数学七年级下册第一单元测试题
七年级数学下册第一章单元测试题及答案
七年级数学下册第一章单元测试题及答案第一章:整式的乘除单元测试卷(一)一、精心选择(每小题3分,共21分)1.多项式xy^4+2x^3y^3-9xy+8的次数是A。
3 B。
4 C。
5 D。
62.下列计算正确的是A。
2x^2·6x^4=12x^8 B。
(y^4)m/(y^3)m=ymC。
(x+y)^2=x^2+y^2 D。
4a^2-a^2=33.计算(a+b)(-a+b)的结果是A。
b^2-a^2 B。
a^2-b^2 C。
-a^2-2ab+b^2 D。
-a^2+2ab+b^24.3a^2-5a+1与-2a^2-3a-4的和为A。
5a^2-2a-3 B。
a^2-8a-3 C。
-a^2-3a-5 D。
a^2-8a+55.下列结果正确的是A。
-2/(1/3)=-6 B。
9×5=45 C。
(-5)³=-125 D。
2-3=-1/86.若(am·bn)^2=a^8b^6,那么m^2-2n的值是A。
10 B。
52 C。
20 D。
327.要使式子9x^2+25y^2成为一个完全平方式,则需加上()A。
15xy B。
±15xy C。
30xy D。
±30xy二、耐心填一填(第1~4题1分,第5、6题2分,共28分)1.在代数式3xy^2,m,6a^2-a+3,12,4x^2yz-(1/2)xy^2,3ab中,单项式有5个,多项式有2个。
2.单项式-5x^2y^4z的系数是-5,次数是7.3.多项式3ab^4-ab+1/5有3项,它们分别是3ab^4、-ab、1/5.4.⑴x^2·x^5=x^7.⑵(y^3)^4=y^12.⑶(2a^2b)^3=8a^6b^3.⑷( -x^5y^2)^4=x^20y^8.⑸a^9÷a^3=a^6.⑹10×5-2×4=46.5.⑴(-2)/(1/3)=-6.⑵(x-5)(x+5)=x^2-25.⑶(2a-b)^2=4a^2-4ab+b^2.⑷(-12x^5y^3)/(-3xy^2)=4x^4y。
(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(1)
A.﹣4B.±4C.4D.±8
10.若 ,则 的值等于( )
A.37B.27C.25D.44
11.如 , ,则 ( )
A.-11B.11
C.-7D.7
12.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是()
A. B.
C. D.
10.A
解析:A
【分析】
利用完全平方公式进行运算即可得.
【详解】
,
,即 ①,
又 ,
②,
由① ②得: ,
即 ,
故选:A.
【点睛】
本题考查了利用完全平方公式进行运算求值,熟记公式是解题关键.
11.D
解析:D
【分析】
根据 直接代入求值即可.
【详解】
解:当 , ,时,
=9-2=7.
故选:D.
【点睛】
本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键
∵ , ,
∴x+y= ,
∴
=
=
=20,
故选:A.
【点睛】
此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.
7.C
解析:C
【分析】
表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.
【详解】
解:如图,大正方形的边长是a,三角形①的两条直角边长都为a,三角形②的一条直角边为a-b,另一条直角边为b,
解析:6
【分析】
根据平方差公式计算.
【详解】
( +1)( ﹣1)=7-1=6,
大庆市七年级数学下册第一单元《相交线与平行线》测试题(包含答案解析)
一、选择题1.在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相平行2.用反证法证明“若⊙O的半径为r,点P到圆心O的距离d<r,则点P在⊙O的内部”,第一步应假设()B.点P在⊙O的内部A.d rC.点P在⊙O上D.点P在⊙O上或⊙O外部3.下列命题中,假命题是()A.对顶角相等B.同角的余角相等C.面积相等的两个三角形全等D.平行于同一条直线的两直线平行4.下列哪个图形是由图1平移得到的()A.B.C.D .5.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.56.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠7.如图,//AB EF ,90C ∠=︒,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=︒C .90αβγ∠+∠-∠=︒D .90βγα∠+∠-∠=︒8.(2017•十堰)如图,AB ∥DE ,FG ⊥BC 于F ,∠CDE=40°,则∠FGB=( )A .40°B .50°C .60°D .70°9.下列命题中,属于假命题的是()A.如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B.内错角不一定相等C.平行于同一直线的两条直线平行>-,则a一定小于0D.若数a使得a a10.已知:如图,直线a∥b,∠1=50°,∠2=∠3,则∠2的度数为()A.50°B.60°C.65°D.75°11.如图,将△ABE向右平移50px得到△DCF,如果△ABE的周长是400px(1px=0.04cm),那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm12.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.26二、填空题13.如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°,则∠DOF的度数为__.14.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.15.一把标有0至10的直尺,如图所示放在数轴上,且直尺上的刻度0、1、2、3、4和数轴上的﹣1、﹣2、﹣3、﹣4、﹣5分别对应.现把直尺向右平移5个单位长度,平移后数轴上的数与刻度尺上的读数相同,则这个数是______.16.运动会上裁判员测量跳远成绩时,先在距离踏板最近的跳远落地点上插上作为标记的小旗,再以小旗的位置为赤字的零点,将尺子拉直,并与踏板边缘所在直线垂直,把尺子上垂足点表示的数作为跳远成绩.这实质上是数学知识____________在生活中的应用.17.如图,已知AB∥DE,∠ABC=76°,∠CDE=150°,则∠BCD的度数为__°.18.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.19.假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是25的钥匙所对应的原来房间应该是__________号.20.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.三、解答题.21.如图,直线AB,CD相交于点O,OA平分EOC(1)若70EOC ∠=︒,求BOD ∠的度数;(2)若:4:5∠∠=EOC EOD ,求BOC ∠的度数.22.如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.23.如图,MN ,EF 分别表示两面镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,此时12∠=∠;光线BC 经过镜面EF 反射后的反射光线为CD ,此时34∠=∠,且//AB CD .求证∶//MN EF .24.请将下列题目的证明过程补充完整:如图,F 是BC 上一点,FG AC 于点,G H 是AB 上一点,HE AC ⊥于点,12E ∠=∠,求证://DE BC .证明:连接EF .,FG AC HE AC ∴⊥⊥,90FGC HEC ︒∴∠=∠=.//FG ∴_______( ).3∴∠=∠_______( ).又12∠=∠,∴______24=∠+∠,即∠_________EFC =∠.//DE BC ∴(___________).25.如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46︒,公司要求A、B两地同时开工,并保证若干天后公路准确接通.(1)B地修公路的走向应该是;(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44︒,试求A到公路BC的距离?26.如图,直线AB和CD相交于点O.(1)∠1的邻补角是____________,对顶角是___________;(2)若∠1=40°,求出∠2,∠3,∠4的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A、相等的角不一定是对顶角,此项是假命题;B、平行于同一条直线的两条直线互相平行,此项是真命题;C、两直线平行,同旁内角互补,此项是假命题;D、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.2.D解析:D【分析】用反证法证明,即是假设命题的结论不成立,以命题的否定方面作为条件进行推理,得出和已知条件、公理、定义和定理等相矛盾或自相矛盾的结论,从而肯定命题的结论成立.【详解】解:命题“若⊙O的半径为r,点P到圆心的距离d大于r则点P在⊙O的外部”的结论为:点P在⊙O的外部.若用反证法证明该命题,则首先应假设命题的结论不成立,即点P在⊙O上或点P在⊙O 内.故选:D.【点睛】本题考查了反证法,否定命题判断的相反判断,从而肯定原来判断的正确性,这种证明法称为反证法.3.C解析:C【分析】根据对顶角的性质对A进行判断;根据余角的性质对B进行判断;根据三角形全等的判断对C进行判断;根据平行线的传递性对D进行判断.【详解】解:A、对顶角相等,所以A选项为真命题;B、同角的余角相等,所以B选项为真命题;C、面积相等的两个三角形不一定全等,所以C选项为假命题;D、平行于同一条直线的两条直线平行,所以D选项为真命题.故选:C.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.B解析:B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】A.不是由图1平移得到的,故错误;B.是由图1平移得到的,故正确;C.不是由图1平移得到的,故错误;D.不是由图1平移得到的,故错误;故选:B .【点睛】考查平移的性质,平移前后,图形的大小和形状没有变化.5.C解析:C【分析】根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.6.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A 、正确,符合不等式的性质;B 、正确,符合不等式的性质.C 、正确,符合不等式的性质;D 、错误,例如a=2,b=0;故选D .【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.7.C解析:C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】如图,分别过C 、D 作AB 的平行线CM 和DN ,∵AB//EF ,∴AB//CM //DN //EF ,∴αBCM ∠∠=,MCD NDC ∠∠=,NDE γ∠∠=,∴αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠+=++=++,又∵BC CD ⊥,∴BCD 90∠=,∴αβ90γ∠∠∠+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .8.B解析:B【解析】试题分析:由AB ∥DE ,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG ⊥BC ,∴∠FGB=90°﹣∠B=50°,故选B .考点:平行线的性质9.D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C进行判断;根据绝对值的意义对D进行判断.【详解】解:A、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.C解析:C【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.【详解】∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C.【点睛】本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.11.C解析:C【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.注意:1px = 0.04cm .【详解】∵1px = 0.04cm,∴50px=2cm,400px=16cm,∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF=AB+BE+AE+AD+EF=△ABE的周长+AD+EF.∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故选:C.【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.12.D解析:D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=1 2(AB+EH)×BE=12(8+5)×4=26.故选D.二、填空题13.【分析】利用垂直定义可得∠COE=90°进而可得∠COB的度数再利用对顶角相等可得∠AOD再利用角平分线定义可得答案【详解】解:∵EO⊥CD于点O∴∠COE=90°∵∠BOE=50°∴∠COB=90解析:70【分析】利用垂直定义可得∠COE=90°,进而可得∠COB的度数,再利用对顶角相等可得∠AOD,再利用角平分线定义可得答案.【详解】解:∵EO⊥CD于点O,∴∠COE=90°,∵∠BOE=50°,∴∠COB=90°+50°=140°,∴∠AOD=140°,∵OF平分∠AOD,∴∠FOD=12∠AOD=70°,故答案为:70°.【点睛】此题主要考查了垂直定义,关键是理清图中角之间的和差关系.14.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.15.2【分析】画出示意图找出平移后数轴上的数与刻度尺上的读数相同的数字即可【详解】如图:平移后数轴上的数与刻度尺上的读数相同的数字是2故答案为:2【点睛】本题主要考查平移的概念以及数轴根据题意画出示意图解析:2【分析】画出示意图,找出平移后数轴上的数与刻度尺上的读数相同的数字即可.【详解】如图:平移后数轴上的数与刻度尺上的读数相同的数字是2.故答案为:2.【点睛】本题主要考查平移的概念以及数轴,根据题意画出示意图是解题关键.16.垂线段最短【分析】根据题干跳远落点视为一个点直尺垂直踏板边缘可理解为作垂线然后用数学语言描述出来即可【详解】根据题意可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用注意在书写答案解析:垂线段最短【分析】根据题干,跳远落点视为一个点,直尺垂直踏板边缘可理解为作垂线,然后用数学语言描述出来即可.【详解】根据题意,可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用,注意在书写答案时,尽量用“数学化”的语言来描述.17.46【分析】过点C作CF∥AB根据平行线的传递性得到CF∥DE根据平行线的性质得到∠ABC=∠BCF∠CDE+∠DCF=180°根据已知条件等量代换得到∠BCF =76°由等式性质得到∠DCF=30°解析:46【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠ABC=∠BCF,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=76°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠ABC=∠BCF,∠CDE+∠DCF=180°,∵∠ABC=76°,∠CDE=150°,∴∠BCF=76°,∠DCF=30°,∴∠BCD=46°,故答案为:46.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系.18.30°【分析】先利用补角的定义求出∠EOC=60°再根据角平分线的性质计算【详解】解:∵∠EOD=120°∴∠EOC=60°(邻补角定义)∵OA平分∠EOC∴∠AOC=∠EOC=30°(角平分线定义解析:30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∠EOC=30°(角平分线定义),∵OA平分∠EOC,∴∠AOC=12∴∠BOD=30°(对顶角相等).故答案为:30.【点睛】本题考查由角平分线的定义,结合补角的性质,易求该角的度数.19.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有解析:12【分析】根据编码的方法分析,在1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,故可求得答案.【详解】解:∵1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,∴刻的数是25的钥匙所对应的原来房间应该是12,故答案为:12.【点睛】此题考查了带余数除法的知识.此题难度适中,解题的关键是理解题意,抓住1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12.20.12【解析】分析:由图形可知内部小三角形直角边是大三角形直角边平移得到的故内部五个小直角三角形的周长为大直角三角形的周长详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的故内部五个小 解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.(1)35BOD ∠=︒;(2)140∠=︒BOC【分析】(1)首先根据角平分线的性质得出∠AOC ,然后利用对顶角相等即可得出∠BOD ; (2)首先设4EOC x ∠=,则5EOD x ∠=,然后根据平角的性质构建方程,得出∠EOC ,再利用角平分线的性质得出∠AOC ,最后由平角得旋转即可得出∠BOC 即可.【详解】()170,EOC OA ∠=︒平分EOC ∠,1352AOC EOC ∴∠=∠=︒, 35BOD AOC ∴∠=∠=︒;()2设4EOC x ∠=,则5EOD x ∠=,,54180x x ∴+=︒,解得20x =︒,则80EOC ∠=︒,又OA 平分0E C ∠,40AOC ∴∠=︒,180********BOC AOC ∴∠=︒-∠=︒-︒=︒.【点睛】本题主要考查利用角平分线、对顶角以及平角的性质求解角的度数,熟练掌握,即可解题.22.(1)DE ∥BC ;(2)72°【分析】(1)先根据已知条件得出∠EFC=∠ADC ,故AD ∥EF ,由平行线的性质得∠DEF=∠ADE ,再由∠DEF=∠B ,可知∠B=∠ADE ,故可得出结论.(2)依据DE 平分∠ADC ,∠BDC=3∠B ,即可得到∠ADC 的度数,再根据平行线的性质,即可得出∠EFC 的度数.【详解】解:(1)DE ∥BC .理由:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC ,∴AD ∥EF ,∴∠DEF=∠ADE ,又∵∠DEF=∠B ,∴∠B=∠ADE ,∴DE ∥BC .(2)∵DE 平分∠ADC ,∴∠ADE=∠CDE ,又∵DE ∥BC ,∴∠ADE=∠B ,∵∠BDC=3∠B ,∴∠BDC=3∠ADE=3∠CDE ,又∵∠BDC+∠ADC=180°,3∠ADE+2∠ADE=180°,解得∠ADE=36°,∴∠ADF=72°,又∵AD ∥EF ,∴∠EFC=∠ADC=72°.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行是解答此题的关键. 23.证明见解析【分析】利用//AB CD 推出ABC BCD ∠=∠,利用1234180ABC BCD ∠+∠+∠=∠+∠+∠=︒,得到23∠∠=,即可得到结论.【详解】解:证明:∵//AB CD ,∴ABC BCD ∠=∠,又∵1234180ABC BCD ∠+∠+∠=∠+∠+∠=︒,∴1234∠+∠=∠+∠,又∵12∠=∠,34∠=∠,∴23∠∠=,∴//MN EF .【点睛】此题考查平行线的判定及性质,正确理解判定及性质定理并应用解决问题是解题的关键. 24.HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行【分析】连接EF ,根据垂线定义和平行线的判定与性质可证得34∠=∠,再证明∠DEF=∠EFC ,再根据平行线的性质即可证得结论.【详解】证明:连接EF,FG AC HE AC ⊥⊥,90FGC HEC ︒∴∠=∠=.FG ∴∥HE (同位角相等,两直线平行).34∴∠=∠(两直线平行,内错角相等).又12∠=∠,1324∴∠+∠=∠+∠,即DEF EFC ∠=∠.DE ∴∥BC (内错角相等,两直线平行),故答案为:HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行.【点睛】本题考查平行线的判定与性质、垂线定义,掌握平行线的判定与性质是解答的关键. 25.(1)B 地所修公路的走向是南偏西46︒;(2)12km【分析】(1)根据平行线的性质的性质可得到结论;(2)求得∠ABC=90°即可得到结论.【详解】(1)由两地南北方向平行,根据内错角相等,可知B 地所修公路的走向是南偏西46︒. 故答案为:南偏西46︒.(2)180180464490ABC ABG EBC ∠=︒-∠-∠=︒-︒-︒=︒,AB BC ∴⊥,A ∴地到公路BC 的距离是12AB =千米.【点睛】此题考查了方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.26.(1)∠2和∠4,∠3(2)∠2=140°,∠3=40°,∠4=140°【分析】(1)根据对顶角和邻补角的定义解答即可;(3)根据邻补角的定义列式求出∠2,再根据对顶角相等解答.【详解】(1)∠1的邻补角是∠2和∠4,对顶角是∠3;(2)∵∠1=40°,∴∠2=180°−∠1=180°−40°=140°,∴∠3=∠1=40°,∠4=∠2=140°.【点睛】本题考查了对顶角、邻补角,是基础题,熟记概念是解题的关键,要注意一个角的邻补角有两个.。
七年级数学下册第一章单元测试题及答案
第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x - ,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
5.⑴=⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。
2022-2023学年浙教版七年级数学下册第1章平行线 单元综合达标测试题 (含解析)
