四种进程或线程同步互斥的控制方法
解决进程互斥的基本方法
![解决进程互斥的基本方法](https://img.taocdn.com/s3/m/2cea2d7aff4733687e21af45b307e87100f6f87a.png)
解决进程互斥的基本方法
1. 使用互斥量:进程间共享资源时,应该使用互斥量(Mutex)来保证同一时刻只有一个进程可以访问资源。
当一个进程通过互斥量获取资源访问权后,其他进程会被阻塞,直到该进程释放资源。
2. 使用信号量:信号量(Semaphore)是一个计数器,用于表示可供多个进程同时访问的资源数量。
进程可以通过信号量来获取或释放对共享资源的控制权。
3. 使用临界区:临界区是某些代码片段,它们访问共享资源并需要保证同一时刻只有一个进程可以进入该区域。
在进入临界区之前应该获取锁,临界区代码执行完成后,应该释放锁。
4. 使用管程:管程是一种高级同步机制,它封装了共享变量和对它们的访问操作。
在管程中,进程通过调用管程中的方法来获取或释放对共享资源的控制权。
5. 使用消息队列:消息队列是一种进程间通信机制,它允许进程发送和接收消息。
为了避免对共享资源的互斥访问,进程可以通过消息队列来传递消息,而不是直接访问共享资源。
进程间同步的几种方法
![进程间同步的几种方法](https://img.taocdn.com/s3/m/3fd05e3c591b6bd97f192279168884868762b821.png)
进程间同步的几种方法进程间同步是指两个或多个进程之间进行协调,以确保它们能够正确地执行。
这是多任务操作系统中的重要问题,因为进程之间共享资源,包括内存、文件和网络连接等。
进程同步的关键是确保一组进程在处理共享资源时,能够避免发生竞态条件(Race Condition)和死锁(Deadlock)。
竞态条件指多个进程同时访问共享资源,导致不正确的结果。
死锁指多个进程互相等待,导致它们都无法继续执行。
1. 互斥锁互斥锁是最常见的同步方法之一,它被用来保护共享资源,确保同一时刻只有一个进程可以访问它。
当一个进程获取了锁,其他进程必须等待,直到锁被释放。
在 POSIX 系统中,互斥锁可以通过 pthread_mutex_t 数据类型实现。
我们可以使用pthread_mutex_init() 函数初始化锁,使用 pthread_mutex_lock() 函数获取锁,使用pthread_mutex_unlock() 函数释放锁。
下面是一个例子,展示了如何使用互斥锁同步两个进程对共享变量的访问:```c#include <pthread.h>#include <stdio.h>int count = 0;pthread_mutex_t lock;void *increment(void *arg) {for (int i = 0; i < 1000000; i++) {pthread_mutex_lock(&lock); // 获取锁count++;pthread_mutex_unlock(&lock); // 释放锁}return NULL;}在上面的例子中,我们创建了两个线程,它们分别对共享变量 count 进行了一百万次的递增操作。
我们使用了互斥锁来保护 count 变量,确保同一时刻只有一个线程可以访问它。
2. 信号量3. 条件变量条件变量可以被用来支持更高级的同步机制,如互斥锁和信号量。
C++中多线程的四种控制方法
![C++中多线程的四种控制方法](https://img.taocdn.com/s3/m/93c42130580102020740be1e650e52ea5518ce48.png)
C++中多线程的四种控制⽅法四种进程或线程同步互斥的控制⽅法1、临界区:通过对多线程的串⾏化来访问公共资源或⼀段代码,速度快,适合控制数据访问。
2、互斥量:为协调共同对⼀个共享资源的单独访问⽽设计的。
3、信号量:为控制⼀个具有有限数量⽤户资源⽽设计。
4、事件:⽤来通知线程有⼀些事件已发⽣,从⽽启动后继任务的开始。
临界区(Critical Section) 保证在某⼀时刻只有⼀个线程能访问数据的简便办法。
在任意时刻只允许⼀个线程对共享资源进⾏访问。
如果有多个线程试图同时访问临界区,那么在有⼀个线程进⼊后其他所有试图访问此临界区的线程将被挂起,并⼀直持续到进⼊临界区的线程离开。
临界区在被释放后,其他线程可以继续抢占,并以此达到⽤原⼦⽅式操作共享资源的⽬的。
临界区包含两个操作原语: EnterCriticalSection()进⼊临界区 LeaveCriticalSection()离开临界区 EnterCriticalSection()语句执⾏后代码将进⼊临界区以后⽆论发⽣什么,必须确保与之匹配的 LeaveCriticalSection()都能够被执⾏到。
否则临界区保护的共享资源将永远不会被释放。
虽然临界区同步速度很快,但却只能⽤来同步本进程内的线程,⽽不可⽤来同步多个进程中的线程。
MFC提供了很多功能完备的类,我⽤MFC实现了临界区。
MFC为临界区提供有⼀个 CCriticalSection类,使⽤该类进⾏线程同步处理是⾮常简单的。
只需在线程函数中⽤CCriticalSection类成员函数 Lock()和UnLock()标定出被保护代码⽚段即可。
Lock()后代码⽤到的资源⾃动被视为临界区内的资源被保护。
UnLock后别的线程才能访问这些资源。
互斥量(Mutex) 互斥量跟临界区很相似,只有拥有互斥对象的线程才具有访问资源的权限,由于互斥对象只有⼀个,因此就决定了任何情况下此共享资源都不会同时被多个线程所访问。
临界区 互斥量 事件 信号量
![临界区 互斥量 事件 信号量](https://img.taocdn.com/s3/m/8f8d401b657d27284b73f242336c1eb91a373368.png)
临界区互斥量事件信号量临界区、互斥量、事件、信号量是操作系统中常用的同步机制,用于保证多个进程或线程之间的协调和同步。
下面将分别介绍这四种同步机制的概念和应用。
临界区是指一段代码,在同一时刻只能被一个进程或线程访问。
当多个进程或线程同时访问临界区时,可能会出现竞态条件,导致程序出错。
为了避免这种情况,可以使用互斥量来实现临界区的互斥访问。
互斥量是一种同步对象,用于保护共享资源的访问。
当一个进程或线程需要访问共享资源时,需要先获取互斥量的锁,如果锁已经被其他进程或线程占用,则需要等待。
当访问完成后,需要释放互斥量的锁,以便其他进程或线程可以访问共享资源。
事件是一种同步对象,用于通知进程或线程发生了某个事件。
