初二数学定理知识点汇总(上册)

合集下载

初二数学上学期知识点总结优秀6篇

初二数学上学期知识点总结优秀6篇

初二数学上学期知识点总结优秀6篇初二数学上册知识点篇一一.知识概念1.同底数幂的乘法法则:m,n都是正数2..幂的乘方法则:m,n都是正数3.整式的乘法(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3)多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:5.完全平方公式:6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即a≠0,m、n都是正数,且mn.在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即,如,-2.50=1,则00无意义。

③任何不等于0的数的-p次幂p是正整数,等于这个数的p的次幂的倒数,即a≠0,p 是正整数,而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的;当a0时,a-p的值可能是正也可能是负的,如,④运算要注意运算顺序。

7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加。

8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法分解因式的'步骤:1先看各项有没有公因式,若有,则先提取公因式;2再看能否使用公式法;3用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;4因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;5因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。

八年级数学上册单元知识点

八年级数学上册单元知识点

八年级数学上册单元知识点数学是考试的重点考察科目,数学知识的积累和解题方法的掌握,需要科学有效的复习方法,同时需要持之以恒的坚持。

下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳一、勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

2、勾股定理的逆定理如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

3、勾股数满足的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。

二、证明1、对事情作出判断的句子,就叫做命题。

即:命题是判断一件事情的句子。

2、三角形内角和定理:三角形三个内角的和等于180度。

(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。

一般需要作辅助。

(2)三角形的外角与它相邻的内角是互为补角。

3、三角形的外角与它不相邻的内角关系(1)三角形的一个外角等于和它不相邻的两个内角的和。

(2)三角形的一个外角大于任何一个和它不相邻的内角。

4、证明一个命题是真命题的基本步骤(1)根据题意,画出图形。

(2)根据条件、结论,结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。

在证明时需注意:①在一般情况下,分析的过程不要求写出来。

②证明中的每一步推理都要有根据。

如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

八年级上册数学知识点(一)运用公式法我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

初二数学知识点归纳上册

初二数学知识点归纳上册

初二数学知识点归纳上册一、三角形1、三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的分类(1)按角分类:锐角三角形、直角三角形、钝角三角形。

(2)按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。

3、三角形的三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边。

4、三角形的内角和定理三角形三个内角的和等于 180°。

5、三角形的外角(1)定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

(2)性质:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。

6、三角形的中线、高线、角平分线(1)中线:连接三角形的一个顶点和它所对边的中点的线段叫做三角形的中线。

三角形的三条中线相交于一点,这点称为三角形的重心。

(2)高线:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。

三角形的三条高所在的直线相交于一点。

(3)角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

三角形的三条角平分线相交于一点。

二、全等三角形1、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形的对应边相等,对应角相等。

(2)全等三角形的周长相等,面积相等。

3、全等三角形的判定(1)“边边边”(SSS):三边对应相等的两个三角形全等。

(2)“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

(3)“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

(4)“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。

(5)“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

三、轴对称1、轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

初二数学上册知识点总结

初二数学上册知识点总结

初二数学上册知识点总结01第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用02第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。

那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式03第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。

初二数学上册知识点汇总

初二数学上册知识点汇总

数学知识提纲姓名初二上册初二数学(上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理(直角三角形的判定条件)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形,且最长边所对的角是直角。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

第二章 实 数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算术平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

初二数学上册知识点总结(共6篇)

初二数学上册知识点总结(共6篇)

初二数学上册知识点总结第1篇(有理数总可以用有限小数或无限循环小数表示)一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

