则抛物线的焦点到直线AB 的距离为( )A .1B .2C .3D .56.(2020·四川省资阳模拟)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为⊥ABC 的重心,则|F A →|+|FB →|+|FC →|的值为( )7.A .1 B .2 C .3 D .47.(2020·陕西省延安模拟)已知F 是抛物线C 1:y 2=2px (p >0)的焦点,曲线C 2是以F 为圆心,p2为半径的圆,直线4x -3y -2p =0与曲线C 1,C 2从上到下依次相交于点A ,B ,C ,D ,则|AB ||CD |=( )A .16B .4 C.83 D.538.(2020·广东省惠州市一中模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线方程为x =-2,过点F 的直线与抛物线C 交于M (x 1,y 1),N (x 2,y 2)两点,若|MN |=8,则y 21+y 22=( )A .16B .32C .24D .489.(2020·湖南省邵阳市二中模拟)已知F 是抛物线C :y 2=2px (p >0)的焦点,过点R (2,1)的直线l 与抛物线C 交于A ,B 两点,R 为线段AB 的中点.若|F A |+|FB |=5,则直线l的斜率为( )A .3B .1C .2D.1210.(2020·湖北省汉川市一中模拟)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223 11.(2020·山东省菏泽市一中模拟)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 23-y 2=1的右焦点重合,若A 为抛物线在第一象限上的一点,且|AF |=3,则直线AF 的斜率为 .12.(2020·江西省任弼时中学模拟)若抛物线x 2=4y 上的点A 到焦点的距离为10,则点A 到x 轴的距离是 .13.(2020·福建省永春一中模拟)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则⊥AOB 的边长是 .14.(2020·安徽省池州二中模拟)直线y=k(x-1)与抛物线y2=4x交于A,B两点,若|AB|=163,则k=.15.(2020·江苏省淮北中学模拟)已知抛物线y2=2px(p>0)过点A(2,y0),且点A到其准线的距离为4.(1)求抛物线的方程;(2)直线l:y=x+m与抛物线交于两个不同的点P,Q,若OP⊥OQ,求实数m的值.16.(2020·浙江省丽水中学模拟)如图,已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:GF为⊥AGB的平分线.17.(2020·吉林省松原市二中模拟)已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)若过M作MN⊥F A,垂足为N,求点N的坐标.1.(2020·吉林省长春模拟)点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的标准方程是( )A .x 2=112yB .x 2=112y 或x 2=-136yC .x 2=-136yD .x 2=12y 或x 2=-36y【答案】D【解析】将y =ax 2化为x 2=1a y .当a >0时,准线y =-14a ,则3+14a =6,⊥a =112.当a <0时,准线y =-14a ,则⎪⎪⎪⎪3+14a =6,⊥a =-136. ⊥抛物线方程为x 2=12y 或x 2=-36y2.(2020·江西省安义中学模拟)已知抛物线y =px 2(其中p 为常数)过点A (1,3),则抛物线的焦点到准线的距离等于( )A.92B.32C.118D.16【答案】D【解析】由抛物线y =px 2(其中p 为常数)过点A (1,3),可得p =3,则抛物线的标准方程为x 2=13y ,则抛物线的焦点到准线的距离等于16.故选D.]3.(2020·山东省乳山市第一中学模拟)顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4xB .x 2=4yC .y 2=-4x 或x 2=4yD .y 2=4x 或x 2=-4y 【答案】C【解析】设所求抛物线方程为y 2=kx 或x 2=my ,又点(-4,4)在抛物线上,则有-4k =16或4m =16,解得k =-4或m =4,所求抛物线方程为y 2=-4x 或x 2=4y .故选C.]4.(2020·河南省信阳市第一中学模拟)已知AB 是抛物线y 2=8x 的一条焦点弦,|AB |=16,则AB 中点C 的横坐标是( )A .3B .4C .6D .8【答案】C【解析】设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =16,又p =4,所以x 1+x 2=12,所以点C 的横坐标是x 1+x 22=6.]5.(2020·四川省自贡市一中模拟)若直线AB 与抛物线y 2=4x 交于A ,B 两点,且AB ⊥x 轴,|AB |=42,则抛物线的焦点到直线AB 的距离为( )A .1B .2C .3D .5【答案】A【解析】由|AB |=42及AB ⊥x 轴,不妨设点A 的纵坐标为22,代入y 2=4x 得点A 的横坐标为2,从而直线AB 的方程为x =2.又y 2=4x 的焦点为(1,0),所以抛物线的焦点到直线AB 的距离为2-1=1,故选A.]6.(2020·四川省资阳模拟)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为⊥ABC 的重心,则|F A →|+|FB →|+|FC →|的值为( )A .1B .2C .3D .4 【答案】C【解析】依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝⎛⎭⎫12,0,所以x 1+x 2+x 3=3×12=32,则|F A →|+|FB →|+|FC →|=⎝⎛⎭⎫x 1+12+⎝⎛⎭⎫x 2+12+⎝⎛⎭⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3 7.(2020·陕西省延安模拟)已知F 是抛物线C 1:y 2=2px (p >0)的焦点,曲线C 2是以F 为圆心,p2为半径的圆,直线4x -3y -2p =0与曲线C 1,C 2从上到下依次相交于点A ,B ,C ,D ,则|AB ||CD |=( )A .16B .4 C.83 D.53【答案】A【解析】因为直线4x -3y -2p =0过C 1的焦点F (C 2的圆心),故|BF |=|CF |=p 2,所以|AB ||CD |=|AF |-p2|DF |-p2.由抛物线的定义得|AF |-p 2=x A ,|DF |-p2=x D .由⎩⎪⎨⎪⎧4x -3y -2p =0,y 2=2px ,整理得8x 2-17px +2p 2=0,即(8x -p )(x -2p )=0,可得x A =2p ,x D =p 8,故|AB ||CD |=x Ax D =2pp 8=16.故选A 8.(2020·广东省惠州市一中模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线方程为x =-2,过点F 的直线与抛物线C 交于M (x 1,y 1),N (x 2,y 2)两点,若|MN |=8,则y 21+y 22=( )A .16B .32C .24D .48【答案】B【解析】由准线方程为x =-2,可知p =4,则抛物线C 的方程为y 2=8x .由抛物线的定义可知,|MN |=|MF |+|NF |=x 1+x 2+4=8,则x 1+x 2=4,即y 218+y 228=4,故y 21+y 22=32.故选B.] 9.(2020·湖南省邵阳市二中模拟)已知F 是抛物线C :y 2=2px (p >0)的焦点,过点R (2,1)的直线l 与抛物线C 交于A ,B 两点,R 为线段AB 的中点.若|F A |+|FB |=5,则直线l 的斜率为( )A .3B .1C .2 D.12【答案】B【解析】由于R (2,1)为AB 中点,设A (x A ,y A ),B (x B ,y B ).根据抛物线的定义|F A |+|FB |=x A +x B +p =2×2+p =5,解得p =1,抛物线方程为y 2=2x .y 2A =2x A ,y 2B =2x B,两式相减并化简得y B-y A x B -x A =2y A +y B =22×1=1,即直线l 的斜率为1.故选B.]10.(2020·湖北省汉川市一中模拟)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223 【答案】D【解析】由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,消去y 得k 2x 2+(4k 2-8)x +4k 2=0.Δ=(4k 2-8)2-16k 4>0,解得-1<k <1.设A (x 1,y 1),B (x 2,y 2).x 1+x 2=8k 2-4.⊥ x 1x 2=4.⊥ 根据抛物线的定义及|F A |=2|FB |,得x 1+2=2(x 2+2),即x 1=2x 2+2,⊥且x 1>0,x 2>0,由⊥⊥解得x 1=4,x 2=1,代入⊥得k 2=89,k >0,⊥k =223.故选D.11.(2020·山东省菏泽市一中模拟)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 23-y 2=1的右焦点重合,若A 为抛物线在第一象限上的一点,且|AF |=3,则直线AF 的斜率为 .【答案】-22【解析】⊥双曲线x 23-y 2=1的右焦点为(2,0),⊥抛物线方程为y 2=8x .⊥|AF |=3,⊥x A +2=3,得x A =1,代入抛物线方程可得y A =±2 2.⊥点A 在第一象限,⊥A (1,22),⊥直线AF 的斜率为221-2=-2 2.]12.(2020·江西省任弼时中学模拟)若抛物线x 2=4y 上的点A 到焦点的距离为10,则点A 到x 轴的距离是 .【答案】9【解析】根据题意,抛物线x 2=4y 的准线方程为y =-1,点A 到准线的距离为10,故点A 到x 轴的距离是9.]13.(2020·福建省永春一中模拟)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则⊥AOB 的边长是 .【答案】63【解析】如图,设⊥AOB 的边长为a ,则A ⎝⎛⎭⎫32a ,12a ,⊥点A 在抛物线y 2=3x 上,⊥14a 2=3×32a ,⊥a =6 3.] 