排列组合练习题与答案

合集下载

排列组合练习题及答案解析

排列组合练习题及答案解析

1.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是()A.16B.13C.23D.122.小孔家有爷爷、奶奶、姥爷、姥姥、爸爸、妈妈,包括他共7人,一天爸爸从果园里摘了7个大小不同的梨,给家里每人一个.小孔拿了最小的一个,爷爷、奶奶、姥爷、姥姥4位老人之一拿最大的一个,则梨子的不同分法共有()A.96种B.120种 C.480种D.720种3.从10名高三年级优秀学生中挑选3人担任校长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85B.56C.49D.284.用2种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,则3个矩形中相邻矩形颜色不同的概率是()A.18B.14C.38D.125.从0,1,2,3,4,5这六个数字中选两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300B.216C.180D.1626.个大学生分配到三个不同的村庄当村官,每个村庄至少有一名大学生,其中甲村庄恰有一名大学生的分法种数为()A.14B.35C.70D.1007.将甲、乙等名学生分配到三个不同学校实习,每个学校至少一人,且甲、乙在同一学校的分配方案共有()A.18种B.24种C.36种D.72种8.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个小孩的现象普遍存在,某城市关系要好的,,,A B C D四个家庭各有两个小孩共8人,准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A 户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有()A.18种B.24种C.36种D.48种9.某学校周五安排有语文、数学、英语、物理、化学、体育六节课,要求体育不排在第一节课,数学不排在第四节课,则这天课表的不同排法种数为( )A.600B.288C.480D.50410.设集合}{1,2,3,4,5,6,7,8,9S =,集合}{123,,A a a a =,A S ⊆,123,,a a a 满足123a a a <<且326a a -≤,那么满足条件的集合A 的个数为( )A .76B .78C .83D .8411.有4位同学在同一天的上午、下午参加“身高与体重”“立定跳远”“肺活量”“握力”“台阶”五个项目的测试,每位同学测试两个项目,分别在上午和下午,且每人上午和下午测试的项目不能相同.若上午不测“握力”,下午不测“台阶”,其余项目上午、下午都各测试一人,则不同的安排方式的种数为( )A.264B.72C.266D. 27412.三位女同学两位男同学站成一排,男同学不站两端的排法总数为__________.(用数字作答)13.某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为 .答案1、【答案】 C2、【答案】C【解析】梨子的不同分法共有1545C A 480=(种),故选C.3、【答案】C【解析】分两种情况:第一种,甲、乙只有人入选,有1227C C 42=种;第二种,甲、乙都入选,有2127C C 7=种,所以共有42749+=种方法,故选C.4、【答案】B【解析】用种不同颜色给图中个矩形随机涂色,每个矩形只涂一种颜色,由分步乘法原理可得共有涂色方法2228⨯⨯=种,其中相邻矩形颜色不同有2112⨯⨯=种,则所求概率为2184=,故选B. 5、【答案】C6、【答案】C【解析】甲村庄恰有一名大学生,有15C 5=种分法,另外四名大学生分为两组,共有21344322C C C 437A +=+=种,再分配到两个村庄,共有227A 14⨯=种不同的分法,所以每个村庄至少有一名,且甲村庄恰有一名大学生有51470⨯=种不同的分法,故选C.7.【答案】C8.【答案】B【解析】当A 户家庭的孪生姐妹乘坐甲车或乙车时,则另两个小孩是另外两个家庭的小孩,有2232C 224⨯⨯=种方法,故选B.9、【答案】D【解析】对六节课进行全排有66A 种方法,体育课排在第一节课有55A 种方法,数学课排在第四节课也有55A 种方法,体育课排在第一节课且数学课排在第四节课有44A 种方法,由排除法得这天课表的不同排法种数为654654A 2A A 504-+=. 10.【答案】C11、【答案】A【解析】先安排4位同学参加上午的“身高与体重”“立定跳远”“肺活量”“台阶”测试,共有44A 种不同的安排方式;接下来安排下午的“身高与体重”“立定跳远”“肺活量”“握力”测试,假设,,A B C 同学上午分别安排的是“身高与体重”“立定跳远”“肺活量”测试,若D 同学选择“握力”测试,安排,,A B C 同学分别交叉测试,有2种;若D 同学选择“身高与体重”“立定跳远”“肺活量”测试中的1种,有13A 种方式,安排,,A B C 同学进行测试有3 种,则共有不同安排方式的种数为()4143A 23A 264+=,故选A. 12、【答案】3613、【答案】36。

排列组合练习题及答案

排列组合练习题及答案

《排列组合》一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人 B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?二、注意附加条件1.6人排成一列(1)甲乙必须站两端,有多少种不同排法?(2)甲乙必须站两端,丙站中间,有多少种不同排法?2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有A.30种B.31种C.32种D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是A.230种B.236种C.455种D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有A.240种B.180种C.120种D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是 。

排列组合题目精选(附答案)

排列组合题目精选(附答案)

排列组合题目精选(附答案)1.A和B必须相邻且B在A的右边,剩下的C、D、E可以随意排列,因此排列方式为4.即24种。

选项D正确。

2.先计算所有可能的排列方式,即7.然后减去甲乙相邻的排列方式,即2×6.因此不同的排列方式为5×6.即3600种。

选项B正确。

3.第一个格子有4种选择,第二个格子有3种选择,第三个格子有2种选择,因此不同的填法有4×3×2=24种。

选项D 错误。

4.由于每封信可以投入5个信箱中的任意一个,因此总的投放方式为5的4次方,即625种。

5.对于每个路口,选择4名同学进行调查的方式有12选4种,因此总的分配方案为(12选4)的3次方,即154,440种。

6.第一排有6种选择,第二排有5种选择,第三排有4种选择,因此不同的排法有6×5×4=120种。

选项B正确。

7.首先从8个元素中选出2个排在前排,有8选2种选择方式。

然后从剩下的6个元素中选出1个排在后排,有6种选择方式。

最后将剩下的5个元素排在后排,有5!种排列方式。

因此不同的排法有8选2×6×5!=28×720=20,160种。

8.首先将甲、乙、丙三人排成一排,有3!种排列方式。

然后将其余4人插入到相邻的位置中,有4!种排列方式。

因此不同的排法有3!×4!=144种。

9.首先将10个名额排成一排,有10!种排列方式。

然后在9个间隔中插入6个分隔符,每个间隔至少插入一个分隔符,因此有8种插入方式。

因此不同的分配方案有10!÷(6×8)=21,000种。

10.首先将除了甲和乙的8个人排成一排,有8!种排列方式。

然后将甲和乙插入到相邻的位置中,有2种插入方式。

因此不同的派遣方案有8!×2=80,640种。

11.个位数字小于十位数字的六位数,可以从1、2、3、4、5中选出两个数字排列,有5选2种选择方式,即10种。

(完整版)排列组合练习题3套(含答案)