实数知识点平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的`一个点来表示。

打好基础数学基础包括基础知识和基本技能。

基础知识是指数学公式,定理,原理和概念之间的内在和外在联系。

基本技能指的是计算技巧,绘图技巧以及使用公式解决问题。

技能等等。

只要掌握了基础知识和基本技能,学生就可以灵活运用数学知识来解决各种问题。

初二数学(上)知识点归纳

初二数学(上)知识点归纳

- 1 -初二数学(上)应知应会的知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x 2+px+q , 有“ x 2+px+q 是完全平方式 ⇔ q 2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A 的形式,如果B 中含有字母,式子BA 叫- 2 -做分式.2.有理式:整式与分式统称有理式;即 ⎩⎨⎧分式整式有理式.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则:,bdacd c b a =⋅bcad c d b a d c b a =⋅=÷. 8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则: (1)公式: a 0=1(a ≠0), a -n=na 1(a ≠0); (2)正整指数的运算法则都可用于负整指数计算;(3)公式:nna b b a ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-,n m m n a b b a =--;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.- 3 -11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂. 12.同分母与异分母的分式加减法法则:;c b a c b c a ±=±bdbcad bd bc bd ad d c b a ±=±=±. 13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方1.平方根的定义:若x 2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.- 4 -3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0. 5.三个重要非负数: a 2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)()a a 2=; (a ≥0)(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x 3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方. 8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数. 9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0 . 13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.- 5 -三角形几何A 级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)ABC D几何表达式举例: (1) ∵AD 平分∠BAC ∴∠BAD=∠CAD (2) ∵∠BAD=∠CAD∴AD 是角平分线2.三角形的中线定义:在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)ABCD几何表达式举例: (1) ∵AD 是三角形的中线∴ BD = CD(2) ∵ BD = CD∴AD 是三角形的中线3.三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线. (如图)AB CD几何表达式举例: (1) ∵AD 是ΔABC 的高∴∠ADB=90°(2) ∵∠ADB=90°∴AD 是ΔABC 的高※4.三角形的三边关系定理:三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)AB C几何表达式举例: (1) ∵AB+BC >AC∴……………(2) ∵ AB-BC <AC∴……………- 6 -5.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形. (如图)ABC几何表达式举例: (1) ∵ΔABC 是等腰三角形∴ AB = AC(2) ∵AB = AC∴ΔABC 是等腰三角形6.等边三角形的定义:有三条边相等的三角形叫做等边三角形. (如图)ABC几何表达式举例: (1)∵ΔABC 是等边三角形∴AB=BC=AC(2) ∵AB=BC=AC∴ΔABC 是等边三角形7.三角形的内角和定理及推论: (1)三角形的内角和180°;(如图) (2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图) ※(4)三角形的一个外角大于任何一个和它不相邻的内角.(1) (2) (3)(4) 几何表达式举例: (1) ∵∠A+∠B+∠C=180°∴…………………(2) ∵∠C=90° ∴∠A+∠B=90° (3) ∵∠ACD=∠A+∠B∴…………………(4) ∵∠ACD >∠A∴………………… 8.直角三角形的定义:有一个角是直角的三角形叫直角三角形.(如图)ABC几何表达式举例:(1) ∵∠C=90°∴ΔABC 是直角三角形(2) ∵ΔABC 是直角三角形∴∠C=90°DAB CABCABC- 7 -9.等腰直角三角形的定义: 两条直角边相等的直角三角形叫等腰直角三角形.(如图)ABC几何表达式举例: (1) ∵∠C=90° CA=CB∴ΔABC 是等腰直角三角形 (2) ∵ΔABC 是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质:(1)全等三角形的对应边相等;(如图) (2)全等三角形的对应角相等.