图形的旋转知识点整理
《图形的旋转》-知识点整理
图形的旋转
1、旋转:将一个图形绕着某点O 转动一个角度的变换叫做旋转。
其中,O 叫做旋转中心,
转动的角度叫做旋转角。
2、旋转性质
① 旋转后的图形与原图形全等 ② 对应线段与O 形成的角
叫做旋转角 ③ 各旋转角都相等
3、中心对称与中心对称图形
① 中心对称:若一个图形绕着某个点O 旋转180°,能够与另一个图形完全重合,则这
两个图形关于这个点对称或中心对称。
其中,点O 叫做对称中心、两个图形的对应点叫做关
于中心的对称点。
② 中心对称图形:若一个图形绕着某个点O 旋转180°,能够与原来的图形完全重合,
则这个图形叫做中心对称图形。
其中,这个点叫做该图形的对称中心。
4、钟表旋转问题
钟表的时针与分针每时每刻都以轴心为旋转中心作旋转运动,其中时针12小时旋转一
周,则每小时旋转,3012
36000=这样时针每分钟旋转;5.00分针每小时旋转一周,则每分钟旋转.660
36000
=。
初中数学旋转的知识点归纳总结
初中数学旋转的知识点归纳总结
初中数学旋转的知识点归纳总结
旋转章节的要求是让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察。
那么接下来的旋转内容请同学们认真记忆了。
旋转知识概念
1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的.位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
)
2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.中心对称图形与中心对称:
中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:
关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
九年级上册旋转数学知识点
九年级上册旋转数学知识点九年级上册旋转数学知识点1.旋转的定义:把一个图形绕着某一O转动一个角度的图形变换叫做旋转。
点O叫做旋转中心,转动的角叫做旋转角。
如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点。
重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。
2.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等3.作图:在画旋转图形时,要把握旋转中心与旋转角这两个元素。
确定旋转中心的关键是看图形在旋转过程中某一点是“动〞还是“不动〞,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角。
作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.知识点二、中心对称与中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.2.中心对称的两条基本性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.3.中心对称图形把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.初中数学重要考点数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(三要素)②任何一个有理数都可以用数轴上的一个点来表示。
三年级数学《简单的图形旋转》知识点总结
三年级数学《简单的图形旋转》知识点总结简单的图形旋转是三年级数学中的一个重要知识点,通过对图形的旋转操作,可以培养学生的空间想象力和几何观念。
本文将对简单的图形旋转进行知识点总结。
一、图形旋转的概念图形旋转是指将一个图形绕着某一固定点进行旋转或转动的操作。
在旋转过程中,图形的大小、形状和内部结构保持不变,只是位置发生改变。
二、旋转的基本要素1. 旋转中心:图形旋转的中心点,可以是图形内部的某个点或者图形外部的某个点。
2. 旋转角度:旋转角度表示从原始位置到旋转后的位置所需的角度大小,通常用度数来表示,如顺时针旋转90度。
三、旋转的常见类型1. 顺时针旋转:图形按照顺时针的方向进行旋转。
2. 逆时针旋转:图形按照逆时针的方向进行旋转。
四、旋转的性质1. 旋转前后图形的大小、形状及内部结构保持不变。
2. 旋转角度的大小会影响旋转后图形的位置。
3. 同一个图形可以有不同的旋转中心和旋转角度,从而得到不同的旋转结果。
五、旋转的操作步骤1. 确定旋转中心:根据题目要求或者实际情况确定图形的旋转中心。
2. 确定旋转角度:根据题目要求或者实际情况确定图形的旋转角度,可以使用量角器或者直接估算。
3. 进行旋转:按照旋转中心和旋转角度进行旋转操作,注意保持图形的大小、形状和内部结构不变。
六、旋转的应用举例1. 模拟时钟的指针旋转:通过图形旋转,可以模拟时钟中时针、分针和秒针的运动。
2. 表示地球自转和公转:地球自转和公转是地球运动的基本规律,通过图形旋转可以直观地展示地球的自转和公转过程。
3. 绘制动画效果:在计算机图形学中,图形旋转技术被广泛应用于绘制动画效果,例如旋转的立方体、旋转的球等。
七、注意事项1. 旋转操作需要保持准确度和精度,可以使用工具辅助,如量角器等。
2. 学习图形旋转时,要多进行实际操作和观察,加强对旋转操作的理解和掌握。
3. 在解决问题时,需要灵活运用旋转的几何性质,结合其他数学知识进行分析和推理。
第二十三章旋转知识点总结,经典例题,单元测试
第二十三章旋转知识点总结,经典例题,单元测试:1.旋转:把一个平面图形绕着平面内某一点0转动一个角度,就叫做图形的旋转。
点0叫做旋转中心,旋动的角叫做旋转角。
旋转方向:顺时针和逆时针。
2.旋转的特征:(旋转不改变图形的大小和方向)(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角都等于旋转角。
(3)旋转前、后的图形全等。
3.旋转对称图形:一个图形绕着某一动点转动一定的角度后能与自身完全重合,这种图形称为旋转对称图形,绕着转动的这一点,称为旋转中心。
注:结合旋转对称图形的定义知:正三角形绕其中心旋转1200后能与自身完全重合,故正三角形是旋转对称图形;正方形绕其对角线的交点(旋转中心)旋转900后能与自身完全重合,故正方形是旋转对称图形。
一般的正n(n≥3)变形是旋转对称图形,那么最少旋转时,能与自身完全重合。
4.设计旋转对称图形:(1)确定旋转中心、旋转角度和旋转方向;这是旋转的三要素。
(2)确定图形中的关键点;(3)将这些关键点绕旋转中心绕指定方向旋转指定的角度。
(4)顺次连接新关键点,得到所求图形。
旋转的定义:【例1】如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:1.旋转中心是什么?旋转角是什么?2.经过旋转,点A、B分别移动到什么位置?【例2】如图所示,⊿ABC 和⊿ADE 都是等腰直角三角形,∠ACB 和∠AED 都是直角,点C 在AD 上,如果⊿ABC 经旋转后能与⊿ADE 重合,那么哪一点是旋转中心?旋转角度是多少?并指出对应点。
CBDEAM DBC EAN练一练:如图所示,⊿ABC 是等腰三角形,∠ACB=900,D 是AB 边上一点,⊿CBD 经逆时针旋转后到达⊿CAE 的位置,则旋转中心是 ,旋转角度是 ,点B 的对应点是 ,点D 的对应点是 ,线段CB 的对应线段是 ,线段CD 的对应线段是 ,∠CBD 的对应角是 ,如果点M 是线段BC 的中点,点N 是线段AC 的中点,那么经过上述旋转之后,点M 旋转到了 。
数学五年级旋转的知识点
数学五年级旋转的知识点数学五年级的课程中,旋转是一个重要的几何概念。
旋转是指将一个图形围绕一个点(旋转中心)按照某个方向和角度进行转动,从而得到一个新的图形。
以下是关于五年级数学中旋转的一些基本知识点:旋转的定义:旋转是图形变换的一种方式,它将一个图形的每个点按照相同的方向和角度移动到一个新的位置。
旋转的三要素:1. 旋转中心:图形围绕哪个点进行旋转。
2. 旋转方向:可以是顺时针或逆时针。
3. 旋转角度:图形旋转的度数,通常用度数(°)来表示。
旋转的性质:- 旋转前后图形的大小和形状不变。
- 旋转后的图形与原图形关于旋转中心对称。
旋转的分类:- 全等旋转:图形旋转后与原图形完全重合。
- 相似旋转:图形旋转后与原图形形状相同,但大小可能不同。
旋转的应用:在实际生活中,旋转的应用非常广泛,例如:- 时钟的指针转动。
- 地球的自转和公转。
- 门的开合。
例题解析:假设有一个正方形ABCD,我们需要将其绕点A逆时针旋转90°。
旋转后,点B将移动到点A的正上方,点C将移动到点A的正右方,点D 将移动到点A的正下方。
新的正方形将是AEFGH,其中E、F、G、H分别是B、C、D、A旋转后的位置。