当一个进程或线程需要等待某个事件发生时,可以使用事件进行同步。
当事件发生时,操作系统会通知等待该事件的进程或线程,以便它们可以继续执行。
信号量是一种同步对象,用于控制进程或线程的访问数量。
当一个进程或线程需要访问某个资源时,需要先获取信号量的值,如果值为0,则需要等待。
当访问完成后,需要释放信号量的值,以便其他进程或线程可以访问该资源。
在实际应用中,临界区、互斥量、事件、信号量都有广泛的应用。
例如,在多线程编程中,可以使用互斥量来保护共享资源的访问,以避免竞态条件。
在操作系统中,可以使用事件来实现进程间的通信,以便进程可以协调工作。
在分布式系统中,可以使用信号量来控制进程或线程的访问数量,以避免系统过载。
临界区、互斥量、事件、信号量是操作系统中常用的同步机制,它们可以保证多个进程或线程之间的协调和同步,从而提高系统的可靠性和性能。
在实际应用中,需要根据具体的场景选择合适的同步机制,以便实现最优的系统设计。
线程互斥的几种方式
![线程互斥的几种方式](https://img.taocdn.com/s3/m/0958f8a685868762caaedd3383c4bb4cf7ecb701.png)
线程互斥的几种方式
线程互斥是多线程编程中非常重要的概念,它可以使多个线程在共享数据时避免竞争和冲突。
以下是几种常见的线程互斥的方式:
1. 临界区:在多线程程序中,临界区是指一段代码,同一时间只能被一个线程执行。
为了实现临界区,可以使用锁或者信号量等同步机制。
2. 互斥锁:互斥锁是一种最常用的同步机制,它可以保护共享资源不被多个线程同时访问。
在使用互斥锁时,需要先申请锁,如果锁被其他线程占用,则当前线程会被阻塞,直到锁被释放为止。
3. 信号量:信号量是一种计数器,用于多个线程之间的同步和互斥。
当一个线程想要访问共享资源时,需要先申请信号量,如果信号量的值大于0,则可以继续执行。
如果信号量的值为0,则当前线程会被阻塞。
4. 读写锁:读写锁是一种特殊的锁,它可以提高对共享资源的并发访问效率。
当多个线程需要读取共享资源时,可以同时获取读锁,而当有一个线程需要写入共享资源时,则需要获取写锁,此时其他线程的读写操作都会被阻塞。
5. 条件变量:条件变量是一种同步机制,它可以使线程在某个条件下等待或唤醒。
当共享资源不满足某个条件时,线程可以通过等待条件变量来阻塞自己,直到条件满足后再被唤醒。
以上几种方式都是实现线程互斥的常见方法,具体的选择要根
据实际情况和需求来决定。
线程同步互斥的方法
![线程同步互斥的方法](https://img.taocdn.com/s3/m/20f09a2cf08583d049649b6648d7c1c709a10b55.png)
线程同步互斥的方法
线程同步和互斥是为了保证多个线程之间的资源访问的正确性和顺序性。
以下是一些常见的线程同步互斥的方法:
1. 互斥锁(Mutex):互斥锁是一种最基本的线程同步方法,它保证了在同一时刻只有一个线程可以访问某个资源。
当一个线程获得互斥锁之后,其他线程必须等待该线程释放锁之后才能继续访问。
2. 信号量(Semaphore):信号量是一种更为灵活的线程同步方法。
它可以实现多个线程之间的互斥和同步,可以控制同时访问某个资源的线程数量。
3. 条件变量(Condition):条件变量是一种线程同步方法,它可以实现多个线程之间的协调和通信。
线程可以通过条件变量等待某个条件的满足,当条件满足时,其他线程可以通过条件变量来通知等待的线程。
4. 原子操作(Atomic Operation):原子操作是一种最轻量级的线程同步方法,它可以保证某个操作的执行是不可分割的,不会被其他线程打断。
原子操作通常使用特殊的CPU指令来实现。
5. 读写锁(ReadWriteLock):读写锁是一种用于读写操作的线程同步方法。
它允许多个线程同时读取某个资源,但是只有一个线程可以写入资源。
读写锁可以提高多线程读操作的并发性能。
以上是一些常见的线程同步互斥的方法,根据具体的场景和需求,选择合适的方法可以提高多线程程序的性能和稳定性。
详解进程同步与互斥机制
![详解进程同步与互斥机制](https://img.taocdn.com/s3/m/40a22914eef9aef8941ea76e58fafab069dc44f6.png)
详解进程同步与互斥机制⽬录⼀、什么是进程同步⼆、什么是进程互斥三、常见的进程同步与互斥机制⼀、什么是进程同步在多道批处理系统中,多个进程是可以并发执⾏的,但由于系统的资源有限,进程的执⾏不是⼀贯到底的,⽽是⾛⾛停停,以不可预知的速度向前推进,这就是进程的异步性。
那么,进程的异步性会带来什么问题呢?举个例⼦,如果有 A、B 两个进程分别负责读和写数据的操作,这两个线程是相互合作、相互依赖的。
那么写数据应该发⽣在读数据之前。
⽽实际上,由于异步性的存在,可能会发⽣先读后写的情况,⽽此时由于缓冲区还没有被写⼊数据,读进程 A 没有数据可读,因此读进程 A 被阻塞。
进程同步(synchronization)就是⽤来解决这个问题的。
从上⾯的例⼦我们能看出,⼀个进程的执⾏可能影响到另⼀个进程的执⾏,所谓进程同步就是指协调这些完成某个共同任务的并发线程,在某些位置上指定线程的先后执⾏次序、传递信号或消息。
再举个⽣活中的进程同步的例⼦,你想要喝热⽔,于是你打了⼀壶⽔开始烧,在这壶⽔烧开之前,你只能⼀直等着,⽔烧开之后⽔壶⾃然会发⽣响声提醒你来喝⽔,于是你就可以喝⽔了。
就是说⽔烧开这个事情必须发⽣在你喝⽔之前。
注意不要把进程同步和进程调度搞混了:进程调度是为了最⼤程度的利⽤ CPU 资源,选⽤合适的算法调度就绪队列中的进程。
进程同步是为了协调⼀些进程以完成某个任务,⽐如读和写,你肯定先写后读,不能先读后写吧,这就是进程同步做的事情了,指定这些进程的先后执⾏次序使得某个任务能够顺利完成。
⼆、什么是进程互斥同样的,也是因为进程的并发性,并发执⾏的线程不可避免地需要共享⼀些系统资源,⽐如内存、打印机、摄像头等。
举个例⼦:我们去学校打印店打印论⽂,你按下了 WPS 的 “打印” 选项,于是打印机开始⼯作。
你的论⽂打印到⼀半时,另⼀位同学按下了 Word 的 “打印” 按钮,开始打印他⾃⼰的论⽂。
想象⼀下如果两个进程可以随意的、并发的共享打印机资源,会发⽣什么情况?显然,两个进程并发运⾏,导致打印机设备交替的收到 WPS 和 Word 两个进程发来的打印请求,结果两篇论⽂的内容混杂在⼀起了。
进程同步与互斥 总结