(如图)几何表达式举例: (1) ∵ΔABC ≌ΔEFG∴ AB = EF ……… (2) ∵ΔABC ≌ΔEFG∴∠A=∠E ………11.全等三角形的判定:“SAS ”“ASA ”“AAS ”“SSS ”“HL ”. (如图)(1)(2)(3) 几何表达式举例: (1) ∵ AB = EF∵ ∠B=∠F 又∵ BC = FG∴ΔABC ≌ΔEFG (2) ……………… (3)在Rt ΔABC 和Rt ΔEFG 中∵ AB=EF又∵ AC = EG ∴Rt ΔABC ≌Rt ΔEFGABCGEFABC GEFABCEFG- 8 -12.角平分线的性质定理及逆定理: (1)在角平分线上的点到角的两边距离相等;(如图)(2)到角的两边距离相等的点在角平分线上.(如图)A OBCDE几何表达式举例: (1)∵OC 平分∠AOB又∵CD ⊥OA CE ⊥OB ∴ CD = CE(2) ∵CD ⊥OA CE ⊥OB 又∵CD = CE ∴OC 是角平分线13.线段垂直平分线的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)ABEFO几何表达式举例: (1) ∵EF 垂直平分AB∴EF ⊥AB OA=OB(2) ∵EF ⊥AB OA=OB∴EF 是AB 的垂直平分线14.线段垂直平分线的性质定理及逆定理: (1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)ABCM N P几何表达式举例:(1) ∵MN 是线段AB 的垂直平分线∴ PA = PB (2) ∵PA = PB∴点P 在线段AB 的垂直平分线上15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图) (2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都是60°.(如图)几何表达式举例: (1) ∵AB = AC∴∠B=∠C (2) ∵AB = AC 又∵∠BAD=∠CADAB C(1)AB CD(2)AB C(3)∴BD = CDAD⊥BC………………(3) ∵ΔABC是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形是等边三角形;(如图)(3)有一个角等于60°的等腰三角形是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)AB C(1)AB C(2)(3)ABC(4)几何表达式举例:(1) ∵∠B=∠C∴ AB = AC(2) ∵∠A=∠B=∠C∴ΔABC是等边三角形(3) ∵∠A=60°又∵AB = AC∴ΔABC是等边三角形(4) ∵∠C=90°∠B=30°∴AC =21AB17.关于轴对称的定理(1)关于某条直线对称的两个图形是全等形;(如图)(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)几何表达式举例:(1) ∵ΔABC、ΔEGF关于MN轴对称∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AEEFMOABCNG- 9 -- 10 -18.勾股定理及逆定理:(1)直角三角形的两直角边a 、b 的平方和等于斜边c 的平方,即a 2+b 2=c 2;(如图) (2)如果三角形的三边长有下面关系: a 2+b 2=c 2,那么这个三角形是直角三角形.(如图)ABC几何表达式举例: (1) ∵ΔABC 是直角三角形∴a 2+b 2=c 2(2) ∵a 2+b 2=c 2∴ΔABC 是直角三角形19.Rt Δ斜边中线定理及逆定理: (1)直角三角形中,斜边上的中线是斜边的一半;(如图)(2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)DABC几何表达式举例:(1) ∵ΔABC 是直角三角形∵D 是AB 的中点∴CD = 21AB(2) ∵CD=AD=BD∴ΔABC 是直角三角形几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数. 二 常识:1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段. 3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.ABCED- 11 -6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边. 10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加; ② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.A BCD 12- 12 -(2)已知角平分线.(若BD 是角平分线)① 在BA 上截取BE=BC 构造全等,转移线段和角; ② 过D 点作DE ∥BC 交AB 于E ,构造等腰三角形 .(3)已知三角形中线(若AD 是BC 的中线)① 过D 点作DE ∥AC 交AB 于E ,构造中位线 ;② 延长AD 到E ,使DE=AD 连结CE 构造全等,转移线段和角;③ ∵AD 是中线∴S ΔABD= S ΔADC (等底等高的三角形等面积)(4) 已知等腰三角形ABC 中,AB=AC ① 作等腰三角形ABC 底边的中线AD (顶角的平分线或底边的高)构造全 等三角形;② 作等腰三角形ABC 一边的平行线DE ,构造新的等腰三角形.BCDAEBCD AEADECBADECBADCBADCBEADCBE ADCB- 13 -(5)其它① 作等边三角形ABC 一边 的平行线DE ,构造新的等边三角形;② 作CE ∥AB ,转移角;③ 延长BD 与AC 交于E ,不规则图形转化为规则图形;④ 多边形转化为三角形;⑤ 延长BC 到D ,使CD=BC ,连结AD ,直角三角形转化为等腰三角形;⑥ 若a ∥b,AC,BC 是角平 分线,则∠C=90°.DACBECBADEC EBDAADOB CEBCDABACa b。