练习题:1. 一个等边三角形绕其中心点旋转120°后,它与原图形的位置关系是什么?2. 如果一个图形绕某点顺时针旋转了90°,那么它与原图形关于哪个点对称?通过这些知识点和例题,学生可以更好地理解旋转的概念,并学会如何在实际问题中应用旋转的知识。
希望这些内容能帮助学生在数学学习中取得进步。
旋转知识点总结
旋转知识点总结一、旋转1.旋转的概念:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角叫做旋转角.2.旋转三要素:①旋转中心;②旋转方向;③旋转角度3.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角(3)旋转前后的图形全等.4.网格中的旋转:①确定旋转中心、旋转方向及旋转角;②找原图形的关键点;③连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;④按原图形依次连接各关键点的对应点,得到旋转后的图形.二、中心对称1.中心对称:中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.三、尺规作图(旋转)1.作图方法:以旋转点为中心找出各点旋转对应角度后得到的对应点,再顺次连接得到旋转后的图形.四、关于原点对称的点的坐标1.关于原点对称后点的坐标:若对称前的点坐标为(x,y),那么对称后的点坐标为(-x,-y).五、旋转90°的点的坐标1.绕原点旋转90°后的点的坐标:(1)顺时针旋转:若对称前的点坐标为(x,y),那么对称后的点坐标为(y,-x).(2)逆时针旋转:若对称前的点坐标为(x,y),那么对称后的点坐标为(-y,x).六、常见全等模型(手拉手模型)1.手拉手模型:两个等腰三角形共顶点时,就有全等三角形.结论:(1)△ABE≌△DBC(2)AE=DC(3)AE交DC于点H,∠AHD=∠ABD(4)HB平分∠AHC七、常见全等模型(半角模型)1.半角模型:共顶点的两个角度,当一个角等于另一个角的一半时,可以将三角形旋转,得到全等三角形.结论:(1)△AEF≌△AGF(2)EF=BF+DEDA CB八、常见全等模型(对角互补四边形旋转模型)1.对角互补四边形旋转模型:四边形对角互补且有一组邻边相等时,可以将三角形旋转,得到等腰三角形或正方形.。
旋转与中心对称知识点总结
旋转与中心对称知识点总结一、旋转的基本概念1. 旋转的定义旋转是指一个图形绕着一个固定的点(称为旋转中心)旋转一定角度,使得图形的每一点都按照相同的角度和方向进行旋转。
旋转是一种基本的变换方式,可以将一个图形变换成另一个图形。
2. 旋转的性质(1)旋转保持图形的大小不变,只改变其位置和方向。
(2)旋转是一种等距变换,即旋转前后图形上的任意两点的距离不变。
(3)旋转有方向性,即按照逆时针或者顺时针方向旋转。
(4)旋转的角度可以是正数、负数或者零。
3. 旋转的记法在表示旋转时,通常用“R(α, O)”来表示。
其中,R表示旋转的动作,α表示旋转的角度,O 表示旋转的中心。
4. 旋转的应用旋转在几何中有着广泛的应用,如在图形的相似性、对称性、平移和旋转组合变换等方面都有重要作用。
此外,旋转还在几何构造和设计中有着重要的应用价值。
二、中心对称的基本概念1. 中心对称的定义中心对称是指以某一点为中心进行对称变换,使得图形的每一点都关于这个中心对称,即以中心为轴,使得对称的两个部分分别对称于中心点的两侧。
2. 中心对称的性质(1)中心对称的图形和它的中心对称图形是全等的,即它们的形状和大小都完全相同。
(2)中心对称是一种等长变换,原图形中的任意一点到中心的距离和对称图形中的相对点到中心的距离相等。
(3)中心对称是一种对易变换,即进行两次中心对称等于原图形。
3. 中心对称的应用中心对称在几何中也有着重要的应用,如在图形的分类和性质判断、对称性的分析、几何构造等方面都有重要的应用。
此外,中心对称还在艺术设计和图案构图中有着重要的应用价值。
三、旋转与中心对称的关系1. 旋转与中心对称的联系旋转和中心对称在一定条件下是等价的,即通过旋转可以实现中心对称,通过中心对称也可以实现旋转。
这是因为旋转和中心对称都是一种对称性变换,它们都具有保持图形不变的性质。
2. 旋转与中心对称的应用旋转与中心对称在一些几何问题中常常结合使用,如在构造等边三角形、六边形等图形时,旋转和中心对称可以互相借助,以实现图形的变换和构造。
(完整版)第二十三章旋转知识点
第二十三章旋转23.1 图形的旋转1.旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点。
2.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.3.旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.23.2 中心对称图形1.中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.2.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.3.关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.4.坐标与图形变化--旋转(1)关于原点对称的点的坐标P(x,y)⇒P(-x,-y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.23.3课题学习图案设计1.利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.2.利用平移设计图案确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.3.作图--旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.4.利用旋转设计图案由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换出一些复合图案.利用旋转设计图案关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.5.几何变换的类型(1)平移变换:在平移变换下,对应线段平行且相等.两对应点连线段与给定的有向线段平行(共线)且相等.(2)轴对称变换:在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.(3)旋转变换:在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.(4)位似变换:在位似变换下,一对位似对应点与位似中心共线;一条线上的点变到一条线上,且保持顺序,即共线点变为共线点,共点线变为共点线;对应线段的比等于位似比的绝对值,对应图形面积的比等于位似比的平方;不经过位似中心的对应线段平行,即一直线变为与它平行的直线;任何两条直线的平行、相交位置关系保持不变;圆变为圆,且两圆心为对应点;两对应圆相切时切点为位似中心.。
九年级上册数学旋转知识点总结
九年级上册数学旋转知识点总结九年级上册数学旋转知识点1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征 (3分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)初中数学有理数的运算知识点加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
图形的旋转(6种题型)-2023年新九年级数学核心知识点与常见题型(浙教版)(解析版)