2022-2023学年浙教版七年级数学下册《第1章平行线》单元综合达标测试题(附答案)一.选择题(共7小题,满分28分)1.如图,下列说法正确的是()A.∠1与∠2是同位角B.∠1与∠2是内错角C.∠1与∠3是同位角D.∠2与∠3是同旁内角2.如图,四边形ABCD中,∠1=∠3,AD∥BC,则下列等式不成立的是()A.∠1=∠2B.∠3=∠4C.∠2=∠3D.∠1+∠2+∠B=180°3.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上,如果∠2=42°,那么∠1的度数是()A.18°B.17°C.16°D.15°4.如图,在弯形管道ABCD中,若AB∥CD,拐角∠ABC=122°,则∠BCD的大小为()A.58°B.68°C.78°D.122°5.直线BD∥EF,两个直角三角板如图摆放,若∠CBD=10°,则∠1=()A.75°B.80°C.85°D.95°6.如图,△ABC沿BC方向平移得到△DEF,已知BC=5,EC=2,则平移的距离是()A.1B.2C.3D.47.如图,直线a∥b,点A在直线a上,点C、D在直线b上,且AB⊥BC,BD平分∠ABC,若∠1=32°,则∠2的度数是()A.13°B.15°C.14°D.16°二.填空题(共7小题,满分28分)8.如图,已知AB∥CD,∠1=55°,则∠2的度数为.9.如图,DE∥BC,CD平分∠ACB,∠ACB=58°,则∠EDC=.10.如图所示,要在竖直高AC为2米,水平宽BC为8米的楼梯表面铺地毯,地毯的长度至少需要米.11.∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为.12.如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为.13.如图,AB∥CD,AD与BC相交于点F,BE平分∠ABC,DE平分∠ADC,∠AFB=96°,则∠BED的度数为度.14.太阳灶、卫星信号接收锅、探照灯以及其他很多灯具都与抛物线有关.如图,从点O 照射到抛物线上的光线OB,OC等反射以后沿着与POQ平行的方向射出.图中如果∠BOP=45°,∠QOC=68°,则∠ABO=,∠DCO=.三.解答题(共6小题,满分64分)15.如图,点D、E、F分别是三角形ABC的边BC、CA、AB上的点,且∠B+∠BDE=180°,∠A=∠FDE.求证:DF∥AC.16.如图,FG∥AC,∠1=∠2,DE与FC平行吗?为什么?17.如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是小王同学的说明过程,请你在括号内填上理由、依据或内容,请你帮助小王同学完成说明过程:∵DE∥BC(已知),∴∠3=∠EHC(),∵∠3=∠B(),∴∠B=∠EHC(等量代换),∴AB∥EH(),∴∠2+∠4=180°(),又∵∠1=∠4 (),∴∠1+∠2=180°().18.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.19.如图,点E在AB上,点F在CD上,CE、BF分别交AD于点G、H,已知∠A=∠AGE,∠D=∠DGC.(1)AB与CD平行吗?请说明理由;(2)若∠2+∠1=180°,且3∠B=∠BEC+20°,求∠C的度数.20.【提出问题】若两个角的两边分别平行,则这两个角有怎样的数量关系?【解决问题】分两种情况进行探究,请结合如图探究这两个角的数量关系.(1)如图1,AB∥EF,BC∥DE,试证:∠1=∠2;(2)如图2,AB∥EF,BC∥DE,试证:∠1+∠2=180°;【得出结论】由(1)(2)我们可以得到结论:若两个角的两边分别平行,则这两个角的数量关系为;【拓展应用】(3)若两个角的两边分别平行,其中一个角比另一个角的2倍少60°,求这两个角的度数.(4)同一平面内,若两个角的两边分别垂直,则这两个角的数量关系为.参考答案一.选择题(共7小题,满分28分)1.解:A、∠1和∠2不是同位角,故本选项不符合题意;B、∠1和∠2不是内错角,故本选项不符合题意;C、∠1和∠3是内错角,不是同位角,故本选项不符合题意;D、∠2和∠3是同旁内角,故本选项符合题意;故选:D.2.解:∵AD∥BC,∴∠2=∠3,∠1+∠2+∠B=180°,∵∠1=∠3,∴∠1=∠2,故A、C、D成立,不符合题意,根据题意不能判定∠3=∠4,故B不成立,符合题意,故选:B.3.解:如图,∵∠2+∠3=60°,∴∠3=60°﹣∠2=60°﹣42°=18°,根据平行线的性质可得,∠1=∠3=18°.故选:A.4.解:∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=122°,∴∠BCD=180°﹣122°=58°,故选:A.5.解:∵∠ABC=30°,∠CBD=10°,∴∠ABD=∠ABC+∠CBD=30°+10°=40°,∵BD∥EF,∴∠BAF=∠ABD=40°,∵∠EFD=45°,∴∠1=180°﹣∠BAF﹣∠EFD=180°﹣40°﹣45°=95°.故选:D.6.解:点B平移后对应点是点E.∴线段BE就是平移距离,∵已知BC=5,EC=2,∴BE=BC﹣EC=5﹣2=3.故选:C.7.解:延长CB交直线a于点E,如图,∵AB⊥BC,∠1=32°,∴∠ABC=90°,∴∠AEC=90°﹣∠1=58°,∵a∥b,∴∠ECF=∠AEC=58°,∵BD平分∠ABC,∴∠CBD=∠ABC=45°,∵∠ECF是△BCD的外角,∴∠2=∠ECF﹣∠CBD=13°.故选:A.二.填空题(共7小题,满分28分)8.解:∵AB∥CD,∠1=55°,∴∠3=∠1=55°,∴∠2=180°﹣∠3=125°,故答案为:125°.9.解:∵CD平分∠ACB,∠ACB=58°,∴∠ECD=∠ACB=29°,∵DE∥BC,∴∠EDC=∠ECD=29°.故答案为:29°.10.解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要8+2=10(米).故答案为:10.11.解:如图1所示:①当∠1=∠2时,∵∠2=3∠1﹣40°,∴∠1=3∠1﹣40°,解得∠1=20°,∴∠2=20°;如图2:②当∠1+∠2=180°时,∵∠2=3∠1﹣40°,∴∠1+3∠1﹣40°=180°,解得∠1=55°,∴∠2=125°;故答案为:20°或125°.12.解:∵AB∥CD∥EF,∠ABC=125°,∠CEF=105°,∴∠BCD=∠ABC=125°,∠DCE=180°﹣∠CEF=75°,∴∠BCE=∠BCD﹣∠DCE=50°.故答案为:50°.13.解:如图,过点E作EP∥AB,∵AB∥CD,∴AB∥CD∥EP,∴∠ABE=∠BEP,∠CDE=∠DEP,∠ABC=∠BCD,∵∠ABC+∠BAD+∠AFB=180°,∴∠ABC+∠BAD=180°﹣∠AFB=84°,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC,∠CDE=∠ADC,∴∠ABE+∠CDE=(∠ABC+∠BAD)=42°,∴∠BED=∠BEP+∠DEP=∠ABE+∠CDE)=42°,故答案为:42.14.解:∵AB∥PQ,∴∠ABO=∠BOP=45°,∵CD∥PQ,∴∠DCO+∠QOC=180°,即∠DCO+68°=180°,解得∠DCO=112°.故答案为:45°;112°.三.解答题(共6小题,满分64分)15.证明:∵∠B+∠BDE=180°,∴AB∥DE,∴∠BFD=∠FDE,∵∠A=∠FDE,∴∠BFD=∠A,∴DF∥AC.16.解:DE∥FC,理由如下:∵FG∥AC,∴∠1=∠ACF,∵∠1=∠2,∴∠ACF=∠2,∴DE∥FC.17.解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换).18.解:(1)证明:∵FG∥AE,∴∠FGC=∠2,∵∠1=∠2,∴∠1=∠FGC,∴AB∥CD;(2)∵AB∥CD,∴∠ABD+∠D=180°,∴∠ABD=180°﹣112°=68°,∵BC平分∠ABD,∴∠ABC=ABD=34°,∵AB∥CD,∴∠C=∠ABC=34°.所以∠C的度数为34°.19.解:(1)AB∥CD,理由如下:∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠2+∠1=180°,∠CGD+∠2=180°,∴∠1=∠CGD,∴CE∥BF,∴∠C=∠BFD,∠BEC+∠B=180°,∵∠BEC=3∠B+20°,∴∠B=40°,∵AB∥CD,∴∠B=∠BFD,∴∠C=∠B=40°.20.【提出问题】(1)证明:如图1,∵AB∥EF,∴∠1=∠3,又∵BC∥DE,∴∠2=∠3,∴∠1=∠2;(2)证明:如图2,∵AB∥EF,∴∠1=∠4,∴∠2+∠4=180°,∴∠1+∠2=180°;【得出结论】解:由(1)(2)我们可以得到的结论是:若两个角的两边分别平行,则这两个角的数量关系是相等或互补,故答案为:相等或互补;【拓展应用】(3)解:设其中一个角为x,则另一角为2x﹣60°,当x=2x﹣60°时,解得x=60°,此时两个角为60°,60°;当x+2x﹣60°=180°,解得x=80°,则2x﹣60=100°,此时两个角为80°,100°;∴这两个角分别是60°,60°或80°,100°.(4)解:如图,这两个角之间的数量关系是:相等或互补.故答案为:相等或互补.。
(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(3)
一、选择题1.某种产品的原料提价,因而厂家决定对产品进行提价,现有三种方案方案一:第一次提价p %,第二次提价q %方案二:第一次提价q %,第二次提价p % 方案三:第一、二次提价均为2p q +% 其中p ,q 是不相等的正数,下列说法正确的个数是(提示:因为p≠q ,(p -q )2=p 2-2pq +q2>0,所以p 2+q 2>2pq )( )(1) 方案一提价最多 (2)方案二提价最多(3)方案三提价最多 (4)方案一二提价一样多A .1B .2C .3D .42.下列运算中正确的是( )A .235x y xy +=B .()3253x y x y =C .826x x x ÷=D .32622x x x ⋅= 3.有下列计算:①236a a a ⋅=;②33(2)6x x -=-;③0(11)-=;④122-=-;⑤426a a a -÷=.其中正确的个数为( )A .4B .3C .2D .14.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c b d =ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ). A .2B .3C .4D .6 5.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12± B .9C .9±D .12 6.下列运算中,正确的个数是( ) ①2352x x x +=;②()326x x =;③03215⨯-=;④538--+=A .1个B .2个C .3个D .4个7.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 28.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b += 9.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y =D .623x x x ÷= 10.下列运算正确的是( ) A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9 11.如图,两个正方形边长分别为a ,b ,如果a+b =10,ab =18,则阴影部分的面积为( )A .21B .22C .23D .24 12.下列各式计算正确的是( ) A .5210a a a = B .()428=a a C .()236a b a b = D .358a a a +=二、填空题13.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数等等.根据上面的规律,写出5()a b +的展开式:5()a b +=_________.利用上面的规律计算:5432252102102521-⨯+⨯-⨯+⨯-=_________.14.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.15.若2211392781n n ++⨯÷=,则n =____.16.要使()()22524x x x mx -+--的展开式中不含2x 项,则m 的值是______. 17.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.18.已知4222112x x +-⋅=,则x =________19.若代数式21x mx ++是完全平方式,则m 的值为______.20.29999981002-⨯=__________.三、解答题21.计算:(x +1)(x ﹣1)﹣2(2)x +.22.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).23.数学中有很多等式可以用图形的面积来表示.(1)观察图,直接写出代数式22(),()a b a b +-,ab 之间的等量关系________;(2)根据(1)题中的等量关系,解决如下问题:①已知7,10a b ab -==-.求+a b 的值; ②已知13x x +=,求1x x-的值. 24.计算 (1)222331()27(6)3ab a b a b -⋅÷-;(2)(2)(32)()a b a b b a b -+-+. 25.先化简,再求值:(2x+y )2﹣(y ﹣2x )2,其中11,34x y ==-. 26.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =8,ab =6,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据各方案中的百分率,分比表示 出提价后的单价,方案一:(1+p%)(1+q%)=1+p%+q%+p%•q%,方案二:(1+q%)(1+p%)=1+p%+q%+p%•q%,方案一与方案二一样多;方案三: (1+2p q + %)2>1+ p%+q%++p%•q%,方案三提价最多即可判断. 【详解】解:设某种产品的原料价格为1,方案一:第一次提价p %,第二次提价q %,某种产品的原料提价后价格为(1+p%)(1+q%)=1+p%+q%+p%•q%,方案二:第一次提价q %,第二次提价p %, 某种产品的原料提价后价格为(1+q%)(1+p%)==1+p%+q%+p%•q%,方案一与方案二一样多, 方案三:第一、二次提价均为2p q +%,某种产品的原料提价后价格为(1+2p q + %)2=1+ p%+q%+2%2p q +⎛⎫ ⎪⎝⎭=1+ p%+q%+()222+2%4p q pq +, p 2+q 2>2pq ,22+22244p q pq pq pq pq ++>=, (1+2p q + %)2=1+ p%+q%+2%2p q +⎛⎫ ⎪⎝⎭=1+ p%+q%+()222+2%4p q pq +>1+ p%+q%++p%•q%,方案三提价最多,说法正确的个数是正确的个数有2个.故选择:B .【点睛】本题考查百分率应用问题,列代数式,多项式乘以多项式运算,比较代数式值的大小,利用公式p 2+q 2>2pq 进行放缩比较大小是解题关键. 2.C解析:C【分析】按照合并同类项,幂的运算法则计算判断即可.【详解】∵2x 与3y 不是同类项,∴无法计算,∴选项A 错误;∵()3263x y x y =,∴选项B 错误;∵88262x x x x -==÷,∴选项C 正确;∵32325222x x x x +⋅==,∴选项D 错误;故选C.【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键. 3.C解析:C【分析】按照幂的运算法则,仔细计算判断即可.【详解】∵23235a a a a +⋅==,∴①错误;∵3333(2)(2)8x x x -=-=-,∴②错误;∵0(11)-=,∴③正确, ∵1122-=, ∴④错误, ∵424(26)a a a a ---÷==,∴⑤正确.故选C.【点睛】本题考查了幂的计算,熟练掌握幂的运算法则,灵活进行相应的计算是解题的关键. 4.B解析:B【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值.【详解】解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12,解得:x=3,故选:B .【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键. 5.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵()22249=23x mx x mx -+-+,∴223mx x -=±⨯⨯ ,解得m=±12.故选:A .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 6.A解析:A【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.7.D解析:D【分析】根据整式的乘法逐项判断即可求解.【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意;D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意.故选:D【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.8.D解析:D【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可.【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab ,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意.故选:D .【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.9.C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误;C 、()32628y y =,故该项正确;D 、624x x x ÷=,故该项错误;故选:C .【点睛】本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.10.B解析:B【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【详解】∵x 2•x 3=x 5,∴选项A 不符合题意;∵(x 3)2=x 6,∴选项B 符合题意;∵(−3x )3=−27x 3,∴选项C 不符合题意;∵x 4+x 5≠x 9,∴选项D 不符合题意.故选:B .【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.11.C解析:C【分析】表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.【详解】解:如图,大正方形的边长是a,三角形①的两条直角边长都为a ,三角形②的一条直角边为a -b ,另一条直角边为b ,因此S 大正方形=a 2,S △②=12(a ﹣b )b =12ab ﹣12b 2,S △①=12a 2, ∴S 阴影部分=S 大正方形﹣S △①﹣S △②, =12a 2﹣12ab+12b 2, =12 [(a+b )2﹣3ab], =12(100﹣54) =23,故选:C .【点睛】考查完全平方公式的意义,适当的变形是解决问题的关键.12.B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A、a5•a2=a7,此选项计算错误,故不符合题意;B、(a2)4=a8,此选项计算正确,符合题意;C、(a3b)2=a6b2,此选项计算错误,故不符合题意;D、a3与a5不能合并,此选项计算错误,故不符合题意.故选:B.【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.二、填空题13.a5+5a4b+10a3b2+10a2b3+5ab4+b51【分析】(1)直接根据图示规律写出图中的数字再写出(a+b)5的展开式;(2)发现这一组式子中是2与-1的和的5次幂由(1)中的结论得:2解析:a5+5a4b+10a3b2+10a2b3+5ab4+b5 1【分析】(1)直接根据图示规律写出图中的数字,再写出(a+b)5的展开式;(2)发现这一组式子中是2与-1的和的5次幂,由(1)中的结论得:25-5×24+10×23-10×22+5×2-1=(2-1)5,计算出结果.【详解】解:(1)如图,则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.【点睛】本题考查了完全式的n 次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.14.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94【分析】(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.15.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键. 16.-6【分析】结合题意根据整式乘法的性质计算即可得到答案【详解】∵的展开式中不含项∴∴∴故答案为:-6【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质从而完成求解解析:-6【分析】结合题意,根据整式乘法的性质计算,即可得到答案.【详解】∵()()22524x x x mx -+--的展开式中不含2x 项∴()224520x x mx x ⨯-+⨯+⨯= ∴4100m -++=∴6m =-故答案为:-6.【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质,从而完成求解. 17.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键. 18.3【分析】利用同底数幂乘法的逆运算求解即可【详解】∵∴即:∴∴故答案为:3【点睛】本题主要考查同底数幂乘法的逆运算灵活运用同底数幂乘法法则是解题关键解析:3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点睛】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键. 19.【分析】利用完全平方式的结构特征判断即可确定出m 的值【详解】解:∵代数式x2+mx+1是一个完全平方式∴m=±2故答案为:±2【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:2±【分析】利用完全平方式的结构特征判断即可确定出m 的值.【详解】解:∵代数式x 2+mx+1是一个完全平方式,∴m=±2,故答案为:±2【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.20.【分析】将化为进行计算【详解】解:原式====【点睛】本题考查了平方差公式和完全平方公式能灵活运用公式进行计算是解此题的关键解析:1995-【分析】将29999981002-⨯化为2(10001)(10002)(10002)---+进行计算.【详解】解:原式=2(10001)(10002)(10002)---+ =22(100020001)(10004)-+--=2210002000110004-+-+=1995-.【点睛】本题考查了平方差公式和完全平方公式,能灵活运用公式进行计算是解此题的关键.三、解答题21.﹣4x ﹣5.【分析】利用平方差公式和完全平方公式计算即可.【详解】(x+1)(x ﹣1)﹣2(2)x +=2x ﹣1﹣2x ﹣4x ﹣4=﹣4x ﹣5.【点睛】本题考查了平方差公式和完全平方公式,熟记并灵活运用两个公式是解题的关键.22.()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.23.(1)(a+b )2=4ab+(a-b )2;(2)①±3;②【分析】(1)根据图形可知:大正方形是由四个小长方形和中间阴影的小正方形组成,且小正方形的边长为a-b ,列式即可得出结论;(2)①根据(1)的结论直接计算即可;②根据(1)的结论直接计算即可.【详解】解:(1)由S 大正方形=4S 小长方形+S 阴影得:(a+b )2=4ab+(a-b )2.故答案为:(a+b )2=4ab+(a-b )2.(2)①∵a-b=7,ab=-10,∴(a+b )2=(a-b )2+4ab=72+4×(-10)=9,∴a+b=±3;②∵13x x +=,22114x x x x ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭, ∴22134x x ⎛⎫=+- ⎪⎝⎭, ∴2145x x ⎛⎫+-= ⎪⎝⎭,∴1x x-= 【点睛】 本题考查了对完全平方公式几何意义的理解及完全平方公式在代数式求值中的运用,熟练掌握完全平方公式是解题的关键.24.(1)212ab -;(2)2263a b - 【分析】(1)由单项式的乘法和除法、积的乘方的运算法则进行计算,即可得到答案; (2)由整式的加减乘除混合运算,先去括号,然后合并同类项,即可得到答案.【详解】解:(1)222331()27(6)3ab a b a b -⋅÷- =2423311279()6a b a b a b⨯-• =534331()6a b a b ⨯- =212ab -;(2)(2)(32)()a b a b b a b -+-+=2226432a ab ab b ab b +----=2263a b -.【点睛】本题考查了整式的混合运算,单项式的乘法和除法、积的乘方的运算法则,解题的关键是熟练掌握运算法则,正确的进行解题.25.8xy ,23-【分析】直接利用完全平方公式化简进而合并同类项,再把已知数据代入计算即可.【详解】解:(2x+y )2﹣(y ﹣2x )2,=4x 2+4xy+y 2﹣(y 2+4x 2﹣4xy ),=4x 2+4xy+y 2﹣y 2﹣4x 2+4xy ,=8xy , 当11,34x y ==-时, 原式=8×13×(14-), =﹣23. 【点睛】本题主要考查了用完全平方公式化简求值,熟记公式的几个变形公式是解题关键. 26.36【分析】依据AP =a ,BP =b ,点M 是AB 的中点,可得AM =BM =2a b +,再根据S 阴影=S 正方形APCD +S 正方形BEFP ﹣S △ADM ﹣S △BEM ,即可得到图中阴影部分的面积.【详解】解:∵a +b =8,a b =6,∴S 阴影部分=S 正方形APCD +S 正方形BEFP ﹣S △AMD ﹣S △MBE , =22112222a b a b a b a b ++⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭, =()2224a b a b ++- , =()()22+24a b a b ab +--,=64﹣12﹣644,=64﹣12﹣16,=36.【点睛】本题主要考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.。
浙教版七年级数学下册第1章平行线单元测试卷(原卷+答案)