14.(2020·安徽省池州二中模拟)直线y =k (x -1)与抛物线y 2=4x 交于A ,B 两点,若|AB |=163,则k = .【答案】±3【解析】设A (x 1,y 1),B (x 2,y 2),因为直线AB 经过抛物线y 2=4x 的焦点,所以|AB |=x 1+x 2+2=163,所以x 1+x 2=103.联立⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1)得到k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2k 2+4k 2=103,所以k =± 3.]15.(2020·江苏省淮北中学模拟)已知抛物线y 2=2px (p >0)过点A (2,y 0),且点A 到其准线的距离为4.(1)求抛物线的方程;(2)直线l :y =x +m 与抛物线交于两个不同的点P ,Q ,若OP ⊥OQ ,求实数m 的值. 【解析】(1)已知抛物线y 2=2px (p >0)过点A (2,y 0),且点A 到准线的距离为4, ⊥2+p2=4,⊥p =4,⊥抛物线的方程为y 2=8x .(2)由⎩⎪⎨⎪⎧y =x +m ,y 2=8x 得x 2+(2m -8)x +m 2=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=8-2m ,x 1x 2=m 2,y 1+y 2=x 1+x 2+2m =8,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2=8m . ⊥OP ⊥OQ ,⊥x 1x 2+y 1y 2=m 2+8m =0, ⊥m =0或m =-8.经检验,当m =0时,直线与抛物线交点中有一点与原点O 重合,不符合题意. 当m =-8时,Δ=(-24)2-4×64>0,符合题意. 综上,实数m 的值为-8.16.(2020·浙江省丽水中学模拟)如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:GF 为⊥AGB 的平分线. 【解析】(1)由抛物线定义可得|AF |=2+p2=3,解得p =2.⊥抛物线E 的方程为y 2=4x .(2)证明:⊥点A (2,m )在抛物线E 上,⊥m 2=4×2,解得m =±22,由抛物线的对称性,不妨设A (2,22),由A (2,22),F (1,0), ⊥直线AF 的方程为y =22(x -1),由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或12,⊥B ⎝⎛⎭⎫12,-2. 又G (-1,0),⊥k GA =223,k GB =-223,⊥k GA +k GB =0, ⊥⊥AGF =⊥BGF .⊥GF 为⊥AGB 的平分线.17.(2020·吉林省松原市二中模拟)已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标.【解析】(1)抛物线y 2=2px (p >0)的准线为x =-p 2,于是4+p 2=5,⊥p =2. ⊥抛物线方程为y 2=4x .(2)⊥点A 的坐标是(4,4),由题意得B (0,4),M (0,2).又⊥F (1,0),⊥k F A =43, ⊥MN ⊥F A ,⊥k MN =-34. ⊥F A 的方程为y =43(x -1), ⊥ MN 的方程为y -2=-34x , ⊥联立⊥⊥,解得x =85,y =45, ⊥点N 的坐标为⎝⎛⎭⎫85,45.。
(完整版)抛物线基础练习题
完整版)抛物线基础练习题抛物线基础练习题1.抛物线方程及性质1.1 抛物线的标准方程为 $y = ax^2 + bx + c$,其中 $a$、$b$、$c$ 是实数常数。
a 的值决定了抛物线的开口方向。
当 $a。
0$ 时,抛物线开口向上。
当 $a < 0$ 时,抛物线开口向下。
1.2 抛物线的对称轴是垂直于 x-轴的直线,可以通过以下公式求得:x = -\frac{b}{2a}$$2.抛物线图像绘制2.1 绘制抛物线图像的步骤:确定抛物线的方程。
找出对称轴的 x 坐标。
绘制对称轴,并确定对称轴上的一点。
根据对称轴上的点,绘制抛物线的图像。
2.2 使用上述步骤绘制以下抛物线的图像:2.2.1 $y = x^2$,开口向上的抛物线。
首先,我们可以得知对称轴的 x 坐标为 $x = 0$。
确定对称轴上的一点 P(0,0),然后根据 P 点的坐标起始绘制抛物线图像。
绘制结果如下图所示:抛物线图像](image.png)3.练习题请计算并回答下列问题:1.当抛物线方程为 $y = -2x^2 + 3x + 1$ 时,求其对称轴的 x 坐标。
2.给定抛物线方程 $y = 4x^2 + 2x + 1$,求其开口方向。
4.答案解析解答上述练习题:1.根据公式 $x = -\frac{b}{2a}$,代入 $a=-2$ 和 $b=3$,我们可以计算得到对称轴的 x 坐标为 $x = -\frac{3}{2}$。
2.根据抛物线方程 $y = 4x^2 + 2x + 1$,我们可以得知 $a = 4.0$,所以抛物线的开口方向是向上。
希望以上内容能够帮助你理解抛物线的基本概念和绘制方法。
如果还有其他问题,请随时提问。
抛物线基础题(含答案)
抛物线1.在平面内,“点P 到某定点的距离等于到某定直线的距离”是“点P 的轨迹为抛物线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B2.若动点P 到定点F (-4,0)的距离与到直线x =4的距离相等,则P 点的轨迹是( )A .抛物线B .线段C .直线D .射线答案 A3. 已知动点P 到定点(0,2)的距离和它到直线l :y =-2的距离相等,则点P 的轨迹方程为________。
答案 x 2=8y 4. 已知动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆答案 C5. 对抛物线y =4x 2,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为⎝ ⎛⎭⎪⎫0,116C .开口向右,焦点为(1,0)D .开口向右,焦点为⎝ ⎛⎭⎪⎫0,116答案 B6.抛物线y =ax 2(a ≠0)的准线方程是y =2,则a 的值为( )A.18B .-18 C .8 D .-8解析 因为y =ax 2(a ≠0),化为标准方程为x 2=1a y ,其准线方程为y =2,所以2=1-4a,所以a =-18。
故选B 。
答案 B7. 抛物线y =-116x 2的焦点坐标为( )A.⎝ ⎛⎭⎪⎫-164,0 B .(-4,0) C.⎝ ⎛⎭⎪⎫0,-164 D .(0,-4) 解析 抛物线方程化为x 2=-16y 。
其焦点坐标为(0,-4)。
答案 D8. 抛物线方程为7x +4y 2=0,则焦点坐标为________。
解析 抛物线方程化为y 2=-74x ,所以抛物线开口向左,2p =74,p 2=716,故焦点坐标为⎝ ⎛⎭⎪⎫-716,0。
答案 ⎝ ⎛⎭⎪⎫-716,09.顶点在坐标原点,对称轴为坐标轴,又过点(-2,3)的抛物线方程是( )A .y 2=94xB .x 2=43yC .y 2=-94x 或x 2=-43yD .y 2=-92x 或x 2=43y 答案 D10.已知抛物线y =mx 2(m >0)的焦点与椭圆4y 29+x22=1的一个焦点重合,则m =________。
抛物线与几何图形的综合题型专题复习讲义(含答案)
抛物线与几何图形的综合题型专题复习讲义(含答案)——代数、几何结合,突破面积及点的存在性问题类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y =12x 2+x -32与x 轴相交于A ,B 两点,顶点为P . (1)求点A ,B 的坐标;(2)在抛物线上是否存在点E ,使△ABP 的面积等于△ABE 的面积?若存在,求出符合条件的点E 的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F ,使得以A ,B ,P ,F 为顶点的四边形为平行四边形?直接写出所有符合条件的点F 的坐标.类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. 如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4).(1)求抛物线的解析式及顶点坐标;(2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF 是否为菱形.8.正方形OABC的边长为4,对角线相交于点P,抛物线l经过O,P,A 三点,点E是正方形内的抛物线l上的动点.(1)建立适当的平面直角坐标系,①直接写出O,P,A三点的坐标;②求抛物线l的解析式;(2)求△OAE与△OCE面积之和的最大值.参考答案:。
抛物线典型例题12例(含标准答案)
《抛物线》典型例题12例典型例题一例1 指出抛物线的焦点坐标、准线方程. (1)y x 42= (2))0(2≠=a ay x分析:(1)先根据抛物线方程确定抛物线是四种中哪一种,求出p ,再写出焦点坐标和准线方程.(2)先把方程化为标准方程形式,再对a 进行讨论,确定是哪一种后,求p 及焦点坐标与准线方程.解:(1)2=p ,∴焦点坐标是(0,1),准线方程是:1-=y (2)原抛物线方程为:x a y 12=,ap 12=∴ ①当0>a 时,ap 412=,抛物线开口向右, ∴焦点坐标是)0,41(a ,准线方程是:a x 41-=. ②当0<a 时,a p 412-=,抛物线开口向左, ∴焦点坐标是)0,41(a ,准线方程是:ax 41-=. 综合上述,当0≠a 时,抛物线2ay x =的焦点坐标为)0,41(a ,准线方程是:ax 41-=. 典型例题二例2 若直线2-=kx y 与抛物线x y 82=交于A 、B 两点,且AB 中点的横坐标为2,求此直线方程.分析:由直线与抛物线相交利用韦达定理列出k 的方程求解.另由于已知与直线斜率及弦中点坐标有关,故也可利用“作差法”求k .解法一:设),(11y x A 、),(22y x B ,则由:⎩⎨⎧=-=xy kx y 822可得:04)84(22=++-x k x k .∵直线与抛物线相交,0≠∴k 且0>∆,则1->k . ∵AB 中点横坐标为:2842221=+=+∴kk x x , 解得:2=k 或1-=k (舍去). 故所求直线方程为:22-=x y .解法二:设),(11y x A 、),(22y x B ,则有22212188x y x y ==. 两式作差解:)(8))((212121x x y y y y -=+-,即2121218y y x x y y +=--. 