![进程同步与互斥 总结](https://img.taocdn.com/s3/m/00f6a92ca66e58fafab069dc5022aaea998f4111.png)
进程同步与互斥总结
进程同步和互斥是操作系统中非常重要的概念,它们都是为了保证多个进程能够在正确的时间顺序和正确的方式下运行。
进程同步是指多个进程之间协调执行的过程,而互斥是指多个进程之间竞争有限资源的过程。
以下是关于进程同步与互斥的一些总结:
1. 进程同步方式:
- 信号量:通过对共享资源的访问进行限制,实现多个进程之间的同步。
- 互斥锁:通过对共享资源的访问进行互斥,实现多个进程之间的同步。
- 条件变量:通过对进程状态的检查,实现多个进程之间的同步。
2. 进程互斥方式:
- 临界区:多个进程同时访问共享资源时,只允许一个进程访问。
- 互斥量:多个进程同时访问共享资源时,通过加锁和解锁来实现互斥。
- 读写锁:多个进程同时访问共享资源时,允许多个进程同时读取,但只允许一个进程写入。
3. 进程同步与互斥的优缺点:
- 信号量:优点是可以同时处理多个进程,缺点是容易出现死锁。
- 互斥锁:优点是简单易用,缺点是只能处理两个进程之间的同步。
- 条件变量:优点是可以检查进程状态,缺点是只能处理两个进
程之间的同步。
- 临界区:优点是简单易用,缺点是只能处理两个进程之间的同步。
- 互斥量:优点是可以同时处理多个进程,缺点是容易出现死锁。
- 读写锁:优点是可以允许多个进程同时读取,缺点是会出现写入延迟的问题。
综上所述,进程同步与互斥是操作系统中非常重要的概念,需要根据具体的场景选择适合的同步方式或互斥方式来保证多个进程之
间的协调执行和有限资源的竞争。
同步与互斥实现方法
![同步与互斥实现方法](https://img.taocdn.com/s3/m/f412784c53ea551810a6f524ccbff121dd36c51f.png)
同步与互斥实现方法一、同步与互斥的概念同步是指多个线程或进程之间按照一定的顺序执行,以达到其中一种约定或要求。
在同步的过程中,程序等待其他线程或进程完成一些操作后再继续执行。
互斥是指多个线程或进程之间访问共享资源时,要互相排斥,避免冲突和竞争。
互斥的目的是保证多个线程或进程对共享资源的操作是互斥的,即同一时刻只有一个线程或进程可以访问共享资源。
二、实现同步的方法1. 互斥锁(Mutex)互斥锁是一种最常用的同步机制,通过对一些代码块或函数的访问加上互斥锁的操作,可以保证只有一个线程能够执行该代码块或函数。
当一些线程获得互斥锁时,其他线程在获得该锁之前会被阻塞。
2. 信号量(Semaphore)信号量是一种更为复杂的同步机制,用于实现一些资源的访问控制。
一个信号量有一个整型值和两个原子操作:P和V。
P操作(也称为wait或down)会使信号量的值减1,如果值小于0,当前线程或进程就会被阻塞。
V操作(也称为signal或up)会使信号量的值加1,如果值小于等于0,就会唤醒等待的线程或进程。
信号量可以用于解决生产者-消费者问题、读者-写者问题等并发编程中的资源竞争问题。
3. 条件变量(Condition Variable)条件变量是一种同步机制,用于在多个线程或进程之间同步共享资源的状态。
条件变量对应一个条件,并提供了等待和通知的机制。
等待操作可以使一个线程或进程等待一些条件成立,直到其他线程或进程通知条件变量,使得等待的线程或进程被唤醒。
通知操作可以使等待中的线程或进程被唤醒,继续执行。
条件变量常和互斥锁一起使用,互斥锁用于保护共享资源,条件变量用于同步共享资源的状态。
三、实现互斥的方法1. Peterson算法Peterson算法是一种经典的软件方法,用于解决两个进程之间的互斥访问问题。
该算法使用了两个布尔型变量flag和turn,通过交替使用这两个变量,实现了两个进程之间的互斥。
2. 印章(Semaphores)信号量也可以用于实现互斥操作。
四种进程或线程同步互斥的控制方法
![四种进程或线程同步互斥的控制方法](https://img.taocdn.com/s3/m/5ac0d1f2aef8941ea76e05d4.png)
四种进程或线程同步互斥的控制方法1、临界区:通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问。
2、互斥量:为协调共同对一个共享资源的单独访问而设计的。
3、信号量:为控制一个具有有限数量用户资源而设计。
4、事件:用来通知线程有一些事件已发生,从而启动后继任务的开始。
一临界区临界区的使用在线程同步中应该算是比较简单,说它简单还是说它同后面讲到的其它方法相比更容易理解。
举个简单的例子:比如说有一个全局变量(公共资源)两个线程都会对它进行写操作和读操作,如果我们在这里不加以控制,会产生意想不到的结果。
假设线程A 正在把全局变量加1然后打印在屏幕上,但是这时切换到线程B,线程B又把全局变量加1然后又切换到线程A,这时候线程A打印的结果就不是程序想要的结果,也就产生了错误。
解决的办法就是设置一个区域,让线程A在操纵全局变量的时候进行加锁,线程B如果想操纵这个全局变量就要等待线程A释放这个锁,这个也就是临界区的概念。
二互斥体windows api中提供了一个互斥体,功能上要比临界区强大。
也许你要问,这个东东和临界区有什么区别,为什么强大?它们有以下几点不一致:1.critical section是局部对象,而mutex是核心对象。
因此像waitforsingleobject是不可以等待临界区的。
2.critical section是快速高效的,而mutex同其相比要慢很多3.critical section使用范围是单一进程中的各个线程,而mutex由于可以有一个名字,因此它是可以应用于不同的进程,当然也可以应用于同一个进程中的不同线程。
4.critical section 无法检测到是否被某一个线程释放,而mutex在某一个线程结束之后会产生一个abandoned的信息。
同时mutex只能被拥有它的线程释放。
下面举两个应用mutex 的例子,一个是程序只能运行一个实例,也就是说同一个程序如果已经运行了,就不能再运行了;另一个是关于非常经典的哲学家吃饭问题的例子。
简述同步控制方式
![简述同步控制方式](https://img.taocdn.com/s3/m/93fbf7c805a1b0717fd5360cba1aa81144318f1f.png)
简述同步控制方式同步控制方式是指多个进程或线程之间通过某种机制来协调彼此的执行顺序,以保证数据的一致性和正确性。