第1章平行线单元检测卷一、选择题(每小题3分,共30分)1.下列各图中,∠1与∠2是同位角的是()2.下列结论正确的是()A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行3.如图,在5×5的方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中正确的是()A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格(第4题图)(第5题图)(第6题图)4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.15°B.30°C.45°D.60°5.如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件() A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD6.如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线()A.3对B.5对C.6对D.7对7.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于()A.26°B.32°C.25°D.36°(第7题图)(第8题图)(第9题图)(第10题图) 8.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于()A.100°B.115°C.120°D.130°9.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于()A.100°B.80°C.60°D.40°二、填空题(每小题3分,共24分)11.如图,在同一平面内,有三条直线a,b,c,a与b相交于点O,如果a∥c,那么直线b与c的位置关系是__ __.(第11题图)(第12题图)(第13题图)(第14题图) 12.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为___.13.在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为___.14.如图,已知BE平分∠ABC,∠CDE=150°,当∠C=____时,AB∥CD.15.如图,将边长为2个单位长度的等边三角形ABC沿边BC向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为____.(第15题图)(第17题图)(第18题图) 16.如图①是我们常用的折叠式小刀,图②中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是___度.17.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有__ __.(填序号)18.如图,AB∥CD,则∠α,∠β,∠γ之间的关系是____.三、解答题(共66分)19.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.20.(8分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC ∥DF.21.(8分)如图,在长方形ABCD中,AB=10 cm,BC=6 cm,试问将长方形ABCD沿着BC方向平移多少才能够使平移后的长方形与原来的长方形ABCD重叠部分的面积为20 cm2?22.(10分)如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.23.(10分)如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.24.(10分)如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC 于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)求证:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,求证:DF平分∠AFE.25.(12分)如图①,在四边形ABCD中,∠ABC+∠ADC=180°,BE,DF分别是∠ABC 与∠ADC的平分线,∠1与∠2互余.(1)试判断直线BE与DF的位置关系,并说明理由;(2)如图②,延长CB,DF相交于点G,过点B作BH⊥FG,垂足为H,试判断∠FBH与∠GBH的大小关系,并说明理由.答案:一、选择题(每小题3分,共30分)1.下列各图中,∠1与∠2是同位角的是(B)2.下列结论正确的是(D)A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行3.如图,在5×5的方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中正确的是(D)A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格(第4题图)(第5题图)(第6题图)4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转(A)A.15°B.30°C.45°D.60°5.如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD6.如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线(C)A.3对B.5对C.6对D.7对7.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于(A) A.26°B.32°C.25°D.36°(第7题图)(第8题图)(第9题图)(第10题图)8.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于(B)A.100°B.115°C.120°D.130°9.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为(B) A.38°B.42°C.48°D.52°10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于(D)A.100°B.80°C.60°D.40°二、填空题(每小题3分,共24分)11.如图,在同一平面内,有三条直线a,b,c,a与b相交于点O,如果a∥c,那么直线b与c的位置关系是__相交__.(第11题图)(第12题图)(第13题图)(第12.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为__120°__.13.在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为__b(a-1)__.14.如图,已知BE平分∠ABC,∠CDE=150°,当∠C=__120°__时,AB∥CD.15.如图,将边长为2个单位长度的等边三角形ABC沿边BC向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为__8__.(第15题图)(第17题图)(第18题图) 16.如图①是我们常用的折叠式小刀,图②中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是__90__度.17.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有__①②③__.(填序号)18.如图,AB∥CD,则∠α,∠β,∠γ之间的关系是__∠α+∠β-∠r=180°__.三、解答题(共66分)19.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.解:∠2=50°20.(8分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC ∥DF.解:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴DB∥EC,∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF21.(8分)如图,在长方形ABCD中,AB=10 cm,BC=6 cm,试问将长方形ABCD沿着BC方向平移多少才能够使平移后的长方形与原来的长方形ABCD重叠部分的面积为20 cm2?解:由题意知长方形CDEF的面积为20 cm2,∴10×DE=20,∴DE=2,∴AE=6-2=4,即将长方形ABCD沿着BC方向平移4 cm22.(10分)如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.解:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,又∵∠1=∠2,∴∠EAP=∠FPA,∴AE∥PF,∴∠E=∠F23.(10分)如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.解:∵∠3=∠4,∴CF∥BD,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠BGD,∵∠1=∠2,∴∠1=∠BGD,∴ED∥FB24.(10分)如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC 于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)求证:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,求证:DF平分∠AFE.解:(1)∵∠1+∠AFE=180°,∠CFE+∠AFE=180°,∴∠1=∠CFE,∴BC∥EF (2)∵∠BEG=∠EDF,∴DF∥EH,∴∠DFE=∠GEF,由(1)知BC∥EF,∴∠GEF=∠2,∴∠DFE=∠2,∵∠2=∠3,∴∠DFE=∠3,∴DF平分∠AFE25.(12分)如图①,在四边形ABCD中,∠ABC+∠ADC=180°,BE,DF分别是∠ABC 与∠ADC的平分线,∠1与∠2互余.(1)试判断直线BE与DF的位置关系,并说明理由;(2)如图②,延长CB,DF相交于点G,过点B作BH⊥FG,垂足为H,试判断∠FBH与∠GBH的大小关系,并说明理由.解:(1)BE∥DF.理由:∵BE,DF分别平分∠ABC和∠ADC,∴∠1=12∠ADC,∠ABE=12∠ABC,∵∠ABC+∠ADC=180°,∴∠1+∠ABE=12∠ADC+12∠ABC=12(∠ADC+∠ABC)=12×180°=90°,即∠1+∠ABE=90°,又∵∠1+∠2=90°,∴∠ABE=∠2,∴BE∥DF(2)∠FBH=∠GBH.理由:∵BH⊥FG,∴∠BHG=90°,由(1)知,BE∥DF,∴∠EBH=∠BHG=90°,∴∠FBH+∠ABE=90°,∠GBH+∠CBE=180°-90°=90°,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠FBH=∠GBH。
人教版初中数学七年级数学下册第一单元《相交线与平行线》测试卷
一、选择题1.下列说法中,正确的是( )A .在同一平面内,过一点有无数条直线与已知直线垂直B .两直线相交,对顶角互补C .垂线段最短D .直线外一点到这条直线的垂线段叫做点到直线的距离2.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤ 3.下面的语句,不正确的是( )A .对顶角相等B .相等的角是对顶角C .两直线平行,内错角相等D .在同一平面内,经过一点,有且只有一条直线与已知直线垂直4.如图,由点B 观察点A 的方向是( ).A .南偏东62︒B .北偏东28︒C .南偏西28︒D .北偏东62︒ 5.下列命题中是真命题的是( ) A .如果0a b +<那么0ab < B .内错角相等C .三角形的内角和等于180︒D .相等的角是对顶角 6.在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )A .平行B .相交C .平行或相交D .不能确定7.如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180° 8.如图,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 9.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个 10.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线11.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于012.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0二、填空题13.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).14.已知A ∠与B (A ∠,B 都是大于0°且小于180°的角)的两边一边平行,另一边垂直,且227A B ∠-∠=︒,则A ∠的度数为_________.15.在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.16.两条直线相交所构成的四个角,其中:①有三个角都相等;②有一对对顶角相等;③有一个角是直角;④有一对邻补角相等,能判定这两条直线垂直的有_______. 17.如图,,OA OC OB OD ⊥⊥,4位同学观察图形后分别说了自己的观点.甲:AOB ∠COD =∠;乙:180BOC AOD ∠+∠=︒;丙:90AOB COD ∠+∠=︒;丁:图中小于平角的角有6个;其中正确的结论有__________个.18.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.19.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.20.如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)三、解答题21.如图,点P 是AOB ∠的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点E ;(2)过点P 画OA 的垂线,垂足为H ;(3)过点P 画OA 的平行线PC ;(4)若每个小正方形的边长是1,则点P 到OA 的距离是___________;(5)线段,,PE PH OE 的大小关系是_____________________(用“<”连接).22.如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,C EFG ∠=∠,CED GHD ∠=∠,试判断AED ∠与D ∠之间的数量关系,并说明理由.24.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)∠AOC 的对顶角为______,∠AOC 的邻补角为______;(2)若∠EOC =70°,求∠BOD 的度数;(3)若∠EOC :∠EOD =2:3,求∠BOD 的度数.25.如图,O 为直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求出BOD ∠的度数.(2)请通过计算 OE 是否平分BOC ∠.26.试用举反例的方法说明下列命题是假命题.例如:如果ab <0,那么a +b <0.反例:设a =4,b =-3,ab =4⨯(-3)=-12<0,而a +b =4+(-3)=1>0,所以这个命题是假命题.(1)如果a +b >0,那么ab >0.(2)如果a 是无理数,b 也是无理数,那么a +b 也是无理数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】依据垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,即可得出结论.【详解】解:A .在同一平面内,过一点有且仅有一条直线与已知直线垂直,故本选项错误; B .两直线相交,对顶角相等,故本选项错误;C .垂线段最短,故本选项正确;D .直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本选项错误; 故选:C .【点睛】本题主要考查了垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,熟练掌握概念是解题的关键.2.D解析:D【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;而BD 与CH 不一定相等,故③不正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤.故选:D .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键. 3.B解析:B【分析】根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案.【详解】A 、根据对顶角的性质可知,对顶角相等,故本选项正确;B 、相等的角不一定是对顶角,故本选项错误;C 、两直线平行,内错角相等,故本选项正确;D 、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确.故选:B .【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.4.B解析:B【分析】根据平行线的性质求出∠ABE ,求出∠CBA ,根据图形和角的度数即可得出答案.【详解】解:如图所示:∵东西方向是平行的,∴∠ABE=∠DAB= 62°,∵∠CBE=90°,∴∠CBA=90°-62°=28°,即由点B观察点A的方向是北偏东28°,故选:B.【点睛】本题考查了平行线的性质和方向角的应用,根据题意得出∠ABE的度数是解题的关键.5.C解析:C【分析】利用反例对A进行判断;根据平行线的性质对B进行判断;根据三角形内角和定理对C进行判断;根据对顶角定义对D进行判断.【详解】解:A、当a=-2,b=-1时,则a+b<0,ab>0,所以A选项错误;B、两直线平行,内错角相等,所以B选项错误,是假命题;C、三角形的内角和等于180°,所以C选项为真命题;D、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误,所以D选项错误,是假命题;【点睛】本题考查命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.B解析:B【分析】根据a∥c,a与b相交,可知c与b相交,如果c与b不相交,则c与b平行,故b与a 平行,与题目中的b与a相交矛盾,从而可以解答本题.【详解】解:假设b∥c,∵a∥c,∴a∥b,而已知a与b相交于点O,故假设b∥c不成立,故b与c相交,故选:B.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.7.B解析:B【分析】根据平行线的判定定理逐项判断即可.【详解】A、当∠1=∠3时,a∥b,内错角相等,两直线平行,故正确;B、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C、当∠4=∠5时,a∥b,同位角相等,两直线平行,故正确;D、当∠2+∠4=180°时,a∥b,同旁内角互补,两直线平行,故正确.故选:B.【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.8.A解析:A【分析】根据同位角的定义求解.【详解】解:直线a,b被直线c所截,∠1与∠2是同位角.故选:A.【点睛】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.9.B解析:B【分析】根据同位角的概念对每个图形一一判断,选出正确答案即可.【详解】图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.10.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D .【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断. 11.D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C 进行判断;根据绝对值的意义对D 进行判断.【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A 选项为真命题;B 、内错角不一定相等,所以B 选项为真命题;C 、平行于同一直线的两条直线平行,所以C 选项为真命题;D 、若数a 使得|a|>-a ,则a 为不等于0的实数,所以D 选项为假命题.故选:D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.A解析:A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故选A .【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.二、填空题13.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形 解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.14.或【分析】分两种情况:①如图1作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B=∠BEF ∠A=∠AEF 根据∠A+∠B=求出∠A=;②如图2作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B+∠BEF=∠A解析:39︒或99︒.【分析】分两种情况:①如图1,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B=∠BEF ,∠A=∠AEF ,根据∠A+∠B=90︒,227A B ∠-∠=︒,求出∠A=39︒;②如图2,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B+∠BEF=180︒,∠A+∠AEF=180︒,根据∵∠AEB=∠AEF+∠BEF=90︒,227A B ∠-∠=︒,计算得出答案.【详解】分两种情况:①如图1,作EF ∥BD ,∴∠B=∠BEF ,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A=∠AEF ,∴∠A+∠B=∠AEF+∠BEF=90︒,∵227A B ∠-∠=︒,∴∠A=39︒;②如图2,作EF ∥BD ,∴∠B+∠BEF=180︒,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A+∠AEF=180︒,∴∠A+∠AEB+∠B=360︒,∵∠AEB=∠AEF+∠BEF=90︒,∴∠A+∠B=270︒,∵227A B ∠-∠=︒,∴∠A=99︒;故答案为:39︒或99︒..【点睛】此题考查平行线的性质,平行公理的推论,根据题意作出图形,引出恰当的辅助线解决问题是解题的关键.15.50或130【分析】由∠A 与∠B 的两边分别平行可得∠A=∠B 或∠A+∠B=180°继而求得答案【详解】解:∵∠A 与∠B 的两边分别平行∴∠A=∠B 或∠A+∠B=180°∵∠A=50°∴∠B=50°或∠解析:50或130【分析】由∠A 与∠B 的两边分别平行,可得∠A=∠B 或∠A+∠B=180°,继而求得答案.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A=∠B 或∠A+∠B=180°,∵∠A=50°,∴∠B=50°,或∠B=180°-∠A=180°-50°=130°.故答案为:50或130.【点睛】此题考查了平行线的性质.此题难度适中,注意由∠A与∠B的两边分别平行,可得∠A与∠B相等或互补.16.①③④【分析】①根据对顶角相等可以判定四个角相等由周角360°可知四个角都为90°则AB⊥CD;②因为对顶角相等但不能说明有角为90°不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补解析:①③④【分析】①根据对顶角相等可以判定四个角相等,由周角360°可知,四个角都为90°,则AB⊥CD;②因为对顶角相等,但不能说明有角为90°,不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补角的和为180°,又相等,所以每个角为90°,则AB⊥CD.【详解】①如图,若∠AOC=∠COB=∠BOD,∵∠AOD=∠COB,∴∠AOC=∠COB=∠BOD=∠AOD,∵∠AOC+∠COB+∠BOD+∠AOD=360°,∴∠AOC=∠COB=∠BOD=∠AOD=90°,∴AB⊥CD;所以此选项能判定这两条直线垂直;②∠AOC=∠BOD,∠AOD=∠COB,但不能说明有角为90°,所以此选项不能判定这两条直线垂直;③若∠AOC=90°,∴AB⊥CD,所以此选项能判定这两条直线垂直;④若∠AOC=∠AOD,∵∠AOC+∠AOD=180°,∴∠AOC=∠BOD=90°,所以此选项能判定这两条直线垂直;故能判定这两条直线垂直的有:①③④;故答案为:①③④.【点睛】本题考查了对顶角、邻补角以及垂直的定义,熟练掌握两条直线垂直的定义是关键. 17.3【分析】先根据垂直的定义可得再逐个判断即可得【详解】则甲的结论正确;则乙的结论正确;假设又由题中已知条件不能得到则丙的结论错误;图中小于平角的角为共有6个则丁的结论正确;综上正确的结论有3个故答案 解析:3【分析】先根据垂直的定义可得90AOC BOD ∠=∠=︒,再逐个判断即可得.