(完整版)排列组合练习题3套(含答案)

(完整版)排列组合练习题3套(含答案)排列练习⼀、选择题1、将3个不同的⼩球放⼊4个盒⼦中,则不同放法种数有()A、81B、64C、12D、142、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()A、 B、 C、 D、3、⽤1,2,3,4四个数字可以组成数字不重复的⾃然数的个数()A、64B、60C、24D、2564、3张不同的电影票全部分给10个⼈,每⼈⾄多⼀张,则有不同分法的种数是()A、2160B、120C、240D、7205、要排⼀张有5个独唱和3个合唱的节⽬表,如果合唱节⽬不能排在第⼀个,并且合唱节⽬不能相邻,则不同排法的种数是()A、 B、 C、 D、6、5个⼈排成⼀排,其中甲、⼄两⼈⾄少有⼀⼈在两端的排法种数有()A、 B、 C、 D、7、⽤数字1,2,3,4,5组成没有重复数字的五位数,其中⼩于50000的偶数有()A、24B、36C、46D、608、某班委会五⼈分⼯,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,⼄不能担任学习委员,则不同的分⼯⽅案的种数是()A、B、C、D、⼆、填空题1、(1)(4P84+2P85)÷(P86-P95)×0!=___________(2)若P2n3=10Pn3,则n=___________2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为__________________________________________________________________3、4名男⽣,4名⼥⽣排成⼀排,⼥⽣不排两端,则有_________种不同排法4、有⼀⾓的⼈民币3张,5⾓的⼈民币1张,1元的⼈民币4张,⽤这些⼈民币可以组成_________种不同币值。

三、解答题1、⽤0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,(1)在下列情况,各有多少个?①奇数②能被5整除③能被15整除④⽐35142⼩⑤⽐50000⼩且不是5的倍数2、7个⼈排成⼀排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、⼄、丙三⼈必须在⼀起(4)甲、⼄之间有且只有两⼈(5)甲、⼄、丙三⼈两两不相邻(6)甲在⼄的左边(不⼀定相邻)(7)甲、⼄、丙三⼈按从⾼到矮,⾃左向右的顺序(8)甲不排头,⼄不排当中3、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数(1)这样的三位数⼀共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?排列与组合练习(1)⼀、填空题1、若,则n的值为()A、6B、7C、8D、92、某班有30名男⽣,20名⼥⽣,现要从中选出5⼈组成⼀个宣传⼩组,其中男、⼥学⽣均不少于2⼈的选法为()A、 B、 C、 D、3、空间有10个点,其中5点在同⼀平⾯上,其余没有4点共⾯,则10个点可以确定不同平⾯的个数是()A、206B、205C、111D、1104、6本不同的书分给甲、⼄、丙三⼈,每⼈两本,不同的分法种数是()A、 B、 C、 D、5、由5个1,2个2排成含7项的数列,则构成不同的数列的个数是()A、21B、25C、32D、426、设P1、P2…,P20是⽅程z20=1的20个复根在复平⾯上所对应的点,以这些点为顶点的直⾓三⾓形的个数为()A、360B、180C、90D、457、若,则k的取值范围是()A、[5,11]B、[4,11]C、[4,12]D、4,15]8、⼝袋⾥有4个不同的红球,6个不同的⽩球,每次取出4个球,取出⼀个线球记2分,取出⼀个⽩球记1分,则使总分不⼩于5分的取球⽅法种数是()A、 B、 C、 D、1、计算:(1)=_______(2)=_______2、把7个相同的⼩球放到10个不同的盒⼦中,每个盒⼦中放球不超1个,则有_______种不同放法。

排列组合经典练习(带答案)

排列组合经典练习(带答案)

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40B.50C.60D.70[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人[解析]设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种[解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.36[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是() A.72 B.96 C.108 D.144[解析]分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析]先将6名志愿者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个 答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A.10 B.11 C.12 D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

排列组合练习题和.答案

排列组合练习题和.答案

《排列组合》一、排列与组合1.从9人中选派2人参加某一活动.有多少种不同选法?2.从9人中选派2人参加文艺活动.1人下乡演出.1人在本地演出.有多少种不同选派法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动.已知共有90种不同的案.那么男、女同学的人数是A.男同学2人.女同学6人B.男同学3人.女同学5人C. 男同学5人.女同学3人D. 男同学6人.女同学2人4.一条铁路原有m个车站.为了适应客运需要新增加n个车站(n>1).则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票).那么原有的车站有A.12个B.13个C.14个D.15个5.用0.1.2.3.4.5这六个数字.(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允重复的三位数?(3)可以组成多少个数字不允重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000.小于5421的数字不重复的四位数?二、注意附加条件1.6人排成一列(1)甲乙必须站两端.有多少种不同排法?(2)甲乙必须站两端.丙站中间.有多少种不同排法?2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?3.由数字1.2.3.4.5.6.7所组成的没有重复数字的四位数.按从小到大的顺序排列起来.第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖.将五个杯盖盖在五个茶杯上.至少有两个杯盖和茶杯的编号相同的盖法有A.30种B.31种C.32种D.36种5.从编号为1.2.….10,11的11个球中取5个.使这5个球中既有编号为偶数的球又有编号为奇数的球.且它们的编号之和为奇数.其取法总数是A.230种B.236种C.455种D.2640种6.从6双不同颜色的手套中任取4只.其中恰好有1双同色的取法有A.240种B.180种C.120种D.60种7. 用0.1.2.3.4.5这六个数组成没有重复数字的四位偶数.将这些四位数从小到大排列起来.第71个数是。

排列组合经典练习(带答案)

排列组合经典练习(带答案)

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( ) A.40 B.50 C.60 D.70[解析] 先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( ) A.36种B.48种 C.72种D.96种[解析] 恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A.6个B.9个 C.18个D.36个[解析] 注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人 B.3人或4人 C.3人 D.4人[解析] 设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n =6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A.45种B.36种 C.28种D.25种[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种 C.38种D.108种[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A.72 B.96 C.108 D.144[解析] 分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A.50种B.60种 C.120种D.210种[解析] 先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析] 先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析] 由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析] 先将6名志愿者分为4组,共有C26C 24A22种分法,再将4组人员分到4个不同场馆去,共有A44种分法,故所有分配方案有:C26·C24A22·A44=1 080种.13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法 甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法 故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 *s 5* o*m 解析:先选一个偶数字排个位,有3种选法*s 5* o*m①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个 算上个位偶数字的排法,共计3(24+12)=108个答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为18. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