图形的旋转(6种题型)【知识梳理】一.生活中的旋转现象(1)旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.(2)注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.二.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.三.旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.四.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.五.坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(﹣x,﹣y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.六.作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.七.利用旋转设计图案由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换出一些复合图案.利用旋转设计图案关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通【考点剖析】一.生活中的旋转现象(共1小题)1.(2022秋•义乌市期中)商场卫生间旋转门锁的局部如图1所示,如图2锁芯O固定在距离门边(EF)3.5cm处(即ON=3.5cm),在自然状态下,把手竖直向下(把手底端到达A).旋转一定角度,把手底端B恰好卡住门边时,底端A、B的竖直高度差为0.5cm.当把手旋转90°到达水平位置时固定力最强,有效的固定长度(把手底端到门边的垂直距离)DN=cm,当把手旋转到OC时,∠BOC=∠BOD,此时有效的固定长度为cm.【分析】作BG⊥OA于G,设OA=OB=OC=OD=xcm,在Rt△OBG中利用勾股定理求出x,利用OD﹣ON 得到DN,连接OB,交OC于M,作CP⊥OD,MQ⊥OD,求出BD,OM,QM和OQ,证明△OPC∽△OQM,可得OP,可得PN,即可得到C到EF的距离.【解答】解:如图,作BG⊥OA于G,设OA=OB=OC=OD=xcm,则AG=0.5cm,BG=ON=3.5cm,∴OG=OA﹣AG=x﹣0.5cm,∵在Rt△OBG中,OB2=OG2+BG2,∴x2=(x﹣0.5)2+3.52,解得:x=12.5,∴OA=OB=OC=OD=12.5cm,∴DN=OD﹣ON=12.5﹣3.5=9cm.连接OB,交OC于M,作CP⊥OD,MQ⊥OD,∵BN=OG=12.5﹣0.5=12cm,DN=9cm,∴DB=DN2+BN2=15cm,又∵∠BOC=∠BOD,OD=OB,∴OC⊥BD,DM=BM=DB=7.5cm,∴OM===10cm,∵△DNB中,QM∥NB,且M是DB中点,∴QM=BN=6cm,∴Rt△OQM中,OQ===8cm,又∵CP∥MQ,∴△OPC∽△OQM,∴OC/OM=OP/OQ,∴=,∴OP=10cm,∴PN=OP﹣ON=10﹣3.5=6.5cm,∵CP⊥OD,EF⊥OD,∴C到EF的距离长等于PN 6.5cm.故答案为:9;6.5.【点评】本题考查了圆的基本性质,相似三角形的判定和性质,勾股定理,中位线定理,解题的关键是读懂题意,结合实际理解旋转门锁的运行原理.二.旋转的性质(共9小题)2.(2022秋•镇海区校级期中)如图,在正方形网格中,△ABC绕某点旋转一定的角度得到△A′B′C′,则旋转中心是点()A.O B.P C.Q D.M【分析】根据旋转的性质,对应点到旋转中心的距离相等,可得对应点连线的垂直平分线的交点即为旋转中心.【解答】如图,连接BB′,AA′可得其垂直平分线相交于点P,故旋转中心是P点.故选:B.【点评】本题考查了旋转的性质,对应点连线的垂直平分线的交点即为旋转中心,熟练掌握旋转中心的确定方法是解题的关键.3.(2022秋•拱墅区校级期中)如图,将△ABC绕点A逆时针旋转70°,得到△ADE,若点D在线段BC 的延长线上,则∠B的大小是()A.45°B.55°C.60°D.100°【分析】由旋转的性质可得AB=AD,∠BAD=70°,由等腰三角形的性质可求解.【解答】解:∵将△ABC绕点A逆时针旋转70°得到△ADE,∴AB=AD,∠BAD=70°,∴∠B=∠ADB==55°,故选:B.【点评】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是解题的关键.4.(2023•温州三模)如图,在△ABC中,∠BAC=50°,将△ABC绕点A逆时针旋转得△ADE,使点D恰好落在AC边上,连结CE,则∠ACE的度数为()A.45°B.55°C.65°D.75【分析】由旋转的性质可知,旋转前后对应边相等,对应角相等,得出等腰三角形,再根据等腰三角形的性质求解.【解答】解:由旋转的性质可知,∠CAE=∠BAC=50°,AC=AE,∴∠ACE=∠AEC,在△ACE中,∠CAE+∠ACE+∠AEC=180°,∴50°+2∠ACE=180°,解得:∠ACE=65°,故选:C.【点评】本题主要考查了旋转的性质,找出旋转角和旋转前后的对应边得出等腰三角形是解答此题的关键.5.(2022秋•杭州期末)如图,将一个含30°角的直角三角板ABC绕点A逆时针旋转,点C的对应点为点C′,若点C′落在BA延长线上,则三角板ABC旋转的度数是()A.60°B.90°C.120°D.150°【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【解答】解:旋转角是∠BAB′=180°﹣30°=150°.故选:D.【点评】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.6.(2023•天台县一模)如图,在矩形ABCD中,AB=1,∠CBD=18°,将矩形ABCD绕对角线中点O逆时针旋转α(0°<α<90°)得到矩形A′B′C′D′,当C′,D的距离等于1时,α的值为()A.36°B.54°C.68°D.72°【分析】根据矩形的性质以及圆周角定理可得出∠COD=∠DOC′=∠C′OB′=2∠CBD=36°,进而得出∠COC′=72°即可.【解答】解:如图,矩形ABCD的外接圆为⊙O,矩形A′B′C′D′的四个顶点也在⊙O上,∵AB=CD=B′C′=DC′=2,∴∠COD=∠DOC′=∠C′OB′=2∠CBD=36°,∴∠COC′=72°,故选:D.【点评】本题考查旋转的性质,矩形的性质,掌握矩形的性质以及旋转的性质是正确解答的前提.7.(2023•长兴县一模)如图,矩形ABCD绕点B旋转得到矩形BEFG,在旋转过程中,FG恰好过点C,过点G作MN平行AD交AB,CD于M,N.若AB=3,BC=5,则图中阴影部分的面积的是()A.3B.4C.5D.【分析】由旋转的性质可得BG=BA=3,由勾股定理可求CG,可求△BGC的面积,由平行四边形的性质可求解.【解答】解:∵矩形ABCD绕点B旋转得到矩形BEFG,∴BG=BA=3,∴CG===4,∴S△BGC=×BG•GC=6,∵MN∥AD,CD∥AB,∴四边形AMND是平行四边形,MN∥BC,∴四边形BCNM是平行四边形,∴S平行四边形BCNM=2S△BGC=12,∴阴影部分的面积=S矩形ABCD﹣S平行四边形BCNM=15﹣12=3,故选:A.【点评】本题考查了旋转的性质,矩形的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.8.(2023•仙居县二模)如图,在Rt△ABC中,∠C=90°,AC=10,BC=6,点D是边AC的中点.点P 为边BC上的一个动点,将点P绕点D逆时针旋转90°得到点P′,则AP′的取值范围为.【分析】由“SAS”可证△ADP',可得AP'=PH,即可求解.【解答】解:如图,以AD为直角边,作等腰直角三角形ADH,连接PH,∴AD=DH,∠ADH=90°,∵将点P绕点D逆时针旋转90°得到点P′,∴DP=DP',∠PDP'=90°=∠ADH,∴∠ADP'=∠PDH,∴△ADP'≌△HDP(SAS),∴AP'=PH,∵AC=10,点D是边AC的中点,∴CD=AD=DH=5,∵点P为边BC上的一个动点,∴当PH⊥BC时,PH有最小值为5,当点P与点C重合时,PH有最大值为5,∴5≤HP≤5,∴,故答案为:.【点评】本题考查了旋转的性质,全等三角形的判定和性质,添加恰当辅助线构造全等三角形是解题的关键.9.(2023•萧山区二模)如图,在正方形ABCD中,,O是BC中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.则线段OF长的最小值为()A.8B.C.D.【分析】连接DO,将DO绕点D逆时针旋转90°得到DM,连接FM,OM,证明△EDO≌△FDM,可得FM =OE=2,由勾股定理可得,根据OF+MF≥OM,即可得出OF的最小值.【解答】解:如图,连接DO,将DO绕点D逆时针旋转90°得到DM,连接FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,在△EDO与△FDM中,,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,,O是BC边上的中点,∴,∴,∴,∵OF+MF≥OM,∴OF≥10﹣2=8,∴线段OF的最小值为8,故选:A.【点评】本题考查线段的最值问题,涉及三角形的三边关系、勾股定理、旋转的性质、正方形的性质、全等三角形的判定与性质等知识,添加辅助线构造全等三角形是解题关键.10.(2022秋•浦江县月考)阅读下面材料,并解决问题:(1)如图①等边△ABC P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段P A、PB、PC转化到一个三角形中,从而求出∠APB=;(2)基本运用请你利用第(1)题的解答思想方法,解答下面问题已知如图②,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2;(3)能力提升如图③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.