红外的基团频率和特征吸收峰

合集下载

红外光谱基团频率分析

红外光谱基团频率分析

12.酰胺: 3500-3100cm-1 N-H 伸缩振动 1680-1630cm-1 C=O 伸缩振动 1655-1590cm-1 N-H 弯曲振动 1420-1400cm-1 C-N 伸缩 13.有机卤化物: C-X 伸缩 脂肪族 C-F 1400-730 cm-1 C-Cl 850-550 cm-1 C-Br 690-515 cm-1 C-I 600-500 cm-1
C-S、 P-O 、Si-O 等单键的伸缩振动和 C=S、S=O 、P=O 等双键的伸缩振动吸收。 其中 C-H 对称弯曲振动,对识别甲基十分有用,C-O 的伸缩振动在 1300~1000 cm-1cm-1 的谱带为甲基的 ,是该区域最强的峰,也较易识别。 900~650 cm-1 区域的某些吸收峰可用来确认化合物的顺反构型。 例如,烯烃的 =C-H 面外变形振动出现的位置,很大程度上决定于双键的取代情况。对于 RCH=CH2 结构,在 990 cm-1 和 910 cm-1 出现两个强峰;为 RC=CRH 结构是, 其顺、反构型分别在 690 cm-1 和 970 cm-1 出现吸收峰,可以共同配合确定苯环 的取代类型。 二、常见官能团的特征吸收频率 三、影响基团频率的因素 基团频率主要是由基团中原子的质量和原子间的化学键力常数决定。然而,分子 内部结构和外部环境的改变对它都有影响, 因而同样的基团在不同的分子和不同 的外界环境中, 基团频率可能会有一个较大的范围。因此了解影响基团频率的因 素,对解析红外光谱和推断分子%( 结构都十分有用。 影响基团频率位移的因 素大致可分为内部因素和外部因素。 内部因素: 1. 电子效应 包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子 分布不均匀引起的。 (1)诱导效应(I 效应) 由于取代基具有不同的电负性,通过静电诱导作用, 引起分子中电子分布的变化。 从而改变了键力常数,使基团的特征频率发生了位 移。 例如,一般电负性大的基团或原子吸电子能力强,与烷基酮羰基上的碳原 子数相连时,由于诱导效应就会发生电子云由氧原子转向双键的中间,增加了 C=O 键的力常数,使 C=O 的振动频率升高,吸收峰向高波数移动。随着取代原 子电负性的增大或取代数目的增加, 诱导效应越强,吸收峰向高波数移动的程度 越显著。 (2)中介效应( M 效应)当含有孤对电子的原子(O、S、N 等)与具有多重键 的原子相连时,也可起类似的共轭作用,称为中介效应。由于含有孤对电子的原 子的共轭作用,使 C=O 上的电子云更移向氧原子,C=O 双键的电子云密度平均 化,造成 C=O 键的力常数下降,使吸收频率向低波数位移。 对同一基团,若诱 导效应和中介效应同时存在, 则振动频率最后位移的方向和程度,取决于这两种 效应的结果。当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动 频率向低波数移动。 2 . 氢键的影响氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。游 离羧酸的 C=O 键频率出现在 1760 cm-1 左右,在固体或液体中,由于羧酸形成

红外各基团特征峰对照表

红外各基团特征峰对照表

红外各基团特征峰对照表在化学和材料科学领域,红外光谱分析是一种非常重要的研究手段。

通过对样品的红外吸收光谱进行分析,可以获取有关分子结构和化学键的信息。

而红外各基团特征峰对照表则是帮助我们解读红外光谱的重要工具。

红外光谱是基于分子对红外光的吸收而产生的。

当红外光照射到分子时,分子中的某些化学键会吸收特定频率的红外光,导致分子的振动和转动状态发生改变。

这些吸收峰的位置和强度与分子中的基团和化学键的类型、数量以及周围环境有关。

常见的官能团在红外光谱中都有其特征的吸收峰位置。

例如,羟基(OH)在 3200 3600 cm⁻¹范围内有强而宽的吸收峰。

醇类中的羟基通常在 3300 3600 cm⁻¹,而羧酸中的羟基由于形成了氢键,吸收峰会更宽,出现在 2500 3300 cm⁻¹。

羰基(C=O)是另一个重要的官能团,其特征峰通常在 1650 1750 cm⁻¹。

醛类中的羰基吸收峰在 1720 1740 cm⁻¹,酮类的羰基吸收峰则在 1710 1730 cm⁻¹。

羧酸及其衍生物中的羰基吸收峰位置会有所不同,例如酯类中的羰基吸收峰在 1730 1750 cm⁻¹。

胺基(NH₂)的吸收峰在 3300 3500 cm⁻¹,分为对称和不对称伸缩振动。

芳香族胺的吸收峰位置相对较低。

碳碳双键(C=C)的吸收峰在1620 1680 cm⁻¹,但强度通常较弱。

而碳碳三键(C≡C)的吸收峰在 2100 2260 cm⁻¹,具有较强的吸收强度。

醚键(COC)的特征吸收峰在 1050 1300 cm⁻¹。

苯环的骨架振动在 1450 1600 cm⁻¹范围内有多个吸收峰。

除了上述常见的官能团,还有许多其他基团也有各自独特的红外特征峰。

例如,硝基(NO₂)、氰基(CN)、卤素(X)等。

在实际应用中,使用红外各基团特征峰对照表时需要注意一些问题。

主要基团的红外特征吸收峰

主要基团的红外特征吸收峰

主要基团的红外特征吸收峰
9.90
2.95
9.09
7.14
红外波谱
分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。