【详解】,OA OC OB OD ⊥⊥,9090AOB BOC AOC COD BOC BOD ∠+∠=∠=︒⎧∴⎨∠+∠=∠=︒⎩, AOB COD ∴∠=∠,则甲的结论正确;180AOB BOC COD BOC AOC BOD ∠+∠+∠+∠=∠+∠=︒,180AOD BOC ∴∠+∠=︒,则乙的结论正确;假设90AOB COD ∠+∠=︒,90AOB BOC ∠+∠=︒,BOC COD ∴∠=∠,又90COD BOC ∠+∠=︒,45BOC COD ∴∠=∠=︒,由题中已知条件不能得到,则丙的结论错误;图中小于平角的角为,,,,,AOB AOC AOD BOC BOD COD ∠∠∠∠∠∠,共有6个, 则丁的结论正确;综上,正确的结论有3个,故答案为:3.【点睛】本题考查了垂直的定义、角的和差等知识点,熟练掌握角的运算是解题关键.18.40°【分析】本题主要利用两直线平行同旁内角互补两直线平行内错角相等以及角平分线的定义进行做题【详解】∵AD ∥BC ∴∠BCD=180°-∠D=80°又∵CA 平分∠BCD ∴∠ACB=∠BCD=40°∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD ∥BC ,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∠BCD=40°,∴∠ACB=12∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.19.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E作EG∥AB则EG∥CD由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.20.①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B∴AB∥CD故本小题正确;②∵∠2=∠5∴AB∥CD故本小题正确;③∵∠3=∠4∴AD∥BC故本小题错误;④∵∠1解析:①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠1=∠D,∴AD∥BC,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB∥CD,故本小题正确.故答案为①②⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.三、解答题<< 21.(1)见解析;(2)见解析;(3)见解析;(4)1;(5)PH PE OE【分析】(1)(2)根据题意画垂线;(3)根据题意画平行线;(4)根据点到直线距离的定义计算;(5)根据直角三角形的直角边小于斜边可以证得.【详解】∠的边OB上的一点.如图,点P是AOB(1)过点P画OB的垂线,交OA于点E;(2)过点P画OA的垂线,垂足为H;(3)过点P画OA的平行线PC;(4)由题意PH即点P到OA的距离,且PH=1,∴答案为1;(5)∵在RT△PHE中,PH是直角边,PE是斜边,∴PH<PE,同理在RT△POE中,PE是直角边,OE是斜边,∴PE<OE,∴线段PE,PH,OE的大小关系是PH PE OE<<.故答案为PH<PE<OE.【点睛】本题考查垂线和平行线的画法、垂线的应用及直角三角形的性质,熟练掌握“垂线段最短”的定理是解题关键.22.(1)DE∥BC;(2)72°【分析】(1)先根据已知条件得出∠EFC=∠ADC,故AD∥EF,由平行线的性质得∠DEF=∠ADE,再由∠DEF=∠B,可知∠B=∠ADE,故可得出结论.(2)依据DE平分∠ADC,∠BDC=3∠B,即可得到∠ADC的度数,再根据平行线的性质,即可得出∠EFC的度数.【详解】解:(1)DE∥BC.理由:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,又∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC.(2)∵DE平分∠ADC,∴∠ADE=∠CDE,又∵DE∥BC,∴∠ADE=∠B,∵∠BDC=3∠B,∴∠BDC=3∠ADE=3∠CDE,又∵∠BDC+∠ADC=180°,3∠ADE+2∠ADE=180°,解得∠ADE=36°,∴∠ADF=72°,又∵AD∥EF,∴∠EFC=∠ADC=72°.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行是解答此题的关键.23.∠AED+∠D=180°,理由见解析【分析】根据平行线的判定定理得出CE∥FG,根据平行线的性质得出∠C=∠FGD,求出∠FGD=∠EFG,根据平行线的判定得出AB∥CD,再根据平行线的性质得出即可.【详解】解:∠AED+∠D=180°,理由是:∵∠CED=∠GHD,∴CE∥FG,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°.【点睛】本题考查了平行线的性质和判定定理,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.24.(1)∠BOD ,∠BOC 或∠AOD ;(2)∠BOD =35°;(3)∠BOD =36°.【分析】(1)根据对顶角、邻补角的意义,结合图形即可得出答案;(2)根据角平分线的意义和对顶角的性质,即可得出答案;(3)根据平角、按比例分配,角平分线的意义、对顶角性质可得答案.【详解】(1)根据对顶角、邻补角的意义得:∠AOC 的对顶角为∠BOD ,∠AOC 的邻补角为∠BOC 或∠AOD ,故答案为:∠BOD ,∠BOC 或∠AOD(2)∵OA 平分∠EOC.∠EOC =70°,∴∠AOE =∠AOC 12=∠EOC =35°, ∵∠AOC =∠BOD ,∴∠BOD =35°,(3)∵∠EOC :∠EOD =2:3,∠EOC+∠EOD =180°,∴∠EOC =180°×25=72°,∠EOD =180°×35=108°, ∵OA 平分∠EOC , ∴∠AOE =∠AOC 12=∠EOC =36°, 又∵∠AOC =∠BOD ,∴∠BOD =36°.【点睛】本题考查对顶角、邻补角、角平分线、平角的意义和性质,通过图形具体理解这些角的意义是正确计算的前提.25.(1) 155︒;(2)平分,见解析【分析】(1)由角平分线求出∠AOD=12∠AOC=25︒,利用邻补角的性质求出BOD ∠的度数; (2)根据角度的和差计算求出∠BOE 和∠COE 的度数,即可得到结论.【详解】 (1)∵50AOC ∠=︒,OD 平分AOC ∠,∴∠AOD=12∠AOC=25︒, ∴BOD ∠=180155AOD ︒-∠=︒;(2)∵90DOE ∠=︒,∠AOD=25︒,∴∠BOE=18065AOD DOE ︒-∠-∠=︒,∵OD 平分AOC ∠,∴∠COD=∠AOD=25︒,∴∠COE=9065COD ︒-∠=︒,∴∠BOE=∠COE ,∴OE 平分BOC ∠.【点睛】此题考查几何图形中角度的计算,角平分线的性质,平角的性质,邻补角的性质,掌握图形中各角之间的数量关系是解题的关键.26.(1)见解析;(2)见解析.【分析】(1)此题是一道开放题,可举的例子多,但只举一例就可.如果a+b >0,那么ab >0;所举的反例就是,a 、b 一个为正数,一个为负数,且正数的绝对值大于负数.(2)可利用平方差公式找这样的无理数,比如【详解】解:(1)取a=2,b=-1,则a+b=1>0,但ab=-2<0.所以此命题是假命题.(2)取,,a 、b 均为无理数.但a+b=2是有理数,所以此命题是假命题.【点睛】本题主要锻炼了学生的逆向思维.在证明几何题的过程中,有时需从反例上先去判断,然后再证明.。
(好题)初中数学七年级数学下册第一单元《相交线与平行线》测试(含答案解析)(1)
一、选择题1.如图,//AB CD ,EC 分别交,AB CD 于点,F C ,链接DF ,点G 是线段CD 上的点,连接FG ,若13∠=∠,24∠∠=,则结论① C D ∠=∠,②FG CD ⊥,③EC FD ⊥,正确的是( )A .①②B .②③C .①③D .①②③ 2.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠= 3.下列语句是命题的是 ( )(1)两点之间,线段最短;(2)如果两个角的和是180度,那么这两个角互补;(3)请画出两条互相平行的直线;(4)一个锐角与一个钝角互补吗?A .(1)(2)B .(3)(4)C .(2)(3)D .(1)(4) 4.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180° 5.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm6.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④7.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.58.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46° 9.用反证法证明“m 为正数”时,应先假设( ). A .m 为负数 B .m 为整数 C .m 为负数或零 D .m 为非负数 10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A .0B .1C .2D .3 11.下列说法中,正确的是 A .相等的角是对顶角 B .有公共点并且相等的角是对顶角 C .如果1∠和2∠是对顶角,那么12∠=∠ D .两条直线相交所成的角是对顶角 12.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒二、填空题13.如图,两直线交于点O ,134∠=︒,则2∠的度数为_____________;3∠的度数为_________.14.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒. 15.在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.16.把命题“两直线平行,同位角相等”改写成“若…,则…”__.17.如图,AB ∥CD ,AB ⊥AE ,∠CAE =42°,则∠ACD 的度数为__.18.如图,a ∥b ,∠1=80°,∠2=45°,∠3=_____.19.如图,直角△ABC 中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.20.如图,添加一个你认为合适的条件______使//AD BC .三、解答题21.如图,已知直线AB ,CD 相交于点O ,AOE ∠与AOC ∠互余.(1)若32BOD ∠=︒,求AOE ∠的度数;(2)若:05:1AOD A C ∠∠=,求∠BOE 的度数.22.图形的世界丰富且充满变化,用数学的眼光观察它们,奇妙无比.(1)如图,EF //CD ,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF =∠CDG ,并给出证明过程.小丽添加的条件:∠B+∠BDG =180°.请你帮小丽将下面的证明过程补充完整.证明:∵EF //CD (已知)∴∠BEF = ( )∵∠B+∠BDG =180°(已知)∴BC // ( )∴∠CDG = ( )∴∠BEF =∠CDG (等量代换)(2)拓展:如图,请你从三个选项①DG //BC ,②DG 平分∠ADC ,③∠B =∠BCD 中任选出两个作为条件,另一个作为结论,组成一个真命题,并加以证明.①条件: ,结论: (填序号).②证明: .23.如图,已知∠1+∠2=180°,∠B =∠DEF ,求证:DE ∥BC .请将下面的推理过程补充完整.证明:∵∠1+∠2=180(已知)∠2=∠3( 对顶角相等 )∴∠1+∠3=180°∴AB ∥EF ( ), ∴∠B =∠EFC ( )∵∠B =∠DEF ( ),∴∠DEF = ( )∴DE ∥BC ( )24.如图1所示的是北斗七星的位置图,图2将北斗七星分别标为A ,B ,C ,D ,E ,F ,G ,并顺次首尾连接,若AF 恰好经过点G ,且//AF DE ,105D E ∠=∠=︒.(1)求F ∠的度数.(2)连接AD ,当ADE ∠与CGF ∠满足怎样的数量关系时,//BC AD ,并说明理由.25.如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,FO ⊥CD 于点O ,若∠BOD ∶∠EOB=2∶3,求∠AOF 的度数.26.如图,已知直线AB及直线AB外一点P,按下列要求完成画图和解答:(1)连接PA,PB,用量角器画出∠APB的平分线PC,交AB于点C;(2)过点P作PD⊥AB于点D;(3)用刻度尺取AB中点E,连接PE;(4)根据图形回答:点P到直线AB的距离是线段的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由平行线的性质和垂直的定义,逐个判断得结论.【详解】∵∠1=∠3,∠2=∠4,又∵∠1+∠2+∠3+∠4=180°,∴∠1+∠2=∠3+∠4=∠1+∠4=90°,∴∠EFD=∠1+∠2=90°,∴EC⊥FD,故③正确;∵AB∥CD,∴∠1=∠C ,∴∠FGD=∠4+∠C=∠4+∠1=90°,∴FG ⊥CD ,故②正确;∵∠1不一定等于∠2,∴∠C≠∠D ,故①不正确.故选:B .【点睛】本题考查了平行线的性质,三角形的外角性质及垂直的定义,由相等的角和平角的定义得到互余的角是解决本题的关键.2.C解析:C【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.3.A解析:A【分析】根据命题的定义对四句话进行判断.【详解】解:(1)两点之间,线段最短,它是命题;(2)如果两个角的和是90度,那么这两个角互余,它是命题;(3)请画出两条互相平行的直线,它不是命题;(4)一个锐角与一个钝角互补吗?,它不是命题.所以,是命题的为(1)(2),故选:A .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果…那么…形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 5.A解析:A【分析】由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm ,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.6.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.7.C解析:C【分析】根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.8.C解析:C【分析】如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】 如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键. 9.C解析:C【分析】根据反证法的性质分析,即可得到答案.用反证法证明“m 为正数”时,应先假设m 为负数或零故选:C .【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解. 10.B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B .【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.C解析:C【分析】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.由此逐一判断.【详解】A 、对顶角是有公共顶点,且两边互为反向延长线,相等只是其性质,错误;B 、对顶角应该是有公共顶点,且两边互为反向延长线,错误;C 、角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确.D 、两条直线相交所成的角有对顶角、邻补角,错误;故选C .【点睛】要根据对顶角的定义来判断,这是需要熟记的内容.12.B解析:B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。
(好题)初中数学七年级数学下册第一单元《整式的乘除》测试卷(含答案解析)(1)
一、选择题1.定义运算(1)a b a b ⊗=-,下面给出了关于这种运算的四个结论: ①2(2)6⊗-=; ②a b b a ⊗=⊗;③若0a b ⊗=,则0a =; ④若0a b +=,则()()2a a b b ab ⊗+⊗=. 其中正确结论的个数是( ) A .1 B .2 C .3 D .4 2.若6a b +=,4ab =,则22a ab b ++的值为() A .40B .36C .32D .303.下列计算正确的是( )A .326a a a ⋅=B .()()2122a a a +-=- C .()333ab a b = D .623a a a ÷=4.若1x x -的值为1,则2215x x++的值为( ) A .7B .8C .9D .10 5.已知:2m a =,2n b =,则232m n +用a ,b 可以表示为( ) A .6abB .23a b +C .23a b +D .23a b6.如图,矩形ABCD 的周长是10cm ,以AB ,AD 为边向外作正方形ABEF 和正方形ADGH ,若正方形ABEF 和ADGH 的面积之和为17cm 2,那么矩形ABCD 的面积是( )A .3cm 2B .4cm 2C .5cm 2D .6cm 2 7.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷= 8.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12±B .9C .9±D .129.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .1210.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b +=11.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ± B .-1或4814x C .29x - D .6x ±或1-或29x -或4814x 12.下列运算正确的是( ) A .3515x x x ⋅= B .()3412x x -=C .()32628y y = D .623x x x ÷=二、填空题13.计算:(﹣2x )3(﹣xy 2)=_____,(﹣23a 5b 7)÷32a 5b 5=_____. 14.已知x 满足()()22201820208x x -+-=,则()22019x -的值是___________. 15.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__.16.若2421x kx ++是完全平方式,则k=_____________. 17.2(56)x x -+÷___________=3x -.18.已知29x mx ++是完全平方式,则m =_________.19.已知8m a =,2n a =.则m n a -=___________,m 与n 的数量关系为__________. 20.如果5a b +=,1ab =,则22a b +=______.三、解答题21.先化简,再求值:()322484(2)(2)ab a bab a b a b -÷++-,其中a ,b 满足2(2)|1|0a b -+-=.22.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为1S ,2S . (1)请比较1S 和2S 的大小;(2)若一个正方形的周长等于甲、乙两个长方形的周长之和,求该正方形的面积(用含m 的代数式表示).23.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.24.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++请用以上方法解决下列问题:(计算过程要有竖式) (1)计算:()()3223102x x x x +--÷-(2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值. 25.化简:2(3)3(2)m n m m n +-+. 26.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-;请根据这一规律计算: (1)()12(1)1n n n x x xx x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】直接利用新定义求解即可判断选项的正误. 【详解】解:运算a ⊗b=a (1-b ), 所以2⊗(-2)=2(1+2)=6,所以①正确; a ⊗b=a (1-b ),b ⊗a=b (1-a ),∴②不正确;若a ⊗b=0,a ⊗b=a (1-b )=0,可得a=0,或b=1.所以③不正确; 若a+b=0,则(a ⊗a )+(b ⊗b )=a (1-a )+b (1-b )=a+b-(a 2+b 2)=-(a+b )2+2ab=2ab ,所以④正确,正确的两个, 故选B . 【点睛】本题考查了命题的真假的判断与应用,新定义的理解与应用,基本知识的考查.2.C解析:C 【分析】根据a+b=6,ab=4,应用完全平方公式,求出a 2+ab+b 2的值为多少即可. 【详解】解:∵a+b=6,ab=4, ∴a 2+ab+b 2 =(a+b )2-ab =36-4 =32 故选:D . 【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.3.C解析:C 【分析】分别用同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式来进行判断即可; 【详解】A 、325a a a = ,故该选项错误;B 、()()2212222a a a a a a a +-=-+-=-- ,故该选项错误;C 、()333ab a b = ,故该选项正确; D 、624a a a ÷= ,故该选项错误; 故选:C . 【点睛】本题考查了同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式,正确掌握公式是解题的关键;4.B解析:B 【分析】把1x x-进行完全平方,展开计算221x x +的值即可.【详解】∵1x x-=1, ∴21()x x-=1, ∴221x x +-2=1, ∴221x x+=3, ∴2215x x++=8, 故选B. 【点睛】本题考查了完全平方公式的展开计算,熟练运用完全平方公式是解题的关键.5.D解析:D 【分析】根据同底数幂的乘法和幂的乘方计算即可; 【详解】()()23232322222+=⨯=⨯m n m n m n ,∵2m a =,2n b =, ∴原式23a b =; 故答案选D . 【点睛】本题主要考查了幂的运算,准确计算是解题的关键.6.B解析:B 【分析】设AB =x ,AD =y ,根据题意列出方程x 2+y 2=17,2(x +y )=10,利用完全平方公式即可求出xy 的值. 【详解】解:设AB =x ,AD =y ,∵正方形ABEF 和ADGH 的面积之和为17cm 2 ∴x 2+y 2=17,∵矩形ABCD 的周长是10cm ∴2(x +y )=10, ∵(x +y )2=x 2+2xy +y 2, ∴25=17+2xy , ∴xy =4,∴矩形ABCD 的面积为:xy =4cm 2, 故选:B . 【点睛】本题考查了正方形面积、矩形面积和完全平方公式,恰当的设未知数,建立方程,设而不求,只求xy 的值是解题关键.7.D解析:D 【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可. 【详解】解:A 、a 2∙a 4=a 6,故选项A 不合题意; B 、(a 2)3=a 6,故选项不B 符合题意; C 、(ab 2)3=a 3b 6,故选项C 不符合题意; D 、a 6÷a 2=a 4,故选项D 符合题意. 故选:D . 【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.8.A解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ ,解得m=±12. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.10.D解析:D 【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可. 【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab ,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意. 故选:D . 【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.11.D解析:D 【分析】根据完全平方公式计算解答. 【详解】解:添加的方法有5种,分别是: 添加6x ,得9x 2+1+6x=(3x+1)2; 添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2; 添加﹣9x 2,得9x 2+1﹣9x 2=12; 添加﹣1,得9x 2+1﹣1=(3x )2,添加4814x ,得242819+91142x x x ⎛⎫+=+ ⎪⎝⎭, 故选:D . 【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键.12.C解析:C 【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断. 