【分析】(1)根据旋转变换前后的两个三角形全等,全等三角形对应边相等,全等三角形对应角相等以及等边三角形的判定和勾股定理逆定理解答;(2)把△ABE绕点A逆时针旋转90°得到△ACE′,根据旋转的性质可得AE′=AE,CE′=CE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,再求出∠E′AF=45°,从而得到∠EAF=∠E′AF,然后利用“边角边”证明△EAF和△E′AF全等,根据全等三角形对应边相等可得E′F=EF,再利用勾股定理列式即可得证.(3)将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BOO′是等边三角形,根据等边三角形的三条边都相等可得BO=OO′,等边三角形三个角都是60°求出∠BOO′=∠BO′O=60°,然后求出C、O、A′、O′四点共线,再利用勾股定理列式求出A′C,从而得到OA+OB+OC=A′C.【解答】解:(1)∵△ACP′≌△ABP,∴AP′=AP=3、CP′=BP=4、∠AP′C=∠APB,由题意知旋转角∠PA P′=60°,∴△AP P′为等边三角形,P P′=AP=3,∠A P′P=60°,易证△P P′C为直角三角形,且∠P P′C=90°,∴∠APB=∠AP′C=∠A P′P+∠P P′C=60°+90°=150°;故答案为:150°;(2)如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,∵∠EAF=45°,∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,∴∠EAF=∠E′AF,在△EAF和△E′AF中,∴△EAF≌△E′AF(SAS),∴E′F=EF,∵∠CAB=90°,AB=AC,∴∠B=∠ACB=45°,∴∠E′CF=45°+45°=90°,由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2.(3)如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,∴BC=,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BOO′=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C=,∴OA+OB+OC=A′O′+OO′+OC=A′C=.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,读懂题目信息,理解利用旋转构造出全等三角形和等边三角形以及直角三角形是解题的关键.三.旋转对称图形(共3小题)11.(2022秋•平阳县校级月考)把如图所示的五角星图案,绕着它的中心旋转,若旋转后的五角星能与自身重合.则旋转角至少为()A.30°B.45°C.60°D.72°【分析】五角星图案,可以被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72【解答】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、B、C都错误,能与其自身重合的是D.故选:D.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.12.(2022秋•张湾区期中)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°【分析】根据图形的对称性,用360°除以3计算即可得解.【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选:C.【点评】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.13.(2023•婺城区模拟)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【分析】(1)根据旋转图形,中心对称图形的定义判断即可.(2)旋转对称图形,且有一个旋转角是60度判断即可.(3)根据旋转图形的定义判断即可.(4)根据要求画出图形即可.【解答】解:(1)是旋转图形,不是中心对称图形是正五边形,故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为(1)(3)(5).(3)命题中①③正确,故选C.(4)图形如图所示:【点评】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.四.坐标与图形变化-旋转(共8小题)14.(2022秋•莲都区期中)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,﹣2)B.(3,﹣1)C.(2,﹣3)D.(3,2)【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ =2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:A.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.15.(2022秋•吴兴区期中)如图,在平面直角坐标系中,线段AB的端点在方格线的格点上,将AB绕点P 顺时针方向旋转90°,得到线段A′B′,则点P的坐标为.【分析】依据旋转的性质可得,将AB绕点P顺时针方向旋转90°,得到线段A′B′,则点P到对应点的距离相等,因此作出两对对应点连线的垂直平分线,其交点即为所求.【解答】解:如图所示,作线段AA'和BB'的垂直平分线,交于点P,则点P即为旋转中心,由图可得,点P的坐标为(1,2),故答案为:(1,2).【点评】本题主要考查了坐标与图形变换,解决问题的关键是掌握旋转的性质.一般情况,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.16.(2022秋•苍南县期中)如图,点A的坐标为(0,3),点C的坐标为(1,0),B的坐标为(1,4),将△ABC沿y轴向下平移,使点A平移至坐标原点O,再将△ABC绕点O逆时针旋转90°,此时B的对应点为B′,点C的对应点为C′,则点C′的坐标为()A.(4,1)B.(1,4)C.(3,1)D.(1,3)【分析】首先根据点A的平移规律得到C的平移后坐标,再根据旋转规律得到C′的坐标.【解答】解:∵点A平移至坐标原点O,点A的坐标为(0,3),∴向下平移三个单位长度,∴C平移后的坐标为(1,﹣3),∵平移后再将△ABC绕点O逆时针旋转90°,∴点C′的坐标为(3,1).故选:C.【点评】此题主要考查了坐标与图形的变化中的旋转与平移,正确使用坐标与图形变化的规律是解题的关键.17.(2022秋•衢江区校级期末)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣1,4)的对应点A′的坐标是()A.(1,4)B.(4,1)C.(1,﹣4)D.(4,﹣1)【分析】由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出∠AOA′=90°,AO=A′O,作AC ⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论.【解答】解:∵线段AB绕点O90°得到线段A′B′,∴∠AOA′=90°,AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣1,4),∴AC=1,CO=4,∴A′C′=1,OC′=4,∴A′(4,1).故选:B.【点评】本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,点的坐标的运用,正确作出辅助线并证得△ACO≌△A′C′O是解决问题的关键.18.(2022秋•西湖区校级期中)在平面直角坐标系中,把点P(1,﹣2)绕原点O顺时针旋转90°,所得到的对应点Q的坐标为.【分析】作PQ⊥y轴于Q,如图,把点P(1,﹣2)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(1,﹣2),∴PQ=1,OQ=2,∵点P(1,﹣2)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=1,OQ′=OQ=2,∴点P′的坐标为:(﹣2,﹣1).故答案为:(﹣2,﹣1).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.19.(2023•金华)在直角坐标系中,点(4,5)绕原点O逆时针方向旋转90°,得到的点的坐标.【分析】利用旋转变换的性质作出图形可得结论.【解答】解:如图,点A(4,5)绕原点O逆时针方向旋转90°,得到的点B的坐标(﹣5,4).故答案为:(﹣5,4).