相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。

常见官能团的红外吸收频率
整个红外谱图可以分为两个区,4000~1350区是由伸缩振动所产生的吸收带,光谱比较简单但具有强烈的特征性,1350~650处指纹区。

通常,4000~2500处高波数端,有与折合质量小的氢原子相结合的官能团O-H, N-H, C-H, S-H 键的伸缩振动吸收带,在2500-1900波数范围内常常出现力常数大的三件、累积双键如:- C≡C-,- C≡N, -C=C=C-, -C=C=O, -N=C=O等的伸缩振动吸收带。

在1900以下的波数端有-C=C-, -C=O, -C=N-, -C=O等的伸缩振动以及芳环的骨架振动。

1350~650指纹区处,有C-O, C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。

该区域各峰的吸收位置受整体分子结构的影响较大,分子结构稍有不同,吸收也会有细微的差别,所以指纹区对于用已知物来鉴别未知物十分重要。

欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

红外光谱频率与官能团特征吸收峰总结表

红外光谱频率与官能团特征吸收峰总结表

三、炔烃
在 IR 光谱中,炔烃基团很容易识别,它主要有三种特征吸收。
1、σC C H 该振动吸收非常特征,吸收峰位置在 3300—3310 cm-1,中等强度。 σN-H 值与 σC-H 值相同,但前者为宽峰、后者为尖峰,易于识别。
2、σ C C 一般
C C键的伸缩振动吸收都较弱。一元取代炔烃 RC CH
σ C C 出现在 2140—2100 cm-1,二元取代炔烃在 2260—2190 cm-1,当两个取
代基的性质相差太大时,炔化物极性增强,吸收峰的强度增大。当

于分子的对称中心时,σ C为C红外非活性。 3、σ C C H 炔烃变形振动发生在 680—610 cm-1。
四、芳烃
芳烃的红外吸收主要为苯环上的 C-H 键及环骨架中的 C=C 键振动所引起。
1、σC=O 1750~1735 cm-1 处出现(饱和酯 σC=O 位于 1740cm-1 处),受相邻基 团的影响,吸收峰的位置会发生变化。
2、σC-O 一般有两个吸收峰,1300~1150 cm-1,1140~1030 cm-1 十一、酰卤
σC=O 由于卤素的吸电子作用,使 C=O 双键性增强,从而出现在较高波数处, 一般在~1800cm-1 处,如果有乙烯基或苯环与 C=O 共轭,,会使 σC=O 变小,一 般在 1780~1740cm-1 处。 十二、酸酐
随着卤素原子的增加,σC-X 降低。如 C-F(1100~1000 cm-1);C-C(l 750~700 cm-1);C-Br(600~500 cm-1);C-I(500~200 cm-1)。此外,C-X 吸收峰的频率 容易受到邻近基团的影响,吸收峰位置变化较大,尤其是含氟、含氯的化合物变 化更大,而且用溶液法或液膜法测定时,常出现不同构象引起的几个伸缩吸收带。 因此 IR 光谱对含卤素有机化合物的鉴定受到一定限制。 六、醇和酚 醇和酚类化合物有相同的羟基,其特征吸收是 O-H 和 C-O 键的振动频率。 1、 σO-H 一般在 3670~3200 cm-1 区域。游离羟基吸收出现在 3640~3610 cm-1, 峰形尖锐,无干扰,极易识别(溶剂中微量游离水吸收位于 3710 cm-1)。OH 是 个强极性基团,因此羟基化合物的缔合现象非常显著,羟基形成氢键的缔合峰一 般出现在 3550~3200 cm-1。