人教版初二上册数学知识点总结(汇集6篇)

人教版初二上册数学知识点总结(汇集6篇)

人教版初二上册数学知识点总结(汇集6篇)人教版初二上册数学知识点总结(1)1全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21推论1等腰三角形顶角的平分线平分底边并且垂直于底边22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23推论3等边三角形的各角都相等,并且每一个角都等于60°24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25推论1三个角都相等的三角形是等边三角形26推论2有一个角等于60°的等腰三角形是等边三角形27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28直角三角形斜边上的中线等于斜边上的一半29定理线段垂直平分线上的点和这条线段两个端点的距离相等30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上人教版初二上册数学知识点总结(2)一次函数(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;(2)正比例函数图像特征:一些过原点的直线;(3)图像性质:①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k(4)求正比例函数的解析式:已知一个非原点即可;(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)(8)一次函数图像特征:一些直线;(9)性质:①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;③当k④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);⑤当b(10)求一次函数的解析式:即要求k与b的值;(11)画一次函数的图像:已知两点;用函数观点看方程(组)与不等式(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。

初二数学上册知识点总结

初二数学上册知识点总结

1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角。

初二数学知识点总结归纳【完整版】

初二数学知识点总结归纳【完整版】

初二数学知识点总结归纳【完整版】八年级上册数学知识点篇一1、全等三角形的对应边、对应角相等2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5、边边边公理(SSS)有三边对应相等的两个三角形全等6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7、定理1在角的平分线上的点到这个角的两边的距离相等8、定理2到一个角的两边的距离相同的点,在这个角的平分线上9、角的平分线是到角的两边距离相等的所有点的集合10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13、推论3等边三角形的各角都相等,并且每一个角都等于60°14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15、推论1三个角都相等的三角形是等边三角形16、推论2有一个角等于60°的等腰三角形是等边三角形17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18、直角三角形斜边上的中线等于斜边上的一半19、定理线段垂直平分线上的点和这条线段两个端点的距离相等20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合22、定理1关于某条直线对称的两个图形是全等形23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^227、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形28、定理四边形的内角和等于360°29、四边形的外角和等于360°初二数学知识点归纳篇二一次函数(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;(2)正比例函数图像特征:一些过原点的直线;(3)图像性质:①当k0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;(4)求正比例函数的解析式:已知一个非原点即可;(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)(8)一次函数图像特征:一些直线;(9)性质:①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx 平移|b|个单位长度而得;(当b0,向上平移;当b0,向下平移)②当k0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;③当k0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;④当b0时,直线y=kx+b与y轴正半轴有交点为(0,b);⑤当b0时,直线y=kx+b与y轴负半轴有交点为(0,b);(10)求一次函数的解析式:即要求k与b的值;(11)画一次函数的图像:已知两点;用函数观点看方程(组)与不等式(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。

初二数学上册知识点汇总

初二数学上册知识点汇总

数 学知 识 提 纲姓名初二上册初二数学(上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理(直角三角形的判定条件)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形,且最长边所对的角是直角。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

第二章 实 数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算术平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

八年级上册人教版数学知识点7篇

八年级上册人教版数学知识点7篇

八年级上册人教版数学知识点7篇八年级上册人教版数学知识点11全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11推论1等腰三角形顶角的平分线平分底边并且垂直于底边12等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13推论3等边三角形的各角都相等,并且每一个角都等于60°14等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15推论1三个角都相等的三角形是等边三角形16推论2有一个角等于60°的等腰三角形是等边三角形17在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18直角三角形斜边上的中线等于斜边上的一半19定理线段垂直平分线上的点和这条线段两个端点的距离相等20逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上初二数学求定义域口诀求定义域有讲究,四项原则须留意。

负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次。

限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。

负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次。

限制条件不唯一,不等式组求解集。

初中提高数学成绩诀窍很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。

初二数学(上)知识点总结

初二数学(上)知识点总结

初二数学(上)知识点总结三角形一 基本概念:B 级概念:(要求理解、会讲、会用,主要用于填空和选择题) 三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数. 二 常识:1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA.4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.6.分别含30°、45°、60°的直角三角形是特殊的直角三角形. 7.如图,双垂图形中,有两个重要的性质,即:(1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角. 9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形. 11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等. 13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法. 14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线. 15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图. 17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. 18. 多边形①多边形的内角和 (n-2)180º②多边形的外角和 360º ③多边形的对角线条数2)3-n (n※19.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角;④ 作辅助线必须符合几何基本作图.A BC ED AB C D 12延长BC到D,使CD=BC,连结AD,直角几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化. 2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式. 6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m±n )2的多项式叫完全平方式;对于二次三项式x 2+px+q ,有“ x 2+px+q 是完全平方式 (2p )2=q ”. 第十五章 分式(一)知识体系(二)需要注意的问题 分式的基本概念和基本性质1. 区分整式和分式,分式是除式中含有字母的有理式,它表示分子除以分母的商,因此它既是有理式,又是与整式联系的代数式。