【点评】本题考查坐标与图形变化﹣旋转,解题的关键是正确作出图形,利用图象法解决问题.20.(2022秋•柯桥区期中)在平面直角坐标系中,O为坐标原点,已知点B(0,4),点A在x轴负半轴上,且∠BAO=30°,将△AOB O顺时针旋转,得△COD,点A、B旋转后的对应点分别为C,D,记旋转角为α.(1)如图1,CD恰好经过点B时,①求此时旋转角α的度数;②求出此时点C的坐标;(2)如图2,若0°<α<90°,设直线AC和直线DB交于点P,猜测AC与DB的位置关系,并说明理由.【分析】(1)①根据旋转的性质得到OB=OD,求得∠ABO=60°=∠D,得到△BOD是等边三角形根据等边三角形的性质得到∠BOD=60°,于是得到结论;②过点C作CE⊥x轴于E,根据等腰三角形的性质得到CO=AO=4,求得∠AOC=60°,求得OE=2,CE=6,于是得到C(﹣2,6);(2)根据等腰三角形的性质得到∠OBD=90°﹣,求得∠ABP=180°﹣60°﹣(90°﹣)=30°+,根据垂直的定义即可得到结论.【解答】解:(1)①由旋转可知,OB=OD,∵∠BAO=30°,∴∠ABO=60°=∠D,∴△BOD是等边三角形,∴∠BOD=60°,∴旋转角α的度数为60°;②过点C作CE⊥x轴于E,∵∠AOB=90°,B(0,4),∴CO=AO=4,∵α=60°,∴∠AOC=60°,∴OE=2,CE=6,∴C(﹣2,6);(2)AC⊥BD,理由:∵∠AOC=α,OB=OD,∴∠OBD=90°﹣,∴∠ABP=180°﹣60°﹣(90°﹣)=30°+,∴∠PBA+∠PAB=60°﹣30°+=90°,∴∠APB=90°,∴AC⊥BD.【点评】本题考查了坐标与图形性质﹣旋转,等边三角形的性质,直角三角形的性质,旋转的性质,正确地作出辅助线是解题的关键.21.(2022秋•鄞州区校级期末)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,继续旋转至2022次得到正方形OA2022B2022C2022,则点B2022的坐标是.【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,再由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,然后发现规律是8次一循环,进而得出答案.【解答】解:∵点A的坐标为(1,0),∴OA=1,∵四边形OABC是正方形,∴∠OAB=90°,AB=OA=1,∴B(1,1),连接OB,如图:由勾股定理得:OB==,由旋转的性质得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),B5(0,﹣),B6(1,﹣1),…,发现是8次一循环,则2022÷8=252…6,∴点B2022的坐标为(1,﹣1),故答案为:(1,﹣1).【点评】本题考查了旋转的性质、正方形的性质、坐标与图形性质、勾股定理、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.五.作图-旋转变换(共5小题)22.(2023•龙游县一模)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC绕着原点O逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出C1的坐标.(2)若△ABC中的一点P(a,b),在①中变换下对应△A′B′C′中为P′点,请直接写出点P′的坐标(用含a、b的代数式表示)【分析】(1)根据图形旋转的性质画出△A1B1C1,并写出C1的坐标即可;(2)根据(1)中C点坐标找出规律即可得出结论.【解答】解:(1)如图所示,C1的坐标(1,4).(2)∵C(4,﹣1),C1(1,4),∴P’(﹣b,a).【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.23.(2023•温州一模)如图,在6×4的方格纸中,已知线段AB(A,B均在格点上),请按要求画出格点四边形(顶点均在格点上).(1)在图1中画一个以AB为边的四边形ABCD,使其为轴对称图形.(2)在图2中画一个以AB为对角线的四边形AEBF,使其为中心对称图形.【分析】(1)根据轴对称图形的定义画出图形即可;(2)根据中心对称图形的定义画出图形即可.【解答】解:(1)如图,四边形即为所求作:;(2)如图,四边形即为所求作:.【点评】本题考查了作图﹣旋转变换,轴对称变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.24.(2023•乐清市模拟)如图是由边长为1的小正方形构成的6×6的网格,点A,B均在格点上,请按要求画出以AB为对角线的格点四边形(顶点均在格点上).(1)在图1中画一个周长为整数的四边形ACBD;(2)在图2中画一个面积为8的四边形AEBF,且使其是中心对称图形但不是轴对称图形.【分析】(1)利用勾股定理作出,据此即可画出一个周长为整数的四边形ACBD;(2)根据三角形的面积公式以及平行四边形的性质即可画出一个面积为8的四边形AEBF,且使其是中心对称图形但不是轴对称图形.【解答】解:(1)如图,四边形ACBD即为所求作.(2)如图,四边形AEBF即为所求作.【点评】本题考查作图﹣旋转变换,勾股定理,平行四边形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题.25.(2022•平阳县一模)如图,在10×8的方格纸巾,请按要求画图.(1)在图1中画一个格点C,使△ABC为等腰三角形.(2)在图2中两个格点F,G,使四边形DEFG为中心对称图形,且对角线互相垂直.【分析】(1)根据等腰三角形的概念作图即可(答案不唯一);(2)根据中心对称图形的概念及菱形、正方形的性质作图即可(答案不唯一).【解答】解:(1)如图所示,△ABC即为所求(答案不唯一).(2)如图所示,四边形DEFG即为所求(答案不唯一).【点评】本题主要考查作图—旋转变换,解题的关键是掌握旋转变换的定义与性质、等腰三角形的定义、菱形与正方形的性质.26.(2023•温州二模)如图在6×6的方格纸中,点A,B,C均在格点上,请按要求画出相应格点图形.(1)画出△ABC关于点C成中心对称的格点三角形△A1B1C(点A,B的对应点分别为A1,B1).(2)画出△ABD,使得S△ABD=3S△ABC.【分析】(1)根据中心对称的性质作图即可.(2)由图可得S△ABD=3S△ABC=6,结合三角形的面积找出点D的位置即可.【解答】解:(1)如图,三角形△A1B1C即为所求.(2)由图可得,S△ABC==2,∴S△ABD=3S△ABC=6.如图,△ABD1,△ABD2,△ABD3均满足要求.【点评】本题考查中心对称、三角形的面积,熟练掌握中心对称的性质、三角形的面积是解答本题的关键.六.利用旋转设计图案(共3小题)27.(2022秋•宁波期末)如图,在4×4的网格纸中,△ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将△ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A.点M,点N B.点M,点Q C.点N,点P D.点P,点Q【分析】画出中心对称图形即可判断【解答】解:观察图象可知,点P.点N满足条件.故选:C.【点评】本题考查利用旋转设计图案,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.28.(2022秋•定海区校级月考)在冬奥会开幕式上,美丽的冬奥雪花呈现出浪漫空灵的气质.如图,雪花图案本身的设计呈现出充分的美感,它是一个中心对称图形.其实“雪花”图案也可以看成自身的一部分围绕图案的中心依次旋转一定角度得到的,这个角的度数可以是()A.30°B.45°C.60°D.90°【分析】根据图形的对称性,用360°除以6计算即可得解.【解答】解:∵360°÷6=60°,∴旋转角是60°的整数倍,∴这个角的度数可以是60°.故选:C.【点评】本题考查了旋转对称图形:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.29.(2022秋•慈溪市期末)美丽的冬奥雪花呈现出浪漫空灵的气质.如图,雪花图案是一个中心对称图形,也可以看成自身的一部分围绕它的中心依次旋转一定角度得到的,这个角的度数可以是()。
六年级图形的旋转知识点
六年级图形的旋转知识点在六年级的数学学习中,图形的旋转是一个重要的知识点。
通过学习图形的旋转,我们可以更好地理解和应用几何知识。
本文将介绍六年级图形的旋转知识点,包括旋转的基本概念、旋转的特性以及旋转的应用。
一、旋转的基本概念在几何学中,旋转是指将一个图形围绕某个中心点进行转动的操作。
旋转操作可以相对于中心点进行,也可以相对于其他点或直线进行。
图形在旋转后,形状和大小保持不变,只是位置发生了改变。
旋转的基本概念包括旋转中心、旋转角度和旋转方向。