红外各基团特征峰对照表

红外各基团特征峰对照表

红外各基团特征峰对照表在化学和材料科学领域,红外光谱分析是一种非常重要的技术手段,它能够帮助我们了解分子的结构和化学键的信息。

而对于红外光谱的解读,各基团的特征峰对照表则是关键的工具。

红外光谱的原理是基于分子对红外光的吸收。

当红外光照射到样品上时,分子中的某些化学键会吸收特定频率的红外光,从而产生吸收峰。

这些吸收峰的位置和强度与分子中的基团种类、化学键的性质以及分子的结构等密切相关。

以下是一些常见基团的红外特征峰对照表:一、羟基(OH)醇羟基在 3200 3600 cm⁻¹范围内有一个宽而强的吸收峰。

这个吸收峰的位置会受到氢键的影响,如果存在分子间氢键,吸收峰会向低波数移动。

酚羟基的吸收峰位置通常比醇羟基稍低,在 3200 3500cm⁻¹之间。

二、羰基(C=O)羰基是一个非常重要的官能团,其特征峰在 1650 1850 cm⁻¹范围内。

醛羰基的吸收峰一般在 1720 1740 cm⁻¹,酮羰基在 1710 1730cm⁻¹。

羧酸中的羰基由于与羟基形成氢键,吸收峰会向低波数移动,通常在 1700 1725 cm⁻¹。

酯羰基的吸收峰在 1730 1750 cm⁻¹。

三、氨基(NH₂)伯胺的氨基在 3300 3500 cm⁻¹有两个吸收峰,分别对应对称和不对称伸缩振动。

仲胺的氨基吸收峰则在 3250 3450 cm⁻¹,只有一个吸收峰。

四、碳碳双键(C=C)烯烃中的碳碳双键的吸收峰在 1620 1680 cm⁻¹,强度一般较弱。

五、碳碳三键(C≡C)炔烃中的碳碳三键的吸收峰在 2100 2260 cm⁻¹,吸收强度较大。

六、醚键(COC)醚键的特征吸收峰在 1050 1300 cm⁻¹范围内。

七、苯环苯环的骨架振动在 1450 1600 cm⁻¹有多个吸收峰。

需要注意的是,这些特征峰的位置并不是绝对固定的,它们会受到分子结构中其他基团的影响,产生一定的位移。

红外光谱各个峰的归属

红外光谱各个峰的归属

红外光谱中的各个峰的归属取决于它们对应的官能团或化学键。

以下是红外光谱中一些主要峰的归属:1.基频峰:分子吸收一定频率的红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基
频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

2.泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收
峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

3.特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振
动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

具体到每个分子,红外光谱的各个峰归属需要根据具体的分子结构和官能团来确定。

因此,对于具体的红外光谱分析,需要结合分子的化学结构进行解析。

主要基团的红外特征吸收峰解读

主要基团的红外特征吸收峰解读

主要基团的红外特征吸收峰基团振动类型波数(cm-1)波长(μm)强度备注一、烷烃类CH伸CH伸(反称)CH伸(对称)CH弯(面内)C-C伸3000~28432972~28802882~28431490~13501250~11403.33~3.523.37~3.473.49~3.526.71~7.418.00~8.77中、强中、强中、强分为反称与对称二、烯烃类CH伸C=C伸CH弯(面内)CH弯(面外)单取代双取代顺式反式3100~30001695~16301430~12901010~650995~985910~905730~650980~9653.23~3.335.90~6.137.00~7.759.90~15.410.05~10.1510.99~11.0513.70~15.3810.20~10.36中、弱中强强强强强C=C=C为2000~1925cm-1三、炔烃类CH伸C≡C 伸CH弯(面内)CH弯(面外)~33002270~21001260~1245645~615~3.034.41~4.767.94~8.0315.50~16.25中中强四、取代苯类CH伸泛频峰骨架振动(CC=ν)CH弯(面内)CH弯(面外)3100~30002000~16671600±201500±251580±101450±201250~1000910~6653.23~3.335.00~6.006.25±0.086.67±0.106.33±0.04变弱强三、四个峰,特征确定取代位置6.90±0.108.00~10.00 10.99~15.03单取代邻双取代间双取代对双取代1,2,3,三取代1,3,5,三取代1,2,4,三取代﹡1,2,3,4四取代﹡1,2,4,5四取代﹡1,2,3,5四取代﹡五取代CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)770~730770~730810~750900~860860~800810~750874~835885~860860~800860~800860~800865~810~86012.99~13.7012.99~13.7012.35~13.3311.12~11.6311.63~12.5012.35~13.3311.44~11.9811.30~11.6311.63~12.5011.63~12.5011.63~12.5011.56~12.35~11.63极强极强极强中极强强强中强强强强强五个相邻氢四个相邻氢三个相邻氢一个氢(次要)二个相邻氢三个相邻氢与间双易混一个氢一个氢二个相邻氢二个相邻氢一个氢一个氢一个氢五、醇类、酚类OH伸OH弯(面内)C—O伸O—H弯(面外)3700~32001410~12601260~1000750~6502.70~3.137.09~7.937.94~10.0013.33~15.38变弱强强液态有此峰红外波谱分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。