排列组合试题及答案

排列组合试题及答案

排列组合试题及答案一、选择题1. 从5个不同的元素中取出3个元素进行排列,共有多少种不同的排列方式?A. 10B. 20C. 30D. 60答案:D2. 有8个人排成一排,其中甲乙两人必须相邻,共有多少种不同的排列方式?A. 5760B. 5040C. 720D. 1440答案:D3. 从10个不同的元素中取出3个元素进行组合,共有多少种不同的组合方式?A. 120B. 210C. 100D. 1000答案:B二、填空题4. 从8个不同的元素中取出4个元素进行排列,共有______种不同的排列方式。

答案:16805. 从10个不同的元素中取出5个元素进行组合,共有______种不同的组合方式。

答案:252三、解答题6. 有5个不同的球和3个不同的盒子,要求每个盒子至少有一个球,有多少种不同的放法?答案:首先,将5个球分成3组,有C(5,2)种分法。

然后,将分好的3组球放入3个盒子中,有A(3,3)种放法。

所以总共有C(5,2) *A(3,3) = 60种不同的放法。

7. 一个班级有30个学生,现在要选出5个学生组成一个委员会,其中必须包括班长和团支书,共有多少种不同的选法?答案:首先,从28个非班长、团支书的学生中选出3个,有C(28,3)种选法。

然后,将选出的3个学生与班长和团支书一起组成委员会,共有C(28,3)种不同的选法。

8. 有4个不同的苹果和3个相同的盘子,要求每个盘子至少放一个苹果,有多少种不同的放法?答案:首先,将4个苹果分成3组,有C(4,1) + C(4,2) = 7种分法。