旋转中心是旋转操作的中心点,可以是图形内部的某个点,也可以是图形外部的某个点。
旋转角度是指旋转的角度大小,可以是正数、负数或零。
旋转方向分为顺时针和逆时针两种,顺时针表示图形按照钟表的方向进行旋转,逆时针则相反。
二、旋转的特性1. 旋转角度与旋转次数的关系在图形旋转时,旋转角度与旋转次数有一定的关系。
当旋转角度为360度(或2π弧度)时,图形会回到原来的位置,即旋转一周。
若旋转角度小于360度,则图形会停留在旋转到的位置,而不会回到初始位置。
因此,旋转次数等于360度除以旋转角度的商。
2. 点的旋转点是最简单的图形,它在旋转时只需要围绕旋转中心点进行旋转即可。
旋转后,点的位置发生改变,但点的形状和大小不变。
3. 直线的旋转直线的旋转操作需要确定一个旋转中心和旋转角度。
当直线围绕旋转中心旋转时,直线上的所有点都按照相同的角度和方向进行旋转。
旋转后,直线依然是一条直线,只是位置发生了改变。
4. 图形的旋转对于由多个点组成的图形,旋转后整个图形的形状和大小都保持不变,只是位置发生改变。
图形的旋转操作需要确定一个旋转中心和旋转角度。
根据旋转方向的不同,图形可以沿顺时针方向或逆时针方向进行旋转。
三、旋转的应用旋转在生活和实际应用中有着广泛的应用。
以下是图形旋转的一些具体应用情况。
1. 艺术设计在艺术设计中,图形的旋转可以用来创造出各种形态独特的图案和作品。
通过将图形进行旋转,可以产生各种不同的艺术效果,使作品更加丰富多样。
图形的旋转知识点总结
图形的旋转知识点总结旋转是几何学中重要的概念之一,通过旋转,我们可以改变图形的方向和位置,使其呈现出不同的形态和角度。
在本文中,我们将总结一些与图形旋转相关的知识点。
1. 旋转的基本概念旋转是指将一个图形绕着某个中心点旋转一定角度,通过旋转可以改变图形的方向和位置。
旋转角度一般以逆时针方向为正,顺时针方向为负。
2. 旋转的基本性质- 旋转前后图形的形状、大小和面积都保持不变。
- 旋转前后图形的边长、角度和内外角度关系也保持不变。
3. 旋转的中心旋转的中心通常是图形的一个点,可以在图形内部或外部。
在旋转过程中,旋转中心保持不动,而图形的其他点绕旋转中心旋转。
4. 旋转的正负旋转角度以逆时针方向为正,顺时针方向为负。
正角度表示图形向左旋转,负角度表示图形向右旋转。
5. 旋转的公式对于平面上的一个点P(x, y),以点O(a, b)为旋转中心,逆时针旋转θ角度得到的新点P'(x', y')的公式为:x' = (x - a) * cosθ - (y - b) * sinθy' = (x - a) * sinθ + (y - b) * cosθ6. 旋转的应用旋转在日常生活和各个领域都有广泛的应用。
例如,在图形设计中,旋转可以使设计作品更加生动和富有变化;在建筑设计中,旋转可以改变建筑物的朝向和视觉效果;在机械工程中,旋转可以使零件或机械装置运动更加灵活和高效。
7. 旋转的综合练习为了巩固旋转的知识点,我们可以进行一些综合练习。
例如,给定一个三角形ABC和一个旋转中心O,要求将三角形ABC按照一定的旋转角度和旋转中心进行旋转,求旋转后的三角形的各个顶点坐标。
通过这样的练习,可以加深对旋转概念的理解,同时巩固旋转公式的应用。
结语图形的旋转是几何学中重要的概念之一。
通过旋转,我们可以改变图形的方向和位置,实现各种独特的效果。
通过对旋转的基本概念、性质和公式的学习,我们可以更好地理解和运用旋转知识,进一步提升自己的几何学能力。
小学数学旋转知识点
小学数学旋转知识点旋转是小学数学中的重要知识点之一,它涉及到图形的变化和几何形状的移动。
本文将介绍小学数学中的旋转知识点,包括旋转的定义、常见的旋转图形以及旋转的性质等内容。
一、旋转的定义旋转是指将一个图形按照一定的规则绕着某个点或轴线进行转动。
在小学数学中,我们主要关注的是二维图形的旋转。
图形的旋转可以保持其形状不变,只是改变了位置和方向。
二、旋转的基本要素在进行旋转操作时,需要确定以下几个基本要素:1. 旋转中心:即图形旋转的中心点,也可以看作是旋转的轴线。
旋转中心可以是图形自身内部的一个点,也可以是图形外部的一个点。
2. 旋转角度:表示图形旋转的角度。
通常用度数或弧度来衡量,比如90度、180度等。
3. 旋转方向:图形可以按顺时针或逆时针方向进行旋转。
三、常见的旋转图形在小学数学中,有几种常见的旋转图形,它们是:1. 旋转点:以一个点为中心,将整个图形按照一定的角度和方向进行旋转。
旋转后的图形与原图形形状相同,只是位置和方向发生了改变。
2. 旋转线:以一条线段为轴线,将整个图形按照一定的角度和方向进行旋转。
旋转线可以通过连接图形中的两个点来确定。
3. 旋转角:以一个角为中心,将整个图形按照一定的角度和方向进行旋转。
旋转角可以通过连接图形中的两条边来确定。
通过对以上旋转图形的学习,可以帮助学生理解旋转的概念和性质,并培养他们的几何思维能力。
四、旋转的性质旋转具有一些特殊的性质,它们可以帮助我们更好地理解旋转变化:1. 旋转不改变图形的大小:无论图形如何旋转,它们的大小不会发生改变。
2. 旋转不改变图形内部的相对位置关系:旋转只是改变了图形的位置和方向,而不会改变图形内部点的相对位置关系。
3. 旋转角度的关系:如果两个图形是同一图形通过旋转得到的,那么它们的旋转角度是相等的。
除了以上的性质外,旋转还有一些与其他几何变换(如平移、翻转)的关系,但这超出了小学数学的范围,在这里不做深入讨论。
五、旋转在小学数学中的应用旋转在小学数学中有着广泛的应用,它可以帮助我们解决一些几何问题。
旋转知识点归纳
旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度,这样的图形运动称为旋转,定点O 称为旋转中心,转动的角称为旋转角;如果图形上的点P 经过旋转到点P ',那么这两个点叫做这个旋转的对应点. 如图1,线段AB 绕点O 顺时针转动090得到B A '',这就是旋转,点O 就是旋转中心,A AO B BO '∠'∠,都是旋转角.说明: 旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略.决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向.知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的.由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同.⑵任意一对对应点与旋转中心的连线所成的角都是旋转角.⑶对应点到旋转中心的距离相等.⑷对应线段相等,对应角相等.例1 、如图2,D 是等腰Rt △ABC 内一点,BC 是斜边,如果将△ADB 绕点A 逆时针方向旋转到△C D A '的位置,则ADD '∠的度数是( )D A.25B.30 C.35 D.45分析:抓住旋转前后两个三角形的对应边相等、对应角相等等性质,本题就很容易解决.由△C D A '是由△ADB 旋转所得,可知△ADB ≌△C D A ',∴AD =D A ',∠DAB =∠AC D ',∵∠DAB +∠DAC =090,∴∠AC D '+∠DAC =090,∴∠045='D AD ,故选D.'图1 图2评注:旋转不改变图形的大小与形状,旋转前后的两个图形是全等的,紧紧抓住旋转前后图形之间的全等关系,是解决与旋转有关问题的关键.知识点3:旋转作图1.明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角.2.理解作图的依据:(1)旋转的定义: 在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等.3.掌握作图的步骤:(1)分析题目要求,找出旋转中心、旋转角;(2)分析图形,找出构成图形的关键点;(3)沿一定的方向,按一定的角度,通过截取线段的方法,找出各个关键点;(4)连接作出的各个关键点,并标上字母;(5)写出结论.例2 如图3,小明将△ABC 绕O 点旋转得到△C B A ''',其中点C B A '''、、分别是A 、B 、C 的对应点.随即又将△ABC 的边AC 、BC 及旋转中心O 擦去(不留痕迹),他说他还能把旋转中心O 及△ABC 的位置找到,你认为可以吗?若可以,试确定旋转中心及的位置;如不可以,请说明理由.分析:本题的关键是要学生先确定旋转中心的位置.根据“对应点到旋转中心的距离相等”这一特征,可推断出旋转中心是对应点连线(A A '和B B ')的垂直平分线的交点.这样旋转中心就可以确定了,从而△ABC 的位置也就可以确定了.解:连接A A ',B B ',分别作A A ',B B '的垂直平分线,相交于O 点,则O 点即为旋转中心.再作C '关于点的对应点,连接,则的位置就确定了.如图4所示.评注:旋转角相等及对应点到旋转中心的距离相等是解决这类问题的关键.考点4:钟表的旋转问题钟表的时针与分针每时每刻都以轴心为旋转中心作旋转运动,其中时针12小时旋转一周,A 图3 '则每小时旋转,301236000=这样时针每分钟旋转;5.00分针每小时旋转一周,则每分钟旋转.66036000= 例3 从1点到1点25分,分针转了多少度角?