主要基团的红外特征吸收峰

主要基团的红外特征吸收峰

主要基团的红外特征吸收峰主要基团的红外特征吸收峰)一、烷烃类CH伸CH伸(反称)CH伸(对称)CH弯(面内)C-C伸3000~28432972~28802882~28431490~13501250~11403.33~3.523.37~3.473.49~3.526.71~7.41中、强中、强中、强分为反称与对称单取代双取代 顺式 反式1010~650 995~985 910~905 730~650 980~9657.00~7.75 9.90~15.4 10.05~10.15 10.99~11.05 强 强 强 强内)CH弯(面外)21001260~1245645~615~4.767.94~8.0315.50~16.25强四、取代苯类CH伸泛频峰骨架振动(CC=ν)3100~30002000~16673.23~3.335.00~变三、四个峰,特征单取代邻双取代间双取代对双取代1,2,3 ,三取代1,3,5 ,三取代1,2,4 ,三取代﹡1,2,3,4四取代﹡1,2,4,5四取代﹡1,CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面770~730770~730810~750900~860860~800810~750874~835885~860860~800860~800860~800865~12.99~13.7012.99~13.7012.35~13.3311.12~11.6311.63~12.5012.35~13.3311.44~11.9811.30~极强极强极强中极强强强中强强强强强五个相邻氢四个相邻氢三个相邻氢一个氢(次要)二个相邻氢三个相邻氢与间双易混一个氢一个氢二个相邻氢二个相邻氢一个氢一个氢一个氢OH伸缩频率游离OH分子间氢键分子内氢键OH弯或C—O 伸伯醇(饱和)仲醇(饱和)叔OH伸OH伸OH伸(单桥)OH弯(面内)C—O伸OH弯(面内)C—O伸OH弯(面内)C—O伸OH弯(面内)Ф—O伸3650~35903500~33003570~3450~14001250~1000~14001125~1000~14001210~11001390~13302.74~2.792.86~3.032.80~2.90~7.148.00~10.00~7.148.89~10.00~强强强强强强强强强中强锐峰钝峰(稀释向低频移动*)钝峰(稀释无影响)脂链醚脂环醚芳醚(氧与芳环相连)C—O—C伸C—O—C伸(反称)C—O—C伸(对称)=C—O—C伸(反称)=C—O—C伸(对称)CH伸1225~10601100~1030980~9001270~12301050~1000~28258.16~9.439.09~9.7110.20~11.117.87~8.139.52强强强强中弱氧与侧链碳相连的芳醚同脂醚O—CH3的特征峰975~780 ~6.00 10.2~12.80饱和脂肪醛α,β-不饱和醛芳醛C=O伸C=O伸C=O伸~1725~1685~1695~5.80~5.93~5.90强强强八、酮类OC C=O伸C—C伸1700~16305.78~极强基-2-羟基(或氨基)芳酮脂环酮四环元酮五元环酮六元、七元环酮C=O伸C=O伸C=O伸1635~17751750~17401745~17256.01~6.12~5.635.71~5.755.73~5.80强强强~900 7.6910.53~11.11 以~3000cm-1为中心脂肪酸R—COOH α,β-不饱和酸芳酸C=O伸C=O伸C=O伸1725~17001705~16901700~16505.80~5.885.87~5.915.88~强强强氢键~9.52环酸酐(五元环)C=O伸(反称)C=O伸(对称)C—O伸1870~18201800~17501300~12005.35~5.495.56~5.717.69~8.33强强强共轭时每个谱带降20cm-1十一、酯类C=O伸(泛频)~3450~2.90弱强多数酯饱和酯α,β-不饱和酯δ-内酯γ-内酯(饱和)β-内酯C=O伸C=O伸C=O伸~17201750~17351780~1760~18205.75~5.815.71~5.765.62~5.68~5.50强强强十二、胺 NH伸NH弯(面3500~33002.86~中伯胺强,中;仲胺类叔胺类NH弯(面内)C—N伸NH伸NH弯(面内)C—N伸C—N伸(芳香)15901340~10203500—33001650—15501350—10201360~10206.06~6.297.46~9.802.86—3.036.06—6.457.41强、中中、弱中极弱中、弱中一个峰伯酰胺仲酰胺叔酰胺NH伸(反称)(对称)C=O伸NH弯(剪式)C—N伸NH2面内摇NH2面外摇NH伸C=O伸NH弯+C—N伸C—N伸+NH弯C=O伸~3350~31801680~16501650~16201420~1400~1150750~600~32701680~16301570~15151310~12001670~1630~2.98~3.145.95~6.066.06~6.157.04~7.14~8.701.33~1.67~3.095.95~6.136.37强强强强中弱中强强中中两峰重合两峰重合红外波谱分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。