常见的同步控制方式有以下几种:1. 互斥锁(Mutex):互斥锁是一种最基本的同步控制方式,通过对共享资源加锁,只有获取锁的线程才能访问共享资源,其他线程需要等待锁的释放。
通过互斥锁可以实现对临界区的互斥访问,保证数据的一致性。
2. 信号量(Semaphore):信号量是一种计数器,用来控制对共享资源的访问。
通过对信号量的操作,可以实现对临界区的访问控制,限制并发访问的线程数量。
信号量可以分为二进制信号量和计数信号量两种类型。
3. 条件变量(Condition Variable):条件变量用于线程之间的等待和通知机制。
一个线程可以通过等待条件变量来暂停自己的执行,直到其他线程通知它继续执行。
条件变量通常与互斥锁配合使用,以保证在等待和通知过程中的数据一致性。
4. 读写锁(Read-Write Lock):读写锁是一种特殊的锁机制,用于提高对共享资源的读操作并发性。
读写锁允许多个线程同时对共享资源进行读操作,但只允许一个线程进行写操作。
通过读写锁可以提高并发性和性能。
5. 顺序控制:通过编程语言提供的顺序控制结构,如条件语句、循环语句、分支语句等,可以实现对进程或线程的执行顺序进行控制。
顺序控制方式通常用于简单的同步场景,对于复杂的同步问题可能无法满足需求。
这些同步控制方式可以根据具体的应用场景进行选择和组合,以实现对并发执行的进程或线程之间的同步控制。
不同的同步控制方式具有不同的特性和适用范围,选择合适的方式可以提高程序的性能和可靠性。
C++线程同步的四种方式(Windows)
![C++线程同步的四种方式(Windows)](https://img.taocdn.com/s3/m/85edd811376baf1ffc4fad4f.png)
C++线程同步的四种方式(Windows)为什么要进行线程同步?在程序中使用多线程时,一般很少有多个线程能在其生命期内进行完全独立的操作。
更多的情况是一些线程进行某些处理操作,而其他的线程必须对其处理结果进行了解。
正常情况下对这种处理结果的了解应当在其处理任务完成后进行。
如果不采取适当的措施,其他线程往往会在线程处理任务结束前就去访问处理结果,这就很有可能得到有关处理结果的错误了解。
例如,多个线程同时访问同一个全局变量,如果都是读取操作,则不会出现问题。
如果一个线程负责改变此变量的值,而其他线程负责同时读取变量内容,则不能保证读取到的数据是经过写线程修改后的。
为了确保读线程读取到的是经过修改的变量,就必须在向变量写入数据时禁止其他线程对其的任何访问,直至赋值过程结束后再解除对其他线程的访问限制。
这种保证线程能了解其他线程任务处理结束后的处理结果而采取的保护措施即为线程同步。
代码示例:两个线程同时对一个全局变量进行加操作,演示了多线程资源访问冲突的情况。
#include "stdafx.h"#include<windows.h>#include<iostream>using namespace std;int number = 1;unsigned long __stdcall ThreadProc1(void* lp){while (number < 100){cout << "thread 1 :"<<number << endl;++number;_sleep(100);}return0;}unsigned long __stdcall ThreadProc2(void* lp){while (number < 100){cout << "thread 2 :"<<number << endl;++number;_sleep(100);}return0;}int main(){CreateThread(NULL, 0, ThreadProc1, NULL, 0, NULL); CreateThread(NULL, 0, ThreadProc2, NULL, 0, NULL);Sleep(10*1000);system("pause");return0;}运行结果:可以看到有时两个线程计算的值相同,不是我们想要的结果。
线程与并发控制:处理多线程的同步和互斥
![线程与并发控制:处理多线程的同步和互斥](https://img.taocdn.com/s3/m/05e29a7c11661ed9ad51f01dc281e53a59025147.png)
线程与并发控制:处理多线程的同步和互斥线程和并发控制是计算机科学领域中非常重要的概念,特别是在多核处理器和分布式系统中。
线程是程序执行的基本单位,而并发控制则是指有效地管理多个线程之间的同步和互斥,以保证数据的一致性和程序的正确执行。
在多线程编程中,线程之间的并发控制是一个关键问题。
当多个线程同时访问共享资源时,如果没有适当的同步和互斥机制,就会出现数据竞争和不一致的问题。
因此,了解如何处理线程的同步和互斥是非常重要的。
同步指的是多个线程之间按照一定的顺序执行,以保证数据的一致性。
常见的同步机制包括互斥锁、条件变量、信号量等。
互斥锁是最基本的同步机制,它可以确保同时只有一个线程能访问共享资源,从而避免数据竞争。
条件变量可以在多个线程之间传递信号,以协调它们的执行流程。
信号量可以用来控制并发访问资源的数量,避免资源的过度竞争。
除了同步机制外,还有一些高级的并发控制技术,如读写锁、原子操作、事务内存等。
读写锁可以提高多线程读取共享资源的效率,因为读取操作不涉及数据一致性问题,可以同时进行。
原子操作可以确保某些操作的原子性,即要么全部执行成功,要么全部不执行。
事务内存是一种基于硬件的并发控制技术,可以提供更高的性能和可靠性。
在处理多线程的同步和互斥时,需要遵循一些基本原则。
首先,避免死锁,即当多个线程互相等待对方释放资源时,就会陷入死锁状态。
其次,避免资源泄漏,即确保每个线程在完成任务后释放所有的资源。
最后,避免竞争条件,即多个线程对共享资源的访问顺序可能影响程序的正确执行,需要避免这种情况的发生。
为了提高多线程程序的性能和可靠性,在设计和实现上需要注意一些细节。
首先,尽量减少共享资源的数量,因为共享资源越多,就越容易引发数据竞争和并发控制问题。
其次,合理设计线程的通信和同步机制,避免不必要的等待和阻塞。
最后,尽量避免线程间频繁地切换和竞争,提高程序的并发执行效率。
总的来说,线程和并发控制是计算机科学中非常重要的概念,能够有效地提高程序的性能和可靠性。
进程的控制方法
![进程的控制方法](https://img.taocdn.com/s3/m/0094b4cfbb0d4a7302768e9951e79b89680268e5.png)
进程的控制方法进程是计算机中最基本的资源单位,它是程序在执行过程中分配和管理资源的基本单位。