421=+x x 444)(22212121-=-+=-+-=+∴k x x k kx kx y y ,448-=∴k k 故2=k 或1-=k (舍去). 则所求直线方程为:22-=x y .典型例题三例3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切. 分析:可设抛物线方程为)0(22>=p px y .如图所示,只须证明12MM AB =,则以AB 为直径的圆,必与抛物线准线相切. 证明:作l AA ⊥1于l BB A ⊥11,于1B .M 为AB 中点,作l MM ⊥1于1M ,则由抛物线的定义可知:BF BB AF AA ==11,在直角梯形A A BB 11中:AB BF AF BB AA MM 21)(21)(21111=+=+=AB MM 211=∴,故以AB 为直径的圆,必与抛物线的准线相切. 说明:类似有:以椭圆焦点弦为直径的圆与相对应的准线相离,以双曲线焦点弦为直径的圆与相应的准线相交.典型例题四例4(1)设抛物线x y 42=被直线k x y +=2截得的弦长为53,求k 值. (2)以(1)中的弦为底边,以x 轴上的点P 为顶点作三角形,当三角形的面积为9时,求P 点坐标.分析:(1)题可利用弦长公式求k ,(2)题可利用面积求高,再用点到直线距离求P 点坐标.解:(1)由⎩⎨⎧+==kx y x y 242得:0)44(422=+-+k x k x设直线与抛物线交于),(11y x A 与),(22y x B 两点.则有:4,122121k x x k x x =⋅-=+[][])21(5)1(54)(5))(21(22212212212k k k x x x x x x AB -=--=-+=-+=∴53)21(5,53=-∴=∴k AB ,即4-=k (2)9=∆S ,底边长为53,∴三角形高5565392=⨯=h ∵点P 在x 轴上,∴设P 点坐标是)0,(0x 则点P 到直线42-=x y 的距离就等于h ,即55612402220=+--x 10-=∴x 或50=x ,即所求P 点坐标是(-1,0)或(5,0). 典型例题五例5 已知定直线l 及定点A (A 不在l 上),n 为过A 且垂直于l 的直线,设N 为l 上任一点,AN 的垂直平分线交n 于B ,点B 关于AN 的对称点为P ,求证P 的轨迹为抛物线.分析:要证P 的轨迹为抛物线,有两个途径,一个证明P 点的轨迹符合抛物线的定义,二是证明P 的轨迹方程为抛物线的方程,可先用第一种方法,由A 为定点,l 为定直线,为我们提供了利用定义的信息,若能证明PN PA =且l PN ⊥即可.证明:如图所示,连结P A 、PN 、NB .由已知条件可知:PB 垂直平分NA ,且B 关于AN 的对称点为P . ∴AN 也垂直平分PB .则四边形P ABN 为菱形.即有PN PA =...l PN l AB ⊥∴⊥则P 点符合抛物线上点的条件:到定点A 的距离与到定直线的距离相等,所以P 点的轨迹为抛物线.典型例题六例6 若线段21P P 为抛物线)0(2:2>=p px y C 的一条焦点弦,F 为C 的焦点,求证:p F P FP 21121=+. 分析:此题证的是距离问题,如果把它们用两点间的距离表示出来,其计算量是很大的.我们可以用抛物线的定义,巧妙运用韦达定理,也可以用抛物线的定义与平面几何知识,把结论证明出来.证法一:)0,2(pF ,若过F 的直线即线段21P P 所在直线斜率不存在时, 则有p F P F P ==21,p p p F P FP 2111121=+=+∴. 若线段21P P 所在直线斜率存在时,设为k ,则此直线为:)0)(2(≠-=k px k y ,且设),(),,(222111y x P y x P .由⎪⎪⎩⎪⎪⎨⎧-=-=)2()2(p x k y px k y 得:04)2(22222=++-p k x k p x k 2221)2(kk p x x +=+∴ ① 4221p x x =⋅ ②根据抛物线定义有:p x x P P px F P p x F P ++=∴+=+=21211211,2,2 则F P F P F P F P F P F P 21212111⋅+=+4)(2)2)(2(22121212121p x x p x x p x x p x p x p x x +++++=++++= 请将①②代入并化简得:p F P FP 21121=+ 证法二:如图所示,设1P 、2P 、F 点在C 的准线l 上的射影分别是'1P 、'2P 、F ',且不妨设1122P P m n P P '=<=',又设2P点在F F '、11P P '上的射影分别是A 、B 点,由抛物线定义知,p F F m F P n F P ='==,,12又AF P 2∆∽12BP P ∆,1221P P F P BP AF =∴即nm nn m n p +=-- pn m m nn m p 2112)(=+∴=+∴ 故原命题成立.典型例题七例7 设抛物线方程为)0(22>=p px y ,过焦点F 的弦AB 的倾斜角为α,求证:焦点弦长为α2sin 2pAB =. 分析:此题做法跟上题类似,也可采用韦达定理与抛物线定义解决问题.证法一:抛物线)0(22>=p px y 的焦点为)0,2(p,过焦点的弦AB 所在的直线方程为:)2(tan px y -=α由方程组⎪⎩⎪⎨⎧=-=px y p x y 2)2(tan 2α消去y 得:0tan )(tan 4tan 422222=+-αααp p x设),(),,(2211y x B y x A ,则⎪⎪⎩⎪⎪⎨⎧=⋅+=+=+4)cot 21(tan )2(tan 22122221p x x p p x x ααα 又)(tan 2121x x y y -=α[]ααααααααα242222222222122122212sin 2sin 14)cot 1(cot 4sec 44)cot 1()tan 1(4)()tan 1())(tan 1(pp p p p x x x x x x AB =⋅=+⋅=⎥⎦⎤⎢⎣⎡⋅-++=-++=-+=∴即α2sin 2pAB =证法二:如图所示,分别作1AA 、1BB 垂直于准线l .由抛物线定义有:ααcos cos 11⋅-==+⋅==BF p BB BF p AF AA AF于是可得出:αcos 1-=p AF αcos 1+=pBFαααα22sin 2cos 12cos 1cos 1p pp p BFAF AB =-=++-=+=∴故原命题成立.典型例题八例8 已知圆锥曲线C 经过定点)32,3(P ,它的一个焦点为F (1,0),对应于该焦点的准线为1-=x ,过焦点F 任意作曲线C 的弦AB ,若弦AB 的长度不超过8,且直线AB 与椭圆22322=+y x 相交于不同的两点,求 (1)AB 的倾斜角θ的取值范围.(2)设直线AB 与椭圆相交于C 、D 两点,求CD 中点M 的轨迹方程. 分析:由已知条件可确定出圆锥曲线C 为抛物线,AB 为抛物线的焦点弦,设其斜率为k ,弦AB 与椭圆相交于不同的两点,可求出k 的取值范围,从而可得θ的取值范围,求CD 中点M 的轨迹方程时,可设出M 的坐标,利用韦达定理化简即可.解:(1)由已知得4=PF .故P 到1-=x 的距离4=d ,从而d PF = ∴曲线C 是抛物线,其方程为x y 42=.设直线AB 的斜率为k ,若k 不存在,则直线AB 与22322=+y x 无交点. ∴k 存在.设AB 的方程为)1(-=x k y由⎩⎨⎧-==)1(42x k y x y 可得:0442=--k y ky 设A 、B 坐标分别为),(11y x 、),(22y x ,则:442121-=⋅=+y y ky y222122122212)1(44)(1))(11(k k y y y y k k y y k AB +=-++=-+=∴∵弦AB 的长度不超过8,8)1(422≤+∴k k 即12≥k 由⎩⎨⎧=+-=223)1(22y x x k y 得:0)1(24)32(2222=-+-+k x k x k ∵AB 与椭圆相交于不同的两点,32<∴k 由12≥k 和32<k 可得:31<≤k 或13-≤<-k 故3tan 1≤≤θ或1tan 3-<<-θ 又πθ<≤0,∴所求θ的取值范围是:34πθπ<≤或4332πθπ≤< (2)设CD 中点),(y x M 、),(33y x C 、),(44y x D由⎩⎨⎧=+-=223)1(22y x x k y 得:0)1(24)32(2222=-+-+k x k x k 9325313231322232)1(2,324222224322132243<+≤∴<≤+-=∴+=+=+-=⋅+=+∴k k k x k k x x x k k x x k k x x则323211522<+-≤k 即3252<≤x . 3)1(2)1(23221222222+-⋅-⋅=+=∴-=x y x y k k x x y k 化简得:032322=-+x y x∴所求轨迹方程为:)3252(032322<≤=-+x x y x典型例题九例9 定长为3的线段AB 的端点A 、B 在抛物线x y =2上移动,求AB 的中点到y 轴的距离的最小值,并求出此时AB 中点的坐标.分析:线段AB 中点到y 轴距离的最小值,就是其横坐标的最小值.这是中点坐标问题,因此只要研究A 、B 两点的横坐标之和取什么最小值即可.解:如图,设F 是x y =2的焦点,A 、B 两点到准线的垂线分别是AC 、BD ,又M 到准线的垂线为MN ,C 、D 和N 是垂足,则2321)(21)(21=≥+=+=AB BF AF BD AC MN . 设M 点的横坐标为x ,纵坐标为y ,41+=x MN ,则454123=-≥x .等式成立的条件是AB 过点F . 当45=x 时,41221-=-=P y y ,故 22122)(212221221=-=++=+x y y y y y y , 221±=+y y ,22±=y . 所以)22,45(±M ,此时M 到y 轴的距离的最小值为45. 说明:本题从分析图形性质出发,把三角形的性质应用到解析几何中,解法较简.典型例题十例10 过抛物线px y 2=的焦点F 作倾斜角为θ的直线,交抛物线于A 、B 两点,求AB 的最小值. 分析:本题可分2πθ=和2πθ≠两种情况讨论.当2πθ≠时,先写出AB 的表达式,再求范围. 解:(1)若2πθ=,此时p AB 2=. (2)若2πθ≠,因有两交点,所以0≠θ. )2(tan p x y AB -=θ:,即2tan py x +=θ.代入抛物线方程,有0tan 222=--p y py θ. 故θθ22222212csc 44tan 4)(p p p y y =+=-, θθθ2222212212tan csc 4tan )()(p y y x x =-=-. 