主要基团的红外特征吸收峰

主要基团的红外特征吸收峰

主要基团的红外特征吸收峰在化学领域中,红外光谱是一种强大的分析工具,它能够帮助我们识别分子中存在的各种基团。

而不同的基团在红外光谱中会表现出特定的吸收峰,这些特征吸收峰就像是基团的“指纹”,让我们能够准确地判断分子的结构和组成。

首先,我们来谈谈羟基(OH)基团。

羟基在红外光谱中的特征吸收峰通常出现在 3200 3650 cm⁻¹的范围内。

这个范围的吸收峰比较宽,这是因为羟基之间容易形成氢键,导致吸收峰的展宽。

比如在醇类化合物中,自由羟基的吸收峰通常在 3650 3600 cm⁻¹左右,而形成氢键的羟基吸收峰则会向低波数移动,可能出现在 3300 cm⁻¹附近。

当羟基与羰基形成分子内氢键时,吸收峰的位置还会发生变化。

接下来是羰基(C=O)基团。

羰基的特征吸收峰是非常显著的,一般出现在 1650 1750 cm⁻¹之间。

在醛类化合物中,羰基的吸收峰通常在 1720 1740 cm⁻¹左右;而在酮类化合物中,吸收峰则在 1710 1715 cm⁻¹附近。

如果是羧酸中的羰基,由于其与羟基形成了共轭体系,吸收峰会向低波数移动,大约在 1700 1725 cm⁻¹。

另外,酯类化合物中的羰基吸收峰一般在 1735 1750 cm⁻¹。

再来说说氨基(NH₂)基团。

氨基的特征吸收峰有两个,分别是在3300 3500 cm⁻¹范围的 NH 伸缩振动吸收峰和在 1550 1650 cm⁻¹范围的 NH 弯曲振动吸收峰。

伯胺中的两个 NH 键吸收峰相对明显,而仲胺中的 NH 吸收峰则会相对较弱。

碳碳双键(C=C)也是常见的基团之一。

其特征吸收峰通常在 1620 1680 cm⁻¹。

但是需要注意的是,当碳碳双键与其他基团共轭时,吸收峰的位置会发生移动。

碳碳三键(C≡C)的吸收峰一般在 2100 2260 cm⁻¹。

总结 红外光谱频率与官能团特征吸收峰

总结 红外光谱频率与官能团特征吸收峰

红外波谱分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。

相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。

常见官能团的红外吸收频率整个红外谱图可以分为两个区,4000~1350区是由伸缩振动所产生的吸收带,光谱比较简单但具有强烈的特征性,1350~650处指纹区。

通常,4000~2500处高波数端,有与折合质量小的氢原子相结合的官能团O-H, N-H, C-H, S-H 键的伸缩振动吸收带,在2500-1900波数范围内常常出现力常数大的三件、累积双键如:- C≡C-,- C≡N, -C=C=C-, -C=C=O, -N=C=O等的伸缩振动吸收带。

在1900以下的波数端有-C=C-, -C=O, -C=N-, -C=O等的伸缩振动以及芳环的骨架振动。

1350~650指纹区处,有C-O, C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。

该区域各峰的吸收位置受整体分子结构的影响较大,分子结构稍有不同,吸收也会有细微的差别,所以指纹区对于用已知物来鉴别未知物十分重要。

有机化学有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H 的σas,后者归因于甲基C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

第3节 基团频率和特征吸收峰

第3节 基团频率和特征吸收峰
CC
C-H
C=C
C=O C-C,C-N,C-O C-X
O-H(氢键)
S-H
N-H
P-H CN
N-O N-N C-F C=N
C-H,N-H,O-H 3500
化学 仪器分析
3000 2500 特征区
2000
1500
1000 500 指纹区
三、影响峰位变化的因素
化学键的振动频率不仅与其性质有关,还受分子的内部
含 氢 化 学 键
伸 缩 振 动 变 形 振 动
活 泼 氢 不 饱 和 氢 饱 和 氢 三 键 双 键
O-H N-H P-H S-H C-H Ar-H =C-H -CH3 CH2 -CH C C N C R2C=O RHC=O C=C C-O C-N C-C C-C-C C-N-O H-C=C-H R-Ar-H H-C-H
伸缩
N-H 变形
游离 氢键
1690 cm-1 3500 cm-1 1620-1590 1650 cm-1 3400 cm-11650-1620
HN H O
H O O C H3C O-H 伸缩
化学 仪器分析
OCH 3 2835 cm-1
HO 3705-3125 cm-1
(3).振动偶合
分子中频率相近或相同的振动间的相互作用,使的一个 兰移,一个红移而分裂成两个峰,振动偶合效应越强,两个
仅含C、H、N时:峰较强、尖锐; 有O原子存在时;O越靠近C N,峰越弱;
化学 仪器分析
3. 双键伸缩振动区( 1900 1200 cm-1 )
(1) RC=CR’ 1620 1680 cm-1
强度弱, R=R’(对称)时,无红外活性。 (2)单核芳烃 的C=C键伸缩振动(1626 1650 cm-1 )