【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误;C 、()32628y y =,故该项正确;D 、624x x x ÷=,故该项错误; 故选:C .【点睛】本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.二、填空题13.8x4y2【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案【详解】解:(﹣2x )3(﹣xy2)=﹣8x3•(﹣xy2)=8x4y2(﹣a5b7)÷a5b5=a5﹣5b7﹣5=故解析:8x 4y 2 249b - 【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案. 【详解】解:(﹣2x )3(﹣xy 2)=﹣8x 3•(﹣xy 2) =8x 4y 2, (﹣23a 5b 7)÷32a 5b 5 =2233-⨯a 5﹣5b 7﹣5 =249b -. 故答案为:8x 4y 2;249b -. 【点睛】本题考查了整式的乘除运算,掌握相关运算法则是关键.14.3【分析】题目求(x-2019)2把方程中的x-2018x-2020转化为含有(x-2019)利用换元法求解即可【详解】解:方程可变形为:(x-2019)+12+(x-2019-1)2=8设x-20解析:3 【分析】题目求(x-2019)2,把方程中的x-2018、x-2020转化为含有(x-2019),利用换元法求解即可. 【详解】解:方程()()22201820208x x -+-=可变形为: [(x-2019)+1]2+[(x-2019-1)]2=8 设x-2019=y则原方程可转化为:(y+1)2+(y-1)2=8 ∴y 2+2y+1+y 2-2y+1=8 即2y 2=6 ∴y 2=3即(x-2019)2=3. 故答案为:3. 【点睛】本题考查了完全平方公式,把x-2018、x-2020转化为(x-2019+1)、(x-2019-1)是解决本题的关键.15.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此解析:7a . 【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案. 【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦ =1526()a a a -÷- =158()a a -÷- =7a . 故答案为:7a . 【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键.16.±2【分析】根据完全平方式的结构特征解答即可【详解】解:∵是完全平方式∴∴故答案为:±2【点睛】本题考查了完全平方式的知识属于基础题目熟练掌握完全平方式的结构特征是解题关键解析:±2 【分析】根据完全平方式的结构特征解答即可. 【详解】解:∵2421x kx ++是完全平方式, ∴24k =±,∴2k =±. 故答案为:±2. 【点睛】本题考查了完全平方式的知识,属于基础题目,熟练掌握完全平方式的结构特征是解题关键.17.【分析】设要填的式子为根据题意可得利用整式的乘法计算左边各项对应即可得到答案【详解】解:设要填的式子为根据题意可得即可得解得故答案为:【点睛】本题考查整式的乘法掌握多项式乘多项式是解题的关键 解析:2x -【分析】设要填的式子为ax b +,根据题意可得()()2356ax b x x x +-=-+,利用整式的乘法计算左边,各项对应即可得到答案. 【详解】解:设要填的式子为ax b +,根据题意可得()()2356ax b x x x +-=-+, 即()223356ax a b x b x x +-+-=-+,可得1a =,36b -=, 解得1a =,2b =-,故答案为:2x -.【点睛】本题考查整式的乘法,掌握多项式乘多项式是解题的关键.18.【分析】根据完全平方公式的形式可得答案【详解】解:∵x2+mx+9是完全平方式∴m=故答案为:【点睛】本题考查了完全平方公式注意符合条件的答案有两个以防漏掉解析:6±【分析】根据完全平方公式的形式,可得答案.【详解】解:∵x 2+mx+9是完全平方式,∴m=2136±⨯⨯=±,故答案为:6±.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.19.【分析】由同底数的除法可得:从而可得:的值由可得可得从而可得答案【详解】解:故答案为:【点睛】本题考查的是幂的乘方运算同底数幂的除法运算掌握以上知识是解题的关键解析:3m n =【分析】由同底数的除法可得:m n m n a a a -=÷,从而可得:m n a -的值,由2n a =,可得38,n a =可得3,m n a a =从而可得答案.【详解】 解:8m a =,2n a =∴ 824,m n m n a a a -=÷=÷=2n a =,()3328,n a ∴== 38,n a ∴=3,m n a a ∴=3.m n ∴=故答案为:43m n =,.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键. 20.23【分析】将a+b=5两边平方利用完全平方公式化简将ab 的值代入计算即可求出a2+b2的值【详解】解:将a+b=5两边平方得:(a+b )2=a2+2ab+b2=25将ab=1代入得:a2+2+b2解析:23【分析】将a+b=5两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出a 2+b 2的值.【详解】解:将a+b=5两边平方得:(a+b )2=a 2+2ab+b 2=25,将ab=1代入得:a 2+2+b 2=25,则a 2+b 2=23.故答案为:23.【点睛】本题考查完全平方公式,熟练掌握完全平方公式是解题关键.三、解答题21.242a ab -,当21a b ==,时,12.【分析】先计算整式混合运算,利用非负数求出a b ,的值,在代入求值即可.【详解】解:322(48)4(2)(2)ab a b ab a b a b -÷++-,22224b ab a b =-+-,242a ab =-,∵2(2)|1|0a b -+-=,2(2),100||a b --≥≥,∴20,10a b -=-=,当21a b ==,时,原式24222116412=⨯-⨯⨯=-=.【点睛】本题考查了整式的混合运算及化简求值,非负数性质,准确进行整式混合运算是解题关键.22.(1)12S S <;(2)42m +24m+36.【分析】(1)先计算两个长方形的面积,再利用作差法比较它们面积的大小;(2)先计算两个长方形的周长,再计算该正方形的边长和面积.【详解】解:(1)1S =(m+1)(m+5)=2m +6m+5,2S =(m+2)(m+4)=2m +6m+8,∵1S -2S=2m +6m+5﹣(2m +6m+8)=2m +6m+5﹣2m ﹣6m ﹣8=﹣3<0,∴12S S <.即甲的面积小于乙的面积;(2)甲乙两个长方形的周长和为:2(m+1+m+5+m+4+m+2)=8m+24,正方形的边长为:(8m+24)÷4=2m+6.该正方形的面积为:2(26)m +=42m +24m+36.答:该正方形的面积为:42m +24m+36.【点睛】本题考查了多项式乘多项式,整式的加减,作差法比较大小,完全平方公式的展开,熟练掌握矩形,正方形的性质,灵活使用作差法,完全平方公式是解题的关键.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()2320x y +-=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则.24.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.25.226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可.【详解】解:2(3)3(2)m n m m n +-+ 2229636m mn n m mn =++--226m n =+.【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.26.(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.。
七年级数学下册第一单元测试题含答案
⼀、填空:(每题3分,共21分)1、若2x-3y=5,则6-4x+6y=_______。
2、已知甲、⼄两数的和为13,⼄数⽐甲数少5,则甲数是________,⼄数是________.3、已知(y-3x+1)2+|2x+5y-12|=0,则x=_____,y=_____。
4、如果⽅程组与⽅程y=kx-1有公共解,则k=________.5、(10江西)某班有40名同学去看演出,购买甲、⼄两种票共⽤去370元,其中甲种票每张10元,⼄种票每张8元,设购买了甲种票x张,⼄种票y张,由此可列出⽅程组:¬¬¬¬¬ .6、已知:,,则 ab = 。
7、如果⽅程组的解是,则 , 。
8. 已知与都是⽅程ax+by=0(b≠0)的解,则c=________.9. 若⽅程组的解是,某学⽣看错了c,求出解为,则正确的c值为________,b=________.⼆、选择题:(每题4分共28分)1、下列⽅程组中,属于⼆元⼀次⽅程组的是()A、 B、 C、 D、2、在⽅程组中,如果是它的⼀个解,那么a、b的值为( )A.a=1,b=2 B.不能惟⼀确定C.a=4,b=0 D.a=,b=-13、某校运动员分组训练,若每组7⼈,余3⼈;若每组8⼈,则缺5⼈;设运动员⼈数为x⼈,组数为y组,则列⽅程组为()A、 B、 C、 D、4、⽅程组的解的情况是()A、⼀组解B、⼆组解C、⽆解D、⽆数组解5、⼆元⼀次⽅程组的解满⾜⽅程 x-2y=5,那么k的值为( )A. B. C.-5 D.16、⽅程组12 x+13 y=3ax-y=a 的解是()A、 x=4ay=3aB、 x=-4ay=-5aC、 x=165 ay=115 aD、 x=16ay=17a7、若⼆元⼀次⽅程5x-2y=4有正整数解,则x的取值为()A、偶数B、奇数C、偶数或奇数D、 08. 甲、⼄两地相距360千⽶,⼀轮船往返于甲、⼄两地之间,顺流⽤18⼩时,逆流⽤24⼩时,若设船在静⽔中的速度为x千⽶/时,⽔流速度为y千⽶/时,在下列⽅程组中正确的是 ( )A. B.C. D.三、解⽅程组(每题5分,共20分)1、 2、四、解答题(每题6分,共14分)1. 在解⽅程组bx+ay=10x-cy=14时,甲正确地解得x=4y=-2,⼄把c写错⽽得到x=2y=4,若两⼈的运算过程均⽆错误,求a、b、c的值。
湘教版七年级数学下册单元测试题全套及参考答案
湘教版七年级数学下册单元测试题全套(含答案)第1章检测卷(满分:120分 时间:90分钟)一、选择题(每小题3分,共30分)1.在方程组⎩⎨⎧2x -y =1,y =3z +1,⎩⎨⎧x =2,3y -x =1,⎩⎨⎧x +y =0,3x -y =5,⎩⎪⎨⎪⎧1x +1y =1,x +y =1中,是二元一次方程组的有( ) A .1个 B .2个 C .3个 D .4个2.用“加减法”将方程组⎩⎨⎧5x -3y =-5,5x +4y =-1中的未知数x 消去后得到的方程是( )A .y =4B .7y =4C .-7y =4D .-7y =14 3.以⎩⎨⎧x =-1,y =1为解的二元一次方程组是( )A.⎩⎨⎧x +y =0,x -y =1B.⎩⎨⎧x +y =0,x -y =-1C.⎩⎨⎧x +y =0,x -y =2 D.⎩⎨⎧x +y =0,x -y =-24.二元一次方程组⎩⎨⎧x +2y =10,y =2x 的解是( )A.⎩⎨⎧x =4,y =3B.⎩⎨⎧x =3,y =6 C.⎩⎨⎧x =2,y =4 D.⎩⎨⎧x =4,y =25.如果12a 3x b y 与-a 2y b x +1是同类项,则( )A.⎩⎨⎧x =-2,y =3 B.⎩⎨⎧x =2,y =-3C.⎩⎨⎧x =-2,y =-3D.⎩⎨⎧x =2,y =36.方程组⎩⎨⎧2x +y =64,x +2y =8中x +y 的值为( )A .24B .-24C .72D .487.买甲、乙两种纯净水共用250元,两种桶装水的价格如图,已知乙种水的桶数是甲种水的桶数的75%,设买甲种水x 桶,乙种水y 桶,则所列方程中正确的是( )A.⎩⎨⎧8x +6y =250,y =75%·xB.⎩⎨⎧8x +6y =250,x =75%·y C.⎩⎨⎧6x +8y =250,y =75%·x D.⎩⎨⎧6x +8y =250,x =75%·y(第7题图)8.若方程组⎩⎨⎧x +y =3,2x +y =□的解为⎩⎨⎧x =1,y =□,则前后两个□的数分别是( )A .4,2B .1,3C .2,3D .5,29.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 长的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1B .2C .3D .410.如图,用一根长40cm 的铁丝围成一个长方形,若长方形的宽比长少2cm ,则这个长方形的面积为( )A .90cm 2B .96cm 2C .99cm 2D .100cm 2(第10题图)二、填空题(每小题3分,共24分)11.已知方程-2x +y +5=0,用含x 的代数式表示y ,则y =________. 12.若x2a -3+yb +2=3是二元一次方程,则a -b =________.13.方程组⎩⎨⎧x +2y =2,2x +y =4的解是________.14.已知(x +y +3)2+|2x -y -1|=0,则x y的值是________.15.已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =2,nx -my =1的解,则m +3n 的值为________.16.已知方程组⎩⎨⎧x +2y =k ,2x +y =1的解满足x +y =3,则k 的值为________.17.关于x ,y 的二元一次方程组⎩⎨⎧x +y =1-m ,x -3y =5+3m中,m 与方程组的解中的x 或y 相等,则m 的值为____________.18.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的.现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟.则李师傅加工2个甲种零件和4个乙种零件共需________分钟. 三、解答题(共66分) 19.(16分)解方程组:(1)⎩⎨⎧4x +y =5①,3x -2y =1②;(2)⎩⎨⎧2x =3-y ①,3x +2y =2②;(3)⎩⎨⎧2x +3y =8①,3x -2y =-1②;(4)⎩⎪⎨⎪⎧2x -y =5①,x -1=12(2y -1)②.20.(8分)已知方程组⎩⎨⎧ax +by =5,bx +ay =2的解为⎩⎨⎧x =4,y =3,试求a ,b 的值.21.(10分)已知方程组⎩⎨⎧ax +5y =4,5x +y =7与方程组⎩⎨⎧3x -y =1,5x +by =1的解相同,求a ,b 的值.22.(10分)某运动员在一场篮球比赛中的技术统计如下表所示:注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.23.(10分)代数式ax+by,当x=5,y=2时,它的值是1;当x=1,y=3时,它的值是-5.试求当x=7,y=-5时,代数式ax+by的值.24.(12分)某中学为了提高绿化品位,美化环境,准备将一块周长为114m 的长方形草地,设计成长和宽分别相等的9块长方形(如图所示),种上各种花卉,经市场预测,绿化每平方米造价100元. (1)求出每个小长方形的长和宽;(2)请计算出完成这块草地的绿化工程预计投入资金多少元.(第24题图)参考答案与解析一、1.B 2.B 3.D 4.C 5.D 6.A 7.A 8.A9.C 解析:截下来的符合条件的彩绳长度之和刚好等于总长5m 时,不造成浪费,设截成2m 长的彩绳x 根,1m 长的y 根,由题意得2x +y =5.∵x ,y 都是非负整数,∴符合条件的解为⎩⎨⎧x =0,y =5,⎩⎨⎧x =1,y =3,⎩⎨⎧x =2,y =1.则共有3种不同截法.故选C.10.C 解析:设长方形的长为x cm ,宽为y cm ,根据题意得⎩⎨⎧x -y =2,2(x +y )=40,解得⎩⎨⎧x =11,y =9.∴这个长方形的面积为xy =11×9=99(cm 2).故选C. 二、11.2x -5 12.3 13.⎩⎨⎧x =2,y =0 14.27118.40 解析:设李师傅加工1个甲种零件需x 分钟,加工1个乙种零件需y 分钟,根据题意得⎩⎨⎧3x +5y =55①,4x +9y =85②,①+②,得7x +14y =140,∴x +2y =20,∴2x +4y =40. 三、19.解:(1)①×2+②,得11x =11,解得x =1.把x =1代入①,得4+y =5,解得y =1.则方程组的解为⎩⎨⎧x =1,y =1.(4分) (2)将①变形,得y =3-2x ③,将③代入②中,得3x +2(3-2x )=2,解得x =4.把x =4代入③,得y =-5.则方程组的解为⎩⎨⎧x =4,y =-5.(8分)(3)①×2+②×3,得13x =13,解得x =1.将x =1代入①,得2+3y =8,解得y =2.则方程组的解为⎩⎨⎧x =1,y =2.(12分)(4)原方程组可化为⎩⎪⎨⎪⎧2x -y =5①,x -y =12③,①-③得x =92.把x =92代入①,得9-y =5,解得y =4,则方程组的解为⎩⎪⎨⎪⎧x =92,y =4.(16分) 20.解:把⎩⎨⎧x =4,y =3代入方程组⎩⎨⎧ax +by =5,bx +ay =2,得⎩⎨⎧4a +3b =5,4b +3a =2,(4分)解得⎩⎨⎧a =2,b =-1.(8分)21.解:由题意联立方程组,得⎩⎨⎧5x +y =7①,3x -y =1②,(2分)①+②,得8x =8,解得x =1.(4分)把x =1代入②,得y =2.(6分)把x =1,y =2代入原方程组,得⎩⎨⎧a +10=4,5+2b =1,(8分)解得⎩⎨⎧a =-6,b =-2.(10分)22.解:设本场比赛中该运动员投中2分球x 个,3分球y 个,(1分)依题意得⎩⎨⎧10+2x +3y =60,x +y =22,(5分)解得⎩⎨⎧x =16,y =6.(8分)答:本场比赛中该运动员投中2分球16个,3分球6个.(10分)23.解:由题意得⎩⎨⎧5a +2b =1,a +3b =-5,(3分)解得⎩⎨⎧a =1,b =-2.(6分)∴ax +by =x -2y ,(7分)∴当x =7,y =-5时,x -2y =17.(10分)24.解:(1)设小长方形的宽为x m ,长为y m ,由题意得⎩⎨⎧2(y +2x +5x )=114,5x =2y ,(3分)解得⎩⎨⎧x =6,y =15.(6分)答:每个小长方形的宽为6m ,长为15m.(7分) (2)15×6×9×100=81000(元).(10分)答:完成这块草地的绿化工程预计投入资金81000元.(12分)第2章检测卷(满分:120分 时间:90分钟)一、选择题(每小题3分,共30分) 1.计算(2a 2)3的结果是( )A .2a6 B .6a 6C .8a 6D .8a 52.计算(2x -1)(1-2x )结果正确的是( )A .4x 2-1 B .1-4x 2C .-4x 2+4x -1 D .4x 2-4x +13.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x 2+20xy +■,不小心把最后一项染黑了,你认为这一项是( )A .5y 2B .10y 2C .100y 2D .25y 24.下列各式计算正确的是( )A .(x 2)3=x 6B .(2x )2=2x 2C .(x -y )2=x 2-y 2D .x 2·x 3=x 65.下列运算不能用平方差公式的是( )A .(4a 2-1)(1+4a 2) B .(x -y )(-x -y ) C .(2x -3y )(2x +3y ) D .(3a -2b )(2b -3a )6.若(y +3)(y -2)=y 2+my +n ,则m ,n 的值分别为( )C .m =1,n =6D .m =5,n =-67.若x 2+4x -4=0,则3(x -2)2-6(x +1)(x -1)的值为( )A .-6B .6C .18D .308.三个连续偶数,中间一个数是k ,它们的积为( ) A .8k 2-8k B .k 3-4k C .8k 3-2k D .4k 3-4k 9.若a +b =3,ab =1,则2a 2+2b 2的值为( )A .7B .10C .12D .1410.如图,在边长为2a 的正方形中央剪去一边长为(a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )(第10题图)A .a 2+4 B.2a 2+4a C .3a 2-4a -4 D.4a 2-a -2 二、填空题(每小题3分,共24分) 11.若2m ·23=26,则m =________.12.光的速度约为3×105km/s ,太阳光照到地球上要5×102s ,那么太阳与地球的距离为__________km(用科学记数法表示).13.若a 2-b 2=1,a -b =12,则a +b 的值为________.14.如果(y +a )2=y 2-8y +b ,则a ,b 的值分别为________.15.已知对于整式A =(x -3)(x -1),B =(x +1)(x -5),如果其中x 取值相同时,则整式A ________B (填“>”“<”或“=”).16.若ab =1,则(a n -b n )2-(a n +b n )2=________. 17.已知a +b =8,a 2b 2=4,则a 2+b 22-ab =________.18.观察下列各式的计算结果与相乘的两个多项式之间的关系:(x +1)(x 2-x +1)=x 3+1;(x +2)(x 2-2x +4)=x 3+8; (x +3)(x 2-3x +9)=x 3+27.请根据以上规律填空:(x +y )(x 2-xy +y 2)=________. 三、解答题(共66分) 19.(16分)计算:(1)x 4·x 6-(x 5)2;(2)(-xy )2·x 4y +(-2x 2y )3;(3)(1-3a )2-2(1-3a );(4)(a +2b )(a -2b )-12b (a -8b ).20.(8分)已知甲数是a ,乙数比甲数的3倍少1,丙数比乙数多2,试求甲、乙、丙三数的积.21.(8分)已知多项式x2-mx-n与x-2的乘积中不含x2项和x项,求m,n的值.22.(12分)先化简,再求值:(1)(a+b)(a-b)-(a-2b)2,其中a=2,b=-1;(2)(x+2y)(x-2y)-(2x-y)2+(3x-y)(2x-5y),其中x=-1,y=-2.23.(10分)王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?(第23题图)24.(12分)小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段,探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20cm ,它们的面积的差为40cm 2,则这两个正方形的边长差为________;探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为x cm ,宽为y cm.(1)用含x ,y 的代数式表示正方形的边长为________;(2)设长方形的长大于宽,比较正方形与长方形面积哪个大,并说明理由.参考答案一、1.C 2.C 3.D 4.A 5.D 6.B 7.B 8.B 9.D 10.C 二、11.3 12.1.5×10813.2 14.-4,16 15.> 16.-4 17.28或36 解析:∵a +b =8,a 2b 2=4,∴ab =2或ab =-2,a 2+b 22-ab =(a +b )2-4ab 2.当ab =2时,a 2+b 22-ab =82-4×22=28;当ab =-2时,a 2+b 22-ab =82-4×(-2)2=36.18.x 3+y 3三、19.解:(1)原式=x 10-x 10=0.(4分) (2)原式=x 6y 3-8x 6y 3=-7x 6y 3.(8分) (3)原式=1-6a +9a 2-2+6a =9a 2-1.(12分)(4)原式=a 2-4b 2-12ab +4b 2=a 2-12ab .(16分)20.解:由题意知乙数为3a -1,丙数为3a +1.(2分)因此甲、乙、丙三数的积为a ·(3a -1)·(3a +1)=a ·[(3a -1)·(3a +1)]=a ·(9a 2-1)=9a 3-a .(8分)21.解:(x -2)(x 2-mx -n )=x 3-mx 2-nx -2x 2+2mx +2n =x 3-(m +2)x 2+(2m -n )x +2n ,(4分)∵不含x 2项和x 项,∴-(m +2)=0,2m -n =0,(6分)解得m =-2,n =-4.(8分)22.解:(1)原式=a 2-b 2-a 2+4ab -4b 2=4ab -5b 2.(4分)当a =2,b =-1时,原式=4×2×(-1)-5×1=-13.(6分)(2)原式=x 2-4y 2-4x 2+4xy -y 2+6x 2-17xy +5y 2=3x 2-13xy .(10分)当x =-1,y =-2时,原式=3×(-1)2-13×(-1)×(-2)=3-26=-23.(12分)23.解:(1)卧室的面积是2b (4a -2a )=4ab (平方米),(2分)厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),(4分)即木地板需要4ab 平方米,地砖需要11ab 平方米.(5分)(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.