故θθθ422222csc 4)tan 11(csc 4p p AB =+=. 所以p p AB 2sin 22>=θ.因2πθ≠,所以这里不能取“=”.综合(1)(2),当2πθ=时,p AB 2=最小值. 说明:(1)此题须对θ分2πθ=和2πθ≠两种情况进行讨论; (2)从解题过程可知,抛物线点弦长公式为θ2sin 2pl =; (3)当2πθ=时,AB 叫做抛物线的通径.通径是最短的焦点弦.例11 过抛物线px y 22=)0(>p 的焦点F 作弦AB ,l 为准线,过A 、B 作l 的垂线,垂足分别为'A 、'B ,则①''FB A ∠为( ),②B AF '∠为( ).A .大于等于︒90B .小于等于︒90C .等于︒90D 不确定分析:本题考查抛物线的定义、直线与圆的位置关系等方面的知识,关键是求角的大小以及判定直线与圆是否相切.解:①点A 在抛物线上,由抛物线定义,则21'∠=∠⇒=AF AA , 又x AA //'轴31∠=∠⇒.∴32∠=∠,同理64∠=∠,而︒=∠+∠+∠+∠1804632,∴︒=∠+∠9063,∴︒=∠90''FB A .选C .②过AB 中点M 作l MM ⊥',垂中为'M , 则AB BF AF BB AA MM 21)(21)(21'''=+=+=.∴以AB 为直径的圆与直线l 相切,切点为'M .又'F 在圆的外部,∴︒<∠90'B AF .特别地,当x AB ⊥轴时,'M 与'F 重合,︒=∠90'B AF .即︒≤∠90'B AF ,选B .例12 已知点)2,3(M ,F 为抛物线x y 22=的焦点,点P 在该抛物线上移动,当PF PM +取最小值时,点P 的坐标为__________.分析:本题若建立目标函数来求PF PM +的最小值是困难的,若巧妙地利用抛物线定义,结合图形则问题不难解决.解:如图,由定义知PE PF =,故213=≥≥+=+MN ME PM PF PF PM .取等号时,M 、P 、E 三点共线,∴P 点纵坐标为2,代入方程,求出其横坐标为2,所以P 点坐标为)2,2(.。
(完整版)抛物线练习题(含答案)
抛物线练习题一、选择题1.在直角坐标平面内,到点(1,1)和直线x +2y =3距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线2.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为( )A.⎝⎛⎭⎫32,±62B.⎝⎛⎭⎫74,±72C.⎝⎛⎭⎫94,±32D.⎝⎛⎭⎫52,±102 3.抛物线y =ax 2的准线方程是y =2,则a 的值为( )A.18 B .-18C .8D .-8 4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .125.设过抛物线的焦点F 的弦为AB ,则以AB 为直径的圆与抛物线的准线的位置关系是( )A .相交B .相切C .相离D .以上答案都有可能6.过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹方程为( )A .y 2=12xB .y 2=-12xC .x 2=12yD .x 2=-12y7.抛物线y 2=8x 上一点P 到x 轴距离为12,则点P 到抛物线焦点F 的距离为( )A .20B .8C .22D .248.抛物线的顶点在坐标原点,焦点是椭圆4x 2+y 2=1的一个焦点,则此抛物线的焦点到准线的距离为( )A .2 3 B. 3 C.12 3 D.143 9.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( )A .4B .4或-4C .-2D .2或-210.抛物线y =1mx 2(m <0)的焦点坐标是( ) A.⎝⎛⎭⎫0,m 4 B.⎝⎛⎭⎫0,-m 4 C.⎝⎛⎭⎫0,14m D.⎝⎛⎭⎫0,-14m 11.抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,25)到焦点的距离是6,则抛物线的方程为( )A .y 2=-2xB .y 2=-4xC .y 2=2xD .y 2=-4x 或y 2=-36x12.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12 B .1 C .2 D .4二、填空题13.过抛物线焦点F的直线与抛物线相交于A、B两点,若A、B在抛物线准线上的射影是A1、B1,则∠A1FB1= 。
初中抛物线经典练习题(含详细答案)
初中数学抛物线经典试题集锦【编著】黄勇权【第一组题型】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。
2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。
3、在平面直角坐标系xOy中,已知抛物线的顶点C为(2,4),并在x轴上截得的长度为6。
(1)写出抛物线与x轴交点A、B的坐标(2)求该抛物线的表达式(3)写出抛物线与y轴交点P的坐标4、直线的解析式为y=2x+4,交x轴于点A,交y轴于点B,若以A 为顶点,,且开口向下作抛物线,交直线AB于点D,交y轴负半轴于点C,(1)若△ABC的面积为20,求此时抛物线的解析式(2)若△BDO的面积为8,求此时抛物线的解析式【答案】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。
解:【第一问】因为函数y=x²+bx+c过点A(2,0),C(0, -8)分别将x=2,y=0代入y=x²+bx+c,得0=4+2b+c-----①将x=0,y=-8代入y=x²+bx+c,得-8=c-------------②将②代入①,解得:b=2--------------------------------------③此时,将②③代入y=x²+bx+c,所以:二次函数的解析式y=x²+ 2x -8【第二问】△ABP的面积= 12│AB│*│y p│----------------------④因为A、B两点在x轴上,令x²+ 2x -8=0(x-2)(x+4)=0解得:x1=2,x2= -4所以:│AB│=│X1- X2│=│2-(- 4)│=6------⑤又△ABP的面积=15-------------------------------------⑥由④⑤⑥,得:12*6*│y p│=15│y p│=5故有:y p= ±5即:p点的纵坐标为5或-5.把y=5代入y=x²+ 2x -8,即:5=x²+ 2x -8x²+ 2x -13=0解得:x= -1± 14那么,此时p点坐标(-1+ 14,5),(-1- 14,5)-------⑦把y=-5代入y=x²+ 2x -8,即:-5=x²+ 2x -8x²+ 2x -3=0(x-1)(x+3)=0解得:x= 1或x= -3那么,此时p点坐标(1,-5),(-3,-5)------------------⑧由⑦⑧得,使△ABP的面积为15,p点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。
初中抛物线经典练习题(含详细答案)
【编著】 黄勇权【第一组题型】1、已知二次函数y=x ²+bx+c 过点A (2,0),C (0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p 使△ABP 的面积为15,请直接写出p 点的坐标。
2、在平面直角坐标系xOy 中,抛物线y=2x ²+mx+n 经过点A (5,0),B (2,-6).(1)求抛物线的表达式及对称轴(2)设点B 关于原点的对称点为C ,写出过A 、C 两点直线的表达式。
初中数学抛物线 经典试题集锦3、在平面直角坐标系xOy中,已知抛物线的顶点C为(2,4),并在x轴上截得的长度为6。
(1)写出抛物线与x轴交点A、B的坐标(2)求该抛物线的表达式(3)写出抛物线与y轴交点P的坐标4、直线的解析式为y=2x+4,交x轴于点A,交y轴于点B,若以A为顶点,,且开口向下作抛物线,交直线AB于点D,交y轴负半轴于点C,(1)若△ABC的面积为20,求此时抛物线的解析式(2)若△BDO的面积为8,求此时抛物线的解析式【答案】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。
解:【第一问】因为函数y=x ²+bx+c 过点A (2,0),C (0, -8)分别将x=2,y=0代入y=x ²+bx+c , 得 0=4+2b+c-----①将x=0,y=-8代入y=x ²+bx+c ,得-8=c-------------②将②代入①,解得:b=2--------------------------------------③此时,将② ③代入y=x ²+bx+c ,所以:二次函数的解析式 y=x ²+ 2x -8【第二问】△ABP 的面积= 12│AB │*│y p │----------------------④ 因为A 、B 两点在x 轴上,令x ²+ 2x -8=0(x-2)(x+4)=0解得:x 1=2,x 2= -4所以:│AB │=│X 1- X 2│=│2-(- 4)│=6------⑤又△ABP 的面积=--------------------------⑥由 ④ ⑤ ⑥,得 : 12*6*│y p │=15│y p│=5故有:y p= ±5即:p点的纵坐标为5或-5.把y=5代入 y=x²+ 2x -8,即:5=x²+ 2x -8x²+ 2x -13=0解得:x= -1± 14那么,此时p点坐标(-1+ 14,5),(-1- 14,5)-------⑦把y=-5代入 y=x²+ 2x -8,即:-5=x²+ 2x -8x²+ 2x -3=0(x-1)(x+3)=0解得:x= 1或x= -3那么,此时p点坐标(1,-5),(-3,-5)------------------⑧由⑦⑧得,使△ABP的面积为15,p点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。
初中数学抛物线经典习题及答案
初中数学抛物线经典试题集锦【第一组题型】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。
2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。
3、在平面直角坐标系xOy中,已知抛物线的顶点C为(2,4),并在x轴上截得的长度为6。