然后,将分好的3组苹果放入3个相同的盘子中,有A(3,3) / A(3,3) = 1种放法。

所以总共有7种不同的放法。

四、计算题9. 计算从10个不同的元素中取出4个元素进行排列的总排列数。

答案:A(10,4) = 10 * 9 * 8 * 7 = 504010. 计算从10个不同的元素中取出4个元素进行组合的总组合数。

排列组合练习题及答案

排列组合练习题及答案

排列组合一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站n>1,则客运车票增加了58种从甲站到乙站与乙站到甲站需要两种不同车票,那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,1可以组成多少个数字不重复的三位数2可以组成多少个数字允许重复的三位数3可以组成多少个数字不允许重复的三位数的奇数4可以组成多少个数字不重复的小于1000的自然数5可以组成多少个大于3000,小于5421的数字不重复的四位数二、注意附加条件1.6人排成一列 1甲乙必须站两端,有多少种不同排法2甲乙必须站两端,丙站中间,有多少种不同排法2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有A.30种B.31种C.32种D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是A.230种B.236种C.455种D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有A.240种B.180种C.120种D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是 ;三、间接与直接1.有4名女同学,6名男同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不同选法2. 6名男生4名女生排成一行,女生不全相邻的排法有多少种3.已知集合A 和B 各12个元素,A B 含有4个元素,试求同时满足下列两个条件的集合C 的个数:1()C A B ⊂且C 中含有三个元素;2C A ≠∅,∅表示空集;4. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数A.60种B.80种C.120种D.140种5.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种6. 以正方体的8个顶点为顶点的四棱锥有多少个7. 对正方体的8个顶点两两连线,其中能成异面直线的有多少对四、分类与分步1.求下列集合的元素个数.1{(,)|,,6}M x y x y N x y =∈+≤;2{(,)|,,14,15}H x y x y N x y =∈≤≤≤≤.2.一个文艺团队有9名成员,有7人会唱歌,5人会跳舞,现派2人参加演出,其中1名会唱歌,1名会跳舞,有多少种不同选派方法3.已知直线12//l l ,在1l 上取3个点,在2l 上取4个点,每两个点连成直线,那么这些直线在1l 和2l 之间的交点不包括1l 、2l 上的点最多有A. 18个B.20个C.24个D.36个4. 9名翻译人员中,6人懂英语,4人懂日语,从中选拔5人参加外事活动,要求其中3人担任英语翻译,2人担任日语翻译,选拔的方法有 种用数字作答;5.某博物馆要在20天内接待8所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校只参观1天,则在这20天内不同的安排方法为A.372017C A 种 B.820A 种 C.171817C A 种 D.1818A 种6. 从10种不同的作物种子选出6种放入6个不同的瓶子展出,如果甲乙两种种子不许放第一号瓶内,那么不同的放法共有A.24108C A 种B.1599C A 种 C.1589C A 种 D.1598C A 种7. 在画廊要展出1幅水彩画、4幅油画、5幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有A.1545A A 种 B.245345A A A 种 C.145445A A A 种 D.245245A A A 种8. 把一个圆周24等分,过其中任意3个分点,可以连成圆的内接三角形,其中直角三角形的个数是A.122B.132C.2649. 有三张纸片,正、反面分别写着数字1、2、3和4、5、6 ,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是A. 24B.36C.48D.6410.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种11. 如下图,共有多少个不同的三角形解:所有不同的三角形可分为三类:第一类:其中有两条边是原五边形的边,这样的三角形共有5个第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个由分类计数原理得,不同的三角形共有5+20+10=35个.12.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有 种不同的放映方法用数字作答;五、元素与位置——位置分析1.7人争夺5项冠军,结果有多少种情况2. 75600有多少个正约数 有多少个奇约数解:75600的约数就是能整除75600的整数,所以本题就是分别求能整除75600的整数和奇约数的个数.由于 75600=24×33×52×71 75600的每个约数都可以写成l k j l 7532⋅⋅⋅的形式,其中40≤≤i ,30≤≤j ,20≤≤k ,10≤≤l于是,要确定75600的一个约数,可分四步完成,即l k j i ,,,分别在各自的范围内任取一个值,这样i 有5种取法,j 有4种取法,k 有3种取法,l 有2种取法,根据分步计数原理得约数的个数为5×4×3×2=120个.2奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成l k j 753⋅⋅的形式,同上奇约数的个数为4×3×2=24个.3. 2名医生和4名护士被分配到两所学校为学生体检,每校分配1名医生和2名护士,不同分配方法有多少种4.有四位同学参加三项不同的比赛,1每位同学必须参加一项竞赛,有多少种不同的结果2每项竞赛只许一位学生参加,有多少种不同的结果解:1每位学生有三种选择,四位学生共有参赛方法:333381⨯⨯⨯=种;2每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464⨯⨯=种.六、染色问题1.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为 A. 180 B. 160 C. 96 D. 60若变为图二,图三呢 240种,5×4×4×4=320种2. 某班宣传小组一期国庆专刊,现有红、黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中A 、B 、C 、D 如图每一 部分只写一种颜色,相邻两块颜色不同,则不同颜色粉笔书写的方法共有 种用具体数字作答;七、消序 1. 有4名男生,3名女生;现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法2. 书架上有6本书,现再放入3本书,要求不改变原来6本书前后的相对顺序,有多少种不同排法八、分组分配1.某校高中一年级有6个班,分派3名教师任教,每名教师任教二个班,不同的安排方法有多少种2. 高三级8个班,分派4名数学老师任教,每位教师任教2个班,则不同安排方法有多少种3. 6本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种4.8项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有 种5..六人住A 、B 、C 三间房,每房最多住三人,图一 图二 图三1每间住两人,有种不同的住法,2一间住三人,一间住二人,一间住一人,有种不同的住宿方案;6. 8人住ABC三个房间,每间最多住3人,有多少种不同住宿方案7.有4个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法7. 把标有a,b,c,d,…的8件不同纪念品平均赠给甲、乙两位同学,其中a、b不赠给同一个人,则不同的赠送方法有种用数字作答;九、捆绑1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法2. 有8本不同的书, 其中科技书3本,文艺书2本,其它书3本,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数与这8本书的不同排法之比为A.1:14B.1:28C.1:140D.1:336十、插空1.要排一个有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法2、4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有A.2880B.1152C.48D.1443. 要排一个有5个歌唱节目和3个舞蹈节目的演出节目单,如果舞蹈节目不相邻,则有多少种不同排法4. 5人排成一排,要求甲、乙之间至少有1人,共有多少种不同排法5..把5本不同的书排列在书架的同一层上,其中某3本书要排在中间位置,有多少种不同排法6.1到7七个自然数组成一个没有重复数字的七位数,其中偶数不相邻的个数有个.7.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法8.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种9. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法10. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法11. 某城市修建的一条道路上有12只路灯,为了节省用电而又不影响正常的照明,可以熄灭其中三只灯,但不能熄灭两端的灯,也不能熄灭相邻的两只灯,那么熄灯的方法共有种A.38C B.38A C.39C D.39A12. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必需有6只灯是关的,且相邻的灯不能同时被关掉,两端的灯必需点亮的要求进行设计,那么不同的点亮方式是A.28种B.84种C.180种D.360种13. 一排长椅上共有10个座位,现有4人就座,恰有五个连续空位的坐法种数为 ;用数字作答十一、隔板法1. 不定方程12347x x x x+++=的正整数解的组数是 ,非负整数解的组数是 ;2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有A.84种B.120种C.63种D.301种3. 要从7所学校选出10人参加素质教育研讨班,每所学校至少参加1人,则这10个名额共有种分配方法;4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有A.9种B.12种C.15种D.18种5.将7只相同的小球全部放入4个不同盒子,每盒至少1球的方法有多少种6.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种十二、对应的思想1.在100名选手之间进行单循环淘汰赛即一场比赛失败要退出比赛,最后产生一名冠军,问要举行几场十三、找规律1.在1~20共20个整数中取两个数相加,使其和大于20的不同取法共有多少种解:分类标准一,固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种.分类标准二:固定和的值.有和为21,22,…,39这几类,依次有取法10,9,9,8,8, …,2,2,1,1种.由分类计数原理得不同取法共有10+9+9+…+2+2+1+1=100种.2.从1到100的自然数中,每次取出不同的两个数,使它们的和大于一百,则不同的取法有A.50种B.100种C.1275种D.2500种十四、实验——写出所有的排列或组合1.将数字1,2,3,4填入标号1,2,3,4的四个方格中,每个格填一个,则每一个方格的标号与所填的数字均不同的填法有种.A.6B.9C.11D.23⨯⨯⨯=种.解:列表排出所有的分配方案,共有3+3+3=9种,或33119未归类几道题1.从数字0,1,3,5,7中取出不同的三位数作系数,可以组成多少个不同的一元二次方程ax+bx+c=0 其中有实根的方程有多少个变式:若直线Ax+By+C=0的系数A、B可以从0,1,2,3,6,7这六个数字中取不同的数值,则这些方程所表示的直线条数是 AA.18B.20C.12D.222.在100件产品中,有98件合格品,2件不合格品.从这100件产品中任意抽出3件1一共有多少种不同的抽法2抽出的3件中恰好有一件是不合格品的抽法有多少种3抽出的3件中至少有一件是不合格品的抽法有多少种3.10双互不相同的鞋子混装在一只口袋中,从中任意抽取4只,试求各有多少种情况出现如下结果14只鞋子没有成双;2 4只鞋子恰好成双;3 4只鞋子有2只成双,另2只不成双4.f是集合M={a,b,c,d}到N{0,1,2}的映射,且fa+fb+fc+fd=4,则不同的映射有多少个解:根据a,b,c,d 对应的象为2的个数分类,可分为三类:第一类,没有一个元素的象为2,其和又为4,则集合M 所有元素的象都为1,这样的映射只有1个第二类,有一个元素的象为2,其和又为4,则其余3个元素的象为0,1,1,这样的映射有C41C3 1C22个第三类,有两个元素的象为2,其和又为4,则其余2个元素的象必为0,这样的映射有C42C22个 根据加法原理共有 1+ C41C3 1C22 +C42 C22=19个5.四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的方法共有多少种6.由12个人组成的课外文娱小组,其中5个人只会跳舞,5个人只会唱歌,2个人既会跳舞又会唱歌,若从中选出4个会跳舞和4个会唱歌的人去排演节目,共有多少种不同选法排列、组合练习题参考答案:1.2936C =2.2972A =3.解析:设男生有n 人,则女生有8-n 人,由题意得()213831(8)6902n n n n C C A n --⋅⋅=⨯-⨯= 即()1(8)30n n n --= 用选支验证选B4.分类:①恰有两个杯盖和茶杯的编号相同的盖法有25220C ⨯=种; ②恰有三个杯盖和茶杯的编号相同的盖法有3510C =种;③无恰有四个杯盖和茶杯的编号相同的盖法,只有五个杯盖和茶杯的编号完全相同的盖法1种; 故选B31种;5 .分类:①1奇4偶:146530C C = ②3奇2偶:3265200C C = 选A6.分步:122652240C C ⋅⋅=选A7.间接法:33106C C -或分类:1221346464C C +C C +C 8. 间接法:10471047A A A -9. 间接法:33208C C -10.对应:一交点对应1l 、2l 上各两点:223418C C =个选A11. 分类:①英语翻译从单会英语中选派:325460C C = ②英语翻译选派中一人既会英语又会日语:225330C C = 填90 12. 分步:245245A A A 选D 13.元素与位置:以冠军为位置,选人:5777777⨯⨯⨯⨯=14.432756002357=⨯⨯⨯①5432120⨯⨯⨯=;②43224⨯⨯= 15. 分步:5433180⨯⨯⨯= 填18016.消序:9966789A A =⨯⨯=504 或分步插空:789⨯⨯=504 或39A17.先分组后分配:2223642333C C C A A ⋅ 或位置分析:222642C C C18. 先分组后分配:32136313C C C A 懂英语1 懂日语56 A 4B8 819. 位置分析:31228542 C C C C20.1仿17题;2先分组后分配:32136313 C C C A21. 先分组后分配:3323 852322C C CAA⋅或分类,先确定住两人的房间——位置分析:12333863 C C C C重复题目: 先分组后分配:2343C A或分类——位置分析:3211421C C C22.捆绑:53253288128A A AA=选B23. 插空:4345A A 24. 插空:34A 25. 插空:4245A A 26. 插空:3334A C27. 插空:3334A A 28.A38C29. 隔板法:639998784321C C⨯⨯===⨯⨯选A30.1先在编号为2、3的2个盒子分别放入1个小球、2个小球;2对余下7个小球用隔板法2615C=;选C31.对应的思想:100名选手之间进行单循环淘汰赛,最后产生一名冠军,要环淘99名选手,每淘汰1名选手,对应一场比赛;故要举行99场比赛;32. 解法一:找规律:固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种.法二:固定和的值.有和为21,22,…,39这几类,依次有取法10,9,9,8,8, …,2,2,1,1种.由分类计数原理得不同取法共有10+9+9+…+2+2+1+1=100种.以上两种方法是两种不同的分类;33. 解:列表排出所有的分配方案,共有3+3+3=9种,或33119⨯⨯⨯=种.34.144102C⋅ 2210C 31221092C C⋅⋅35. 解:根据a,b,c,d对应的象为2的个数分类,可分为三类:第一类,没有一个元素的象为2,其和又为4,则集合M所有元素的象都为1,这样的映射只有1个第二类,有一个元素的象为2,其和又为4,则其余3个元素的象为0,1,1,这样的映射有112432C C C=12个第三类,有两个元素的象为2,其和又为4,则其余2个元素的象必为0,这样的映射有2242C C=6个根据加法原理共有 1+112432C C C+2242C C =1+12+6=19个。