时针转了多少度角?1点25分时时针与分针的夹角是多少度?分析:从1点到1点25分,分针与时针都转了25分钟,所以分针旋转的角度为,15025600=⨯时针旋转的角度为;5.12255.000=⨯1点整的时候,分针与时针的夹角为030,分针与时针分别同时旋转0150与05.12后,分针与时针的夹角为.5.1075.12301500000=--解:分针旋转的角度为;15025600=⨯时针旋转的角度为;5.12255.000=⨯分针与时针的夹角为.5.1075.12301500000=--评注:(1)时针每分钟旋转05.0;(2)分针每分钟旋转.60这两个条件是旋转问题中的隐含条件,也是解决此类问题的突破口解读生活中的旋转一. 旋转及其基本性质1.旋转的概念在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.2.旋转的基本性质(1) 旋转前后两个图形的对应点到旋转中心的距离相等;(2) 对应点与旋转中心的连线所成的角彼此相等.3.理解旋转中的不变量图形旋转的主要因素是旋转的方向和旋转的角度,图形在旋转过程中,图形中的每一点都按同样的方向旋转了相同的角度.图形在旋转后点的位置改变,但线段的长度不变,对应点到旋转中心的距离不变,每对对应点与旋转中心连线所成的角都相等.总结:旋转过程中,每一个点都绕旋转中心沿相同的方向旋转了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.二. 旋转前后两个图形的比较图形是由点组成的,图形中的主要元素有线段和角,也有一些其他可度量的元素,所以从这两个方面加以分析.旋转的特点有以下几个方面:(1) 旋转前后两个图形的形状和大小没有发生改变,位置发生了改变;(2) 对应线段相等,对应角相等;(3) 每对对应点与旋转中心连线所成的角都是相等的,它们都是旋转角.三. 旋转作图1.旋转作图的依据是:图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点到旋转中心的距离相等.2.旋转作图的条件(1) 图形原来所在的位置;(2)旋转中心;(3)图形旋转的方向;(4)图形的旋转角度.3.旋转作图的具体步骤为:(1) 分析题目的要求,找出旋转中心、旋转角;(2) 分析所作的图形,找出构造图形的关键点;(3) 沿一定的方向,按一定的角度,通过攫取线段的方法,旋转各个关键点。
旋转知识要点梳理
旋转知识要点梳理知识点一、旋转的概念几个图形的共同特点是如果我们把时针、螺旋桨、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.1.旋转的定义:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.3.作图:在画旋转图形时,要把握旋转中心与旋转角这两个元素.确定旋转中心的关键是看图形在旋转过程中某一点是“动”还是“不动”,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角.作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.知识点二、中心对称与中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.2.中心对称的两条基本性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.3.中心对称图形把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.4.中心对称和中心对称图形的区别与联系中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.5. 关于原点对称的点的坐标特征:关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点的坐标为,反之也成立.知识点三、平移、轴对称、旋转1.平移、旋转、轴对称之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.对应线段关于对称轴对称.*对应线段相等,其所在直线的夹角等于旋转角或与旋转角互补.2.旋转与中心对称中心对称是一种特殊的旋转(旋转180°),满足旋转的性质.旋转中心对称图形性质1对应点与旋转中心所连线段的夹角等于旋转角.对称点所连线段都经过对称中心.3.中心对称与轴对称三、规律方法指导1.在学习了图形平移、轴对称的基础上,学习图形旋转的有关知识,要注意处理好如下三个问题:(1)先复习图形平移、轴对称的有关内容,学习时要采用对比的方法;(2)在对图形旋转性质探索过程中,要从图形变换前后的形状、大小和位置关系上入手分析,发现图形旋转的特性、对应关系、旋转中心和旋转方向;(3)利用旋转设计简单的图案,通过具体画图操作,掌握旋转图形的方法、技巧.2.学习中心对称时,注意采用如下方法进行探究:(1)实物分析法:观察具体事物的特征,结合所学知识,分析它们的共同特征和联系;(2)类比分析法:中心对称是一个图形旋转180°后能和另一个图形重合,离不开旋转的知识,因此要类比着进行学习,以提升对图形变换知识的掌握;(3)理论联系实际:在学习中可以通过具体画图操作,以及对具体事物的分析、归纳总结出中心对称的有关知识.。
旋转知识点总结
旋转知识点归纳知识点1:旋转的定义及其有关概念在平面,将一个图形绕一个定点O 沿某个方向转动一个角度,这样的图形运动称为旋转,定点O 称为旋转中心,转动的角称为旋转角;如果图形上的点P 经过旋转到点P ',那么这两个点叫做这个旋转的对应点. 如图1,线段AB 绕点O 顺时针转动090得到B A '',这就是旋转,点O 就是旋转中心,A AO B BO '∠'∠,都是旋转角.说明: 旋转的围是在平面旋转,否则有可能旋转为立体图形,因此“在平面”这一条件不可忽略.决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向.知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的.由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同.⑵任意一对对应点与旋转中心的连线所成的角都是旋转角.⑶对应点到旋转中心的距离相等.⑷对应线段相等,对应角相等.例1 、如图2,D 是等腰Rt △ABC 一点,BC 是斜边,如果将△ADB 绕点A 逆时针方向旋转到△C D A '的位置,则ADD '∠的度数是( )D A.25B.30 C.35 D.45分析:抓住旋转前后两个三角形的对应边相等、对应角相等等性质,本题就很容易解决.由△C D A '是由△ADB 旋转所得,可知△ADB ≌△C D A ',∴AD =D A ',∠DAB =∠AC D ',∵∠DAB +∠DAC =090,∴∠AC D '+∠DAC =090,∴∠045='D AD ,故选D.'图1 图2评注:旋转不改变图形的大小与形状,旋转前后的两个图形是全等的,紧紧抓住旋转前后图形之间的全等关系,是解决与旋转有关问题的关键.知识点3:旋转作图1.明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角.2.理解作图的依据:(1)旋转的定义: 在平面,将一个图形绕一个定点O 沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等.3.掌握作图的步骤:(1)分析题目要求,找出旋转中心、旋转角;(2)分析图形,找出构成图形的关键点;(3)沿一定的方向,按一定的角度,通过截取线段的方法,找出各个关键点;(4)连接作出的各个关键点,并标上字母;(5)写出结论.例2 如图3,小明将△ABC 绕O 点旋转得到△C B A ''',其中点C B A '''、、分别是A 、B 、C 的对应点.随即又将△ABC 的边AC 、BC 及旋转中心O 擦去(不留痕迹),他说他还能把旋转中心O 及△ABC 的位置找到,你认为可以吗?若可以,试确定旋转中心及的位置;如不可以,请说明理由.分析:本题的关键是要学生先确定旋转中心的位置.根据“对应点到旋转中心的距离相等”这一特征,可推断出旋转中心是对应点连线(A A '和B B ')的垂直平分线的交点.这样旋转中心就可以确定了,从而△ABC 的位置也就可以确定了.解:连接A A ',B B ',分别作A A ',B B '的垂直平分线,相交于O 点,则O 点即为旋转中心.再作C '关于点的对应点,连接,则的位置就确定了.如图4所示.评注:旋转角相等及对应点到旋转中心的距离相等是解决这类问题的关键.考点4:钟表的旋转问题钟表的时针与分针每时每刻都以轴心为旋转中心作旋转运动,其中时针12小时旋转一周,A 图3 '则每小时旋转,301236000=这样时针每分钟旋转;5.00分针每小时旋转一周,则每分钟旋转.66036000= 例3 从1点到1点25分,分针转了多少度角?