为了合理有效地控制进程,提高计算机系统的性能和可靠性,我们常常需要采取一些控制方法。
本文将介绍几种常见的进程控制方法。
一、进程的创建和终止控制1. 进程的创建进程的创建是指在系统中生成一个新的进程。
常见的进程创建方法有:(1)父进程创建子进程:父进程通过调用系统调用(如fork())创建一个新的子进程,子进程会继承父进程的资源和状态,然后可以执行不同的程序段。
(2)系统初始化创建进程:系统启动时,会自动创建一些特殊的进程,如init进程(在Linux系统中)。
2. 进程的终止进程的终止是指进程执行完毕或被强制终止。
常见的进程终止方法有:(1)正常终止:进程执行完毕后,会自动终止,并释放占用的资源。
(2)异常终止:进程在执行过程中遇到错误或异常情况,导致无法继续执行,会被强制终止。
二、进程的切换控制进程的切换是指在多道程序环境下,由于资源有限,系统需要在多个进程之间进行切换,以实现并发执行。
常见的进程切换方法有:1. 抢占式调度抢占式调度是指操作系统通过时钟中断等方式,强制挂起正在执行的进程,并将CPU分配给其他可执行的进程。
这种调度方式可以实现公平性和高效性,但需要考虑进程切换的开销。
2. 非抢占式调度非抢占式调度是指进程只有在主动放弃CPU时,才会被操作系统挂起。
这种调度方式可以减少进程切换的开销,但可能导致某些进程长时间占用CPU,影响其他进程的执行。
三、进程的同步和通信控制进程的同步和通信是指多个进程之间通过共享资源或消息传递等方式进行合作和协调。
常见的进程同步和通信方法有:1. 互斥锁互斥锁是一种用于实现进程互斥访问共享资源的机制。
当一个进程需要访问共享资源时,它必须先获得互斥锁,其他进程则需要等待锁的释放。
2. 信号量信号量是一种用于实现进程同步和互斥的机制。
通过对信号量的P 操作和V操作,进程可以实现对临界资源的互斥访问和同步执行。
多线程同步的四种方式(史上最详细+用例)
![多线程同步的四种方式(史上最详细+用例)](https://img.taocdn.com/s3/m/15c1e1ec534de518964bcf84b9d528ea81c72f7b.png)
多线程同步的四种⽅式(史上最详细+⽤例)多线程同步的四种⽅式对于多线程程序来说,同步是指在⼀定的时间内只允许某⼀个线程来访问某个资源。
⽽在此时间内,不允许其他的线程访问该资源。
可以通过互斥锁(Mutex)、条件变量(condition variable)、读写锁(reader-writer lock)、信号量(semaphore)来同步资源。
1. 互斥锁(Mutex)互斥量是最简单的同步机制,即互斥锁。
多个进程(线程)均可以访问到⼀个互斥量,通过对互斥量加锁,从⽽来保护⼀个临界区,防⽌其它进程(线程)同时进⼊临界区,保护临界资源互斥访问。
互斥锁需要满⾜三个条件:互斥不同线程的临界区没有重叠⽆死锁如果⼀个线程正在尝试获得⼀个锁,那么总会成功地获得这个锁。
若线程A调⽤lock()但是⽆法获得锁,则⼀定存在其他线程正在⽆穷次地执⾏临界区。
⽆饥饿每⼀个试图获得锁的线程最终都能成功。
#include <stdio.h>#include <stdlib.h>#include <pthread.h>void *function(void *arg);pthread_mutex_t mutex;int counter = 0;int main(int argc, char *argv[]){int rc1,rc2;char *str1="hello";char *str2="world";pthread_t thread1,thread2;pthread_mutex_init(&mutex,NULL);if((rc1 = pthread_create(&thread1,NULL,function,str1))){fprintf(stdout,"thread 1 create failed: %d\n",rc1);}if(rc2=pthread_create(&thread2,NULL,function,str2)){fprintf(stdout,"thread 2 create failed: %d\n",rc2);}pthread_join(thread1,NULL);pthread_join(thread2,NULL);return 0;}void *function(void *arg){char *m;m = (char *)arg;pthread_mutex_lock(&mutex);while(*m != '\0'){printf("%c",*m);fflush(stdout);m++;sleep(1);}printf("\n");pthread_mutex_unlock(&mutex);}2. 条件变量(condition variable)⽣产者消费者问题:每次⽣产⼀个商品,发⼀个信号,告诉消费者“我⽣产商品了,快来消费”,消费者拿到⽣产者的条件变量后每次消费两个商品,然后发出信号“我消费了商品,你可以⽣产了”--_--(发的这个信号是⼀个条件变量,通过发送这个信号可以唤醒阻塞的线程,收到信号后,不满⾜需求也会继续阻塞)为了防⽌竞争,条件变量的使⽤总是和⼀个互斥锁结合在⼀起;条件变量是线程的另⼀种同步机制,它和互斥量是⼀起使⽤的。
linux线程间同步和互斥的方法
![linux线程间同步和互斥的方法](https://img.taocdn.com/s3/m/f2584f9ca48da0116c175f0e7cd184254b351bef.png)
linux线程间同步和互斥的方法随着计算机技术的飞速发展,多线程应用已经变得越来越普遍。
在Linux操作系统中,多线程是一种强大的工具,它允许程序同时执行多个任务,从而提高系统的并发性和效率。
然而,多线程应用也带来了一些挑战,如线程间的同步和互斥问题。
本文将介绍Linux线程间同步和互斥的方法。
一、互斥(Mutex)互斥是最基本的同步机制之一,用于保护共享资源,防止多个线程同时访问同一资源而造成数据混乱。
在Linux中,可以使用pthread_mutex_t类型来创建互斥锁。
使用pthread_mutex_lock()函数来锁定互斥锁,确保同一时刻只有一个线程可以访问被保护的资源;使用pthread_mutex_unlock()函数来解锁互斥锁,允许其他线程访问该资源。
二、条件变量(ConditionVariable)条件变量是一种更复杂的同步机制,它允许一个或多个线程在满足某个条件时被唤醒。
在Linux中,可以使用pthread_cond_t类型来创建条件变量。