排列组合练习题及答案

排列组合练习题及答案

《排列组合》一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?二、注意附加条件1.6人排成一列(1)甲乙必须站两端,有多少种不同排法?(2)甲乙必须站两端,丙站中间,有多少种不同排法?2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有A.30种B.31种C.32种D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是A.230种B.236种C.455种D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有A.240种B.180种C.120种D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是 。

(完整版)排列组合练习题与答案

(完整版)排列组合练习题与答案

排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是()A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有()A.12个B.13个C.14个D.15个2221322选C.二、相邻问题:1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法?2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )A.720B.1440C.2880D.3600答案:1.242448A A=(2) 选B 3253251440A A A=三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()A.2880B.1152C.48D.1444.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?5.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是()A.28种B.84种C.180种D.360种答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424A C = (7)3334144A A = (8)选A 6828C =四、定序问题:1. 有4名男生,3名女生。

排列组合典型题大全含答案

排列组合典型题大全含答案

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38B、83C、38A D、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B)20种(C)25种(D)32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有【例1】,,,,A 种【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合测试题(含答案)

排列组合测试题(含答案)

排列组合一、选择题:1. 将3个不同的小球放入4个盒子中,那么不同放法种数有A .81B .64C .12D .142.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有A .33AB .334AC .523533A A A -D .2311323233A A A A A + 3.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是A.20 B .16 C .10 D .64.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是A .男生2人女生6人B .男生3人女生5人C .男生5人女生3人D .男生6人女生2人. 5. 6.A .180B .90C .45D .3606.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有A .60个B .48个C .36个D . 24个7.3张不同的电影票全局部给10个人,每人至多一张,那么有不同分法的种数是A .1260B .120C .240D .720 8.n N ∈且55n <,那么乘积(55)(56)(69)n n n ---等于A .5569nn A -- B .1569n A - C .1555n A - D .1469n A -9.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为A .120B .240C .280D .6010.不共面的四个定点到面α的距离都相等,这样的面α共有几个A .3B .4C .6D .711.设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,那么TS的值为 A.20128 B .15128 C .16128 D .2112815.4名男生,4名女生排成一排,女生不排两端,那么有 种不同排法. 〔8640 〕17.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个. 〔840〕 18.用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总与为288,那么x = . 〔2〕5.假设2222345363,n C C C C ++++=那么自然数n =_____.(13)19.n 个人参加某项资格考试,能否通过,有 种可能的结果?( 2n )20.集合{}1,0,1S =-,{}1,2,3,4P =,从集合S ,P 中各取一个元素作为点的坐标,可作出不同的点共有_____个. (23)22.{}1,2,3,4,5,6,7,8,9A =,那么含有五个元素,且其中至少有两个偶数的子集个数为_____.10523.8张椅子排成,有4个人就座,每人1个座位,恰有3个连续空位的坐法共有多少种_______ 48025.7个人排成一排,在以下情况下,各有多少种不同排法? 〔1〕甲排头:〔2〕甲不排头,也不排尾: 〔3〕甲、乙、丙三人必须在一起: 〔4〕甲、乙之间有且只有两人: 〔5〕甲、乙、丙三人两两不相邻: 〔6〕甲在乙的左边〔不一定相邻〕:〔7〕甲、乙、丙三人按从高到矮,自左向右的顺序: 〔8〕甲不排头,乙不排当中:解:〔1〕甲固定不动,其余有66720A =,即共有66720A =种;〔2〕甲有中间5个位置供选择,有15A ,其余有66720A =,即共有16563600A A =种; 〔3〕先排甲、乙、丙三人,有33A ,再把该三人当成一个整体,再加上另四人,相当于5人的全排列,即55A ,那么共有5353720A A =种;〔4〕从甲、乙之外的5人中选2个人排甲、乙之间,有25A ,甲、乙可以交换有22A ,把该四人当成一个整体,再加上另三人,相当于4人的全排列,那么共有224524960A A A =种;〔5〕先排甲、乙、丙之外的四人,有44A ,四人形成五个空位,甲、乙、丙三人排这五个空位,有35A ,那么共有34541440A A =种;〔6〕不考虑限制条件有77A ,甲在乙的左边〔不一定相邻〕,占总数的一半, 即种;〔7〕先在7个位置上排甲、乙、丙之外的四人,有47A ,留下三个空位,甲、乙、丙三人按从高到矮,自左向右的顺序自动入列,不能乱排的,即47840A =〔8〕不考虑限制条件有77A ,而甲排头有66A ,乙排当中有66A ,这样重复了甲排头,乙排当中55A 一次,即76576523720A A A -+=1.6个人坐在一排10个座位上,问(1)空位不相邻的坐法有多少种(2)4个空位只有3个相邻的坐法有多少种(3) 4个空位至多有2个相邻的坐法有多少种解:6个人排有66A 种, 6人排好后包括两端共有7个“间隔〞可以插入空位.(1)空位不相邻相当于将4个空位安插在上述7个“间隔〞中,有4735C =种插法,故空位不相邻的坐法有646725200A C =种。