(1)写出抛物线与x轴交点A、B的坐标(2)求该抛物线的表达式(3)写出抛物线与y轴交点P的坐标4、直线的解析式为y=2x+4,交x轴于点A,交y轴于点B,若以A 为顶点,,且开口向下作抛物线,交直线AB于点D,交y轴负半轴于点C,(1)若△ABC的面积为20,求此时抛物线的解析式(2)若△BDO的面积为8,求此时抛物线的解析式【答案】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。
解:【第一问】因为函数y=x²+bx+c过点A(2,0),C(0, -8)分别将x=2,y=0代入y=x²+bx+c,得0=4+2b+c-----①将x=0,y=-8代入y=x²+bx+c,得-8=c-------------②将②代入①,解得:b=2--------------------------------------③此时,将②③代入y=x²+bx+c,所以:二次函数的解析式y=x²+ 2x -8【第二问】△ABP的面积= 12│AB│*│y p│----------------------④因为A、B两点在x轴上,令x²+ 2x -8=0(x-2)(x+4)=0解得:x1=2,x2= -4所以:│AB│=│X1- X2│=│2-(- 4)│=6------⑤又△ABP的面积=15-------------------------------------⑥由④⑤⑥,得:12*6*│y p│=15│y p│=5故有:y p= ±5即:p点的纵坐标为5或-5.把y=5代入y=x²+ 2x -8,即:5=x²+ 2x -8x²+ 2x -13=0解得:x= -1± 14那么,此时p点坐标(-1+ 14,5),(-1- 14,5)-------⑦把y=-5代入y=x²+ 2x -8,即:-5=x²+ 2x -8x²+ 2x -3=0(x-1)(x+3)=0解得:x= 1或x= -3那么,此时p点坐标(1,-5),(-3,-5)------------------⑧由⑦⑧得,使△ABP的面积为15,p点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。
初中抛物线经典练习题(含详细答案)
初中抛物线经典练习题(含详细答案)初中数学抛物线经典试题集锦,编著者为黄勇权。
以下为题目和解答。
第一组题型】1、已知二次函数$y=x^2+bx+c$过点$A(2,0)$,$C(0,-8)$1)求此二次函数的解析式;2)在抛物线上存在一点$p$使$\triangle ABP$的面积为15,请直接写出$p$点的坐标。
解:第一问】因为函数$y=x^2+bx+c$过点$A(2,0)$,$C(0,-8)$,分别将$x=2$,$y=0$代入$y=x^2+bx+c$,得$0=4+2b+c$-----①。
将$x=0$,$y=-8$代入$y=x^2+bx+c$,得$-8=c$-------------②。
将②代入①,解得:$b=2$--------------------------------------③。
此时,将②③代入$y=x^2+bx+c$,所以二次函数的解析式为$y=x^2+2x-8$。
第二问】因为$A$、$B$两点在$x$轴上,令$x^2+2x-8=0$,解得:$x_1=2$,$x_2=-4$。
所以$|AB|=|x_1-x_2|=|2-(-4)|=6$。
又$\triangle ABP$的面积为15,所以$|y_p|\cdot 6=30$,即$|y_p|=5$。
故$p$点的纵坐标为5或-5,即$p(2,5)$或$p(2,-5)$。
2、在平面直角坐标系$xOy$中,抛物线$y=2x^2+mx+n$经过点$A(5,B)$,$B(2,-6)$。
1)求抛物线的表达式及对称轴;2)设点$B$关于原点的对称点为$C$,写出过$A$、$C$两点直线的表达式。
解:第一问】因为抛物线$y=2x^2+mx+n$经过点$A(5,B)$,$B(2,-6)$,分别将$x=5$,$y=B$代入$y=2x^2+mx+n$,得$B=50+5m+n$-----①。
将$x=2$,$y=-6$代入$y=2x^2+mx+n$,得$-6=8+2m+n$-------------②。
3.3.2 抛物线的简单几何性质(同步练习)(附答案)
3.3.2 抛物线的简单几何性质(同步练习)一、选择题1.顶点在原点,焦点为F ⎝ ⎛⎭⎪⎫32,0的抛物线的标准方程是( ) A .y 2=32x B .y 2=3x C .y 2=6x D .y 2=-6x2.已知A ,B 两点均在焦点为F 的抛物线y 2=2px(p>0)上,若|AF|+|BF|=4,线段AB 的中点到直线x =p 2的距离为1,则p 的值为( ) A .1 B .1或3C .2D .2或63.设F 为抛物线C :y 2=4x 的焦点,曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) A.12B .1 C.32D .2 4.P 为抛物线y 2=2px(p >0)上任意一点,F 为抛物线的焦点,则以|PF|为直径的圆与y 轴的位置关系为( )A .相交B .相离C .相切D .不确定5.已知A ,B 为抛物线y 2=2x 上两点,且A 与B 的纵坐标之和为4,则直线AB 的斜率为( ) A.12 B .-12C .-2D .26.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,点A ∈l ,线段AF 交抛物线C 于点B , 若FA ―→=3FB ―→,则|AF ―→|=( )A .3B .4C .6D .77.已知抛物线x 2=2py(p>0)的焦点为F ,过F 作倾斜角为30°的直线与抛物线交于A ,B 两点,若|AF||BF|∈(0,1),则|AF||BF|=( ) A.15 B .14 C.13 D .128.(多选)设抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离可以是( )A.2B.3C.4D.5二、填空题9.已知点F 为抛物线y 2=4x 的焦点,该抛物线上位于第一象限的点A 到其准线的距离为5,则直线AF 的斜率为________10.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,若|AF|=2,则|BF|=________11.抛物线x 2=2py(p>0)的焦点为F ,其准线与双曲线x 2-y 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________12.(2020·福州期末)设抛物线y 2=2px 上的三个点A ⎝ ⎛⎭⎪⎫23,y 1,B(1,y 2),C ⎝ ⎛⎭⎪⎫32,y 3到该抛物线的焦点距离分别为d 1,d 2,d 3.若d 1,d 2,d 3中的最大值为3,则p 的值为________13.(2018·全国卷Ⅲ)已知点M(-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________三、解答题14.根据下列条件分别求抛物线的标准方程.(1)抛物线的焦点是双曲线16x 2-9y 2=144的左顶点;(2)抛物线的焦点F 在x 轴上,直线y =-3与抛物线交于点A ,|AF|=5.15.已知过抛物线y 2=4x 的焦点F 的弦长为36,求弦所在的直线方程.16.已知AB 是抛物线y 2=2px(p>0)的过焦点F 的一条弦.设A(x 1,y 1),B(x 2,y 2),AB 的中点为M(x 0,y 0).求证:(1)若AB 的倾斜角为θ,则|AB|=2p sin 2θ;(2)x 1x 2=p 24,y 1y 2=-p 2;(3)1|AF|+1|BF|为定值2p.17.已知抛物线y 2=2x.(1)设点A 的坐标为⎝ ⎛⎭⎪⎫23,0,求抛物线上距离点A 最近的点P 的坐标及相应的距离|PA|; (2)在抛物线上求一点M ,使M 到直线x -y +3=0的距离最短,并求出距离的最小值.参考答案及解析:一、选择题1.C 解析:∵抛物线的焦点为⎝⎛⎭⎫32,0,∴p =3,且抛物线开口向右.∴抛物线的标准方程为y 2=6x.2.B 解析:|AF|+|BF|=4⇒x A +p 2+x B +p 2=4⇒x A +x B =4-p ⇒2x 中=4-p ,因为线段AB 的中点到直线x =p 2的距离为1,所以⎪⎪⎪⎪x 中-p 2=1,所以|2-p|=1⇒p =1或3. 3.D 解析:∵y 2=4x ,∴F(1,0).又∵曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,∴P(1,2). 将点P(1,2)的坐标代入y =k x(k >0),得k =2.故选D. 4.C 解析:设PF 的中点M(x 0,y 0),作MN ⊥y 轴于N 点,设P(x 1,y 1),则|MN|=x 0=12(|OF|+x 1)=12⎝⎛⎭⎫x 1+p 2=12|PF|.故相切. 5.A 解析:设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=4.由⎩⎪⎨⎪⎧y 21=2x 1,y 22=2x 2,得(y 1+y 2)(y 1-y 2)x 1-x 2=2,即4k AB =2,k AB =12. 6.B 解析:由已知点B 为AF 的三等分点,作BH ⊥l 于点H ,如图,则|BH|=23|FK|=43,所以|BF|=|BH|=43.所以|AF ―→|=3|BF ―→|=4. 7.C 解析:因为抛物线的焦点为F ⎝⎛⎭⎫0,p 2,故过点F 且倾斜角为30°的直线的方程为y =33x +p 2,与抛物线方程联立得x 2-233px -p 2=0,解方程得x A =-33p ,x B =3p ,所以|AF||BF|=|x A ||x B |=13,故选C. 8.BCD 解析:因为抛物线的焦点到顶点的距离为3,所以p 2=3,即p =6.又因为抛物线上的点到准线的距离的最小值为p 2,所以抛物线上的点到准线的距离的取值范围为[3,+∞). 二、填空题9.答案:43解析:由抛物线定义得x A +1=5,x A =4,又点A 位于第一象限,因此y A =4,从而k AF =4-04-1=43. 10.答案:2解析:设点A ,B 的横坐标分别是x 1,x 2,则依题意有焦点F(1,0),|AF|=x 1+1=2,x 1=1,直线AF 的方程是x =1,此时弦AB 为抛物线的通径,故|BF|=|AF|=2.11.答案:2 3解析:由抛物线可知焦点F ⎝⎛⎭⎫0,p 2,准线y =-p 2,由于△ABF 为等边三角形,设AB 与y 轴交于M ,则 |FM|=p ,不妨取B ⎝⎛⎭⎪⎫p 2+42,-p 2,|FM|=3|MB|,即p =3⎝ ⎛⎭⎪⎫p 2+42,解得p =2 3. 12.答案:3解析:根据抛物线的几何性质可得d 1=p 2+23,d 2=p 2+1,d 3=p 2+32,由题意可得p>0,因此可判断d 3最大,故d 3=p 2+32=3,解得p =3. 13.