线程可以通过pthread_cond_wait()函数进入等待状态,直到条件满足时被唤醒。
使用pthread_cond_signal()或pthread_cond_broadcast()函数来通知其他等待的线程。
三、读写锁(Read-WriteLock)读写锁是一种更高效的同步机制,它允许多个读线程同时访问共享资源,但在写操作时只允许一个写线程访问。
在Linux中,可以使用pthread_rwlock_t类型来创建读写锁。
读线程可以同时获取读锁,而写线程必须获取写锁。
当写线程释放写锁时,读线程可以再次获取读锁。
这种机制可以提高并发性能,降低资源争用的开销。
四、信号量(Semaphore)信号量是一种用于控制并发访问的计数器。
它通常用于计数有限的资源数量,如文件描述符或磁盘空间。
在Linux中,可以使用sem_t 类型来创建信号量。
使用sem_wait()函数来减少信号量的值,表示消耗了一个资源;使用sem_post()函数来增加信号量的值,表示释放了一个资源。
进程同步的方法
![进程同步的方法](https://img.taocdn.com/s3/m/c040f11b7275a417866fb84ae45c3b3567ecddfd.png)
进程同步的方法
进程同步是指在多个进程之间协调和同步它们的执行顺序,以避免出现互相干扰和冲突的情况。
在操作系统中,进程同步是非常重要的一部分。
以下是三种常用的进程同步的方法:
1. 信号量(semaphore)
信号量是最古老、最简单的同步机制,它是一个计数器,用于表示可用的资源数量。
当一个进程需要使用一个资源时,它必须首先获取一个信号量,然后在使用完资源后释放信号量,以便其他进程可以使用该资源。
如果没有可用的信号量,进程将被阻塞,直到一个信号量可用为止。
2. 互斥锁(mutex)
互斥锁是一种同步机制,它用于限制同时只能有一个进程访问共享资源。
进程在访问共享资源之前必须获取互斥锁。
如果互斥锁已被其他进程获取,则该进程将被阻塞,直到互斥锁可用。
当进程完成对共享资源的访问时,它必须释放互斥锁,以便其他进程也可以访问共享资源。
3. 条件变量(condition variable)
条件变量是一种同步机制,它允许进程等待另一个进程发出特定信号。
当一个进程需要等待某个事件发生时,它可以调用条件变量来等待。
一个进程可以发出特定信号来唤醒正在等待的进程。
条件变量通常与互斥锁一起使用,以确保线程在访问共享资源时是互斥的。
这些方法可以帮助进程在多个进程之间协调和同步它们的执行顺序,以避免出现互相干扰和冲突的情况。
但是,正确使用这些方法也需要开发人员对进程同步的理解和掌握。
四种进程或线程同步互斥的控制方法
![四种进程或线程同步互斥的控制方法](https://img.taocdn.com/s3/m/9d52f66a3069a45177232f60ddccda38376be11e.png)
四种进程或线程同步互斥的控制方法进程或线程的同步与互斥是计算机操作系统中重要的概念,用于控制多个进程或线程之间的访问共享资源。
下面将介绍四种常用的进程或线程同步互斥的控制方法。
1. 互斥锁(Mutex):互斥锁是最常用的同步互斥控制方法之一、当一些进程或线程获得了互斥锁后,其他进程或线程就无法获得该锁,只能等待锁的释放。
只有当获得互斥锁的进程或线程执行完毕后,才能释放锁,让其他进程或线程继续执行。
这种方式可以有效避免多个进程或线程同时访问共享资源而导致的冲突。
2. 信号量(Semaphore):信号量是一种更加复杂的同步互斥控制方法。
信号量可以通过一个整型变量值来表示可用资源的数量。
当一个进程或线程需要访问共享资源时,首先会尝试获取信号量。
如果信号量的值大于0,则获取成功,可以继续执行;如果信号量的值等于0,则获取失败,进程或线程需要阻塞等待其他进程或线程释放信号量。
当进程或线程完成对共享资源的访问后,会释放信号量,使得其他进程或线程可以获取到它。
3. 条件变量(Condition Variable):条件变量是一种比较高级的同步互斥控制方法。
条件变量不是用来保护共享资源的访问的,而是用来等待其中一种条件的发生。
当一个进程或线程需要等待其中一种条件满足时,会通过条件变量进行阻塞。
当条件满足后,其他进程或线程可以通过条件变量发送信号来唤醒等待的进程或线程。
4. 屏障(Barrier):屏障是一种用于同步多个进程或线程的控制方法。
屏障会将进程或线程分为多个阶段,并在每个阶段结束时设置一个屏障。
当一个进程或线程到达屏障时,它会阻塞等待其他进程或线程到达。
只有当所有进程或线程都到达了屏障,才会释放它们,继续执行下一个阶段。
屏障可以用于控制多个任务的执行顺序,保证它们在一定时刻到达同一个点。
这四种方法都是常见的进程或线程同步互斥的控制方法,每种方法都有自己的适用场景和实现方式。
根据具体的应用需求和系统架构,可以选择合适的方法来实现进程或线程的同步与互斥。
进程同步的方法
![进程同步的方法](https://img.taocdn.com/s3/m/296e97fadb38376baf1ffc4ffe4733687e21fc15.png)
进程同步的方法
进程同步指的是在多个进程间实现互斥、协作和同步执行的方法。
以下是常见的几种进程同步方法:
1. 互斥锁
互斥锁是最常用的进程同步方法之一,在程序中通过加锁和解锁
来控制对共享资源的访问。
当一个进程已经持有了互斥锁时,其他进
程就需要等待锁被释放后才能获得锁。
互斥锁可以避免多个进程同时
修改同一个共享资源导致数据的混乱。
2. 信号量
信号量是一种计数器,用于控制对共享资源的访问。
当一个进程
需要使用共享资源时,它会尝试获得信号量,如果信号量的值大于零,则进程可以获得资源,并将信号量的值减一,表示该进程占用了一个
资源。
当进程使用完共享资源后,它会将信号量的值加一,表示释放
了该资源,其他进程则可以继续使用。
3. 事件
事件是一种进程同步方法,用于在多个进程间实现协作和同步执行。
它是一种对信号的扩展,可以用来通知进程发生了某个事件。
当
一个进程需要等待某个事件发生时,它会阻塞等待,直到事件触发后
才被唤醒继续执行。
4. 管程
管程是一种高级的进程同步方法,用于更为复杂的共享资源管理和多进程协作。
它是一种抽象的程序设计模型,其中包含了一组共享数据结构和一组操作这些数据结构的过程。
管程通过提供一些原始操作(如发送信号、等待事件等)来保证多个进程之间的正确协作和同步执行。
以上是常见的几种进程同步方法,应根据具体场景和需求选择合适的方法。