主要基团的红外特征吸收峰

主要基团的红外特征吸收峰

主要基团的红外特征吸收峰基团振动类型波数〔cm-1〕波长〔μm〕强度备注一、烷烃类CH伸CH伸〔反称〕CH伸〔对称〕CH弯〔面〕C-C伸3000~28432972~28802882~28431490~13501250~11403.33~3.523.37~3.473.49~3.526.71~7.418.00~8.77中、强中、强中、强分为反称与对称二、烯烃类CH伸C=C伸CH弯〔面〕CH弯〔面外〕单取代双取代顺式反式3100~30001695~16301430~12901010~650995~985910~905730~650980~9653.23~3.335.90~6.137.00~7.759.90~15.410.05~10.1510.99~11.0513.70~15.3810.20~10.36中、弱中强强强强强C=C=C为2000~1925 cm-1三、炔烃类CH伸C≡C 伸CH弯〔面〕CH弯〔面外〕~33002270~21001260~1245645~615~3.034.41~4.767.94~8.0315.50~16.25中中强四、取代苯类CH伸泛频峰骨架振动〔CC=ν〕CH弯〔面〕CH弯〔面外〕3100~30002000~16671600±201500±251580±101450±201250~1000910~6653.23~3.335.00~6.006.25±0.086.67±0.106.33±0.046.90±0.108.00~10.0010.99~15.03变弱强三、四个峰,特征确定取代位置单取代邻双取代间双取代对双取代1,2,3,三取代1,3,5,三取代1,2,4,三取代﹡1,2,3,4四取代﹡1,2,4,5四取代﹡1,2,3,5四取代﹡五取代CH弯〔面外〕CH弯〔面外〕CH弯〔面外〕CH弯〔面外〕CH弯〔面外〕CH弯〔面外〕CH弯〔面外〕CH弯〔面外〕CH弯〔面外〕CH弯〔面外〕CH弯〔面外〕770~730770~730810~750900~860860~800810~750874~835885~860860~800860~800860~800865~810~86012.99~13.7012.99~13.7012.35~13.3311.12~11.6311.63~12.5012.35~13.3311.44~11.9811.30~11.6311.63~12.5011.63~12.5011.63~12.5011.56~12.35~11.63极强极强极强中极强强强中强强强强强五个相邻氢四个相邻氢三个相邻氢一个氢〔次要〕二个相邻氢三个相邻氢与间双易混一个氢一个氢二个相邻氢二个相邻氢一个氢一个氢一个氢五、醇类、酚类OH伸OH弯〔面〕C—O伸O—H弯〔面外〕3700~32001410~12601260~1000750~6502.70~3.137.09~7.937.94~10.0013.33~15.38变弱强强液态有此峰OH伸缩频率游离OH分子间氢键分子氢键OH弯或C—O伸伯醇〔饱和〕仲醇〔饱和〕叔醇〔饱和〕酚类〔ФOH〕OH伸OH伸OH伸〔单桥〕OH弯〔面〕C—O伸OH弯〔面〕C—O伸OH弯〔面〕C—O伸OH弯〔面〕Ф—O伸3650~35903500~33003570~3450~14001250~1000~14001125~1000~14001210~11001390~13301260~11802.74~2.792.86~3.032.80~2.90~7.148.00~10.00~7.148.89~10.00~7.148.26~9.097.20~7.527.94~8.47强强强强强强强强强中强锐峰钝峰〔稀释向低频移动*〕钝峰〔稀释无影响〕六、醚类C—O—C伸1270~1010 7.87~9.90 强或标C—O伸红外波谱分子被激发后,分子中各个原子或基团〔化学键〕都会产生特征的振动,从而在特点的位置会出现吸收。

红外的吸收峰

红外的吸收峰

红外吸收峰是红外光谱中的重要特征,其峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

基频峰的峰位等于分子或者基团的振动频率,是红外光谱中最重要的吸收峰之一。

在红外光谱中,不同基团具有不同的振动频率,因此可以根据红外光谱的峰位置和强度来判断样品的基团组成和结构。

例如,烷烃的C-H伸缩振动在3000~2800 cm-1处出现较强的吸收峰,烯烃的C=C伸缩振动在1650~1600 cm-1处出现较强的吸收峰,芳香族化合物的苯环伸缩振动在1500~1450 cm-1处出现较强的吸收峰等。

需要注意的是,红外光谱的峰位置和强度受到多种因素的影响,如样品的状态、测试条件、仪器性能等,因此在进行红外光谱分析时需要注意这些因素的影响。

同时,由于不同基团可能存在多个振动频率,因此需要对红外光谱进行精细的分析和理解,以便得到准确的样品结构信息。

总结 红外光谱频率与官能团特征吸收峰

总结 红外光谱频率与官能团特征吸收峰

红外波谱分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。

相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。

常见官能团的红外吸收频率整个红外谱图可以分为两个区,4000~1350区是由伸缩振动所产生的吸收带,光谱比较简单但具有强烈的特征性,1350~650处指纹区。

通常,4000~2500处高波数端,有与折合质量小的氢原子相结合的官能团O-H, N-H, C-H, S-H 键的伸缩振动吸收带,在2500-1900波数范围内常常出现力常数大的三件、累积双键如:- C≡C-,- C≡N, -C=C=C-, -C=C=O, -N=C=O等的伸缩振动吸收带。

在1900以下的波数端有-C=C-, -C=O, -C=N-, -C=O等的伸缩振动以及芳环的骨架振动。

1350~650指纹区处,有C-O, C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。

该区域各峰的吸收位置受整体分子结构的影响较大,分子结构稍有不同,吸收也会有细微的差别,所以指纹区对于用已知物来鉴别未知物十分重要。

有机化学有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H 的σas,后者归因于甲基C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

总结 红外光谱频率与官能团特征吸收峰分析

总结 红外光谱频率与官能团特征吸收峰分析

红外波谱分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。

相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。

常见官能团的红外吸收频率整个红外谱图可以分为两个区,4000~1350区是由伸缩振动所产生的吸收带,光谱比较简单但具有强烈的特征性,1350~650处指纹区。

通常,4000~2500处高波数端,有与折合质量小的氢原子相结合的官能团O-H, N-H, C-H, S-H 键的伸缩振动吸收带,在2500-1900波数范围内常常出现力常数大的三件、累积双键如:- C≡C-,- C≡N, -C=C=C-, -C=C=O, -N=C=O等的伸缩振动吸收带。