答案:2解析:设点A(x 1,y 1),B(x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,∴y 21-y 22=4(x 1-x 2),∴k =y 1-y 2x 1-x 2=4y 1+y 2. 设AB 中点M ′(x 0,y 0),抛物线的焦点为F ,分别过点A ,B 作准线x =-1的垂线,垂足为A ′,B ′,则|MM ′|=12|AB|=12(|AF|+|BF|)=12(|AA ′|+|BB ′|). ∵M ′(x 0,y 0)为AB 的中点,∴M 为A ′B ′的中点,∴MM ′平行于x 轴,∴y 1+y 2=2,∴k =2.三、解答题14.解:(1)双曲线方程可化为x 29-y 216=1,左顶点为(-3,0), 由题意设抛物线方程为y 2=-2px(p>0)且-p 2=-3,∴p =6,∴抛物线的方程为y 2=-12x. (2)设所求焦点在x 轴上的抛物线的方程为y 2=2px(p ≠0),A(m ,-3),由抛物线定义得5=|AF|=⎪⎪⎪⎪m +p 2. 又(-3)2=2pm ,∴p =±1或p =±9,故所求抛物线方程为y 2=±2x 或y 2=±18x.15.解:∵过焦点的弦长为36,∴弦所在的直线的斜率存在且不为零.故可设弦所在直线的斜率为k ,且与抛物线交于A(x 1,y 1),B(x 2,y 2)两点.∵抛物线y 2=4x 的焦点为F(1,0),∴直线的方程为y =k(x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,整理得k 2x 2-(2k 2+4)x +k 2=0(k ≠0).∴x 1+x 2=2k 2+4k 2. ∴|AB|=|AF|+|BF|=x 1+x 2+2=2k 2+4k 2+2. 又|AB|=36,∴2k 2+4k 2+2=36,∴k =±24. ∴所求直线方程为y =24(x -1)或y =-24(x -1).16.证明:(1)设直线AB 的方程为x =my +p 2,代入y 2=2px ,可得y 2-2pmy -p 2=0, 则y 1y 2=-p 2,y 1+y 2=2pm ,∴y 21+y 22=2p(x 1+x 2)=(y 1+y 2)2-2y 1y 2=4p 2m 2+2p 2,∴x 1+x 2=2pm 2+p. 当θ=90°时,m =0,x 1+x 2=p ,∴|AB|=x 1+x 2+p =2p =2p sin 2θ; 当θ≠90°时,m =1tan θ,x 1+x 2=2p tan 2θ+p ,∴|AB|=x 1+x 2+p =2p tan 2θ+2p =2p sin 2θ. ∴|AB|=2p sin 2θ. (2)由(1)知,y 1y 2=-p 2,∴x 1x 2=(y 1y 2)24p 2=p 24. (3)1|AF|+1|BF|=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24=x 1+x 2+p p 2(x 1+x 2+p )=2p .17.解:(1)设抛物线上任一点P(x ,y),则|PA|2=⎝⎛⎭⎫x -232+y 2=⎝⎛⎭⎫x -232+2x =⎝⎛⎭⎫x +132+13, 因为x ≥0,且在此区间上函数单调递增,所以当x =0时,|PA|min =23, 故距点A 最近的点P 的坐标为(0,0).(2)设点M(x 0,y 0)是y 2=2x 上任一点,则M 到直线x -y +3=0的距离为d =|x 0-y 0+3|2=⎪⎪⎪⎪y 20-2y 0+622=|(y 0-1)2+5|22, 当y 0=1时,d min =522=524,所以点M 的坐标为⎝⎛⎭⎫12,1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国各地中考试题压轴题精选讲座抛物线与几何问题【知识纵横】抛物线的解析式有下列三种形式:1、一般式:2y ax bx c =++(a ≠0);2、顶点式:y =a(x—h ) 2+k;3、交点式:y=a(x —x 1)(x —x 2 ) ,这里x 1、x 2是方程ax 2 +bx +c =0的两个实根。
解函数与几何的综合题,善于求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互动,把证明与计算相结合是解题的关键。
【典型例题】【例1】 (浙江杭州)在直角坐标系x Oy 中,设点A(0,t ),点Q(t,b )。
平移二 次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q;②与x轴相交于B,C两点(∣O B∣<∣OC ∣),连结A ,B 。
(1)是否存在这样的抛物线F,OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC,且t an ∠ABO=23,求抛物线F 对应的二次函数的解析式。
【思路点拨】(1)由关系式OC OB OA ⋅=2来构建关于t 、b的方程;(2)讨论t 的取值范围,来求抛物线F 对应的二次函数的解析式。
【例2】(江苏常州)如图,抛物线24y x x =+与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l,设P 是直线l 上一动点.(1)求点A 的坐标;(2)以点A 、B 、O 、P为顶点的四边形中,有菱形、等 腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3)设以点A 、B 、O 、P为顶点的四边形的面积为S, 点P 的横坐标为x,当462682S +≤≤+时,求x 的取值范围.【思路点拨】(3)可求得直线l 的函数关系式是y=-2x ,所以应讨论①当点P 在第二象限时,x<0、 ②当点P 在第四象限是,x >0这二种情况。
【例3】(浙江丽水)如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与直线2=x 交于点P ,顶点M 到A 点时停止移动.(1)求线段OA 所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m ,①用m 的代数式表示点P 的坐标; ②当m 为何值时,线段PB 最短;(3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若不存在,请说明理由.【思路点拨】(2)构建关于PB 的二次函数,求此函数的最小值;(3)分当点Q 落在直线OA 的下方时、当点Q 落在直线OA 的上方时讨论。
【例4】(广东省深圳市)如图1,在平面直角坐标系中,二次函数yBOA P Mx 2x =)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C点,与x轴交于A 、B 两点, A点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan ∠ACO =31.(1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E,在该抛物线上是否存在这样的点F, 使以点A 、C 、E、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)若平行于x 轴的直线与该抛物线交于M、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图2,若点G(2,y)是该抛物线上一点,点P 是直线A G下方的抛物线上 一动点,当点P运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△A PG 的最大面积.【思路点拨】(2)可先以A、C 、E 、F 为顶点的四边形为平行四边形时,求F点的坐标,再代入抛物线的表达式检验。
(3)讨论①当直线MN 在x轴上方时、②当直线MN 在x 轴下方时二种情况。
(4)构建S 关于x 的二次函数,求它的最大值。
【例5】(山东济南)已知:抛物线2y ax bx c =++(a ≠0),顶点C (1,3-),与x 轴交于A、B两点,(10)A-,.(1)求这条抛物线的解析式.(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A、D、B、E,点P为线段AB上一个动点(P与A、B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断PM PNBE AD+是否为定值?若是,请求出此定值;若不是,请说明理由.(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边.AE、BE相交于点F、G(F与A、E不重合,G与E、B不重合),请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.【思路点拨】(2)证△APM∽△ABE,PM AP BE AB=同理:PN PBAD AB=(3)证PH=BH且△APM∽△PBH 再证△MEP∽△EGF可得。
【学力训练】1、(广东梅州)如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为x轴,过D且垂直于AB的直线为y轴建立平面直角坐标系.(1)求∠DAB的度数及A、D、C三点的坐标;(2)求过A、D、C三点的抛物线的解析式及其对称轴L.(3)若P是抛物线的对称轴L上的点,那么使CO x ADPMEBNy∆PDB 为等腰三角形的点P有几个?(不必求点P 的坐标,只需说明理由)2、(广东肇庆)已知点A(a ,1y )、B (2a ,y 2)、C (3a ,y3)都在抛物线x x y 1252+=上.(1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.3、(青海西宁)如图,已知半径为1的1O 与x 轴交于A B ,两点,OM 为1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点.(1)求二次函数的解析式; (2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.4、(辽宁12市)如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线223(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.5、(四川资阳)如图,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以A B为直径作⊙O′,交y 轴的负半轴于点C,连接AC 、BC,过A 、B 、C 三点作抛物线.