在编写程序时,应遵循好的编程习惯,充分测试程序,避免出现死锁等问题,以确保程序的正确性和稳定性。
进程间的互斥和同步问题(一)
![进程间的互斥和同步问题(一)](https://img.taocdn.com/s3/m/d5a8153b02d8ce2f0066f5335a8102d276a2610b.png)
进程间的互斥和同步问题(一)进程间的互斥和同步问题在多进程编程中,进程间的互斥和同步问题是一个重要的概念。
下面列举了相关的问题,并对其进行解释说明。
1. 互斥问题•定义:互斥指的是多个进程或线程对同一共享资源的访问是否有序的问题。
•问题描述:当多个进程同时竞争一个共享资源时,可能会出现资源竞争和数据不一致的情况。
•解决方案:使用互斥锁(Mutex)来实现对共享资源的互斥访问,保证每一次只有一个进程或线程能够访问该资源。
2. 同步问题•定义:同步指的是多个进程或线程之间如何进行有序的合作和协调。
•问题描述:当多个进程之间存在依赖关系,需要按照特定的顺序执行时,可能会出现数据不一致或死锁的情况。
•解决方案:使用同步机制(如信号量、条件变量等)来实现进程间的同步,保证各个进程按照特定的顺序执行。
3. 死锁问题•定义:死锁是指在多进程或多线程系统中,彼此因争夺资源而陷入无限等待的状态。
•问题描述:当多个进程互相持有对方所需的资源并等待对方释放资源时,可能会导致死锁的发生。
•解决方案:通过合理的资源分配和调度策略,避免进程之间出现相互依赖的情况,从而避免死锁的发生。
4. 临界区问题•定义:临界区是指在多进程或多线程环境中访问共享资源的一段代码区域。
•问题描述:当多个进程同时访问临界区时,可能会出现数据不一致或竞态条件的问题。
•解决方案:使用互斥锁或其他同步机制来保护临界区的访问,只有获得锁的进程才能够执行临界区的代码,其他进程必须等待。
5. 进程间通信问题•定义:进程间通信(IPC,Inter-Process Communication)指的是实现不同进程之间的信息交换和数据传输。
•问题描述:当多个进程之间需要共享数据或进行协作时,需要有效的通信机制来实现数据的传递。
•解决方案:使用各种IPC机制(如管道、消息队列、共享内存等)来实现进程间的通信,保证数据的正确传输和共享。
综上所述,进程间的互斥和同步问题是多进程编程中不可忽视的重要问题,通过合理的设计和使用适当的同步机制,可以有效解决这些问题,提高程序的并发性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四种进程或线程同步互斥的控制方法1、临界区:通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问。
2、互斥量:为协调共同对一个共享资源的单独访问而设计的。
3、信号量:为控制一个具有有限数量用户资源而设计。
4、事件:用来通知线程有一些事件已发生,从而启动后继任务的开始。
一临界区临界区的使用在线程同步中应该算是比较简单,说它简单还是说它同后面讲到的其它方法相比更容易理解。
举个简单的例子:比如说有一个全局变量(公共资源)两个线程都会对它进行写操作和读操作,如果我们在这里不加以控制,会产生意想不到的结果。
假设线程A 正在把全局变量加1然后打印在屏幕上,但是这时切换到线程B,线程B又把全局变量加1然后又切换到线程A,这时候线程A打印的结果就不是程序想要的结果,也就产生了错误。
解决的办法就是设置一个区域,让线程A在操纵全局变量的时候进行加锁,线程B如果想操纵这个全局变量就要等待线程A释放这个锁,这个也就是临界区的概念。
二互斥体windows api中提供了一个互斥体,功能上要比临界区强大。
也许你要问,这个东东和临界区有什么区别,为什么强大?它们有以下几点不一致:1.critical section是局部对象,而mutex是核心对象。
因此像waitforsingleobject是不可以等待临界区的。
2.critical section是快速高效的,而mutex同其相比要慢很多3.critical section使用围是单一进程中的各个线程,而mutex由于可以有一个名字,因此它是可以应用于不同的进程,当然也可以应用于同一个进程中的不同线程。
4.critical section 无法检测到是否被某一个线程释放,而mutex在某一个线程结束之后会产生一个abandoned的信息。
同时mutex只能被拥有它的线程释放。
下面举两个应用mutex 的例子,一个是程序只能运行一个实例,也就是说同一个程序如果已经运行了,就不能再运行了;另一个是关于非常经典的哲学家吃饭问题的例子。
三事件事件对象的特点是它可以应用在重叠I/O(overlapped I/0)上,比如说socket编程中有两种模型,一种是重叠I/0,一种是完成端口都是可以使用事件同步。
它也是核心对象,因此可以被waitforsingleobje这些函数等待;事件可以有名字,因此可以被其他进程开启。
四信号量semaphore的概念理解起来可能要比mutex还难,我先简单说一下创建信号量的函数,因为我在开始使用的时候没有很快弄清楚,可能现在还有理解不对的地方,如果有错误还是请大侠多多指教。
CreateSemaphore(LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, // SDLONG lInitialCount, // initial countLONG lMaximumCount, // maximum countLPCTSTR lpName // object name)第一个参数是安全性,可以使用默认的安全性选项NULL;第二个和第三个参数是两个long 型的数值,它们表示什么含义呢?lMaxinumCount表示信号量的最大值,必须要大于零。
比如是5就表示可以有5个进程或者线程使用,如果第六个进程或者线程想使用的话就必须进入等待队列等待有进程或者线程释放资源。
lInitalCount表示信号量的初始值,应该大于或者等于零小于等于lMaximumCount。
如果lInitialCount = 0 && lMaximumCount == 5,那么就表示当前资源已经全部被使用,如果再有进程或者线程想使用的话,信号量就会变成-1,该进程或者线程进入等待队列,直到有进程或者线程执行ReleaseMutex;如果lInitialCount = 5 && lMaximumCount == 5,那么就表示现在信号量可以被进程或者线程使用5次,再之后就要进行等待;如果InitialCount = 2 && MaximumCount == 5这样的用法不太常见,表示还可以调用两次CreateSemaphore或者OpenSemaphore,再调用的话就要进入等待状态。