初二数学上册知识点

初二数学上册知识点

初二数学上册知识点初二数学上册知识点第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。

判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。

定义:满足a +b =c 的三个正整数,称为勾股数。

第二章实数定义:任何有限小数或无限循环小数都是有理数。

无限不循环小数叫做无理数(有理数总可以用有限小数或无限循环小数表示)一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

第三章图形的平移与旋转定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移不改变图形的形状和大小。

经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。

在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。

旋转不改变图形的大小和形状。

任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

第四章、三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

初二(八年级)数学上册知识点总结

初二(八年级)数学上册知识点总结

初二(八年级)数学上册知识点总结小编整理了关于初二(八年级)数学上册知识点总结,以供各位同学学习和复习,希望同学们及时抓住重点并查缺补漏以最佳状态备战期末考试,关于初二(八年级)数学上册知识点总结希望对于同学们的数学复习有所帮助,初二数学上册知识点我们一起来学习和分享吧!1 全等三角形的对应边、对应角相等2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(SSS) 有三边对应相等的两个三角形全等6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等7 定理1 在角的平分线上的点到这个角的两边的距离相等8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上9 角的平分线是到角的两边距离相等的所有点的集合10 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23 推论3 等边三角形的各角都相等,并且每一个角都等于60°24 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25 推论1 三个角都相等的三角形是等边三角形26 推论 2 有一个角等于60°的等腰三角形是等边三角形27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28 直角三角形斜边上的中线等于斜边上的一半29 定理线段垂直平分线上的点和这条线段两个端点的距离相等30 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32 定理1 关于某条直线对称的两个图形是全等形33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^237勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形38定理四边形的内角和等于360°39四边形的外角和等于360°40多边形内角和定理 n边形的内角的和等于(n-2)×180°41推论任意多边的外角和等于360°42平行四边形性质定理1 平行四边形的对角相等43平行四边形性质定理2 平行四边形的对边相等44推论夹在两条平行线间的平行线段相等45平行四边形性质定理3 平行四边形的对角线互相平分46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形48平行四边形判定定理3 对角线互相平分的四边形是平行四边形49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形50矩形性质定理1 矩形的四个角都是直角51矩形性质定理2 矩形的对角线相等52矩形判定定理1 有三个角是直角的四边形是矩形53矩形判定定理2 对角线相等的平行四边形是矩形54菱形性质定理1 菱形的四条边都相等55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角56菱形面积=对角线乘积的一半,即S=(a×b)÷257菱形判定定理1 四边都相等的四边形是菱形58菱形判定定理2 对角线互相垂直的平行四边形是菱形59正方形性质定理1 正方形的四个角都是直角,四条边都相等60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角61定理1 关于中心对称的两个图形是全等的62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分63逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称64等腰梯形性质定理等腰梯形在同一底上的两个角相等65等腰梯形的两条对角线相等66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形67对角线相等的梯形是等腰梯形68平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边71 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半72 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h73 (1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d74 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d75 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b76 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例77 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例78 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例80 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)84 判定定理3 三边对应成比例,两三角形相似(SSS)85 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比87 性质定理2 相似三角形周长的比等于相似比88 性质定理3 相似三角形面积的比等于相似比的平方89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值91圆是定点的距离等于定长的点的集合92圆的内部可以看作是圆心的距离小于半径的点的集合93圆的外部可以看作是圆心的距离大于半径的点的集合94同圆或等圆的半径相等95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线97到已知角的两边距离相等的点的轨迹,是这个角的平分线98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线99定理不在同一直线上的三点确定一个圆。