(10分) 24.解:探究1:2cm.(4分) 探究2: (1)x +y2cm(7分)(2)正方形的面积较大,(8分)理由如下:正方形的面积为⎝ ⎛⎭⎪⎫x +y 22cm 2,长方形的面积为xy cm 2.⎝ ⎛⎭⎪⎫x +y 22-xy=(x -y )24.∵x >y ,∴(x -y )24>0,∴⎝ ⎛⎭⎪⎫x +y 22>xy ,∴正方形的面积大于长方形的面积.(12分)第3章检测卷(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列等式从左到右的变形属于因式分解的是( ) A .a (x -y )=ax -ay B .x 2+2x +1=x (x +2)+1 C .(x +1)(x +3)=x 2+4x +3D.x3-x=x(x+1)(x-1)2.多项式-6xy2+9xy2z-12x2y2的公因式是() A.-3xy B.3xyzC.3y2z D.-3xy23.下列各式中,不能用平方差公式因式分解的是() A.-a2-4b2 B.-1+25a2C.116-9a2 D.-a4+14.把代数式xy2-9x分解因式,结果正确的是()A.x(y2-9) B.x(y+3)2C.x(y+3)(y-3) D.x(y+9)(y-9)5.若(x+y)3-xy(x+y)=(x+y)·M,则M是()A.x2+y2 B.x2-xy+y2C.x2-3xy+y2 D.x2+xy+y26.计算2100+(-2)101的结果是()A.2100 B.-2100C.2 D.-27.下列因式分解中,正确的是()A.x2y2-z2=x2(y+z)(y-z)B.-x2y+4xy-5y=-y(x2+4x+5)C.(x+2)2-9=(x+5)(x-1)D.9-12a+4a2=-(3-2a)28.如图是边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2-ab的值为()(第8题图)A.70B.60C.130D.1409.设n为整数,则代数式(2n+1)2-25一定能被下列数整除的是()A .4B .5C .n +2D .1210.已知a ,b ,c 是三角形ABC 的三条边,且三角形两边之和大于第三边,则代数式(a -c )2-b 2的值是( ) A .正数 B .0 C .负数 D .无法确定 二、填空题(每小题3分,共24分)11.分解因式2a (b +c )-3(b +c )的结果是______________. 12.多项式3a 2b 2-6a 3b 3-12a 2b 2c 的公因式是________. 13.已知a ,b 互为相反数,则a 2-b 24的值为________.14.把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解:________________.(第14题图)15.分解因式:(m +1)(m -9)+8m =________________. 16.若x +y =10,xy =1,则x 3y +xy 3的值是________.17.若二次三项式x 2+mx +9是一个完全平方式,则代数式m 2-2m +1的值为________.18.先阅读,再分解因式:x 4+4=(x 4+4x 2+4)-4x 2=(x 2+2)2-(2x )2=(x 2-2x +2)(x 2+2x +2),按照这种方法分解因式:x 4+64=______________. 三、解答题(共66分) 19.(16分)分解因式:(1)(2a +b )2-(a +2b )2;(2)-3x 2+2x -13;(3)3m 4-48;(4)x 2(x -y )+4(y -x ).20.(10分)(1)已知x =13,y =12,求代数式(3x +2y )2-(3x -6y )2的值;(2)已知a -b =-1,ab =3,求a 3b +ab 3-2a 2b 2的值.21.(8分)给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.22.(10分)利用因式分解计算:(1)8352-1652;(2)2032-203×206+1032.23.(10分)如图,在半径为R的圆形钢板上,钻四个半径为r的小圆孔,若R=8.9cm,r=0.55cm,请你应用所学知识用最简单的方法计算剩余部分面积(结果保留π).(第23题图)24.(12分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=____________;(2)因式分解:(a+b)(a+b-4)+4;(3)试说明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.参考答案一、1.D 2.D 3.A 4.C 5.D 6.B 7.C 8.B 9.A 10.C 二、11.(b +c )(2a -3) 12.3a 2b 213.0 14.x 2+3x +2=(x +2)(x +1) 15.(m +3)(m -3) 16.98 17.25或49 18.(x 2-4x +8)(x 2+4x +8) 三、19.解:(1)原式=(2a +b +a +2b )(2a +b -a -2b )=3(a +b )(a -b ).(4分)(2)原式=-3⎝ ⎛⎭⎪⎫x 2-23x +19=-3⎝ ⎛⎭⎪⎫x -132.(8分)(3)原式=3(m 4-42)=3(m 2+4)(m 2-4)=3(m 2+4)(m +2)(m -2).(12分) (4)原式=(x -y )(x 2-4)=(x -y )(x +2)(x -2).(16分)20.解:(1)原式=(3x +2y +3x -6y )(3x +2y -3x +6y )=(6x -4y )·8y =16y (3x -2y ).(2分)当x =13,y=12时,原式=16×12×⎝ ⎛⎭⎪⎫3×13-2×12=0.(5分)(2)原式=ab (a 2+b 2-2ab )=ab (a -b )2.(7分)当ab =3,a -b =-1时,原式=3×(-1)2=3.(10分) 21.解:12x 2+2x -1+12x 2+4x +1=x 2+6x =x (x +6)(答案不唯一).(8分)22.解:(1)原式=(835+165)×(835-165)=1000×670=670000.(5分) (2)原式=2032-2×203×103+1032=(203-103)2=1002=10000.(10分)23.解:S剩余=πR2-4πr2=π(R+2r)(R-2r).(5分)当R=8.9cm,r=0.55cm时,S剩余=π×10×7.8=78π(cm2).(9分)答:剩余部分的面积为78πcm2.(10分)24.解:(1)(x-y+1)2(2分)(2)令A=a+b,则原式=A(A-4)+4=A2-4A+4=(A-2)2,故(a+b)(a+b-4)+4=(a+b-2)2.(6分)(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.∵n为正整数,∴n2+3n+1也为正整数,∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.(12分)第4章检测卷(满分:120分时间:90分钟)一、选择题(每小题3分,共30分)1.如图,直线a,b被直线c所截,∠1和∠2的位置关系是()A.同位角 B.内错角C.同旁内角 D.对顶角(第1题图)2.下列图形中,不能通过其中一个四边形平移得到的是()3.如图,直线a,b被直线c所截,下列说法正确的是()A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b(第3题图)4.O为直线l外一点,A,B,C三点在直线l上,OA=4cm,OB=5cm,OC=1.5cm.则点O到直线l的距离()A.大于1.5cm B.等于1.5cmC.小于1.5cm D.不大于1.5cm5.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是D A.30° B.35°C.40° D.45°(第5题图)6.如图,AB∥CD,DA⊥AC,垂足为A.若∠ADC=35°,则∠1的度数为()A.65° B.55° C.45° D.35°(第6题图)(第7题图)7.如图,下列说法正确的个数有()①过点A有且只有一条直线AC垂直于直线l;②线段AC的长是点A到直线l的距离;③线段AB,AC,AD中,线段AC最短,根据是两点之间线段最短;④线段AB,AC,AD中,线段AC最短,根据是垂线段最短.A.1个 B.2个C.3个 D.4个8.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60° B.∠3=60°C.∠4=120° D.∠5=40°(第8题图)(第9题图)9.如图,在甲、乙两城市之间要修建一条笔直的城际铁路,从甲地测得公路的走向是北偏东42°,现在甲、乙两城市同时开工,为使若干天后铁路能准确在途中接通,则乙城市所修铁路的走向应是() A.南偏西42° B.北偏西42°C.南偏西48° D.北偏西48°10.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是BA.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A-∠C+∠D+∠E=180°D.∠E-∠C+∠D-∠A=90°(第10题图)(第11题图)二、填空题(每小题3分,共24分)11.如图,若剪刀中的∠AOB=30°时,则∠COD=________.12.如图,直线AB,CD被直线AE所截,AB∥CD,∠A=110°,则∠1=________度.(第12题图)(第13题图)13.如图,把河水引入试验田P灌溉,沿过P作河岸l的垂线开沟引水的理由是:____________.14.如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=________.(第14题图)(第15题图)15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=____度.16.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=63°30′.(第16题图)17.对于同一平面内的三条直线a,b,c,给出下列五个结论:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a ⊥c.请以其中两个作为已知条件,一个作为结论,组成一个正确的语句________________ __(用数学语言作答).18.如图,a∥b,c⊥a,∠1=130°,则∠2等于________.(第18题图)三、解答题(共66分)19.(8分)如图,有一条小船,若把小船平移,使点A平移到点B,请你在图中画出平移后的小船.(第19题图)20.(10分)推理填空:如图,已知∠B=∠CGF,∠DGF=∠F,试说明∠B+∠F=180°.(第20题图)解:∵∠B=__ __(已知),∴AB∥CD( ).∵∠DGF=____________(已知),∴CD∥EF( ).∴AB∥EF(___________________).∴∠B+______=180°(____ ).21.(10分)如图,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=60°,求∠DOG的度数.(第21题图)22.(12分)如图,AD∥BC,∠1=60°,∠B=∠C,DF为∠ADC的平分线.(1)求∠ADC的度数;(2)试说明DF∥AB.(第22题图)23.(12分)如图,BD⊥AC,ED∥BC,∠1=∠2,AC=9cm,且点D为AF的中点,点F为DC的中点.(1)试说明BD∥GF;(2)求BD与GF之间的距离.(第23题图)24.(14分)已知BC∥OA,∠B=∠A=100°,试回答下列问题:(第24题图)(1)如图①所示,试说明OB∥AC;(2)如图②,若点E,F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC的度数等于________(在横线上填上答案即可);(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB∶∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,在平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA的度数等于________(在横线上填上答案即可).参考答案一、1.B 2.D 3.D 4.D 5.D 6.B 7.C 8.D 9.A10.C 解析:如图,过点C 作CG ∥AB ,过点D 作DH ∥EF ,则∠A =∠ACG ,∠EDH =180°-∠E .∵AB ∥EF ,∴CG ∥DH ,∴∠CDH =∠DCG ,∴∠ACD =∠ACG +∠DCG =∠A +∠CDH =∠A +∠CDE -(180°-∠E ),∴∠A -∠ACD +∠CDE +∠E =180°.故选C.(第10题答图)二、11.30° 12.70 13.垂线段最短 14.65° 15.80 16.63°30′ 17.若a ∥b ,b ∥c ,则a ∥c (答案不唯一) 18.40° 三、19.解:平移后的小船如答图.(8分)(第19题答图)20.解:∠CGF 同位角相等,两直线平行(2分) ∠F 内错角相等,两直线平行(6分) 平行于同一直线的两直线平行(8分) ∠F 两直线平行,同旁内角互补(10分)21.解:∵∠AOE =60°,∴∠BOF =∠AOE =60°(2分).∵OG 平分∠BOF ,∴∠BOG =12∠BOF =30°.(4分)∵CD ⊥EF ,∴∠COE =90°,∴∠AOC =90°-60°=30°,∴∠BOD =30°,(8分)∴∠DOG =∠BOD +∠BOG =60°.(10分)22.解:(1)∵AD ∥BC ,∴∠B =∠1=60°,∠C +∠ADC =180°.(3分)∵∠B =∠C ,∴∠C =60°,∴∠ADC =180°-60°=120°.(6分)(2)∵DF 平分∠ADC ,∴∠ADF =12∠ADC =12×120°=60°.(8分)又∵∠1=60°,∴∠1=∠ADF ,∴AB ∥DF .(12分)23.解:(1)∵ED ∥BC ,∴∠1=∠DBC .(2分)∵∠1=∠2,∴∠DBC =∠2,(4分)∴BD ∥GF .(6分) (2)∵AC =9cm ,D 为AF 的中点,F 为DC 的中点,∴AD =DF =FC =9÷3=3(cm).(9分)∵DF ⊥BD ,BD ∥GF ,∴BD 与GF 之间的距离为3cm.(12分)24.解:(1)∵BC ∥OA ,∴∠B +∠O =180°.∵∠A =∠B ,∴∠A +∠O =180°,∴OB ∥AC .(3分)(2)40°(6分) 解析:∵∠A =∠B =100°,由(1)得∠BOA =180°-∠B =80°.∵∠FOC =∠AOC ,OE 平分∠BOF ,∴∠EOF =12∠BOF ,∠FOC =12∠FOA ,∴∠EOC =∠EOF +∠FOC =12(∠BOF +∠FOA )=12∠BOA =40°.(3)∠OCB ∶∠OFB 的值不发生变化.(8分)理由如下:∵BC ∥OA ,∴∠OFB =∠FOA ,∠OCB =∠AOC .又∵∠FOC =∠AOC ,∴∠FOC =∠OCB ,∴∠OFB =∠FOA =∠FOC +∠AOC =2∠OCB ,(10分)∴∠OCB ∶∠OFB =1∶2.(11分)(4)60°(14分) 解析:由(1)知OB ∥AC ,∴∠OCA =∠BOC ,由(2)可设∠BOE =∠EOF =α,∠FOC =∠AOC =β,∴∠OCA =∠BOC =2α+β.∵BC ∥OA ,∴∠OEB =∠EOA =α+2β.∵∠OEB =∠OCA ,∴2α+β=α+2β,∴α=β.∵∠AOB =80°,∴α=β=20°,∴∠OCA =2α+β=40°+20°=60°.第5章检测卷(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是( )2.将图形按顺时针方向旋转90°得到的图形是( )3.如图是一个风筝的图案,它是轴对称图形,量得∠B =30°,则∠E 的度数为( )A .30°B .35°C .40°D .45°(第3题图) (第4题图)4.如图,直线a 与直线b 交于点A ,与直线c 交于点B ,∠1=120°,∠2=45°,若使直线b 与直线c 平行,则可将直线b 绕点A 逆时针旋转( )A.15° B.30°C.45° D.60°5.下列四个图形中,若以其中一部分作为基本图形,无论用旋转还是平移都不能得到的图形是()6.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是() A.AM=BM B.AP=BNC.∠MAP=∠MBP D.∠ANM=∠BNM(第6题图)(第7题图)7.如图,将直角三角形AOB绕点O逆时针旋转得到直角三角形COD,若∠AOB=90°,∠BOC=130°,则∠AOD的度数为()A.40° B.50° C.60° D.30°8.将一张长方形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到的是下列图形中的()9.如图,在三角形ABC中,BC=4,其面积为12,AD⊥BC.将三角形ABC绕点A旋转到三角形AB′C′的位置,使得AC⊥B′C′于点D′,则AD′的长度为()A.6 B.8 C.10 D.12(第9题图)(第10题图)10.如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对三角形ABC分别作下列变换:①以点O为中心逆时针方向旋转180°;②先以A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;③先以直线MN为对称轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中,能将三角形ABC变换成三角形PQR的是()A.①② B.①③ C.②③ D.①②③二、填空题(每小题3分,共24分)11.汉字中、天、日、田等都可看作是轴对称图形,请你再写出一个这样的汉字:____.12.如图,下列图片中,是由图片(1)平移得到的,是由图片(1)旋转得到的,是由图片(1)轴对称得到的.(第12题图)13.如图,AD是三角形ABC的对称轴,AC=8 cm,DC=4 cm,则三角形ABC的周长为 cm.(第13题图)(第14题图)14.如图所示的图案是由三个叶片组成,绕点O旋转120°后可以与自身重合.若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为 cm2.15.在三角形ABC中,∠A=90°,将三角形ABC绕A点沿顺时针方向旋转85°,得到三角形AEF,点B,点C分别对应点E,点F,则下列结论:①∠BAE=85°;②AC=AF;③EF=BC;④∠EAF=85°.其中正确的是(填序号).16.将长方形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠AED的大小是 .(第16题图)(第17题图)17.如图,将三角形ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是70°.18.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.(第18题图)三、解答题(共66分)19.(10分)我们在学完“平移、轴对称、旋转”三种图形的变换后,可以进行进一步研究,请根据示例图形,完成下表.图形的变换示例图形与对应线段有关的结论与对应点有关的结论平移(1)________________________;AA′=BB′AA′∥BB′轴对称(2)____________;对应线段AB和A′B′所在的直线如果相交,交点在______________;(3)____________________________;旋转AB=A′B′;对应线段AB和A′B′所在的直线相交所成的角与旋转角相等或互补.(4)__________________________.20.(10分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.(第20题图)21.(10分)如图,在三角形ABC中,∠ACB=90°,沿CD折叠三角形CBD,使点B恰好落在AC边上的点E 处.若∠A=22°,求∠BDC的度数(提示:三角形的内角和等于180°).(第21题图)22.(12分)在三角形ABC中,∠ACB=90°,∠B=30°,将三角形ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到三角形A′B′C.如图,当AB∥CB′时,设A′B′与CB相交于点D.试求∠A′DC的度数(提示:三角形的内角和等于180°).(第22题图)23.(12分)某公司为了节约开支,购买了质量相同的两种颜色的残缺地砖,准备用来装修地面,现已加工成如图①所示的等腰直角三角形,王聪同学设计了如图②所示的四种图案.(第23题图)(1)你喜欢哪种图案?并简述该图案的形成过程;(2)请你利用所学过的知识再设计三幅与上述不同的图案.24.(12分)四边形ABCD是正方形,三角形ADF旋转一定角度后得到三角形ABE,如图所示,如果AF=4,AB=7.(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?请说明理由(提示:三角形的内角和等于180°).(第24题图)参考答案与解析一、1.D 2.D 3.A 4.A 5.C 6.B 7.B 8.C 9.A 10.C二、11.平(答案不唯一) 12.(5)(2)和(3)(4) 13.24 14.4 15.①②③16.60°17.70° 18.3三、19.解:(1)AB =A ′B ′,AB ∥A ′B ′(2分) (2)AB =A ′B ′ 对称轴l 上(6分)(3)AA ′∥BB ′,l 垂直平分AA ′,BB ′(8分) (4)OA =OA ′,OB =OB ′,∠AOA ′=∠BOB ′(10分) 20.解:(1)如答图.(5分)(2)如答图的四边形A ′B ′C ′D ′即为所要画的四边形.(10分)(第20题答图)21.解:∵∠ACB =90°,∠A =22°,∴∠B =68°.(3分)由折叠的性质知,∠BCD =∠ECD =12∠ACB =45°.(6分)在三角形BCD 中,∠B =68°,∠BCD =45°,∴∠BDC =180°-∠B -∠BCD =180°-68°-45°=67°.(10分)22.解:∵三角形A ′B ′C 是由三角形ABC 经过旋转得到的,∴∠A ′CB ′=∠ACB =90°,∠B ′=∠B =30°.又∵AB ∥CB ′,∴∠BCB ′=∠B =30°.(6分)∴∠A ′CD =∠A ′CB ′-∠BCB ′=90°-30°=60°,(8分)∠A ′=180°-∠A ′CB ′-∠B ′=60°.(10分)∴∠A ′DC =180°-∠A ′-∠A ′CD =180°-60°-60°=60°.(12分)23.解:(1)我喜欢图案(4).图案(4)的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°.(答案不唯一)(6分)(2)如图所示.(12分)(第23题答图)24.解:(1)旋转中心为点A ,旋转角度为90°.(4分)(2)由题意,可得AE =AF =4,AD =AB =7,∴DE =AD -AE =7-4=3.(8分)(3)BE ⊥DF .(9分)理由如下:延长BE 交DF 于点G ,由旋转的性质得∠ADF =∠ABE ,∠FAD =∠DAB =90°,∴∠F +∠ADF =90°,∴∠ABE +∠F =90°,∴∠BGF =90°.即BE 与DF 互相垂直.(12分)第6章检测卷(满分:120分时间:90分钟)一、选择题(每小题4分,共32分)1.某学校足球兴趣小组的五名同学在一次射门训练中,射进球门的次数分别为:6,7,7,8,9.这组数据的众数为()A.6 B.7C.8 D.92.课外作业时间是中小学教育质量综合评价指标的考查要点之一,腾飞学习小组五名同学每天的课外作业时间分别是(单位:分钟):60,80,75,45,120.这组数据的中位数是()A.45 B.75C.80 D.603.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们0.6和0.4的权.根据四人各自的平均成绩,公司将录取()A.甲 B.乙C.丙 D.丁4.已知一组数据-1,x,1,2,0的平均数是1,则这组数据的中位数是()A.1 B.0C.-1 D.25.某市6月2日至8日的每日最高温度如图所示,则这组数据的众数和中位数分别是()(第5题图)A.30℃,29℃B.30℃,30℃C.29℃,30℃D.29℃,29.5℃6.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数 B.中位数C.众数 D.方差7.某次知识竞赛中,10名学生的成绩统计如下:分数(分)60708090100人数(人)1152 1则下列说法正确的是()A.学生成绩的方差是4B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均分是80分8.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数7.97.98.0方差 3.290.49 1.8(第6题图)根据以上图表信息,参赛选手应选()A.甲 B.乙 C.丙 D.丁二、填空题(每小题4分,共24分)9.一组数据:5,7,6,5,6,5,8,这组数据的平均数是________.10.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是________岁.11.九年级一班同学体育测试后,老师将全班同学成绩绘制成如图所示的条形统计图.每个等级成绩的人数的众数是________.