最后一个参数表示这个信号量的名字,这样就可以跨进程的时候通过这个名字OpenSemaphore。
总结:1.互斥量与临界区的作用非常相似,但互斥量是可以命名的,也就是说它可以跨越进程使用。
所以创建互斥量需要的资源更多,所以如果只为了在进程部是用的话使用临界区会带来速度上的优势并能够减少资源占用量。
因为互斥量是跨进程的互斥量一旦被创建,就可以通过名字打开它。
2.互斥量(Mutex),信号灯(Semaphore),事件(Event)都可以被跨越进程使用来进行同步数据操作,而其他的对象与数据同步操作无关,但对于进程和线程来讲,如果进程和线程在运行状态则为无信号状态,在退出后为有信号状态。
所以可以使用WaitForSingleObject来等待进程和线程退出。
3.通过互斥量可以指定资源被独占的方式使用,但如果有下面一种情况通过互斥量就无法处理,比如现在一位用户购买了一份三个并发访问许可的数据库系统,可以根据用户购买的访问许可数量来决定有多少个线程/进程能同时进行数据库操作,这时候如果利用互斥量就没有办法完成这个要求,信号灯对象可以说是一种资源计数器。
六。
CreateMutex()与CreateEvent() 区别使用CreateMutex()来产生一个Mutex物件,而传入的Mutex名称字串用以区别不同的Mutex,也就是说,不管是哪个Process/Thread,只要传入的名称叁数是相同的一个字串,那CreateMutex()传回值(hMutex, handle of Mutex)会指向相同的一个Mutex物件。
这和Event物件相同。
然而Mutex和Event有很大的不同,Mutex有Owner的概念,如果Mutex 为ThreadA所拥有,那麽ThreadA执行WaitForSingleObject()时,并不会停下来,而会立即传回WAIT_OBJECT_0,而其他的Thread执行WaitForSingleObject()则会停下来,直到Mutex的所有权被Release出来或Time Out。
如果一个Thread已取得Mutex的所有权,而它呼叫WaitForSingleObject()n 次,则也要使用ReleaseMutex n次才能够将Mutex的拥有权放弃,这和Event也不同,而且,非Mutex拥有者呼叫ReleaseMutex也不会有任何作用。
而每次以WaitForSingleObject呼叫一次,Mutex会有一个计数器会加一,ReleaseMutex成功会减一,直到Mutex的计数器为0之後,系统才会将之去除。
临界区(Critical Section)保证在某一时刻只有一个线程能访问数据的简便办法。
在任意时刻只允许一个线程对共享资源进行访问。
如果有多个线程试图同时访问临界区,那么在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。
临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操作共享资源的目的。
临界区包含两个操作原语:EnterCriticalSection()进入临界区LeaveCriticalSection()离开临界区EnterCriticalSection()语句执行后代码将进入临界区以后无论发生什么,必须确保与之匹配的LeaveCriticalSection()都能够被执行到。
否则临界区保护的共享资源将永远不会被释放。
虽然临界区同步速度很快,但却只能用来同步本进程的线程,而不可用来同步多个进程中的线程。
MFC提供了很多功能完备的类,我用MFC实现了临界区。
MFC为临界区提供有一个CCriticalSection类,使用该类进行线程同步处理是非常简单的。
只需在线程函数中用CCriticalSection类成员函数Lock()和UnLock()标定出被保护代码片段即可。
Lock()后代码用到的资源自动被视为临界区的资源被保护。
UnLock后别的线程才能访问这些资源。
互斥量(Mutex)互斥量跟临界区很相似,只有拥有互斥对象的线程才具有访问资源的权限,由于互斥对象只有一个,因此就决定了任何情况下此共享资源都不会同时被多个线程所访问。
当前占据资源的线程在任务处理完后应将拥有的互斥对象交出,以便其他线程在获得后得以访问资源。
互斥量比临界区复杂。
因为使用互斥不仅仅能够在同一应用程序不同线程中实现资源的安全共享,而且可以在不同应用程序的线程之间实现对资源的安全共享。
互斥量包含的几个操作原语:CreateMutex()创建一个互斥量OpenMutex()打开一个互斥量ReleaseMutex()释放互斥量WaitForMultipleObjects()等待互斥量对象同样MFC为互斥量提供有一个CMutex类。
使用CMutex类实现互斥量操作非常简单,但是要特别注意对CMutex的构造函数的调用CMutex( BOOL bInitiallyOwn = FALSE, LPCTSTR lpszName = NULL, LPSECURITY_ATTRIBUTES lpsaAttribute = NULL)不用的参数不能乱填,乱填会出现一些意想不到的运行结果。
信号量(Semaphores)信号量对象对线程的同步方式与前面几种方法不同,信号允许多个线程同时使用共享资源,这与操作系统中的PV操作相同。
它指出了同时访问共享资源的线程最大数目。
它允许多个线程在同一时刻访问同一资源,但是需要限制在同一时刻访问此资源的最大线程数目。
在用CreateSemaphore()创建信号量时即要同时指出允许的最大资源计数和当前可用资源计数。
一般是将当前可用资源计数设置为最大资源计数,每增加一个线程对共享资源的访问,当前可用资源计数就会减1,只要当前可用资源计数是大于0的,就可以发出信号量信号。
但是当前可用计数减小到0时则说明当前占用资源的线程数已经达到了所允许的最大数目,不能在允许其他线程的进入,此时的信号量信号将无法发出。
线程在处理完共享资源后,应在离开的同时通过ReleaseSemaphore()函数将当前可用资源计数加1。
在任何时候当前可用资源计数决不可能大于最大资源计数。
PV操作及信号量的概念都是由荷兰科学家E.W.Dijkstra提出的。
信号量S是一个整数,S大于等于零时代表可供并发进程使用的资源实体数,但S小于零时则表示正在等待使用共享资源的进程数。