初二上册数学知识点归纳

初二上册数学知识点归纳

初二上册数学知识点总结归纳1-401 全等三角形的对应边、对应角相等¬2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等¬3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等¬4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等¬5 边边边公理(SSS) 有三边对应相等的两个三角形全等¬6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等¬7 定理1 在角的平分线上的点到这个角的两边的距离相等¬8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上¬9 角的平分线是到角的两边距离相等的所有点的集合¬10 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) ¬21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边¬22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合¬23 推论3 等边三角形的各角都相等,并且每一个角都等于60°¬24 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ¬25 推论1 三个角都相等的三角形是等边三角形¬26 推论2 有一个角等于60°的等腰三角形是等边三角形¬27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半¬28 直角三角形斜边上的中线等于斜边上的一半¬29 定理线段垂直平分线上的点和这条线段两个端点的距离相等¬30 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上¬31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合¬32 定理1 关于某条直线对称的两个图形是全等形¬33 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线¬34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上¬35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称¬36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 ¬37勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形¬38定理四边形的内角和等于360°¬39四边形的外角和等于360°¬40多边形内角和定理n边形的内角的和等于(n-2)×180°¬初二上册数学知识点总结归纳41-8041推论任意多边的外角和等于360°¬42平行四边形性质定理1 平行四边形的对角相等¬43平行四边形性质定理2 平行四边形的对边相等¬44推论夹在两条平行线间的平行线段相等¬45平行四边形性质定理3 平行四边形的对角线互相平分¬46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形¬47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形¬48平行四边形判定定理3 对角线互相平分的四边形是平行四边形¬49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形¬50矩形性质定理1 矩形的四个角都是直角¬51矩形性质定理2 矩形的对角线相等¬52矩形判定定理1 有三个角是直角的四边形是矩形¬53矩形判定定理2 对角线相等的平行四边形是矩形¬54菱形性质定理1 菱形的四条边都相等¬55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角¬56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ¬57菱形判定定理1 四边都相等的四边形是菱形¬58菱形判定定理2 对角线互相垂直的平行四边形是菱形¬59正方形性质定理1 正方形的四个角都是直角,四条边都相等¬60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角¬61定理1 关于中心对称的两个图形是全等的¬62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分¬63逆定理如果两个图形的对应点连线都经过某一点,并且被这一¬点平分,那么这两个图形关于这一点对称¬64等腰梯形性质定理等腰梯形在同一底上的两个角相等¬65等腰梯形的两条对角线相等¬66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形¬67对角线相等的梯形是等腰梯形¬68平行线等分线段定理如果一组平行线在一条直线上截得的线段¬相等,那么在其他直线上截得的线段也相等¬69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰¬70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第¬三边¬71 三角形中位线定理三角形的中位线平行于第三边,并且等于它¬的一半¬72 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的¬一半L=(a+b)÷2 S=L×h ¬73 (1)比例的基本性质如果a:b=c:d,那么ad=bc ¬如果ad=bc,那么a:b=c:d ¬74 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d ¬75 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么¬(a+c+…+m)/(b+d+…+n)=a/b ¬76 平行线分线段成比例定理三条平行线截两条直线,所得的对应¬线段成比例¬77 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例¬78 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边¬79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例¬80 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似¬初二上册数学知识点总结归纳81-13681 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) ¬82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似¬83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) ¬84 判定定理3 三边对应成比例,两三角形相似(SSS) ¬85 定理如果一个直角三角形的斜边和一条直角边与另一个直角三¬角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似¬86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平¬分线的比都等于相似比¬87 性质定理2 相似三角形周长的比等于相似比¬88 性质定理3 相似三角形面积的比等于相似比的平方¬89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等¬于它的余角的正弦值¬90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等¬于它的余角的正切值¬91圆是定点的距离等于定长的点的集合¬92圆的内部可以看作是圆心的距离小于半径的点的集合¬93圆的外部可以看作是圆心的距离大于半径的点的集合¬94同圆或等圆的半径相等¬95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半¬径的圆¬96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直¬平分线¬97到已知角的两边距离相等的点的轨迹,是这个角的平分线¬98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距¬离相等的一条直线¬99定理不在同一直线上的三点确定一个圆. ¬100垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧¬101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧¬②弦的垂直平分线经过圆心,并且平分弦所对的两条弧¬③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧¬102推论2 圆的两条平行弦所夹的弧相等¬103圆是以圆心为对称中心的中心对称图形¬104定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦¬相等,所对的弦的弦心距相等¬105推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两¬弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等¬106定理一条弧所对的圆周角等于它所对的圆心角的一半¬107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等¬108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所¬对的弦是直径¬109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形¬110定理圆的内接四边形的对角互补,并且任何一个外角都等于它¬的内对角¬111①直线L和⊙O相交d②直线L和⊙O相切d=r ¬③直线L和⊙O相离d>r ¬112切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线¬113切线的性质定理圆的切线垂直于经过切点的半径¬114推论1 经过圆心且垂直于切线的直线必经过切点¬115推论2 经过切点且垂直于切线的直线必经过圆心¬116切线长定理从圆外一点引圆的两条切线,它们的切线长相等, ¬圆心和这一点的连线平分两条切线的夹角¬117圆的外切四边形的两组对边的和相等¬118弦切角定理弦切角等于它所夹的弧对的圆周角¬119推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等¬120相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积¬相等¬121推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的¬两条线段的比例中项¬122切割线定理从圆外一点引圆的切线和割线,切线长是这点到割¬线与圆交点的两条线段长的比例中项¬123推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等¬124如果两个圆相切,那么切点一定在连心线上¬125①两圆外离d>R+r ②两圆外切d=R+r ¬③两圆相交R-r。