经典排列组合问题100题配超详细解析

经典排列组合问题100题配超详细解析

1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A -- B .1555n A -C .1569n A - D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55-n ,那么可知下标的值为69-n,共有69-n-(55-n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C. 38种 D. 108种 【答案】B 【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21-n)……(100-n)等于( ) A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21-n)……(100-n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5.7中选两个数字,组成无重复数字的四位数.其中偶数的个数为 ( )A.56B. 96C. 36D.360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( ) A. 280种 B. 240种 C. 180种 D. 96种 【答案】B【解析】根据题意,由排列可得,从6名志愿者中选出4人分别从事四项不同工作,有46360A =种不同的情况,其中包含甲从事翻译工作有3560A =种,乙从事翻译工作的有3560A =种,若其中甲、乙两名支援者都不能从事翻译工作,则选派方案共有360-60-60=240种.6.如图,在∠AOB 的两边上分别有A 1、A 2、A 3、A 4和B 1、B 2、B 3、B 4、B 5共9个点,连结线段A i B j (1≤i ≤4,1≤j ≤5),如果其中两条线段不相交,则称之为一对“和睦线”,则图中共有( )对“和睦线”.A .60B .62C .72 D.124 【答案】A【解析】在∠AOB 的两边上分别取,(),i j A A i j <和,()p q B B p q <,可得四边形i j p q A A B B 中,恰有一对“和睦线”(i p A B 和)j q A B ,而在OA 上取两点有25C 种方法,在OB 上取两点有24C 种方法,共有10660⨯=对“和睦线”.7.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( )A .10B .11C .12D .15 【答案】B【解析】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有C 42=6(个)第二类:与信息0110有一个对应位置上的数字相同的有C 41=4个,第三类:与信息0110没有一个对应位置上的数字相同的有C 40=1,由分类计数原理知与信息0110至多有两个对应位置数字相同的共有6+4+1=11个8.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有 ( )A . 6种B . 12种C . 30种D . 36种 【答案】C【解析】分有一门不相同和二门不相同两种情况,所以共有2112422430C C C C +=9.从一个不透明的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有球的个数为( ).A .5个B .8个C .10个D .15个 【答案】D【解析】由于从一个不透明的口袋中摸出红球的概率为1/5,并且袋中红球有3个,设袋中共有球的个数为n,则31,5n =所以15n =. 10.从编号为1,2,3,4的四个不同小球中取三个不同的小球放入编号为1,2,3的三个不同盒子,每个盒子放一球,则1号球不放1号盒子且3号球不放3号盒子的放法总数为A. 10 B. 12 C. 14 D. 16【答案】C【解析】解:由题意知元素的限制条件比较多,要分类解决,当选出的三个球是1、2、3或1、3、4时,以前一组为例,1号球在2号盒子里,2号和3号只有一种方法,1号球在3号盒子里,2号和3号各有两种结果,选1、2、3时共有3种结果,选1、3、4时也有3种结果,当选到1、2、4或2、3、4时,各有C21A22=4种结果,由分类和分步计数原理得到共有3+3+4+4=14种结果,故选C.11..在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,则实验顺序的编排方法共有()A.34种B.48种C.96种 D.144种【答案】C【解析】解:本题是一个分步计数问题,∵由题意知程序A只能出现在第一步或最后一步,∴从第一个位置和最后一个位置选一个位置把A排列,有A21=2种结果∵程序B和C实施时必须相邻,∴把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果.根据分步计数原理知共有2×48=96种结果,故选C.12.由两个1、两个2、一个3、一个4这六个数字组成6位数,要求相同数字不能相邻,则这样的6位数有A. 12个B. 48个C. 84个D. 96个【答案】C【解析】解:因为先排雷1,2,3,4然后将其与的元素插入进去,则根据相同数字不能相邻的原则得到满足题意的6位数有84个。

(完整版)排列组合经典练习(带答案)

(完整版)排列组合经典练习(带答案)

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40B.50C.60D.70[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人[解析]设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种[解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.36[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是() A.72 B.96 C.108 D.144[解析]分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析]先将6名志愿者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个 答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A.10 B.11 C.12 D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

排列组合练习题(附答案)

排列组合练习题(附答案)