(第11题图)(第12题图)12.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是小李.13.有5个从小到大排列的正整数,其中位数是3,唯一的众数是7,则这5个数的平均数是________.14.已知一组数据0,1,2,2,x,3的平均数为2,则这组数据的方差是________.三、解答题(共64分)15.(8分)某蔬菜市场某天批发1000千克青菜,上午按每千克0.8元的价格批发了500千克,中午按每千克0.6元的价格批发了200千克,下午以每千克0.4元的价格将余下的青菜批发完,求这批青菜的平均批发价格.(500×0.8+200×0.6+0.4×300)÷1000=0.64(元/千克).16.(10分)在“心系灾区”自愿捐款活动中,某班50名同学的捐款情况如下表:捐款(元)5101520253050100人数67911853 1(1)问这个班级捐款总数是多少元?(2)求这50名同学捐款的平均数、中位数.(3)从表中你还能得到什么信息(只写一条即可)?17.(10分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3∶3∶2∶2计算,那么甲、乙的数学综合素质成绩分别为多少分?18.(12分)小明和小红5次数学单元测试成绩如下(单位:分):小明:89、67、89、92、96;小红:86、62、89、92、92.他们都认为自己的成绩比另一位同学好.(1)分别计算小明和小红5次数学单元测试成绩的平均数、中位数和众数,并分析他们各自认为自己的成绩比另一位同学好的理由;(2)你认为谁的成绩更好些?说一说你的理由.19.(12分)已知一组数据x 1,x 2,…,x 6的平均数为1,方差为53.(1)求x 21+x 22+…+x 26的值;(2)若在这组数据中加入另一个数据x 7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示).20.(12分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下统计图①和②,请根据相关信息,解答下列问题:(第20题图)(1)图①中a 的值为________;(2)求统计的这组初赛数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人能进行复赛,请直接写出初赛成绩为1.65m 的运动员能否进入初赛.参考答案一、1.B 2.B 3.B 4.A 5.A 6.B 7.C 8.D 9.6二、10.15 11.6 12.乙 13.414.53 解析:∵16(0+1+2+2+x +3)=2,∴x =4.s 2=16[(0-2)2+(1-2)2+(2-2)2+(2-2)2+(4-2)2+(3-2)2]=53. 三、15.解:(0.8×500+0.6×200+0.4×300)÷1000=0.64(元/千克)(6分).答:这批青菜的平均批发价格为0.64元/千克.(8分)16.解:(1)捐款总数为5×6+10×7+15×9+20×11+25×8+30×5+50×3+100=1055(元).(3分)(2)50名同学捐款的平均数为1055÷50=21.1(元),(6分)中位数为(20+20)÷2=20.(8分)(3)答案不唯一,如“捐20元的人数最多”等.(10分)17.解:(1)甲成绩的中位数为(90+90)÷2=90;(2分)乙成绩的中位数为(92+94)÷2=93.(4分)(2)3+3+2+2=10,甲的数学综合素质成绩为90×310+93×310+89×210+90×210=27+27.9+17.8+18=90.7(分),(7分)乙的数学综合素质成绩为94×310+92×310+94×210+86×210=28.2+27.6+18.8+17.2=91.8(分).(9分)答:甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.(10分)18.解:(1)小明成绩的平均数是15(89+67+89+92+96)=86.6,(2分)按从小到大的顺序排列得到第3个数为89.∴中位数是89.(3分)出现次数最多的是89.∴众数是89.(4分)同理,小红成绩的平均数是84.2,中位数是89,众数是92.(7分)因此小明的理由是他成绩的平均数比小红高,而小红的理由是她成绩的众数比小明高.(9分)(2)小明的成绩好一点.∵小明成绩的平均数高于小红成绩的平均数,而且小明每次的成绩都比小红的高.(12分)19.解:(1)∵数据x 1,x 2,…,x 6的平均数为1,∴x 1+x 2+…+x 6=1×6=6.(1分)又∵方差为53,∴s 2=16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=16[x 21+x 22+…+x 26-2(x 1+x 2+…+x 6)+6]=16(x 21+x 22+…+x 26-2×6+6)=16(x 21+x 22+…+x 26)-1=53,∴x 21+x 22+…+x 26=16.(6分) (2)∵数据x 1,x 2,…,x 7的平均数为1,∴x 1+x 2+…+x 7=1×7=7.∵x 1+x 2+…+x 6=6,∴x 7=1.(8分)∵16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=53,∴(x 1-1)2+(x 2-1)2+…+(x 6-1)2=10,(10分)∴s 2=17[(x 1-1)2+(x 2-1)2+…+(x 7-1)2]=17[10+(1-1)2]=107.(12分) 20.解:(1)25(3分)(2)x =1.50×2+1.55×4+1.60×5+1.65×6+1.70×32+4+5+6+3=1.61.∴这组数据的平均数是1.61.(5分)∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数为1.65.(7分)∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60,1.60+1.602=1.60.∴这组数据的中位数为1.60.(9分) (3)能.(12分)。
七年级下册数学第一单元测试题
七年级下册数学第一单元测试题一、选择题(每题2分,共20分)1. 下列哪个选项是正确的整数和小数的混合运算结果?A. 3 × 0.5 + 0.2 = 1.7B. 4.5 + 2.6 ÷ 0.2 = 17C. 2 × (3 + 4.5) = 13D. 5.6 ÷ 1.1 × 2 = 102. 计算边长为5cm的正方形的面积,结果是多少平方厘米?A. 25B. 50C. 100D. 1253. 一个长方形的长是12cm,宽是8cm,那么它的周长是多少厘米?A. 40B. 48C. 56D. 644. 一个三角形的底边长为10cm,高为6cm,那么它的面积是多少平方厘米?A. 30B. 40C. 60D. 805. 一个圆的半径是7cm,求这个圆的周长(使用π≈3.14)。
A. 14.28cmB. 21.98cmC. 28.54cmD. 43.96cm6. 一个班级有40名学生,其中女生占60%,那么男生有多少人?A. 16B. 24C. 26D. 347. 一个数的三倍加上5等于17,这个数是多少?A. 2B. 3C. 4D. 58. 下列哪个分数是最简分数?A. 四分之六B. 三分之九C. 二分之一D. 五分之十9. 一个分数的分子是10,分母是它的三倍,这个分数化简后是什么?A. 五分之三B. 三分之五C. 一分之二D. 二分之五10. 一个比例的两个外项分别是8和12,两个内项分别是2和多少?A. 3B. 4C. 6D. 9二、填空题(每题2分,共20分)11. 一个长方形的长是15cm,宽是9cm,它的面积是________平方厘米。
12. 一个圆的直径是10cm,那么它的半径是________cm。
13. 一个班级有45名学生,女生占总数的40%,那么男生有________名。
14. 一个数除以4的结果是2.5,这个数是________。
15. 一个三角形的底边长为8cm,高为5cm,它的面积是________平方厘米。
七年级下册数学第一单元测试题
七年级下册数学第一单元测试题题目一:计算题1. 计算:(1)27÷(2)12×(3)20÷4×(4)40 +10 ÷5×(5)5×4-10 ÷ 2 +52. 把下列小数化为百分数:(1)0.03 (2)0.05 (3)0.63. 有一个正方形的周长是10厘米,求它的面积是多少?4. 把0.02变成百分数再转化为小数。
5. 两个数的和是50,其中一个数是30,求另一个数。
题目二:选择题1. 已知:A:400 ÷4 B: 50×4×2 C: 60÷3 D: 30×8,那么计算(D)结果是:A)300 B)240 C)332 D) 24002. 根据图,求那1×2÷4的结果是多少?A)4 B)3 C)1 D)2题目三:填空题1. 两个连续自然数之和是15,这两个数分别是_________和__________。
2. 把0.15转化为百分之几,则是_______%。
3. 已知体重w(kg)和身高h(m)的关系式w =2h + 14,那么身高为2.8m的人的体重是_______kg。
题目四:应用题某商场为了推广销售,对商品实施打折活动。
活动内容:购买商品达到一定金额时可享受相应的折扣。
活动细则如下:- 购买金额不超过1000元时,无折扣优惠;- 购买金额在1000至3000元之间,可享受9折优惠;- 购买金额在3000至5000元之间,可享受8折优惠;- 购买金额在5000元以上,可享受7折优惠。
请回答以下问题:1. 若购买金额为2500元,需支付的金额是多少?2. 若购买金额为4000元,需支付的金额是多少?3. 若购买金额为800元,需支付的金额是多少?文章完毕。
Note: The content given above is for reference purposes only. The actual content of the article may vary based on the test questions provided.。
(压轴题)初中数学七年级数学下册第一单元《相交线与平行线》测试(含答案解析)(4)
一、选择题1.下列说法中,正确的是( )A .在同一平面内,过一点有无数条直线与已知直线垂直B .两直线相交,对顶角互补C .垂线段最短D .直线外一点到这条直线的垂线段叫做点到直线的距离2.如图,用直尺和三角尺画图:已知点P 和直线a ,经过点P 作直线b ,使//b a ,其画法的依据是( )A .过直线外一点有且只有一条直线与已知直线平行B .两直线平行,同位角相等C .同位角相等,两直线平行D .内错角相等,两直线平行3.如图,把一长方形纸片ABCD 沿EG 折叠后,AEG A EG '∠=∠,点A 、B 分别落在A '、B ′的位置,EA '与BC 相交于点F ,已知1125∠=︒,则2∠的度数是( )A .55°B .60°C .70°D .75° 4.能说明命题“若a b >,则22a b >”是假命题的一个反例..可以是( ) A .0a =,1b =-B .2a =,1b =C .2a =-,1b =-D .0a =,2b = 5.下列语句是命题的是( ) A .平分一条线段 B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗? 6.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180°7.下列命题:①两边及其中一边的对角对应相等的两个三角形全等;②两角及其中一角的对边对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等;④面积相等的两个三角形肯定全等;⑤有两条直角边对应相等的两个直角三角形全等.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图所示,下列条件能判断a∥b的有()A.∠1+∠2=180°B.∠2=∠4 C.∠2+∠3=180°D.∠1=∠39.用反证法证明“m为正数”时,应先假设().A.m为负数B.m为整数C.m为负数或零D.m为非负数10.(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°11.能说明命题“若a>b,则3a>2b“为假命题的反例为()A.a=3,b=2 B.a=﹣2,b=﹣3 C.a=2,b=3 D.a=﹣3,b=﹣2 12.下列选项中,不是运用“垂线段最短”这一性质的是()A.立定跳远时测量落点后端到起跳线的距离 B.从一个村庄向一条河引一条最短的水渠C.把弯曲的公路改成直道可以缩短路程D.直角三角形中任意一条直角边的长度都比斜边短二、填空题13.如图,点A在直线m上,点B在直线l上,点A到直线l的距离为a,点B到直线m 的距离为b,线段AB的长度为c,通过测量等方法可以判断在a,b,c三个数据中,最大的是_____________.14.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是________.15.如图,已知点O 是直线AB 上一点,过点O 作射线OC ,使∠AOC =110°.现将射线OA 绕点O 以每秒10°的速度顺时针旋转一周.设运动时间为t 秒.当射线OA 、射线OB 、射线OC 中有两条互相垂直时,此时t 的值为__________.16.在平面内,若OA ⊥OC ,且∠AOC ∶∠AOB =2∶3,则∠BOC 的度数为_______________;17.如图,请你添加一个条...件.使得AD ∥BC ,所添的条件是__________.18.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.19.运动会上裁判员测量跳远成绩时,先在距离踏板最近的跳远落地点上插上作为标记的小旗,再以小旗的位置为赤字的零点,将尺子拉直,并与踏板边缘所在直线垂直,把尺子上垂足点表示的数作为跳远成绩.这实质上是数学知识____________在生活中的应用.20.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为_____.三、解答题21.如图,AD平分∠BAC,点E,F分别在边BC,AB上,且∠BFE=∠DAC,延长EF,CA 交于点G,求证:∠G=∠AFG.22.如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,ABC的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A画BC的垂线,并标出垂线所过格点P;(2)过点A画BC的平行线,并标出平行线所过格点Q;'''的位置;(3)画出ABC向右平移8个单位长度后A B C'''的面积为______.(4)A B C23.如图,DE∥BC,∠ADE=∠EFC,那么∠1与∠2相等吗?说明理由.24.如图,直线AB 和直线BC 相交于点B ,连接AC ,点,,D E H 分别在AB 、AC 、BC 上,连接DE 、DH ,F 是DH 上一点,已知13180︒∠+∠=(1)求证:CEF EAD ∠=∠;(2)若DH 平分BDE ∠,2α∠=∠,求3∠的度数.(用α表示)25.如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.26.试用举反例的方法说明下列命题是假命题.例如:如果ab <0,那么a +b <0.反例:设a =4,b =-3,ab =4⨯(-3)=-12<0,而a +b =4+(-3)=1>0,所以这个命题是假命题.(1)如果a +b >0,那么ab >0.(2)如果a 是无理数,b 也是无理数,那么a +b 也是无理数.【参考答案】***试卷处理标记,请不要删除1.C解析:C【分析】依据垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,即可得出结论.【详解】解:A .在同一平面内,过一点有且仅有一条直线与已知直线垂直,故本选项错误; B .两直线相交,对顶角相等,故本选项错误;C .垂线段最短,故本选项正确;D .直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本选项错误; 故选:C .【点睛】本题主要考查了垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,熟练掌握概念是解题的关键.2.C解析:C【分析】根据平行线的判定定理即可得出结论.【详解】解:由画法可知,其画法的依据是同位角相等,两直线平行.故选:C .【点睛】本题考查了作图-复杂作图,熟知平行线的判定定理是解答此题的关键.3.C解析:C【分析】先根据平行线的性质可得55AEG ∠=︒,再根据平角的定义可得70∠︒=DEF ,然后根据平行线的性质即可得.【详解】由题意得://AD BC ,1125∠=︒,180155AEG ∴∠=︒-∠=︒,AEG A EG '∠=∠,55A EG '∴∠=︒,18070DEF AEG A EG '∴∠=︒-∠-∠=︒,又//AD BC ,270DEF ∴∠=∠=︒,【点睛】本题考查了平角的定义、平行线的性质,熟练掌握平行线的性质是解题关键.4.A解析:A【分析】选取的a 的值满足a b >,但不满足22a b >即可.【详解】解:当a =0,b =﹣1时,满足a >b ,但不满足22a b >,故A 选项符合题意; 当a =2,b =1时,满足a >b ,也满足22a b >,故B 选项不符合题意;当a =﹣2,b =﹣1时,不满足a >b ,故C 选项不符合题意;当a =0,b =2时,不满足a >b ,故D 选项不符合题意;故选:A .【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.B解析:B【分析】根据命题的定义分别进行判断.【详解】A.平分一条线段,为描述性语言,不是命题;B.直角都相等,是命题;C.在直线AB 上取一点,为描述性语言,不是命题;D.你喜欢数学吗?是疑问句,不是命题.故选:B .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D.【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.7.B解析:B【分析】根据全等三角形的判断定理逐项判断即可.【详解】解:①两边及其夹角对应相等的两个三角形全等,故该项错误;②两角及其中一角的对边对应相等的两个三角形全等,符合AAS定理,故该项正确;③有两条边和第三条边上的高对应相等的两个三角形不一定全等,有可能是锐角三角形,也有可能是钝角三角形,故该项错误;④面积相等的两个三角形不一定全等,因为形状可能不相同,故该项错误;⑤有两条直角边对应相等的两个直角三角形全等,符合ASA定理,故该项正确.故选:B.【点睛】此题主要考查对全等三角形的判定定理的掌握,正确理解判定定理是解题关键.8.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.9.C解析:C【分析】根据反证法的性质分析,即可得到答案.【详解】用反证法证明“m为正数”时,应先假设m为负数或零故选:C.【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解.10.B解析:B【解析】试题分析:由AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选B.考点:平行线的性质11.B解析:B【分析】本题每一项代入题干命题中,不满足题意即为反例.【详解】解:当a=﹣2,b=﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),即a>b时,3a=2b,∴命题“若a>b,则3a>2b”为假命题,故选:B.【点睛】本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A.立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质;B.从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C.把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D.直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质;故选:C.【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.二、填空题13.【分析】过点A 作AD 垂直于垂足为D 过点B 作BH 垂直于垂足为H 连接AB 根据点到直线垂线段最短可知AB >ADAB >BH 可得最大【详解】过点A 作AD 垂直于垂足为D 过点B 作BH 垂直于垂足为H 连接AB 由题意得 解析:c【分析】过点A 作AD 垂直于l 垂足为D ,过点B 作BH 垂直于m 垂足为H,连接AB ,根据点到直线垂线段最短,可知AB >AD ,AB >BH ,可得c 最大.【详解】过点A 作AD 垂直于l 垂足为D ,过点B 作BH 垂直于m 垂足为H,连接AB ,由题意得:AD=a , BH=b ,AB=c ;根据点到直线垂线段最短,可知AB >AD ,AB >BH∴c >a ,c >b ;∴c 最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.14.(4)【分析】根据平行线的定义平行线的性质平行公理的推论解答【详解】(1)在同一平面内不相交的两条直线叫做平行线故该项错误;(2)过直线外一点有且只有一条直线与已知直线平行故该项错误;(3)在同一平 解析:(4)【分析】根据平行线的定义,平行线的性质,平行公理的推论解答.【详解】(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.故选:(4).【点睛】此题考查判断语句,熟记平行线的定义,平行线的性质,平行公理的推论是解题的关键.15.920或27【分析】分4种情况确定垂直关系可得OA的旋转角度从而可求出t的值【详解】解:①当射线OA绕点O顺时针旋转20°时如图1则∠COA=110°-20°=90°故OA⊥OC此时t=20°÷10解析:9、20或27【分析】分4种情况确定垂直关系,可得OA的旋转角度,从而可求出t的值.【详解】解:①当射线OA绕点O顺时针旋转20°时,如图1,则∠COA=110°-20°=90°,故OA⊥OC,此时,t=20°÷10°=2;②当射线OA绕点O顺时针旋转90°时,如图2,则∠AOB=180°-90°=90°,故OA⊥OB,此时,t=90°÷10°=9;③当射线OA绕点O顺时针旋转200°时,如图3,则∠COA=200°-110°=90°,故OA⊥OC,此时,t=200°÷10°=20;④当射线OA绕点O顺时针旋转270°时,如图4,则∠BOA=270°-180°=90°,故OA⊥OB,此时,t=270°÷10°=27,故答案为:2,9,20或27.【点睛】本题主要考查了角的有关计算,注意在分类讨论时要做到不重不漏.16.45°或135°【分析】根据垂直关系可得∠AOC=90°再由∠AOC:∠AOB=2:3可得∠AOB然后再分两种情况进行计算即可【详解】解:如图∠AOC的位置有两种:一种是∠AOC在∠AOB内一种是在解析:45°或135°【分析】根据垂直关系可得∠AOC=90°,再由∠AOC:∠AOB=2:3,可得∠AOB,然后再分两种情况进行计算即可.【详解】解:如图,∠AOC的位置有两种:一种是∠AOC在∠AOB内,一种是在∠AOB外.∵OA⊥OC,∴∠AOC=90°,①当∠AOC在∠AOB内,如图1,∵∠AOC:∠AOB=2:3,∠AOC=45°,∴∠BOC=12②当∠AOC在∠AOB外,如图2,∵∠AOC:∠AOB=2:3,∠AOC=135°,∴∠AOB=32∴∠BOC=360°-∠AOB-∠AOC=135°.故答案为:45°或135°.【点睛】此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.17.∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时根据同位角相等两直线平行可得AD//BC;当∠DAC=∠C时根据内错角相等两直线平行可得AD//BC;当∠DAB+∠B=180°时根据同旁内角解析:∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时,根据“同位角相等,两直线平行”可得AD//BC;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC,故答案是:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(答案不唯一).18.4【分析】观察图象发现平移前后BE对应CF对应根据平移的性质易得平移的距离为BE=BC-EC=4进而可得答案【详解】由题意平移的距离为BE=BC-EC=10-6=4故答案为:4【点睛】本题考查了平移解析:4【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.19.垂线段最短【分析】根据题干跳远落点视为一个点直尺垂直踏板边缘可理解为作垂线然后用数学语言描述出来即可【详解】根据题意可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用注意在书写答案解析:垂线段最短【分析】根据题干,跳远落点视为一个点,直尺垂直踏板边缘可理解为作垂线,然后用数学语言描述出来即可.【详解】根据题意,可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用,注意在书写答案时,尽量用“数学化”的语言来描述.20.48°【分析】将BE与CD交点记为点F由两直线平行同位角相等得出∠EFC 度数再利用三角形外角的性质可得答案【详解】解:如图所示将BE与CD交点记为点F∵AB∥CD∠B=75°∴∠EFC=∠B=75°解析:48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.