初二数学上册知识点汇总[优秀]

初二数学上册知识点汇总[优秀]

初二数学上册知识点汇总[优秀]初二数学上册知识点汇总1一、勾股定理:1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;(2)根据同一种图形的.面积不同的表示方法,列出等式,推导出勾股定理。

4.勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

二、勾股定理的逆定理1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c 为三边的三角形是直角三角形;(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的平方和;(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。

三、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。

五、勾股定理及其逆定理的应用解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。

初二数学上册知识点汇总2勾股定理:直角三角形两直角边的平方和等于斜边的平方,即如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2(勾股定理公式) 直角三角形性质定理:1.直角三角形两直角边a,b的平方和等于斜边c的平方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学定理知识点汇总(上册)第一章 勾股定理1、直角三角形两直角边的平和等于斜边的平方。

即:222c b a =+(由直角三角形得到边的关系)2、如果三角形的三边长a ,b ,c 满足222c b a =+,那么这个三角形是直角三角形。

3、满足条件222c b a =+的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)第二章 实数1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。

0的算术平方根为0;从定义可知,只有当a ≥0时,a 才有算术平方根。

2、平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。

3、正数有两个平方根(一正一负);0只有一个平方根,就是它本身;负数没有平方根。

4、正数的立方根是正数;0的立方根是0;负数的立方根是负数。

())0,0(0,0>≥=≥≥=⨯b a b a b a b a ab b a第三章图形的平移与旋转1、平移:在平面内,将一个图形沿某个方向移动一定距离,这样的图形运动称为平移。

2、平移的基本性质:经过平移,对应线段、对应角分别相等;对应点所连的线段平行且相等。

3、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点叫旋转中心,转动的角度叫旋转角。

4、旋转的性质:旋转后的图形与原图形的大小和形状相同;旋转前后两个图形的对应点到旋转中心的距离相等;对应点到旋转中心的连线所成的角度彼此相等。

(例:如图所示,点D、E、F分别为点A、B、C的对应点,经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

)第四章四平边形性质探索1、平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。

2、平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。

3、平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边形。

两条对角线互相平分的四边形是平行四边形。

4、平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。

这个距离称为平行线之间的距离。

5、菱形的定义:一组邻边相等的平行四边形叫做菱形。

6、菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

7、菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

8、矩形的定义:有一个角是直角的平行四边形叫矩形。

矩形是特殊的平行四边形。

9、矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。

(矩形是轴对称图形,有两条对称轴)10、矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

11、推论:直角三角形斜边上的中线等于斜边的一半。

12、正方形的定义:一组邻边相等的矩形叫做正方形。

13、正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。

(正方形是轴对称图形,有两条对称轴)14、正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。

正方形、矩形、菱形和平行边形四者之间的关系(如图所示):15、梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

16、两条腰相等的梯形叫做等腰梯形。

17、一条腰和底垂直的梯形叫做直角梯形。

18、等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形。

19、多边形内角和:n边形的内角和等于(n-2)·180°20、多边形的外角和都等于360°21、在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图开叫做中心对称图形。

22、中心对称图形上的每一对对应点所连成的线段被对称中心平分。

第五章位置的确定1、平面直角坐标系概念:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系,水平的数轴叫x轴或横轴;铅垂的数轴叫y轴或纵轴,两数轴的交点O称为原点。