排列组合练习题(附答案)1、如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案()A. 180种B. 240种C. 360D. 420种2、4名同学争夺三项冠军,冠军获得者的可能种数是()A、43 B. A43 C. C43 D. 43、某会议室共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为( )A.12B.16C.24D.324、从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A.24B.18C.12D.65、两家夫妇各带一个小孩一起去公园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为.6、7人排成一列,甲必须在乙的后面(可以不相邻),有种不同的排法.用1,2,3,4,5,6,7组成没有重复数字的七位数,若1,3,5,7的顺序一定,则有个七位数符合条件.8、用0,1,2,3,4,5六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个比1 325大的四位数?9、六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?(1)每组两本.(2)一组一本,一组二本,一组三本.(3)一组四本,另外两组各一本.10、有四个男生,三个女生按下列要求排队拍照,各有多少种不同的排列方法?(1)七个人排成一列,四个男生必须连排在一起;(2)七个人排成一列,三个女生中任何两个均不能排在一起;(3)七个人排成一列,甲、乙、丙三人顺序一定;(4)七个人排成一列,但男生必须连排在一起,女生也必须连排在一起,且男甲与女乙不能相邻.答案与解析1、答案D解:若5个花池栽了5种颜色的花卉,方法有A 55种,若5个花池栽了4种颜色的花卉,则2、4两个花池栽同一种颜色的花;或者3、5两个花池栽同一种颜色的花,方法有2A 54种,若5个花池栽了3种颜色的花卉,方法有A 53种,故最多有A 55+2A 54+A 53=420种栽种方案.故选D .2、答案A解:每一项冠军的情况都有4种,故四名学生争夺三项冠军,分三步,4×4×4=43.获得冠军的可能的种数是43,故选A .3、答案C将三个人插入五个空位中间的四个空当中,有A 43=24种不同的坐法.4、答案B若从0,2中选出的是2,则2可以在百位也可以在十位,所以有A 32×A 21=12个奇数;若从0,2中选出的是0,则0只能在十位,所以有A 32=6个奇数,所以共有12+6=18个奇数.5、答案 24两位爸爸排在首尾有A 22种排法,两个小孩排在一起有A 22种排法,小孩与两位妈妈排列有A 33种排法,所以共有A 22·A 22·A 33=24种排法.6、答案25207人排队,2人顺序固定,共有A 77A 22=5 0402=2 520种排法.7、答案 210若1,3,5,7的顺序不定,有A 44=24种排法,故1,3,5,7的顺序一定的排法数只占总排法数的一种,故有A 77A 44=210个七位数符合条件. 8、(1)符合要求的四位偶数可分为三类.第一类:0在个位时有A 53个;第二类:2在个位时,首位从1,3,4,5中选定1个有A 41种,十位和百位从余下的数字中选有A 42种,于是有A 41·A 42个;第三类:4在个位时,与第二类同理,也有A 41·A 42个.由分类加法计数原理知,无重复数字的四位偶数共有A 53+A 41·A 42+A 41·A 42=156个.(2)五位数中5的倍数的数可分为两类:个位上的数字是0的五位数有A 54个;个位上的数字是5的五位数有A 41·A 43个.故所求数共有A 54+A 41·A 43=216个.(3)比1 325大的四位数可分为三类.第一类:千位数字分别为2,3,4,5时,共A 41·A 53个;第二类:千位数字为1,百位数字分别为4,5时,共有A 21·A 42个;第三类:千位数字为1,百位数字为3,十位数字分别为4,5时,共有A 21·A 31个.由分类加法计数原理知,比1 325大的四位数共有A 41A 53+A 21A 42+A 21A 31=270个.9、(1)22264233C C C A =15(种) (2)615233C C C =60(种)(3)41162122C C C A =15(种) 10、解:(1)不妨先将四个男生看作一个整体,连同三个女生共4个元素进行排列,有A 44种排法,然后将4个男生全排列,有A 44种排法,根据分步乘法计数原理有A 44A 44=576(种)不同的排法;(2)先排男生,有A 44种排法,再在他们之间和左右两端共5个空档中插入3个女生,有A 53种排法,故共有A 44A 53=1440(种);(3)先不考虑三人的顺序,任意排列有A 77种,其中每A 33种有且只有1种符合甲、乙、丙三人顺序一定,因此共有A 77A 33=840(种); (4)先将男生和女生看作两个整体,男生、女生分别全排列,有A 22A 44A 33种排法,再考虑男甲与女乙相邻,有A 22A 33A 22种,故有A 22A 44A 33−A 22A 33A 22=264(种).。

排列组合习题_(含详细答案)

排列组合习题_(含详细答案)

圆梦教育中心排列组合专项训练1.题1 (方法对比,二星)题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法 解析:“名额无差别”——相同元素问题(法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:2133C C +(种)(法2——挡板法)相邻名额间共4个空隙,插入2个挡板,共:246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)同类题一 题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案答案:69C详解:因为10个名额没有差别,把它们排成一排。

相邻名额之间形成9个空隙。

在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。

同类题二题面:求方程X+Y+Z=10的正整数解的个数。

答案:36. 详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z 之值, 故解的个数为C 92=36(个)。

2.题2 (插空法,三星)题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法答案:A 66·A 47种.详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法.同类题二 题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.3.题3 (插空法,三星)题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.1]没有坐人的7个位子先摆好,[2](法1——插空)每个男生占一个位子,插入7个位子所成的8个空当中,有:58A =6720种排法.(法2)[1]5个男生先排好:55A; [2]每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,共有6个空,剩下的3个元素往里插空,每个空可以插1个、2个、3个元素, 共有:3216662C C C++种,综上:有55A (3216662C C C ++)=6720种.同类题一题面:文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种答案:30。

(完整版)排列组合习题_(含详细答案)

(完整版)排列组合习题_(含详细答案)

圆梦教育中心排列组合专项训练1.题1 (方法对比,二星)题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法? 解析:“名额无差别”——相同元素问题(法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:2133C C +(种)(法2——挡板法)相邻名额间共4个空隙,插入2个挡板,共:246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)同类题一 题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?答案:69C详解:因为10个名额没有差别,把它们排成一排。

相邻名额之间形成9个空隙。

在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。

同类题二题面:求方程X+Y+Z=10的正整数解的个数。

答案:36. 详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z 之值, 故解的个数为C 92=36(个)。

2.题2 (插空法,三星)题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法?答案:A 66·A 47种.详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法.同类题二 题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.3.题3 (插空法,三星)题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.1]没有坐人的7个位子先摆好,[2](法1——插空)每个男生占一个位子,插入7个位子所成的8个空当中,有:58A =6720种排法.(法2)[1]5个男生先排好:55A ;[2]每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,共有6个空,剩下的3个元素往里插空,每个空可以插1个、2个、3个元素,共有:3216662C C C ++种,综上:有55A (3216662C C C ++)=6720种.同类题一题面:文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种? 答案:30。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是( )A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 ( )A.12个B.13个C.14个D.15个答案:1、2936C = 2、2972A = 3、选 B. 设男生n 人,则有2138390n n C C A -=。

4、2258m nm A A +-= 选C.二、相邻问题:1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法?2. 有8本不同的书, 其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )A.720B.1440C.2880D.3600答案:1.242448A A=(2) 选B 3253251440A A A=三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()A.2880B.1152C.48D.1444.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?5.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是()A.28种B.84种C.180种D.360种答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424A C = (7)3334144A A = (8)选A 6828C =四、定序问题:1. 有4名男生,3名女生。

现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法?2. 书架上有6本书,现再放入3本书,要求不改变原来6本书前后的相对顺序,有多少种不同排法?答案:1.7733840A A = 2.9966504A A =五、分组分配问题:1.某校高中二年级有6个班,分派3名教师任教,每名教师任教两个班,不同的安排方法有多少种?2. 6本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种?3.8项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有多少种?4. 6人住ABC 三个房间,每间至少住1人,有多少种不同住宿方案?5.有4个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法?6. 把标有a ,b ,c ,d ,e,f,g,h,8件不同纪念品平均赠给甲、乙两位同学,其中a 、b 不赠给同一个人,则不同的赠送方法有 种(用数字作答)。