三、解答题21.见解析【分析】先利用角平分线的定义得到∠BAD=∠DAC,结合已知条件∠BFE=∠DAC,可得∠BFE=∠BAD,根据平行线的判定可证EG∥AD,再由平行线的性质得∠G=∠DAC,∠AFG=∠BAD,则利用等量代换即可证得结论.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠BFE=∠DAC,∴∠BFE =∠BAD ,∴EG ∥AD ,∴∠G =∠DAC ,∠AFG =∠BAD ,∴∠G =∠AFG .【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.22.(1)见解析;(2)见解析;(3)见解析;(4)9.5【分析】(1)根据网格特点以A 为锐角顶点,对边为1,临直角边为5构造格点直角三角形,即可解答;(2)根据网格特点以A 为锐角顶点,对边为1,临直角边为5构造格点直角三角形,即可解答;(3)根据平移的性质,向右8个单位长度描出对应顶点,即可画出A B C ''';(4)由矩形法即可求出三角形面积.【详解】解:(1)如图所示,AP 是BC 的垂线;P 为所求格点;(2)如图所示,1//AQ BC ,1Q 、2Q 为所求格点;(3)如图所示,A B C '''为所求;(4)A B C '''的面积11119544151432222=⨯-⨯⨯-⨯⨯-⨯⨯=, 故答案为:192. 【点睛】 此题主要考查了应用设计与作图,正确掌握相关性质以及结合网格画出对应点是解题关键.23.∠1=∠2,理由见解析.【分析】根据平行线的性质推出∠ADE =∠ABC ,推出∠ABC =∠EFC ,根据平行线的判定推出EF ∥AB 即可.【详解】解:∠1=∠2,理由是:∵DE∥BC,∴∠ADE=∠ABC,∵∠ADE=∠EFC,∴∠ABC=∠EFC,∴EF∥AB,∴∠1=∠2.【点睛】本题考查了对平行线的性质和判定的应用,解题的关键是熟练掌握平行线的性质及判定.24.(1)见解析(2)90°+1 2α【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】解:(1)∵∠3+∠DFE=180°,∠1+∠3=180°∴∠DFE=∠1,∴AB∥EF,∴∠CEF=∠EAD;(2)∵AB∥EF,∴∠2+∠BDE=180°又∵∠2=α∴∠BDE=180°−α又∵DH平分∠BDE∴∠1=12∠BDE=12(180°−α)∴∠3=180°− 12(180°−α)=90°+12α.【点睛】本题考查了角平分线定义,平行线的性质和判定等知识点,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.25.125°.【分析】由两直线垂直,求得∠AOE=90°;由∠AOC与∠EOC互余,∠EOC=35°,即可得到∠AOC的度数;再由∠AOD与∠AOC互补,即可得出∠AOD的度数.【详解】∵EO⊥AB,∴∠AOE=90°,又∵∠EOC=35°,∴∠AOC=∠AOE-∠EOC=90°-35°= 55°,∴∠AOD=180°-∠AOC=180°-55°=125°.【点睛】本题主要考查补角、余角和垂直的定义.解题的关键是熟练利用补角、余角关系求角的度数.26.(1)见解析;(2)见解析.【分析】(1)此题是一道开放题,可举的例子多,但只举一例就可.如果a+b>0,那么ab>0;所举的反例就是,a、b一个为正数,一个为负数,且正数的绝对值大于负数.(2)可利用平方差公式找这样的无理数,比如【详解】解:(1)取a=2,b=-1,则a+b=1>0,但ab=-2<0.所以此命题是假命题.(2)取,,a、b均为无理数.但a+b=2是有理数,所以此命题是假命题.【点睛】本题主要锻炼了学生的逆向思维.在证明几何题的过程中,有时需从反例上先去判断,然后再证明.。
七年级数学下册第一章试题
第一章整式的运算单元测试 1一、 耐心填一填每小题3分,共30分1.单项式32n m -的系数是 ,次数是 . 2.()()23342a b ab -÷= . 3.若A=2x y -,4B x y =-,则2A B -= .4.()()3223m m -++= .5.2005200640.25⨯= .6.若23nx =,则6n x = . 7.已知15a a +=,则221aa +=___________________.441a a +=___________________. 8.用科学计数法表示: 000024⋅-= .9.若10m n +=,24mn =,则22mn += . 10.()()()24212121+++的结果为 . 二、 精心选一选每小题3分,共30分 11.多项式322431x x y xy -+-的项数、次数分别是 .A .3、4B .4、4C .3、3D .4、312.三、用心想一想21题16分,22~25小题每小题4分,26小题8分,共40分.21.计算:16822a a a ÷+ 2()()().52222344321044x x x x x ⋅+-+- 3()()55x y x y --+- 4用乘法公式计算:21005. 22.已知0106222=++-+b a b a ,求20061ab-的值 23. 先化简并求值: )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .24.已知9ab =,3a b -=-,求223a ab b ++的值.25. 在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算: ()1把这个数加上2后平方.()2然后再减去4. ()3再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗26.请先观察下列算式,再填空:181322⨯=-, 283522⨯=-.①=-22578× ; ②29- 2=8×4;③ 2-92=8×5;④213- 2=8× ;………⑴通过观察归纳,你知道上述规律的一般形式吗 请把你的猜想写出来.⑵你能运用本章所学的平方差公式来说明你的猜想的正确性吗附加题:1.把1422-+x x 化成k h x a ++2)(其中a,h,k 是常数的形式2.已知a -b=b -c=35,a 2+b 2+c 2=1则ab +bc +ca 的值等于 . 绝密★档案B第一章整式的运算单元测试2一、填空题:每空2分,共28分1.把下列代数式的字母代号填人相应集合的括号内:A. xy+1B. –2x 2+yC.3xy 2-D.214-E.x 1-F.x 4G.x ax 2x 8123--H.x+y+zI.3ab 2005-J.)y x (31+ K.c 3ab 2+ 1单项式集合 { …}2多项式集合 { …}3三次多项式 { …}4整式集合 { …}2.单项式bc a 792-的系数是 . 3.若单项式-2x 3y n-3是一个关于x 、y 的五次单项式,则n = .4.2x+y 2=4x 2+ +y 2. 5.计算:-2a 221ab+b 2-5aa 2b-ab 2 = . 6.32243b a 21c b a 43⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-= . 7.-x 2与2y 2的和为A,2x 2与1-y 2的差为B, 则A -3B= .8.()()()()()=++++-884422y x y x y x y x y x .9.有一名同学把一个整式减去多项式xy+5yz+3xz 误认为加上这个多项式,结果答案为 5yz-3xz+2xy,则原题正确答案为 .10.当a = ,b = 时,多项式a 2+b 2-4a+6b+18有最小值.二、选择题每题3分,共24分1.下列计算正确的是A 532x 2x x =+B 632x x x =⋅C 336x x x =÷D 623x x -=-)(2.有一个长方形的水稻田,长是宽的2.8倍,宽为6.5210⨯,则这块水稻田的面积是A1.183710⨯ B 510183.1⨯ C 71083.11⨯ D 610183.1⨯3.如果x 2-kx -ab = x -ax +b, 则k 应为Aa +b B a -b C b -a D -a -b4.若x -30 -23x -6-2 有意义,则x 的取值范围是A x >3 Bx ≠3 且x ≠2 C x ≠3或 x ≠2 Dx < 25.计算:322)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛得到的结果是A8 B9 C10 D116.若a = -0.42, b = -4-2, c =241-⎪⎭⎫⎝⎛-,d =041⎪⎭⎫⎝⎛-, 则 a 、b 、c 、d 的大小关系为A a<b<c<d Bb<a<d<c C a<d<c<b Dc<a<d<b7.下列语句中正确的是Ax -3.140 没有意义B 任何数的零次幂都等于1C 一个不等于0的数的倒数的-p 次幂p 是正整数等于它的p 次幂D 在科学记数法a×10 n 中,n 一定是正整数8.若k xy 30x 252++为一完全平方式,则k 为A 36y 2B 9y 2C 4y 2 Dy 2三、1.计算13xy -2x 2-3y 2+x 2-5xy +3y 22-51x 25x 2-2x +13-35ab 3c ⋅103a 3bc ⋅-8abc 2420052006315155321352125.0)()()()(-⨯+⨯- 5〔21xyx 2+yx 2-y +23x 2y 7÷3xy 4〕÷-81x 4y 6))((c b a c b a ---+ 2.用简便方法计算: 17655.0469.27655.02345.122⨯++ 29999×10001-100002 3.化简求值:14x 2+yx 2-y -2x 2-y 2 , 其中 x=2, y=-52已知:2x -y =2, 求:〔x 2+y 2-x -y 2+2yx -y 〕÷4y 4.已知:aa -1-a 2-b= -5 求: 代数式 2b a 22+-ab 的值. 5.已知: a 2+b 2-2a +6b +10 = 0, 求:a2005-b 1的值. 6.已知多项式x 2+nx+3 与多项式 x 2-3x+m 的乘积中不含x 2和x 3项,求m 、n 的值.7.请先阅读下面的解题过程,然后仿照做下面的题.已知:01x x 2=-+,求:3x 2x 23++的值.若:0x x x 132=+++,求:200432x x x x ++++ 的值.附加题:1.计算:2200320052003200320032004222-+2.已知:多项式42bx ax x 323+++能被多项式6x 5x 2+-整除,求:a 、b 的值 .绝密★档案C第一章整式的运算单元测试3一.填空题.1. 在代数式4,3x a ,y +2,-5m 中____________为单项式,_________________为多项式. 2.多项式13254242+---x y x y x π是一个 次 项式,其中最高次项的系数为 .. 3.当k = 时,多项式8313322+---xy y kxy x 中不含xy 项. 4.)()()(12y x y x x y n n --⋅--= .5.计算:)2()63(22x y x xy -÷-= .6.29))(3(x x -=-- 7.-+2)23(y x =2)23(y x -.8. -5x 2 +4x -1=6x 2-8x +2.9.计算:31131313122⨯--= . 10.计算:02397)21(6425.0⨯-⨯⨯-= . 11.若84,32==n m ,则1232-+n m = .12.若10,8==-xy y x ,则22y x += . 13.若22)(14n x m x x +=+-, 则m = ,n = .14.当x = 时,1442+--x x 有最大值,这个值是 .15. 一个两位数,个位上的数字为a,十位上的数字比个位上的数字大2,用代数式表示这个 两位数为 .16. 若 b 、a 互为倒数,则 20042003b a⨯= . 二.选择题.1.代数式:πab x x x abc ,213,0,52,17,52--+-中,单项式共有 个. A.1个 B.2个 C.3个 D.4个2.下列各式正确的是A.2224)2(b a b a +=+B.1)412(02=-- C.32622x x x -=÷- D.523)()()(y x x y y x -=--3.计算223)31(])([-⋅---a 结果为 A.591a B.691a C.69a - D.891a - 4.2)21(b a --的运算结果是 A.2241b a + B.2241b a - C.2241b ab a ++ D.2241b ab a +- 5.若))((b x a x +-的乘积中不含x 的一次项,则b a ,的关系是A.互为倒数B.相等C.互为相反数D.b a ,都为06.下列各式中,不能用平方差公式计算的是A.)43)(34(x y y x ---B.)2)(2(2222y x y x +-C.))((a b c c b a +---+D.))((y x y x -+-7. 若y b a 25.0与b a x 34的和仍是单项式,则正确的是 A.x=2,y=0B.x=-2,y=0C.x=-2,y=1D.x=2,y=1 8. 观察下列算式:12=2,22=4,32=8,42=16,52=32,62=64,72=128,82=256,……根据其规律可知108的末位数是 ……………………………………………A 、2B 、4C 、6D 、89.下列各式中,相等关系一定成立的是A 、22)()(x y y x -=-B 、6)6)(6(2-=-+x x xC 、222)(y x y x +=+D 、)6)(2()2()2(6--=-+-x x x x x10. 如果3x 2y -2xy 2÷M=-3x+2y,则单项式M 等于A 、 xy ;B 、-xy ;C 、x ;D 、 -y12. 若A =5a 2-4a +3与B =3a 2-4a +2 ,则A 与BA 、A =B B 、A >BC 、A <BD 、以上都可能成立三.计算题. 125223223)21(})2()]()2{[(a a a a a -÷⋅+-⋅- 2)2(3)121()614121(22332mn n m mn mn n m n m +--÷+-- 3)21)(12(y x y x --++ 422)2()2)(2(2)2(-+-+-+x x x x524422222)2()2()4()2(y x y x y x y x ---++四.解答题.已知将32()(34)x mx n x x ++-+乘开的结果不含3x 和2x 项.1求m 、n 的值;2当m 、n 取第1小题的值时,求22()()m n m mn n +-+的值.五.解方程:3x+2x -1=3x -1x+1.六.求值题:1.已知()2x y -=62536,x+y=76,求xy 的值. 2.已知a -b=2,b -c=-3,c -d=5,求代数式a -cb -d÷a-d 的值. 3.已知:2424,273b a == 代简求值:2(32)(3)(2)(3)(3)a b a b a b a b a b ---+++- 7分七.探究题.观察下列各式: 2(1)(1)1x x x -+=-1根据前面各式的规律可得:1(1)(...1)n n x x x x --++++ = .其中n 为正整数2根据1求2362631222...22++++++的值,并求出它的个位数字.。
人教版七年级数学下册第一章《整式的乘除》单元测试卷含答案
七年级数学下册第一章《整式的乘除》单元测试卷满分:150分题号一二三四总分得分一、选择题(本大题共15小题,共45.0分)1.下列计算正确的是()A. b3⋅b3=2b3B. (ab2)3=ab6C. (a3) 2⋅a4=a9D. (a5)2=a102.数学家赵爽公元3~4世纪在其所著的《勾股圆方图注》中记载如下构图,图中大正方形的面积等于四个全等长方形的面积加上中间小正方形的面积.若大正方形的面积为100,小正方形的面积为25,分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是A. x+y=10B. x−y=5C. xy=15D. x2−y2=503.若x2+(m−3)x+16是完全平方式,则m=()A. 11或−7B. 13或−7C. 11或−5D. 13或−54.计算(2a2b)2÷(ab)2的结果是()A. 4a3B. 4abC. a3D. 4a25.若x+y=7,xy=10,则x2−xy+y2的值为()A. 30B. 39C. 29D. 196.如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式()A. x2−y2=(x−y)(x+y)B. (x−y)2=x2−2xy+y2C. (x+y)2=x2+2xy+y2D. (x−y)2+4xy=(x+y)27.下列计算正确的是A. a2·a3=a6B. (a2)3=a6C. (2a)3=2a3D. a10÷a2=a58.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A. (a−b)(a+2b)=a2−2b2+abB. (a+b)2=a2+2ab+b2C. (a−b)2=a2−2ab+b2D. (a−b)(a+b)=a2−b29.观察下面图形,从图1到图2可用式子表示为()A. (a+b)(a−b)=a2−b2B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2D. a2+2ab+b2=(a+b)210.下列语句中正确的是()A. (−1)−2是负数B. 任何数的零次幂都等于1C. 一个不为0的数的倒数的−p次幂(p是正整数)等于它的p次幂D. (23−8)0=111.下列四个算式: ①2a3−a3=1; ②(−xy2)⋅(−3x3y)=3x4y3; ③(x3)3⋅x=x10; ④2a2b3⋅2a2b3=4a2b3.其中正确的有()A. 1个B. 2个C. 3个D. 4个12.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A. 205B. 250C. 502D. 52013.下列运算正确的是()A. (−2ab)⋅(−3ab)3=−54a4b4B. 5x2⋅(3x3)2=15x12×10n)=102nC. (−0.1b)⋅(−10b2)3=−b7D. (3×10n)(1314.已知多项式x2+kx+36是一个完全平方式,则k=()A. 12B. 6C. 12或−12D. 6或−615.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)9二、填空题(本大题共5小题,共25.0分)16.若单项式3x2y与−2x3y3的积为mx5y n,则m+n=.17.定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x−1)※x的结果为.18.计算:(1)8m÷4m=;(2)27m÷9m÷3=.19.计算:2019×1981=.20.已知31=3,32=9,33=27,34=81,35=243,36=729⋯⋯,设A=(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)×2+1,则A的个位数字是.三、计算题(本大题共2小题,共18.0分)计算:(1)(−2)8⋅(−2)5;(2)(a−b)2⋅(a−b)⋅(a−b)5;(3)x m⋅x n−2⋅(−x2n−1)21. 先化简,再求值:(2x +3y)2−(2x +y)(2x −y),其中x =13,y =−12.四、解答题(本大题共5小题,共62.0分)22. 某中学为了响应国家“发展体育运动,增强人民体质”的号召,决定建一个长方体游泳池,已知游泳池长为(4a 2+9b 2)m ,宽为(2a +3b)m ,深为(2a −3b)m ,请你计算一下这个游泳池的容积是多少⋅23. 形如|acb d |的式子叫做二阶行列式,它的运算法则用公式表示为|acb d |=ad −bc ,比如:|2513|=2×3−1×5=1.请你按照上述法则,计算|−2ab a 2b−3ab 2(−ab)|的结果.24.如图,甲长方形的两边长分别为m+1,m+7;乙长方形的两边长分别为m+2,m+4.(其中m为正整数)(1)图中的甲长方形的面积S1,乙长方形的面积S2,比较:S1S2;(填“<”“=”或“>”)(2)现有一正方形,其周长与图中的甲长方形的周长相等,试探究:该正方形的面积S与图中的甲长方形的面积S1的差(即S−S1)是一个常数,求出这个常数.25.小明想把一张长为60cm、宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为x cm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.26.小红家有一块L型的菜地,如图所示,要把L型的菜地按图那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是a m,下底都是b m,高都是(b−a)m,请你帮小红家算一算这块菜地的面积共有多少,并求出当a=10,b=30时,L型菜地的总面积.答案1.D2.C3.C4.D5.D6.C7.B8.D9.A10.C11.B12.D13.D14.C15.C16.−217.x2−118.2m3m−119.399963920.121.解:(1)原式=−28×25=−213;(2)原式=(a−b)2+1+5=(a−b)8;(3)原式=−x m+n−2+2n−1=−x m+3n−3.22.解:(2x+3y)2−(2x+y)(2x−y)=(4x2+12xy+9y2)−(4x2−y2)=4x2+12xy+9y2−4x2+y2=12xy+10y2,当x =13,y =−12时,原式=12×13×(−12)+10×(−12)2=12.23.解:这个游泳池的容积是(16a 4−81b 4)m 3.24.解:|−2ab a 2b −3ab 2(−ab )|=−2ab ⋅(−ab )−a 2b ·(−3ab 2)=2a 2b 2+3a 3b 3.25.解:(1)>(2)图中的甲长方形的周长为2(m +7+m +1)=4m +16.所以该正方形的边长为m +4.所以S −S 1=(m +4)2−(m 2+8m +7)=9.所以这个常数为9.26.解:(1)阴影部分的面积为(4x 2−200x +2400)cm 2.(2)这个盒子的体积为7500cm 3.27.解:这块菜地的面积共有(b 2−a 2)m 2,当a =10,b =30时,L 型菜地的总面积为800m 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学七年级下册第一单元测试题
一、选择题(每小题4分,共24分):
1.下面四个图形中,∠1与∠2是对顶角的图形有()
(A)0个(B)1个(C)2个(D)3个
1 2 2 2 2
1 1 1
2.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()
(A)第一次右拐50°,第二次左拐130°(B)第一次左拐50°,第二次右拐50°(C)第一次左拐50°,第二次左拐130°(D)第一次右拐50°,第二次右拐50°
3.同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()(A)a∥d (B)b⊥d (C)a⊥d (D)b∥c
4.三条直线两两相交于同一点时,对顶角有m对,交于不同三点时,对顶角有n对,则m 与n的关系是()
(A)m=n (B)m>n (C)m<n (D)m+n=10
5.若m∥n,∠1=105°,则∠2=()
(A)55°(B)60°(C)65°(D)75°
6.下列说法中准确的是() m (A)有且只有一条直线垂直于已知直线。
1
(B)从直线外一点到这条直线的垂线段,叫做这点 2
到这条直线的距离。
n (C)互相垂直的两条线段一定相交
(D)直线c外一点A与直线c上各点连接而成的所有线段中最短线段的长是3cm,则点A 到直线c的距离是3cm
二、填空题(每小题4分,共20分)
7.两个角的两边两两互相平行,且一个角的1/2等于另一个角的1/3,则这两个角的度数分别是。
8.猜谜语(打本章两个几何名称)。
剩下十分钱:;两牛相斗:;9.下面生活中的物体的运动情况能够看成平移的是。
(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)摇动的大绳;(5)汽车玻璃上雨刷的运动;(6)从楼顶自由落下的小球(球不旋转)。
10.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC= ,∠COB= 。
E
A D
11.如图,∵AC平分∠DAB
∴∠1= O
∵∠1=∠2 C B
∴∠2= D C
∴AB∥ 2
1
A B
三、做一做(本题10分)
12.如图所示,平移方格中的图形,使点A 平移到点A ′处,试画出平移后的图形,并用一句话(或一个词)描述。
四、算一算(本题10分):
13.如图,AD 是∠EAC 的平分线,A D ∥BC ,∠B=30°,你能算出∠EAD 、∠DAC 、∠C 的度数吗?
E
A D
B C
五、想一想(共12分):
14.如图,已知:E F ∥AD ,∠1=∠2。
求证:∠AGD+∠BAC=180°
C
D G
1
F
2 3
B F A
六、实际应用:
15.(11分)在长方形ABCD 中,AB=3,BC=1,E 在AB 上,AE=2,分别以E 、B 为圆心,以2为半径画圆弧交DC 于F 、G ,
(1)求平行四边形BGFE 的面积;
(2)求长方形中由FA 和GH
两段圆弧所围成部分的面积。
· A ·A ′ ⌒ ⌒
D F G C
A H E B
16、(13分)如图,点O是直线AB上一点,OC、OD分别是AB两侧的两条射线,且∠AOC=∠BOD。
(1)求∠COD的度数;
(2)∠AOC与∠BOD是对顶角吗?为什么?
C
A B
O
D。