(1)求抛物线的解析式;(2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,连结BD,求直线BD 的解析式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD?如果存在,请求出点P 的坐标;如果不存在,请说明理由.6、(辽宁沈阳)如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的yxOAB MO 1y OD EC FA BA O xyBFC负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.7、(苏州市)如图,抛物线y =a(x +1)(x -5)与x 轴的交点为M 、N .直线y =kx +b 与x 轴交于P(-2,0),与y 轴交于C .若A 、B 两点在直线y =kx+b 上,且AO =BO =2,AO ⊥BO .D 为线段M N的中点,OH 为Rt △OPC 斜边上的高.(1)OH 的长度等于___________;k =___________,b=____________;(2)是否存在实数a ,使得抛物线y=a(x +1)(x -5)上有一点E,满足以D 、N 、E 为顶点的三角形与△AOB 相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E 点(简要说明理由);并进一步探索对符合条件的每一个E 点,直线NE 与直线AB 的交点G 是否总满足P B·PG <210,写出探索过程.抛物线与几何问题的参考答案【典型例题】【例1】 (浙江杭州)(1)∵平移2tx y -=的图象得到的抛物线F 的顶点为Q , ∴抛物线F 对应的解析式为:b t x t y +--=2)(. ∵抛物线与x 轴有两个交点,∴0>b t .令0=y , 得-=t OB t b,+=t OC tb, ∴-=⋅t OC OB (|||||tb)( +t t b )|-=2|t 22|OA t tb == , 即22t t tb±=-, 所以当32t b =时, 存在抛物线F 使得||||||2OC OB OA ⋅=.-- 2分(2) ∵BC AQ //, ∴b t =, 得F : t t x t y +--=2)(, 解得1,121+=-=t x t x . 在∆Rt AOB 中,1) 当0>t 时,由||||OC OB <, 得)0,1(-t B , 当01>-t 时, 由=∠ABO tan 23=||||OB OA =1-t t , 解得3=t , 此时, 二次函数解析式为241832-+-=x x y ; 当01<-t 时, 由=∠ABO tan 23=||||OB OA =1+-t t , 解得=t 53, 此时,二次函数解析式为-=y 532x +2518x +12548. 2) 当0<t 时, 由||||OC OB <, 将t -代t , 可得=t 53-, 3-=t , (也可由x -代x ,y -代y 得到) 所以二次函数解析式为=y 532x +2518x –12548或241832++=x x y . 【例2】(江苏常州) (1)∵4)2(422-+=+=x x x y∴A(-2,-4)(2)四边形ABP 1O 为菱形时,P1(-2,4)四边形A BOP 2为等腰梯形时,P 1(5452-,) 四边形AB P3O为直角梯形时,P 1(5854,-)四边形ABO P4为直角梯形时,P 1(51256-,)(3)由已知条件可求得AB 所在直线的函数关系式是y=-2x-8,所以直线l 的函数关系式是y=-2x①当点P在第二象限时,x<0,△P OB 的面积x x S POB 4)2(421-=-⨯⨯=∆ ∵△AOB 的面积84421=⨯⨯=∆AOB S ,∴)0(84<+-=+=∆∆x x S S S POB AOB ∵286264+≤≤+S ,∴⎪⎩⎪⎨⎧+≤+≥286264S S 即⎪⎩⎪⎨⎧+≤+-+≥+-2868426484x x ∴⎪⎪⎩⎪⎪⎨⎧-≤-≥22412232S x∴x 的取值范围是22322241-≤≤-x②当点P 在第四象限是,x >0,过点A 、P 分别作x 轴的垂线,垂足为A ′、P ′ 则四边形POA ′A的面积44)2(21)2(224+=⋅⋅-+⋅+=-='∆'''x x x x x S S S O P P A A P 梯形P A A PO ∵△A A′B的面积42421=⨯⨯='∆BA A S ∴)0(84>+=+='∆'x x S S SB A A A A PO ∵286264+≤≤+S ,∴⎪⎩⎪⎨⎧+≤+≥286264S S 即⎪⎩⎪⎨⎧+≤++≥+2868426484x x ∴⎪⎪⎩⎪⎪⎨⎧-≤-≥21242223S x ∴x的取值范围是21242223-≤≤-x【例3】(浙江丽水)(1)设OA 所在直线的函数解析式为kx y =,∵A (2,4),∴42=k , 2=∴k , ∴OA 所在直线的函数解析式为2y x =(2)①∵顶点M的横坐标为m ,且在线段OA 上移动, ∴2y m =(0≤m ≤2).∴顶点M 的坐标为(m ,2m ).∴抛物线函数解析式为2()2y x m m =-+. ∴当2=x 时,2(2)2y m m =-+224m m =-+(0≤m ≤2). ∴点P 的坐标是(2,224m m -+).②∵PB =224m m -+=2(1)3m -+, 又∵0≤m ≤2,∴当1m =时,PB 最短(3)当线段PB 最短时,此时抛物线的解析式为()212+-=x y . 假设在抛物线上存在点Q ,使Q M A P M AS S =. 设点Q 的坐标为(x ,223x x -+).①当点Q 落在直线OA 的下方时,过P 作直线P C //AO ,交y 轴于点C ,∵3P B =,4A B =,∴1A P =,∴1O C =,∴C 点的坐标是(0,1-).∵点P 的坐标是(2,3),∴直线P C 的函数解析式为12-=x y∵Q M A P M AS S =,∴点Q 落在直线12-=x y 上. ∴223x x -+=21x -.解得122,2x x ==,即点Q (2,3). ∴点Q 与点P 重合.∴此时抛物线上不存在点Q ,使△QMA 与△A P M 的面积相等.②当点Q 落在直线OA 的上方时,作点P 关于点A 的对称称点D ,过D 作直线DE //AO ,交y 轴于点E ,∵1A P =,∴1E OD A ==,∴E 、D 的坐标分别是(0,1),(2,5), ∴直线DE 函数解析式为12+=x y . ∵Q M A P M AS S =,∴点Q 落在直线12+=x y 上. ∴223x x -+=21x +.解得:12x =,22x =. 代入12+=x y ,得15y =+25y =-∴此时抛物线上存在点(12Q ,()225,222--Q 使△QMA 与△P M A 的面积相等.综上所述,抛物线上存在点(12Q ,()225,222--Q 使△QMA 与△P M A 的面积相等.【例4】(广东省深圳市)(1)方法一:由已知得:C(0,-3),A(-1,0)将A 、B 、C 三点的坐标代入得⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a解得:⎪⎩⎪⎨⎧-=-==321c b a所以这个二次函数的表达式为:322--=x x y (2)存在,F 点的坐标为(2,-3)易得D(1,-4),所以直线CD 的解析式为:3--=x y ∴E点的坐标为(-3,0) ∵以A 、C、E 、F 为顶点的四边形为平行四边形 ∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3) 代入抛物线的表达式检验,只有(2,-3)符合 ∴存在点F,坐标为(2,-3)(3)如图,①当直线M N在x轴上方时,设圆的半径为R(R>0),则N (R+1,R), 代入抛物线的表达式,解得2171+=R ②当直线MN 在x 轴下方时,设圆的半径为r(r>0), 则N(r+1,-r ),代入抛物线的表达式,解得2171+-=r∴圆的半径为2171+或2171+-. (4)过点P作y 轴的平行线与A G交于点Q, 易得G (2,-3),直线A G为1--=x y .设P(x ,322--x x ),则Q (x ,-x -1),PQ 22++-=x x .3)2(212⨯++-=+=∆∆∆x x S S S GPQ APQ APG 当21=x 时,△APG 的面积最大 此时P点的坐标为⎪⎭⎫ ⎝⎛-415,21,827的最大值为APG S ∆.【例5】(山东济南)(1)设抛物线的解析式为2(1)3y a x =-- 将A (-1,0)代入: 20(11)3a =---∴34a =∴抛物线的解析式为23(1)34y x =--,即:2339424y x x =--(2)是定值,1PM PNBE AD+= ∵A B为直径,∴∠AEB =90°,∵P M⊥AE ,∴ PM ∥BE ∴△APM ∽△ABE ,∴PM APBE AB=① 同理:PN PB AD AB =②① + ②:1PM PN AP PBBE AD AB AB+=+=(3)∵直线E C为抛物线对称轴,∴EC 垂直平分A B∴EA =EB∵∠AE B=90°∴△AEB 为等腰直角三角形. ∴∠EAB =∠EB A=45° ...................... 7分 如图,过点P作P H⊥BE于H,由已知及作法可知,四边形PHEM 是矩形, ∴PH =ME 且PH ∥ME 在△AP M和△PBH 中 ∵∠AMP =∠PHB =90°,∠E AB =∠BPH =45°∴PH =B H且△A PM ∽△PBH ∴PA PMPB BH=∴PA PM PMPB PH ME==① 在△MEP 和△EG F中,∵PE ⊥FG ,∴∠FGE +∠SEG =90° ∵∠ME P+∠S EG =90° ∴∠FGE =∠MEP ∵∠PM E=∠FE G=90° ∴△MEP ∽△E GF ∴PM EFME EG=② 由①、②知:PA EFPB EG=【学力训练】 1、(广东梅州)(1) DC ∥AB ,AD =DC =CB ,∴∠CD B=∠CB D=∠DBA ,∠DAB =∠C BA ,∴∠DA B=2∠D BA ,∠DA B+∠DBA =90 ,∴∠DA B=60 , ∠DB A=30 , AB =4,∴D C=AD =2,Rt ∆AOD ,O A=1,OD =3,∴A (-1,0),D (0,3),C (2,3).(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A(-1,0),B (3,0), 故可设所求为y =a (x +1)(x -3) 将点D (0,3)的坐标代入上式得,a =33-. 