在1900以下的波数端有-C=C-, -C=O, -C=N-, -C=O等的伸缩振动以及芳环的骨架振动。

1350~650指纹区处,有C-O, C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。

该区域各峰的吸收位置受整体分子结构的影响较大,分子结构稍有不同,吸收也会有细微的差别,所以指纹区对于用已知物来鉴别未知物十分重要。

有机化学有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H 的σas,后者归因于甲基C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

红外吸收光谱特征峰

红外吸收光谱特征峰
振动也在此区产生吸收。 900,600cm 这波段中较为有价值的两种特征吸收: 长碳链饱和烃, 变大; 苯环上 C—H 面外变形振动吸收峰的变化,可以判断取代情况,此区域的吸 收峰比泛 频带 2000,1670cm 灵敏,因此更具使用价值,见图所示。其吸收峰位置为: 无取代的 苯: 单取代苯: 5 个 C—H,690,700cm,740,750cm,两个吸收带; 邻位双取代 苯: 间位双取代 苯: 对位双取代 苯: 这些吸收带的强度为中等(有时强) 另一个 C—H,,860cm,弱带,供参考; 2 个 C—H,800,850cm,单吸收带。 --1-1-1-1-1,n4 时,呈现 722cm 有一中至 强的吸收峰,n 减小时, -16 个 C—H,670,680cm,单吸收带; -14 个 C—H,740,750cm,单吸收 带; -13 个 C—H, 690,700cm,780,800cm,两个吸收带; -1-1
等,其中 C—O 的伸缩振动在 1300,1000cm,是该区吸收最强的峰,较易识 别。 部分含 H 基团的弯曲振动,如 RCH=CH2,端烯基 C—H 弯曲振动为 990、910cm 的两
个吸收峰;RCH=CHR 反式结构的 C—H 吸收峰为 970 cm(顺式为 690 cm) 等。 某些较重原子的双键伸缩振动,如 C=S、S=O、P=O 等。此外,某些分子 的整体骨架
2500,2000 cm 为叁键和累积双键伸缩振动吸收峰,主要包括,CC-、-CN 叁 键的伸缩振动及、等累积双键的非对称伸缩振动,呈现中等强-1 度的吸收。在此 波段区中,还有 S—H、Si—H、P—H、B—H 的伸缩振动。
2000 ,1500 cm 为双键的伸缩振动吸收区,这个波段也是比较重要的区域, 主要包括以下几种吸收峰带。

总结 红外光谱频率与官能团特征吸收峰

总结 红外光谱频率与官能团特征吸收峰

红外波谱分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。

相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。

常见官能团的红外吸收频率整个红外谱图可以分为两个区,4000~1350区是由伸缩振动所产生的吸收带,光谱比较简单但具有强烈的特征性,1350~650处指纹区。

通常,4000~2500处高波数端,有与折合质量小的氢原子相结合的官能团O-H, N-H, C-H, S-H 键的伸缩振动吸收带,在2500-1900波数范围内常常出现力常数大的三件、累积双键如:- C≡C-,- C≡N, -C=C=C-, -C=C=O, -N=C=O等的伸缩振动吸收带。

在1900以下的波数端有-C=C-, -C=O, -C=N-, -C=O等的伸缩振动以及芳环的骨架振动。

1350~650指纹区处,有C-O, C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。

该区域各峰的吸收位置受整体分子结构的影响较大,分子结构稍有不同,吸收也会有细微的差别,所以指纹区对于用已知物来鉴别未知物十分重要。

有机化学有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H 的σas,后者归因于甲基C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。

多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。

这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。

实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C C等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。

通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。

一、基团频率区和指纹区
(一)基团频率区
中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。

最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之
间,这一区域称为基团频率区、官能团区或特征区。

区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。

在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。

这种振动与整个分子的结构有关。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

基团频率区可分为三个区域:
(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S 等原子。

O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。

当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。

当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。

胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1
因此,可能会对O-H伸缩振动有干扰C-H的伸缩振动可分为饱和和不饱和的两种。

饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。

如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;- CH2基的吸收在2930 cm-1 和2850 cm-1附近; CH(不是炔烃)基的吸收基出现在2890 cm-1 附近,但强度很弱。

不饱和的C-H伸缩振动出现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。

苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆稍弱,但谱带比较尖锐。

不饱和的双键=C-H的吸收出现在3010~3040 cm-1范围内,末端= CH2的吸收出
现在3085 cm-1附近。

叁键 CH上的C-H伸缩振动出现在更高的区域(3300 cm-1 )附
近。

(2)2500~1900 为叁键和累积双键区。

主要包括-C C、-C N等等叁键的伸缩振动,以及-C =C=C、-C=C=O等累积双键的不对称性伸缩振动。

对于炔烃类化合物,可以分成R-C CH和R -C C-R两种类型,R-C CH的伸缩振动出现在2100~2140 cm-1附近,R -C C-R出现在2190~2260 cm-1附近。