答案:1.222364233390C C C A A = (2)12336533360C C C A = (3)3122285422221680C C C C A A = (4)1142223123336546423653332323540C C C C C C A C C C A A A A ++= (5)211134214322144C C C C A A = (6)331122632122222240C C C C A A A A ⋅= 六、相同元素问题:1. 不定方程 的正整数解的组数是 ,非负整数解的组数是 。

2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有 ( )A.84种B.120种C.63种D.301种3.将7个相同的小球全部放入4个不同盒子中,(1)每盒至少1球的方法有多少种? (2)恰有一个空盒的方法共有多少种?4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有( )A.9种B.12种C.15种D.18种5.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种?答案:1.3361020 , 120C C == 2.选A 6984C = 3.(1)3620C = (2)124660C C = (4)选C,2615C =(5)611462C = 12347x x x x +++=七、直接与间接问题:1.有6名男同学,4名女同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不同选法?2.7人排成一列(1)甲乙必须站两端,有多少种不同排法?(2)甲必须站两端,乙站最中间,有多少种不同排法?(3) 甲不站排头乙不站排尾, 有多少种不同排法?3.由1、2、3、4、5、6六个数字可组成多少个无重复数字且不是5的倍数的五位数?4. 2名男生4名女生排成一行,女生不全相邻的排法有多少种?5. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数 ( )A.60种B.80种C.120种D.140种6. 5人排成一排,要求甲、乙之间至少有1人,共有多少种不同排法?7.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种?答案:1、1221346464100C C C C C ++= 或 33106100C C -= 2.(1)2525240A A = (2)1525240A A = (3)115655563720A A A A +=或76576523720A A A -+= 3、1455600A A =或5465600A A -=4、643643576A A A -=或32221224234223576A A A A A A A += 5、选C.132231545454120C C C C C C ++=或 444954120C C C --= 6、123222323233223272A A A A A A A A ++=或52452472A A A -= 7、44106463141C C ---= 八、分类与分步问题:1.求下列集合的元素个数.(1){(,)|,,6}M x y x y N x y *=∈+≤;(2).2.一个文艺团队有10名成员,有7人会唱歌,5人会跳舞,现派2人参加演出,其中1名会唱歌,1名会跳舞,有多少种不同选派方法?3. 9名翻译人员中,6人懂英语,4人懂日语,从中选拔5人参加外事活动,要求其中3人担任英语翻译,2人担任日语翻译,选拔的方法有 种(用数字作答)。

4.某博物馆要在20天内接待8所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校只参观1天,则在这20天内不同的安排方法为 ( )A. 种B. 种C. 种D. 种5. 从10种不同的作物种子选出6种放入6个不同的瓶子展出,如果甲乙两种种子不能放第一号瓶内,那么不同的放法共有( )A. 种B. 种C. 种D. 种6. 在画廊要展出1幅水彩画、4幅油画、5幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有( ) {(,)|,,14,15}H x y x y N x y *=∈≤≤≤≤372017C A 820A 171817C A 1818A 24108C A 1599C A 1589C A 1598C A 1545A A 245345A A A 145445A A A 245245A A AA. 种B. 种C. 种D. 种7. 把一个圆周24等分,过其中任意3个分点,可以连成圆的内接三角形,其中直角三角形的个数是( )A.122B.132C.264D.20248. 有三张纸片,正、反面分别写着数字1、2、3和4、5、6 ,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是( )A. 24B.36C.48D.649.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?10.用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不重复的三位数的奇数?(4)可以组成多少个数字不重复的三位数的偶数?(5)可以组成多少个数字不重复的小于1000的自然数?(6)可以组成多少个大于3000,小于5421的数字不重复的四位数?11.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是()A.3761B.4175C.5132D.615712. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有( )A.30种B.31种C.32种D.36种13.从编号为1,2,…,10,11的11个球中取5个,使得这5个球的编号之和为奇数,其取法总数是()A.230种B.236种C.455种D.2640种14.从6双不同颜色的手套中任取4只,试求各有多少种情况出现如下结果(1) 4只手套没有成双;(2) 4只手套恰好成双;(3) 4只手套有2只成双,另2只不成双15.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有种不同的放映方法(用数字作答)。

16. 如下图,共有多少个不同的三角形?答案:1、(1)15 (2)20 2、32 211112285332C C C C C ++= 3.32223153535390C C C C C C ++= 4.选17154523321112111(5)625100131++= (6)1204861175+++= 11.选B 326531379A A +-= 12、选B5325551231C C C +⨯+⨯= 13、选B 1432565656236C C C C C ++= 14、(1)4111162222240C C C C C =(2)2615C =(3)12116522240C C C C =15.211434215322180C C C C A A = 16.所有不同的三角形可分为三类: 第一类:其中有两条边是原五边形的边,这样的三角形共有5个;第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个;第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个.由分类计数原理得,不同的三角形共有5+20+10=35个.九、元素与位置问题:1.有四位同学参加三项不同的比赛,(1)每位同学必须参加一项竞赛,有多少种不同的结果?(2)每项竞赛只许一位学生参加,有多少种不同的结果?2. 25200有多少个正约数?有多少个奇约数?答案:1.(1)每位学生有三种选择,四位学生共有参赛方法:333381⨯⨯⨯=种;(2)每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464⨯⨯=种.2. 25200的约数就是能整除25200的整数,所以本题就是分别求能整除25200的整数和奇约数的个数.由于 25200=24×32×52×7(1) 25200的每个约数都可以写成lk j l 7532⋅⋅⋅的形式,其中40≤≤i ,02j ≤≤,20≤≤k ,10≤≤l于是,要确定25200的一个约数,可分四步完成,即l k j i ,,,分别在各自的范围内任取一个值,这样i 有5种取法,j 有3种取法,k 有3种取法,l 有2种取法,根据分步计数原理得约数的个数为5×3×3×2=90个.(2)奇约数中步不含有2的因数,因此25200的每个奇约数都可以写成lk j 753⋅⋅的形式,同上奇约数的个数为3×3×2=18个.十、染色问题:1.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为( )A. 180B. 160C. 96D. 60若变为图二,图三呢?2. 某班宣传小组一期国庆专刊,现有红、图一图二图三..- 黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中A 、B 、C 、D (如图)每一 部分只写一种颜色,相邻两块颜色不同,则不同颜色粉笔书写的方法共有 种(用具体数字作答)。

相关文档
最新文档