所求抛物线的解析式为y =).3)(1(33-+-x x 其对称轴L 为直线x =1. (3)∆PDB 为等腰三角形,有以下三种情况:①因直线L 与D B不平行,D B的垂直平分线与L仅有一个交点P 1,P 1D=P 1B , ∆P 1DB 为等腰三角形;②因为以D 为圆心,DB 为半径的圆与直线L 有两个交点P2、P3,DB =DP 2,D B=DP 3,∆P2DB ,∆P 3DB 为等腰三角形;③与②同理,L上也有两个点P4、P 5,使得BD=BP 4,BD =BP 5.由于以上各点互不重合,所以在直线L 上,使∆PDB 为等腰三角形的点P 有5个.2、(广东肇庆)(1)由5x x 122+=0,(1分)得01=x ,5122-=x .∴抛物线与x 轴的交点坐标为(0,0)、(512-,0).(3分) (2)当a =1时,得A (1,17)、B(2,44)、C(3,81), 分别过点A 、B、C 作x轴的垂线,垂足分别为D 、E 、F ,则有ABC S ∆=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形=22)8117(⨯+-21)4417(⨯+-21)8144(⨯+=5(个单位面积)(3)如:)(3123y y y -=.事实上,)3(12)3(523a a y ⨯+⨯= =45a 2+36a .3(12y y -)=3[5×(2a )2+12×2a -(5a 2+12a)] =45a 2+36a . ∴)(3123y y y -=. 3、(青海西宁)(1)圆心1O 的坐标为(20),,1O 半径为1,(10)A ∴,,(30)B ,……1分二次函数2y x bx c =-++的图象经过点A B ,,∴可得方程组10930b c b c -++=⎧⎨-++=⎩解得:43b c =⎧⎨=-⎩∴二次函数解析式为243y x x =-+-(2)过点M 作MF x ⊥轴,垂足为F .OM 是1O 的切线,M 为切点,1O M OM ∴⊥(圆的切线垂直于经过切点的半径).在1Rt OO M △中,1111sin 2O M O OM OO ∠==1O OM ∠为锐角,130O OM ∴∠=1cos302OM OO ∴===,在Rt MOF △中,3cos30322OF OM ===.1sin 30322MF OM ===.∴点M 坐标为32⎛ ⎝⎭设切线OM 的函数解析式为(0)y kx k =≠,由题意可知32k =,k ∴=∴切线OM 的函数解析式为y x =(3)存在.①过点A 作1AP x ⊥轴,与OM 交于点1P .可得11Rt Rt APO MO O △∽△(两角对应相等两三角形相似)113tan tan 30P A OA AOP =∠==11P ⎛∴ ⎝⎭②过点A 作2AP OM ⊥,垂足为2P ,过2P 点作2P H OA ⊥,垂足为H . 可得21Rt Rt AP O O MO △∽△(两角对应相等两三角开相似) 在2Rt OP A △中,1OA =,23cos302OP OA ∴==,在2Rt OP H △中,223cos 4OH OP AOP =∠==,2221sin 2P H OP AOP =∠==234P ⎛∴ ⎝⎭∴符合条件的P 点坐标有13⎛ ⎝⎭,,344⎛⎫⎪ ⎪⎝⎭,4、(辽宁12市) 解:(1)直线y =-x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C -,点A C ,都在抛物线上,0a c c ⎧=⎪∴⎨⎪=⎩a c ⎧=⎪∴⎨⎪=⎩ ∴抛物线的解析式为233y x x =-顶点13F ⎛- ⎝⎭, (2)存在1(0P2(2P (3)存在理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于 点M ,则点M 就是所求的点.过点B '作B H AB '⊥于点H .B点在抛物线233y x x =--,(30)B ∴, 在Rt BOC △中,tan 3OBC ∠=, 30OBC ∴∠=,BC =,在Rt BB H '△中,12B H BB ''==6BH H '==,3OH ∴=,(3B '∴--,设直线B F '的解析式为y kx b =+图10答案图123343k b k b ⎧-=-+⎪∴⎨-=+⎪⎩解得333k b ⎧=⎪⎪⎨⎪=-⎪⎩33362y x ∴=- 33333y x y x ⎧=--⎪∴⎨=-⎪⎩解得371037x y ⎧=⎪⎪⎨⎪=-⎪⎩,31037M ⎛⎫∴- ⎪ ⎪⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时310377M ⎛⎫- ⎪ ⎪⎝⎭,.5、(四川资阳) (1) ∵以AB 为直径作⊙O′,交y 轴的负半轴于点C, ∴∠OCA+∠OCB=90°, 又∵∠OCB+∠OB C=90°, ∴∠OC A=∠O BC ,又∵∠AOC= ∠COB=90°, ∴ΔAOC ∽ ΔCOB , ∴OA OC OC OB =. 又∵A(–1,0),B (9,0),∴19OC OC =,解得OC=3(负值舍去). ∴C(0,–3),设抛物线解析式为y=a(x+1)(x –9), ∴–3=a(0+1)(0–9),解得a=13,∴二次函数的解析式为y=13(x +1)(x –9),即y=13x2–83x–3.(2) ∵AB为O′的直径,且A(–1,0),B(9,0), ∴OO′=4,O′(4,0),∵点E 是AC延长线上一点,∠BCE 的平分线CD 交⊙O′于点D,∴∠B CD =12∠BC E=12×90°=45°,连结O′D 交BC 于点M,则∠BO′D =2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5.∴D(4,–5).∴设直线B D的解析式为y=kx+b(k≠0)图10∴90,4 5.k bk b+=⎧⎨+=-⎩解得1,9.kb=⎧⎨=-⎩∴直线BD的解析式为y=x–9.(3) 假设在抛物线上存在点P,使得∠PDB=∠CBD,设射线DP交⊙O′于点Q,则BQ CD=.分两种情况(如答案图1所示):①∵O′(4,0),D(4,–5),B(9,0),C(0,–3).∴把点C、D绕点O′逆时针旋转90°,使点D与点B重合,则点C与点Q1重合, 因此,点Q1(7,–4)符合BQ CD=,∵D(4,–5),Q1(7,–4),∴用待定系数法可求出直线DQ1解析式为y=13x–193.解方程组211933183.33y xy x x⎧=-⎪⎪⎨⎪=--⎪⎩,得11xy⎧=⎪⎪⎨⎪=⎪⎩22xy⎧=⎪⎪⎨⎪=⎪⎩∴点P1坐标为),[)不符合题意,舍去].②∵Q1(7,–4),∴点Q1关于x轴对称的点的坐标为Q2(7,4)也符合BQ CD=.∵D(4,–5),Q2(7,4).∴用待定系数法可求出直线DQ2解析式为y=3x–17.解方程组2317183.33y xy x x=-⎧⎪⎨=--⎪⎩,得1138xy=⎧⎨=-⎩,;221425.xy=⎧⎨=⎩,∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].∴符合条件的点P有两个:P1(92+,296-),P2(14,25).6、(辽宁沈阳)(1)点E在y轴上理由如下:连接AO,如图所示,在Rt ABO△中,1AB =,BO=,2AO∴=1sin2AOB∴∠=,30AOB∴∠=由题意可知:60AOE∠=306090BOE AOB AOE∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭,由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),点A的坐标为( 抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得321312422a a ⎧+=⎪⎨++=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:2829y x x =--+(3)存在符合条件的点P ,点Q .· 10分理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2依题意设点P 的坐标为(2)m ,点P在抛物线2829y x x =-+上282299m m ∴--+=解得,10m =,28m =-1(02)P ∴,,22P ⎛⎫⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB ==∴当点1P 的坐标为(02),时,点Q的坐标分别为1(Q,2Q ; 当点2P的坐标为2⎛⎫⎪ ⎪⎝⎭时,点Q的坐标分别为328Q ⎛⎫- ⎪ ⎪⎝⎭,428Q ⎛⎫⎪ ⎪⎝⎭.7、(苏州市) (1)O H=1;k =33,b =332;(2)设存在实数a ,是抛物线y=a(x +1)(x -5)上有一点E ,满足以D 、N、E为顶点的三角形与等腰直角△AOB 相似∴以D、N 、E为顶点的三角形为等腰直角三角形,且这样的三角形最多只有两类,一类是以DN 为直角边的等腰直角三角形,另一类是以DN 为斜边的等腰直角三角形. ①若DN 为等腰直角三角形的直角边,则ED ⊥DN . 由抛物线y =a(x+1)(x-5)得:M (-1,0),N(5,0) ∴D(2,0),∴E D=DN =3,∴E的坐标是(2,3). 把E(2,3)代入抛物线解析式,得a =31-初中数学抛物线与几何专题训练及答案∴抛物线解析式为y =31-(x +1)(x -5) 即y =31-x 2+34x+35 ②若DN 为等腰直角三角形的斜边,则DE ⊥EN ,D E=EN .∴E 的坐标为(3.5,1.5)把E(3.5,1.5)代入抛物线解析式,得a =92-. ∴抛物线解析式为y=92-(x+1)(x -5),即y=92-x 2+98x +910 当a =31-时,在抛物线y =31-x 2+34x+35上存在一点E (2,3)满足条件,如果此抛物线上还有满足条件的E 点,不妨设为E’点,那么只有可能△DE ’N 是以DN为斜边的等腰直角三角形,由此得E ’(3.5,1.5).显然E ’不在抛物线y =31-x 2+34x +35上,因此抛物线y=31-x 2+34x +35上没有符合条件的其他的E 点. 当a =92-时,同理可得抛物线y=92-x 2+98x +910上没有符合条件的其他的E点. 当E 的坐标为(2,3),对应的抛物线解析式为y =31-x 2+34x+35时. ∵△ED N和△ABO 都是等腰直角三角形,∴∠G NP =∠PBO =45°.又∵∠NP G=∠BP O,∴△NP G∽△B PO. ∴PB PN PO PG =,∴PB ·P G=PO ·PN =2×7=14,∴总满足PB ·PG <210. 当E 的坐标为(3.5,1.5),对应的抛物线解析式为y =92-x 2+98x+910时, 同理可证得:PB ·PG =PO ·PN =2×7=14,∴总满足PB ·P G<210.。