2、点的坐标:在平面内一点P,过P向x轴、y轴分别作垂线,垂足在x轴、y轴上对应的数a、b分别叫P点的横坐标和纵坐标,则有序实数对(a、b)叫做P点的坐标。

3、在直角坐标系中如何根据点的坐标,找出这个点(如图4所示),方法是由P(a、b),在x轴上找到坐标为a的点A,过A作x轴的垂线,再在y轴上找到坐标为b的点B,过B作y轴的垂线,两垂线的交点即为所找的P点。

4、如何根据已知条件建立适当的直角坐标系?根据已知条件建立坐标系的要求是尽量使计算方便,一般地没有明确的方法,但有以下几条常用的方法:①以某已知点为原点,使它坐标为(0,0);②以图形中某线段所在直线为x轴(或y轴);③以已知线段中点为原点;④以两直线交点为原点;⑤利用图形的轴对称性以对称轴为y轴等。

5、图形“纵横向伸缩”的变化规律:A、将图形上各个点的坐标的纵坐标不变,而横坐标分别变成原来的n倍时,所得的图形比原来的图形在横向:①当n>1时,伸长为原来的n倍;②当0<n<1时,压缩为原来的n倍。

B、将图形上各个点的坐标的横坐标不变,而纵坐标分别变成原来的n倍时,所得的图形比原来的图形在纵向:①当n>1时,伸长为原来的n倍;②当0<n<1时,压缩为原来的n倍。

6、图形“纵横向位置”的变化规律:A、将图形上各个点的坐标的纵坐标不变,而横坐标分别加上a,所得的图形形状、大小不变,而位置向右(a>0)或向左(a<0)平移了|a|个单位。

B、将图形上各个点的坐标的横坐标不变,而纵坐标分别加上b,所得的图形形状、大小不变,而位置向上(b>0)或向下(b<0)平移了|b|个单位。

7、图形“倒转与对称”的变化规律:A、将图形上各个点的横坐标不变,纵坐标分别乘以-1,所得的图形与原来的图形关于x轴对称。

B、将图形上各个点的纵坐标不变,横坐标分别乘以-1,所得的图形与原来的图形关于y轴对称。

8、图形“扩大与缩小”的变化规律:将图形上各个点的纵、横坐标分别变原来的n倍(n>0),所得的图形与原图形相比,形状不变;①当n>1时,对应线段大小扩大到原来的n倍;②当0<n<1时,对应线段大小缩小到原来的n倍。

若两个变量x,y 间的关系式可以表示成y=kx+b(k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)。

特别地,当b=0时,称y 是x 的正比例函数。

()()()321000.0k ⎪⎩⎪⎨⎧<=><b b b1、正比例函数y=kx 的图象是经过原点(0,0)的一条直线。

2、在一次函数y=kx+b 中: 当k>0时,y 随x 的增大而增大; 当k<0时,y 随x 的增大而减小。

第七章 二元一次方程组1、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

两个一次方程所组成的一组方程叫做二元一次方程组。

2、解二元一次方程组:①代入消元法; ②加减消元法(无论是代入消元法还是加减消元法,其目的都是将“二元一次方程”变为“一元一次方程”,所谓之“消元”)3、在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x 或y ;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。

3、处理问题的过程可以进一步概括为:解答检验求解组方程抽象分析问题→→)(()()()321000.0k ⎪⎩⎪⎨⎧<=>>b b b1、加权平均数:一组数据n x x x ,,21的权分加为n w w w ,,21,则称n nn w w w w x w x w x ++++++ 212211为这n 个数的加权平均数。

(如:对某同学的数学、语文、科学三科的考查,成绩分别为72,50,88,而三项成绩的“权”分别为4、3、1,则加权平均数为:134188350472++⨯+⨯+⨯)2、一般地,n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

3、一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、众数着眼于对各数据出现次数的考察,中位数首先要将数据按大小顺序排列,而且要注意当数据个数为奇数时,中间的那个数据就是中位数;当数据个数为偶数时,居于中间的两个数据的平均数才是中位数,特别要注意一组数据的平均数和中位数是唯一的,但众数则不一定是唯一的。

相关文档
最新文档