如果是R-C C-R,因为分子是对称,则为非红外活性。

-C N基的缩振动在非共轭的情况下出现在2240~2260 cm-1附近。

当与不饱和键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。

若分子中含有C、H、N原子,-C N基吸收比较强而尖锐。

若分子中含有O原子,且O原子离-C N基越近,-C N基的吸收越弱,甚至观察不到。

(3)1900~1200 cm-1为双键伸缩振动区
该区域重要包括三种伸缩振动:
①C=O伸缩振动出现在1900~1650 cm-1 ,是红外光谱中很特征的且往往是最强的吸收,以此很容易判断酮类、醛类、酸类、酯类以及酸酐等有机化合物。

酸酐的羰基吸收带由于振动耦合而呈现双峰。

②C=C伸缩振动。

烯烃的C=C伸缩振动出现在1680~1620cm-1 ,一般很弱。

单核芳烃的C=C伸缩振动出现在1600 cm-1和1500 cm-附近,有两个峰,这是芳环的骨架结构,用于确认有无芳核的存在。

③苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围,是C-H 面外和C=C面内变形振动的泛频吸收,虽然强度很弱,但它们的吸收面貌在表征芳核取代类型上是有用的。

(二)指纹区
1. 1800(1300)~900 cm-1区域是C-O、C-N、C-F、C-P、C-S、P-O、Si-O等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。

其中 1375 cm-1的谱带为甲基的 C-H对称弯曲振动,对识别甲基十分有用,C-O的伸缩振动1300~1000 cm-1 ,是该区域最强的峰,也较易识别。

2.900~650 cm-1区域的某些吸收峰可用来确认化合物的顺反构型。

例如,烯烃的=C-H面外变形振动出现的位置,很大程度上决定于双键的取代情况。

对于RCH=CH2结构,在990 cm-1和910 cm-1出现两个强峰;为RC=CRH结构是,其顺、反构型分别在690 cm-1和970 cm-1出现吸收峰,可以共同配合确定苯环的取代类型。

二、常见官能团的特征吸收频率
基团频率主要是由基团中原子的质量和原子间的化学键力常数决定。

然而,分子内部结构和外部环境的改变对它都有影响,因而同样的基团在不同的分子和不同的外界环境中,基团频率可能会有一个较大的范围。

因此了解影响基团频率的因素,对解析红外光谱和推断分子结构都十分有用。

影响基团频率位移的因素大致可分为内部因素和外部因素。

内部因素:
1. 电子效应
包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子分布不均匀引起的。

(1)诱导效应(I 效应)
由于取代基具有不同的电负性,通过静电诱导作用,引起分子中电子分布的变化。

从而改变了键力常数,使基团的特征频率发生了位移。

例如,一般电负性大的基团或原子吸电子能力强,与烷基酮羰基上的碳原子数相连时,由于诱导效应就会发生电子云由氧原子转向双键的中间,增加了C=O键的力常数,使C=O的振动频率升高,吸收峰向高波数移动。

随着取代原子电负性的增大或取代数目的增加,诱导效应越强,吸收峰向高波数移动的程度越显著。

(2)中介效应(M效应)
当含有孤对电子的原子(O、S、N等)与具有多重键的原子相连时,也可起类似的共轭作用,称为中介效应。

由于含有孤对电子的原子的共轭作用,使C=O上的电子云更移向氧原子,C=O双键的电子云密度平均化,造成C=O键的力常数下降,使吸收频率向低波数位移。

对同一基团,若诱导效应和中介效应同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的结果。

当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动频率向低波数移动。

2 . 氢键的影响
氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。

游离羧酸的C=O键频率出现在1760 cm-1 左右,在固体或液体中,由
于羧酸形成二聚体,C=O键频率出现在1700 cm-1 。

分子内氢键不受浓度影响,分子间氢键受浓度影响较大。

3. 振动耦合
当两个振动频率相同或相近的基团相邻具有一公共原子时,由于一个键的振动通过公共原子使另一个键的长度发生改变,产生一个“微扰”,从而形成了强烈的振动相互作用。

其结果是使振动频率发生感变化,一个向高频移动,另一个向低频移动,谱带分裂。

振动耦合常出现在一些二羰基化合物中,如,羧酸酐。

(4)Fermi共振
当一振动的倍频与另一振动的基频接近时,由于发生相互作用而产生很强的吸
收峰或发生裂分,这种现象称为Fermi共振。

外部因素
外部因素主要指测定时物质的状态以及溶剂效应等因素。

同一物质的不同状态,由于分子间相互作用力不同,所得到光谱往往不同。

分子在气态时,其相互作用力很弱,此时可以观察到伴随振动光谱的转动精细结构。

液态和固态分子间作用力较强,在有极性基团存在时,可能发生分子间的缔合或形成氢键,导致特征吸收带频率、强度和形状有较大的改变。

例如,丙酮在气态时的 C-H为1742 cm-1 ,而在液态时为1718 cm-1 。

在溶液中测定光谱时,由于溶剂的种类、溶剂的浓度和测定时的温度不同,同一种物质所测得的光谱也不同。

通常在极性
溶剂中,溶质分子的极性基团的伸缩振动频率随溶剂极性的增加而向低波数方向移动,并且强度增大。

因此,在红外光谱测定中,应尽量采用非极性的溶剂。

相关文档
最新文档