时针转了多少度角?1点25分时时针与分针的夹角是多少度?分析:从1点到1点25分,分针与时针都转了25分钟,所以分针旋转的角度为,15025600=⨯时针旋转的角度为;5.12255.000=⨯1点整的时候,分针与时针的夹角为030,分针与时针分别同时旋转0150与05.12后,分针与时针的夹角为.5.1075.12301500000=--解:分针旋转的角度为;15025600=⨯时针旋转的角度为;5.12255.000=⨯分针与时针的夹角为.5.1075.12301500000=--评注:(1)时针每分钟旋转05.0;(2)分针每分钟旋转.60这两个条件是旋转问题中的隐含条件,也是解决此类问题的突破口解读生活中的旋转一. 旋转及其基本性质1.旋转的概念在平面,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.2.旋转的基本性质(1)旋转前后两个图形的对应点到旋转中心的距离相等; (2) 对应点与旋转中心的连线所成的角彼此相等.3.理解旋转中的不变量图形旋转的主要因素是旋转的方向和旋转的角度,图形在旋转过程中,图形中的每一点都按同样的方向旋转了相同的角度.图形在旋转后点的位置改变,但线段的长度不变,对应点到旋转中心的距离不变,每对对应点与旋转中心连线所成的角都相等.总结:旋转过程中,每一个点都绕旋转中心沿相同的方向旋转了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.二. 旋转前后两个图形的比较图形是由点组成的,图形中的主要元素有线段和角,也有一些其他可度量的元素,所以从这两个方面加以分析.旋转的特点有以下几个方面:(1)旋转前后两个图形的形状和大小没有发生改变,位置发生了改变; (2)对应线段相等,对应角相等; (3) 每对对应点与旋转中心连线所成的角都是相等的,它们都是旋转角.三. 旋转作图1.旋转作图的依据是:图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点到旋转中心的距离相等.2.旋转作图的条件(1) 图形原来所在的位置;(2)旋转中心;(3)图形旋转的方向;(4)图形的旋转角度.3.旋转作图的具体步骤为:(1)分析题目的要求,找出旋转中心、旋转角; (2)分析所作的图形,找出构造图形的关键点; (3) 沿一定的方向,按一定的角度,通过攫取线段的方法,旋转各个关键点。
中考数学旋转知识点总结
中考数学旋转知识点总结一、旋转的基本概念1. 旋转的定义旋转是几何变换的一种,它将图形绕某一定点进行旋转,使得原图形经过旋转后仍符合原图形的性质。
在平面几何中,这一定点通常被称为旋转中心,而旋转的角度则是旋转的重要参数。
2. 旋转的表示在数学中,旋转可以通过不同的表示方法来描述。
最常见的是使用坐标系中的点和向量表示旋转,也可以使用矩阵来进行描述。
3. 旋转的性质旋转具有许多重要的性质,比如旋转是等距变换,旋转后的图形与原图形的关系等。
这些性质对于理解旋转的本质和应用都具有重要的意义。
二、旋转的基本公式1. 二维平面的旋转公式在平面几何中,二维平面上的点可以通过旋转变换而成。
对于坐标系中的点(x, y),绕原点逆时针旋转θ度后的新坐标可以根据公式进行计算。
2. 三维空间的旋转公式在三维空间中,点的旋转也是常见的几何变换。
旋转的角度可以沿着不同轴进行,因此三维空间中的旋转公式相对复杂一些,但也是可以通过矩阵等方式进行描述的。
三、旋转的应用1. 图形的旋转在几何中,通过旋转可以使得图形的位置和方向发生变化。
通过学习旋转的原理和公式,可以对图形的旋转进行分析和计算,从而更好地理解和掌握图形的性质和特点。
2. 向量的旋转在向量几何中,旋转是常见的几何变换。
向量的旋转不仅可以通过公式进行计算,还可以通过向量的性质和几何特点进行分析,从而更深入地理解向量的旋转。
3. 坐标系的旋转在空间几何和三维几何中,经常需要对坐标系进行旋转变换。
通过学习旋转的原理和方法,可以更清晰地理解坐标系的旋转规律,从而更好地应用于实际问题的解决中。
四、旋转的相关定理1. 旋转对称性质在平面几何中,旋转对称是一种重要的对称方式。
通过学习旋转对称的定理和性质,可以更好地理解和应用旋转对称在几何图形中的作用。
2. 旋转角度的性质旋转角度的性质是旋转的重要定理和性质之一。
通过学习旋转角度的性质,可以更深入地理解和应用旋转的基本特点。
3. 旋转的复合变换旋转可以与其他几何变换进行复合,比如平移、翻转等。
图形的旋转中心知识点总结
图形的旋转中心知识点总结一、基本概念图形的旋转中心是指图形旋转时所围绕的点,旋转中心是进行旋转变化的基准点,决定了图形旋转的方式和方向。
对于平面内的图形来说,旋转中心通常是一个固定的点或者是另一个图形的顶点。
二、旋转中心的作用1.决定旋转方向和角度:旋转中心决定了图形旋转的方向和角度,当旋转中心不同,图形的旋转效果也会有所不同。
2.确定旋转后的位置:通过旋转中心,可以确定图形旋转后的位置,帮助我们更好地理解和描述图形的变化过程。
3.揭示图形的对称性:旋转中心可以揭示图形的对称性,帮助我们理解图形的几何属性和特点。
三、常见的旋转中心1.固定点旋转中心:即图形的旋转中心是一个固定的点,可以是图形中心、某个顶点、某个重心或其他特定的点。
2.动态旋转中心:当图形的旋转中心不固定,会随着旋转过程的变化而变化,这种情况下我们称之为动态旋转中心。
四、图形的旋转方式1.顺时针旋转:即图形按照顺时针方向旋转,旋转角度为正。
2.逆时针旋转:即图形按照逆时针方向旋转,旋转角度为负。
五、旋转中心与图形的关系1.对称图形的旋转中心:对称图形的旋转中心通常位于图形的中心,因为对称图形的中心是其旋转中心,围绕旋转中心旋转对称图形时,旋转后的图形与原图形相似且对称。
2.非对称图形的旋转中心:非对称图形的旋转中心通常位于图形的特定点,可以是图形的顶点、重心或其他点,围绕旋转中心旋转非对称图形时,旋转后的图形将呈现出不同于原图形的特点。
六、图形的旋转与应用1.在几何学中,图形的旋转是一种常见的基本变换,通过旋转可以改变图形的朝向和位置,帮助我们更好地理解图形的性质和特点。
2.在工程设计中,图形的旋转可以用于构建复杂的结构和装置,通过旋转可以实现不同部件的组合和变换。
3.在艺术创作中,图形的旋转可以用于创作不同的图案和造型,通过旋转可以实现更加丰富的视觉效果。
七、图形的旋转规律1.当图形围绕旋转中心进行旋转时,旋转后的图形与原图形相似,且对称于旋转中心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的旋转
本节我们重点了解旋转、平移性质,除外还有一个重点是点的对称变换。
二、知识要点
1、旋转:将一个图形绕着某点O转动一个角度的变换叫做旋转。
其中,O叫做旋转中心,转动的角度叫做旋转角。
2、旋转性质
①旋转后的图形与原图形全等
②对应线段与O形成的角叫做旋转角
③各旋转角都相等
3、平移:将一个图形沿着某条直线方向平移一定的距离的变换叫做平移。
其中,该直线的方向叫做平移方向,该距离叫做平移距离。
4、平移性质
①平移后的图形与原图形全等
②两个图形的对应边连线的线段平行相等(等于平行距离)
③各组对应线段平行且相等
5、中心对称与中心对称图形
①中心对称:若一个图形绕着某个点O旋转180°,能够与另一个图形完全重合,则这两个图形关于这个点对称或中心对称。
其中,点O叫做对称中心、两个图形的对应点叫做关于中心的对称点。
②中心对称图形:若一个图形绕着某个点O旋转180°,能够与原来的图形完全重合,则这个图形叫做中心对称图形。
其中,这个点叫做该图形的对称中心。
6、轴对称与轴对称图形
(1)、轴对称:若两个图形沿着某条轴对折,能够完全重合,则这两个图形关于这条轴对称或它们成轴对称。
其中,这条轴叫做对称轴。
注:轴对称的性质:①两个图形全等;②对应点连线被对称轴垂直平分
(2)轴对称图形:若一个图形沿着某条轴对折,能够完全重合,则这个图形叫做轴对称图形。
7、点的对称变换
(1)、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为
P'(-x,-y)
(2)、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P'(x,-y)
(3)、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P'(-x,y)
(4)、关于直线y=x对称
两个点关于直线y=x对称时,横坐标与纵坐标与之前对换,即:P(x,y)关于直线
y=x的对称点为P'(y,x)
(5)、两个点关于直线y=-x对称时,横坐标与纵坐标与之前完全相反,即:P(x,y)关于直线y=x 的对称点为P'(-y,-x)
注:y=x的直线是过一三象限的角平分线,y=-x的直线是过二四象限的角平分线。
三、经验之谈:
本节中点的对称变换考得相对较多,如果在大脑中百思不得其解的话,我们可以动手作图出来观察。
51加速度学习网整理。